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    Executive Summary 

 Optimization   maintains its importance within portfolio management, despite 
many criticisms of the Markowitz approach, because modern algorithmic 
approaches are able to provide solutions to much more wide-ranging  optimization 
problems than the classical mean – variance case. By setting up problems with 
more general constraints and more flexible objective functions, investors can 
model investment realities in a way that was not available to the first generation 
of users of risk models. 

 In   this chapter, we review the use of second-order cone programming to handle 
a number of economically important optimization problems involving: 

      ●      Alpha uncertainty  
      ●      Constraints on systematic and specific risks  
      ●      Fund of funds with multiple active risk constraints  
      ●      Constraints on risk using more than one risk model  
      ●      Combining different risk measures     

    1.1       Introduction 

 Despite   an almost-continuous criticism of mathematical optimization as a 
method of constructing investment portfolios since it was first proposed, there 
are an ever-increasing number of practitioners of this method using it to man-
age more and more assets. Given the fact that the problems associated with the 
Markowitz approach are so well known and so widely acknowledged, why is 
it that portfolio optimization remains popular with well-informed investment 
professionals? 

 The   answer lies in the fact that modern algorithmic approaches are able to pro-
vide solutions to much more wide-ranging optimization problems than the clas-
sical mean – variance case. By setting up problems with more general constraints 
and more flexible objective functions, investors can model investment realities in 
a way that was not available to the first generation of users of risk models. 

 In   particular, the methods of cone programming allow efficient solutions 
to problems that involve more than one quadratic constraint, more than one 
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quadratic term within the utility function, and more than one benchmark. In 
this way, investors can go about finding solutions that are robust against the 
failure of a number of simplifying assumptions that had previously been seen 
as fatally compromising the mean – variance optimization approach. 

 In   this chapter, we consider a number of economically important optimiza-
tion problems that can be solved efficiently by means of second-order cone 
programming (SOCP) techniques. In each case, we demonstrate by means 
of fully worked examples the intuitive improvement to the investor that can 
be obtained by making use of SOCP, and in doing so we hope to focus the 
discussion of the value of portfolio optimization where it should be on the 
proper definition of utility and the quality of the underlying alpha and risk 
models.  

    1.2       Alpha uncertainty 

 The   standard mean – variance portfolio optimization approach assumes that the 
alphas are known and given by some vector   α  . The problem with this is that 
generally the alpha predictions are not known with certainty — an investor can 
estimate alphas but clearly cannot be certain that their predictions will be cor-
rect. However, when the alpha predictions are subsequently used in an optimi-
zation, the optimizer will treat the alphas as being certain and may choose a 
solution that places unjustified emphasis on those assets that have particularly 
large alpha predictions. 

 Attempts   to compensate for this in the standard quadratic programming 
approach include just reducing alphas that look too large to give more con-
servative estimates and imposing constraints such as maximum asset weight 
and sector weight constraints to try and prevent any individual alpha estimate 
having too large an impact. However, none of these methods directly address 
the issue and these approaches can lead to suboptimal results. A better way of 
dealing with the problem is to use SOCP to include uncertainty information in 
the optimization process. 

 If   the alphas are assumed to follow a normal distribution with mean   α *  and 
known covariance matrix of estimation errors   Ω  , then we can define an ellipti-
cal confidence region around the mean estimated alphas as: 

 ( ) ( )α α α α� ��* *T Ω 1 2− k       

 There   are then several ways of setting up the robust optimization problem; 
the one we consider is to maximize the worst-case return for the given confi-
dence region, subject to a constraint on the mean portfolio return,   α  p  . If  w  is 
the vector of portfolio weights, the problem is: 

 Maximize Min portfolio varianceT( ( ) )w α �      

06_P374952_Ch01.indd   406_P374952_Ch01.indd   4 9/15/2009   5:13:49 PM9/15/2009   5:13:49 PM



Robust portfolio optimization using second-order cone programming 5

  subject to   

 ( ) ( )α α α α� � ��* *T Ω 1 2k       

 
α α*Tw p�

      

 e w 1T �       

 w 0�       

 This   can be written as an SOCP problem by introducing an extra variable, 
  α  u   (for more details on the derivation, see  Scherer (2007) ): 

