
(1)

(2)

(3)

(4)

1 September 2004
Overview of Violations of the Basic Assumptions
in the Classical Normal Linear Regression Model

A. Introduction and assumptions

The classical normal  linear regression model can be written as

or 

twhere x N is the tth row of the matrix X or simply as

twhere it is implicit that x  is a row vector containing the regressors for the tth time period.  The classical
assumptions on the model can be summarized as 

Assumption V as written implies II and III.  These assumptions are described as

1. linearity
2. zero mean of the error vector
3. scalar covariance matrix for the error vector
4. non-stochastic X matrix of full rank
5. normality of the error vector

With normally distributed disturbances, the joint density (and therefore likelihood function) of y is 
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(5)

(6)

(7)

(8)

The natural log of the likelihood function is given by 

Maximum likelihood estimators are obtained by setting the derivatives of (6) equal to zero and solving the
resulting k+1 equations for the k $’s and F .  These first order conditions for the M.L estimators are2

Solving we obtain

The ordinary least squares estimator is obtained be minimizing the sum of squared errors which is defined
by
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(12)

The necessary condition for to be a minimum is that

This gives the normal equations which can then be solved to obtain the least squares estimator

The maximum likelihood estimator of  is the same as the least squares estimator.  The distribution of this
estimator is given as

We have shown that the least squares estimator is:

1. unbiased
2. minimum variance of all unbiased estimators
3. consistent
4. asymptotically normal
5. asymptotically efficient.

 

In this section we will discuss how the statistical properties of  crucially dependent upon the assumptions
I-V.  The discussion will proceed by dropping one assumption at a time and considering the consequences.
Following a general discussion, later sections will analyze specific violations of the assumptions in detail.



4

(13)

(14)

B. Nonlinearity

1. nonlinearity in the variables only

If the model is nonlinear in the variables, but linear in the parameters, it can still be estimated using

1 2 p linear regression techniques.  For example consider a set of variables z = (z , z , ... ,z ), a set of k

1 kfunctions h  ... h , and parameters .  Now define the model:

This model is linear in the parameters $  and can be estimated using standard techniques where the0

ifunctions h  take the place of the x variables in the standard model.  

2. intrinsic linearity in the parameters

a. idea

Sometimes models are nonlinear in the parameters.  Some of these may be intrinsically linear,
however.  In the classical model, if the k parameters  can be written as k one-to-one

1 kfunctions (perhaps nonlinear) of a set of k underlying parameters 2 , ... , 2 , then model is
intrinsically linear in 2.

b. example

The model is nonlinear in the parameter A  , but since it is linear in " , and "  is a one-to-one0 0 0

function of A , the model is intrinsically linear.0

3. inherently nonlinear models

Models that are inherently nonlinear cannot be estimated using ordinary least squares and the previously
derived formulas.  Alternatives include Taylor's series approximations and direct nonlinear estimation.
In the section on non-linear estimation we showed that the non-linear least squares estimator is:

1. consistent
2. asymptotically normal

We also showed that the maximum likelihood estimator in a general non-linear model is 

1. consistent
2. asymptotically normal
3. asymptotically efficient in the sense that within the consistent asymptotic normal (CAN) class

it has minimum variance
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If the distribution of the error terms in the non-linear least squares model is normal, and the errors are
iid(o, F ), then the non-linear least squares estimator and the maximum likelihood estimator will be the2

same, just as in the classical normal linear regression model.

tC. Non-zero expected value of error term (E(g ) � 0)

Consider the case where g has a non-zero expectation. The least squares estimators of $ is given by

The expected value of  is given as follows where 

which appears to suggest that all of the least squares estimators in the vector  are biased.

t gHowever, if E(g ) = :  for all t, then

To interpret this consider the rules for matrix multiplication.
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  Now consider

The first column of the X matrix is a column of ones. Therefore 

Thus it is clear that
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and only the estimator of the intercept is biased.  This situation can arise if a relevant and important factor
has been omitted from the model, but the factor doesn't change over time.  The effect of this variable is then

1 gincluded in the intercept and separate estimators of $  and :  can't be obtained.

More general violations lead to more serious problems and in general the least squares estimators of $ and
F  are biased.2
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D. A non-scalar identity covariance matrix

1. introduction

Assumption III implies that the covariance matrix of the error vector is a constant F  multiplied by the2

identity matrix.  In general this covariance may be any positive definite matrix.  Different assumptions
about this matrix will lead to different properties of various estimators.

2. heteroskedasticity

Heteroskedasticity is the case where the diagonal terms of the covariance matrix are not all equal, i.e. Var

t(g ) � F  for all t2

With heteroskedasticity alone the covariance matrix G is given by

This model will have k + n parameters and cannot be estimated using n observations unless some
assumptions (restrictions) about the parameters are made.

.  . .@
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3. autocorrelation

Autocorrelation is the case where the off-diagonal elements of the covariance matrix are not zero, i.e.

t sCov (g , g ) � 0 for t � s.  With no autocorrelation, the errors have no discernible pattern.

In the case above, positive levels of , tend to be associated with positive levels and so on.  With
autocorrelation alone G is given by

This model will have k + 1 + (n(n-1)/2) parameters and cannot be estimated using n observations unless
some assumptions (restrictions) about the parameters are made.
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4. the general linear model

For situations in which autocorrelation or heteroskedasticity exists

and the model can be written more generally as

Assumption VI as written here allows X to be stochastic, but along with II, allows all results to be
conditioned on