 Maximize * portfoliovarianceT( )w uα α� �k      

  subject to   

 w wT
u

2Ω � α       

 
α*Tw p� α

      

 e w 1T �       

 w 0�       

    Figure 1.1    shows the standard mean – variance frontier and the frontier gen-
erated including the alpha uncertainty term ( “ Alpha Uncertainty Frontier ” ). 
The example has a 500-asset universe and no benchmark and the mean port-
folio alpha is constrained to various values between the mean portfolio alpha 
found for the minimum variance portfolio (assuming no alpha uncertainty) and 
0.9. The size of the confidence region around the mean estimated alphas (i.e., 
the value of  k ) is increased as the constraint on the mean portfolio alpha is 
increased. The covariance matrix of estimation errors   Ω   is assumed to be the 
individual volatilities of the assets calculated using a SunGard APT risk model. 
The portfolio variance is also calculated using a SunGard APT risk model. 

 Some   extensions to this, e.g., the use of a benchmark and active portfolio 
return, are straightforward. 

 The   key questions to making practical use of alpha uncertainty are the spec-
ification of the covariance matrix of estimation errors   Ω   and the size of the 
confidence region around the mean estimated alphas (the value of  k ). This will 
depend on the alpha generation process used by the practitioner and, as for 
the alpha generation process, it is suggested that backtesting be used to aid in 
the choice of appropriate covariance matrices   Ω   and confidence region sizes  k . 
From a practical point of view, for reasonably sized problems, it is helpful if 
the covariance matrix   Ω   is either diagonal or a factor model is used.  
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Optimizing Optimization6

    1.3       Constraints on systematic and specific risk 

 In   most factor-based risk models, the risk of a portfolio can be split into a part 
coming from systematic sources and a part specific to the individual assets 
within the portfolio (the residual risk). In some cases, portfolio managers are 
willing to take on extra risk or sacrifice alpha in order to ensure that the sys-
tematic or specific risk is below a certain level. 

 A   heuristic way of achieving a constraint on systematic risk in a standard 
quadratic programming problem format is to linearly constrain the portfolio 
factor loadings. This works well in the case where no systematic risk is the 
requirement, e.g., in some hedge funds that want to be market neutral, but is 
problematic in other cases because there is the question of how to split the sys-
tematic risk restrictions between the different factors. In a prespecified factor 
model, it may be possible to have some idea about how to constrain the risk 
on individual named factors, but it is generally not possible to know how to do 
this in a statistical factor model. This means that in most cases, it is necessary 
to use SOCP to impose a constraint on either the systematic or specific risk. 

 In   the SunGard APT risk model, the portfolio variance can be written as: 

 w B Bw w wT T T� ∑      
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 Figure 1.1          Alpha uncertainty efficient frontiers.    
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  where

                w      �            n       �      1 vector of portfolio weights  
     B      �            c       �       n  matrix of component (factor) loadings  
     Σ      �            n       �       n  diagonal matrix of specific (residual) variances      

 The   systematic risk of the portfolio is then given by: 

 Systematic riskof por oliotf w B B wT T� √ ( )      

  and the specific risk of the portfolio by:   

 Specific riskof portfolio � � (w w)T ∑       

 The   portfolio optimization problem with a constraint on the systematic risk 
(  σ   sys ) is then given by the SOCP problem: 

 Minimize ( )w B Bw w wT T T� ∑      

  subject to   

 
w B BwT T � σsys

2

      

 
α α* wT

p�
      

 e w 1T �       

 w 0�      

  where

                 α *            �        n       �      1 vector of estimated asset alphas  
      α  p             �       portfolio return      

 One   point to note on the implementation is that the  B  T  B  matrix is never cal-
culated directly (this would be an  n       �       n  matrix, so could become very large when 
used in a realistic-sized problem). Instead, extra variables  b i   are introduced, one 
per factor, and constrained to be equal to the portfolio factor loading: 

 b Bw 1i i c� �( ) , i ⋅⋅⋅       

 This   then gives the following formulation for the above problem of con-
straining the systematic risk: 

 Minimize( )b b w wT T� ∑      
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  subject to   

 
b bT � σsys

2

      

 
α α* wT

p�
      

 e w 1T �       

 b B w�       

 w 0�       

 Similarly  , the problem with a constraint on the specific risk (  σ   spe ) is given by: 

 Minimize T( )b b w wT � ∑      

  subject to   

 
w wT ∑ � σspe

2

      

 
α α* wT

p�
      

 e w 1T �       

 b B w�       

 w 0�       

    Figure 1.2    shows the standard mean – variance frontier and the frontiers gen-
erated with constraints on the specific risk of 2% and 3%, and on the sys-
tematic risk of 5%. The example has a 500-asset universe and no benchmark 
and the portfolio alpha is constrained to various values between the portfolio 
alpha found for the minimum variance portfolio and 0.9. (For the 5% con-
straint on the systematic risk, it was not possible to find a feasible solution 
with a portfolio alpha of 0.9.)  Figure 1.3    shows the systematic portfolio vola-
tilities and  Figure 1.4    shows the specific portfolio volatilities for the same set 
of optimizations. 

 Constraints   on systematic or specific volatility can be combined with the 
alpha uncertainty described in the previous section. The resulting frontiers can 
be seen in          Figures 1.5 – 1.7        (the specific 3% constraint frontier is not shown 
because this coincides with the Alpha Uncertainty Frontier for all but the first 
point). 

 The   shape of the specific risk frontier for the alpha uncertainty frontier (see 
 Figure 1.7 ) is unusual. This is due to a combination of increasing the empha-
sis on the alpha uncertainty as the constraint on the mean portfolio alpha 
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 Figure 1.2          Portfolio volatility with constraints on systematic and specific risk.    
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 Figure 1.3          Portfolio systematic volatility with constraints on systematic and specific risk.    
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 Figure 1.4          Portfolio specific volatility with constraints on systematic and specific risk.    
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 Figure 1.5          Portfolio volatility with alpha uncertainty and constraints on systematic and 
specific risk.    
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 Figure 1.6          Portfolio systematic volatility with alpha uncertainty and constraints on 
systematic and specific risk.    

0.75

0.7

0.65

0.6

0.55

0.5

0.45
1 2 3

Portfolio specific volatility

4 5 6

0.95

0.9

0.85

0.8

M
e

a
n

 p
o

rt
fo

lio
 a

lp
h

a

Alpha uncertainty frontier

Sys 5% and alpha uncertaintyMV frontier

Spe 2% and alpha uncertainty

 Figure 1.7          Portfolio specific volatility with alpha uncertainty and constraints on 
systematic and specific risk.    
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increases, and the choice of covariance matrix of estimation errors. In a typical 
mean – variance optimization, as the portfolio alpha increases, the specific risk 
would be expected to increase as the portfolio would tend to be concentrated 
in fewer assets that have high alphas. However, in the above alpha uncertainty 
example, because the emphasis increases on the alpha uncertainty term, and 
the covariance matrix of estimation errors is a matrix of individual asset vola-
tilities, this tends to lead to a more diversified portfolio than in the pure mean –
 variance case. It should be noted that with a different choice of covariance 
matrix of estimation errors, or if the emphasis on the alpha uncertainty is kept 
constant, a more typical specific risk frontier may be seen. 

 Whilst   the factors in the SunGard APT model are independent, it is straight-
forward to extend the above formulation to more general factor models, and to 
optimizing with a benchmark and constraints on active systematic and active 
specific risk.  

    1.4       Constraints on risk using more than one model 

 With   the very volatile markets that have been seen recently, it is becoming 
increasingly common for managers to be interested in using more than one 
model to measure the risk of their portfolio. 

 In   the SunGard APT case, the standard models produced are medium-term 
models with an investment horizon of between 3 weeks and 6 months. However, 
SunGard APT also produces short-term models with an investment horizon of less 
than 3 weeks. Some practitioners like to look at the risk figures from both types 
of model. Most commercial optimizers designed for portfolio optimization do not 
provide any way for them to combine the two models in one optimization so they 
might, for example, optimize using the medium-term model and then check that 
the risk prediction using the short-term model is acceptable. Ideally, they would 
like to combine both risk models in the optimization, for example, by using the 
medium-term model risk as the objective and then imposing a constraint on the 
short-term model risk. This constraint on the short-term model risk requires SOCP. 

 Other   examples of possible combinations of risk models that may be used by 
practitioners are: 

      ●      SunGard APT Country and SunGard APT Region Models  
      ●      Risk models from two different vendors, or a risk model from a vendor alongside 

one produced internally  
      ●      Different types of risk model, e.g., a statistical factor model, one such as those pro-

duced by SunGard APT, and a prespecified factor model    

 One   way of using both risk models in the optimization is to include them 
both in the objective function: 

 

Minimize   
 

[ (( ) ( ) ( ) ( ))
(( )

x

x
1 1 1 1

2

w b B B w b w b w b
w b B

� � � � �

� �

T T T

T
∑

22 2 2  T TB w b w b w b( ) ( ) ( ))]� � � �∑      
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  subject to   

 
α α* wT

p�
      

 e w 1T �       

 w w� max       

 w 0�      

  where

    w            �          n       �      1 vector of portfolio weights 

    b            �          n       �      1 vector of benchmark weights 

    B i          �     c       �       n  matrix of component (factor) loadings for risk model  i  

     Σ  i         �     n       �       n  diagonal matrix of specific (residual) variances for risk model  i  

    x i          �    weight of risk model  i  in objective function ( x i        �      0) 

     α *       �     n       �      1 vector of estimated asset alphas 

     α  p         �    portfolio return 

    w max    �     n       �      1 vector of maximum asset weights in the portfolio 

 This   is a standard quadratic programming problem and does not include 
any second-order cone constraints but does require the user to make a decision 
about the relative weight ( x i  ) of the two risk terms in the objective function. 
This relative weighting may be less natural for the user than just imposing a 
tracking error constraint on the risk from one of the models.  Figure 1.8    shows 
frontiers with tracking error measured using a SunGard APT medium-term 
model (United States August 2008) for portfolios created as follows: 

      ●      Optimizing using the medium-term model only  
      ●      Optimizing using the short-term model only  
      ●      Optimizing including the risk from both models in the objective function, with 

equal weighting on the two models    

 The   same universe and benchmark has been used in all cases and they each 
contain 500 assets, and the portfolio alpha is constrained to values between 
0.01 and 0.07. 

    Figure 1.9    shows the frontiers for the same set of optimizations with track-
ing errors measured using a SunGard APT short-term model (United States 
August 2008). 

 It   can be seen from        Figures 1.8 and 1.9  that optimizing using just one model 
results in relatively high tracking errors in the other model, but including terms 
from both risk models in the objective function results in frontiers for both 
models that are close to those generated when just optimizing with the indi-
vidual model. 
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 Figure 1.8          Tracking error measured using the SunGard APT medium-term model.    
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 Figure 1.9          Tracking error measured using the SunGard APT short-term model.    

06_P374952_Ch01.indd   1406_P374952_Ch01.indd   14 9/15/2009   5:13:53 PM9/15/2009   5:13:53 PM



Robust portfolio optimization using second-order cone programming 15

 Using   SOCP, it is possible to include both risk models in the optimization by 
including the risk term from one in the objective function and constraining on 
the risk term from the other model: 

 Minimize  [( ) ( ) ( ) ( )]w b B B w b w b w bT T
1

T� � � � �1 1∑      

  subject to   

 ( ) ( ) ( ) ( )w b B B w b w b w bT T T� � � � � �2 2 2 2
2∑ σa       

 
α α* wT

p�
      

 e w 1T �       

 w w� max       

 w 0�      

  where   σ   a2       �      maximum tracking error from the second risk model.   
    Figure 1.10    shows the effect of constraining on the risk from the short-term 

model, with an objective of minimizing the risk from the medium-term model, 
with a constraint on the portfolio alpha of 0.07. The tracking errors from just 
optimizing using one model without any constraint on the other model, and 
optimizing including the risk from both models in the objective function, are 
also shown for comparison. 
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 Figure 1.10          Tracking errors with constraints on the SunGard APT short-term model 
tracking error.    
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 Whilst   the discussion here has concerned using two SunGard APT risk mod-
els, it should be noted that it is trivial to extend the above to any number of 
risk models, and to more general risk factor models.  

    1.5       Combining different risk measures 

 In   some cases, it may be desirable to optimize using one risk measure for the 
objective and to constrain on some other risk measures. For example, the 
objective might be to minimize tracking error against a benchmark whilst con-
straining the portfolio volatility. Another example could be where a pension 
fund manager or an institutional asset manager has an objective of minimizing 
tracking error against a market index, but also needs to constrain the tracking 
error against some internal model portfolio. 

 This   can be achieved in a standard quadratic programming problem format 
by including both risk measures in the objective function and varying the rela-
tive emphasis on them until a solution satisfying the risk constraint is found. 
The main disadvantage of this is that it is time consuming to find a solution 
and is difficult to extend to the case where there is to be a constraint on more 
than one additional risk measure. A quicker, more general approach is to use 
SOCP to implement constraints on the risk measures. 

 The   first case, minimizing tracking error, whilst constraining portfolio vola-
tility, results in the following SOCP problem when using the SunGard APT risk 
model: 

 Minimize ( )[ ( ) ( ) ( )]w b B B w b w b w bT T T� � � � �∑      

  subject to   

 
α α* wT

p�
      

 w B Bw w wT T T� �∑ σ2
      

 e w 1T �       

 w w� max       

 w 0�      

  where

   w �    n       �      1 vector of portfolio weights 

   b �    n       �      1 vector of benchmark weights 

    B  �    c       �       n  matrix of component (factor) loadings 

    Σ    �    n       �       n  diagonal matrix of specific (residual) variances 
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     σ          �    maximum portfolio volatility 

     α *       �     n       �      1 vector of estimated asset alphas 

     α  p        �    Portfolio return 

    w max    �     n       �      1 vector of maximum asset weights in the portfolio 

 An   example is given below where an optimization is first run without any 
constraint on the portfolio volatility, but with a constraint on the portfolio 
alpha. The optimization is then rerun several times with varying constraints 
on the portfolio volatility, and the same constraint on the portfolio alpha. The 
universe and benchmark both contain 500 assets. The resulting portfolio vola-
tilities and tracking errors can be seen in  Figure 1.11   . 

 The   second case, minimizing tracking error against one benchmark, whilst 
constraining tracking error against some other benchmark, results in the fol-
lowing SOCP problem when using the SunGard APT risk model: 

 Minimize[( ) ( ) ( ) ( )]w b B B w b w b w b1
T T T� � � � �1 1 1∑      

  subject to   

 
α α* wT

p�
      

 ( ) ( ) ( ) ( )w b B B w b w b w bT T T� � � � � �2 2 2 2 2
2∑ σa       

 e w 1T �       

 w w� max       

 w � 0      

  where

    b 1      �     n       �      1 vector of weights for benchmark used in objective function 

    b 2      �     n       �      1 vector of weights for benchmark used in constraint 

     σ   a2  �    maximum tracking error against second benchmark 

 An   example of this case is given below where an optimization is first run 
without any constraint on the tracking error against the internal model portfo-
lio, but with a constraint on the portfolio alpha, minimizing the tracking error 
against a market index. The optimization is then rerun several times with vary-
ing constraints on the tracking error against the internal model portfolio, and 
the same constraint on the portfolio alpha. The universe and benchmark both 
contain 500 assets. The resulting tracking errors against both the market index 
and the internal model portfolio can be seen in  Figure 1.12   .  
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    1.6       Fund of funds 

 An   organization might want to control the risk of all their funds against one 
benchmark, but give fund managers different mandates with different bench-
marks and risk restrictions. If the managers each individually optimize their 
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 Figure 1.11          Risk with portfolio volatility constrained.    
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 Figure 1.12          Risk with tracking error constrained against a model portfolio.    

06_P374952_Ch01.indd   1806_P374952_Ch01.indd   18 9/15/2009   5:13:55 PM9/15/2009   5:13:55 PM



Robust portfolio optimization using second-order cone programming 19

own fund against their own benchmark, then it can be difficult to control the 
overall risk for the organization. From the overall management point of view, 
it would be better if the funds could be optimized together, taking into account 
the overall benchmark. One way to do this is to use SOCP to impose the track-
ing error constraints on the individual funds, and optimize with an objective of 
minimizing the tracking error of the combined funds against the overall bench-
mark, with constraints on the minimum alpha for each of the funds. Using the 
SunGard APT risk model, this results in the following SOCP problem: 

 Minimize ( ) ( ) ( ) ( )w b B B w b w b w bc c
T T

c c c c
T

c c� � � � �∑      

  subject to   

 w w , 1c i� � �∑ ∑i i i if f fi , 0       

 ( ) ( ) ( ) ( ) ,w b B B w b w b w b 1i i
T T

i i i i
T

i i� � � � � � �∑ ⋅⋅⋅σai i m2
      

 e w 1,T
i � �i m1⋅⋅⋅       

 w w maxi i i� � �0 1, , i m⋅⋅⋅       

 
α*i p

T
iw 1� �α i i m, ⋅⋅⋅

     
  where

    m       �    number of funds 

    w i       �    n       �      1 vector of portfolio weights for fund  i  

    b i        �    n       �      1 vector of benchmark weights for fund  i  

    w c       �    n       �      1 vector of weights for overall (combined) portfolio 

    f i          �   weight of fund  i  in overall (combined) portfolio 

    b c        �    n       �      1 vector of overall benchmark weights 

    B       �    c       �       n  matrix of component (factor) loadings 

     Σ        �    n       �       n  diagonal matrix of specific (residual) variances 

     σ   a   i        �  maximum tracking error for fund  i  

    max i   �    n       �      1 vector of maximum weights for fund  i  

    α*i       �    n       �      1 vector of assets alphas for fund  i  

     α   p   i      �   minimum portfolio alpha for fund  i  

 In   the example given below, we have two funds, and the target alpha for 
both funds is 5%. The funds are equally weighted to give the overall portfolio. 
 Figure 1.13    shows the tracking error of the combined portfolio and each of 
the funds against their respective benchmarks where the funds have been opti-
mized individually. 

 In   this case, the tracking error against the overall benchmark is much larger 
than the tracking errors for the individual funds against their own benchmarks. 
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Optimizing Optimization20

This sort of situation would arise when the overall benchmark and the indi-
vidual fund benchmarks are very different, e.g., in the case where the overall 
benchmark is a market index and the individual funds are a sector fund and 
a value fund. It is unlikely to occur when both the overall and individual fund 
benchmarks are very similar, for instance, when they are all market indexes. 

    Figure 1.14    shows the tracking errors when the combined fund is optimized 
with the objective of minimizing tracking error against the combined bench-
mark, subject to the constraints on alpha for each of the funds, but without the 
constraints on the individual fund tracking errors. 

    Figure 1.15    shows the results of optimizing including the SOCP constraints 
on the tracking errors for the individual funds. 

 From   the organization’s perspective, using SOCP to constrain the individual fund 
tracking errors whilst minimizing the overall fund tracking error should achieve 
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 Figure 1.13          Tracking errors when optimizing funds individually.    
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Robust portfolio optimization using second-order cone programming 21

their goal. However, there is a question as to whether this is a fair method of opti-
mization from the point of view of the individual managers. Suppose that instead 
of both managers in the above example having a minimum portfolio alpha require-
ment of 5%, one of the managers decides to target a minimum portfolio alpha 
of 6%. If they are still both constrained to have a maximum individual tracking 
error against their own benchmark of 2%, it can be seen from  Figure 1.16    that the 
tracking error for the overall fund against the overall benchmark will increase. 
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Optimizing Optimization22

 The   organization might decide that this new tracking error against the overall 
benchmark is too high and, to solve this problem, will impose lower tracking 
error restrictions on the individual funds. This could be considered to be unfairly 
penalizing the first fund manager as the reason the overall tracking error is now 
too high is because of the decision by the second manager to increase their mini-
mum portfolio alpha constraint. It is tricky to manage this issue and it may be 
that the organization will need to consider the risk and return characteristics 
of the individual portfolios generated by separate optimizations on each of the 
funds both before setting individual tracking error constraints, and after the 
combined optimization has been run to check that they appear fair.  

    1.7       Conclusion 

 SOCP   provides powerful additional solution methods that extend the scope of 
portfolio optimization beyond the simple mean – variance utility function with 
linear and mixed integer constraints. By considering a number of economically 
important example problems, we have shown how SOCP approaches allow 
the investor to deal with some of the complexities of real-world investment 
problems. A great advantage in having efficient methods available to generate 
these solutions is that the investor’s intuition can be tested and extended as the 
underlying utility or the investment constraints are varied. 

 Ultimately  , it is not the method of solving an optimization problem that is 
critical — rather it is the ability to comprehend and set out clearly the economic 
justification for framing an investment decision in terms of a trade-off of risk, 
reward and cost with a particular form of the utility function and a special set of 
constraints. There are many aspects of risky markets behavior that have not been 
considered here, notably relating to downside and pure tail risk measures, but 
we hope that an appreciation of the solution techniques discussed in this chapter 
will lead to a more convincing justification for the entire enterprise of portfolio 
optimization, as the necessary rethinking of real-world utilities and constraints is 
undertaken.   
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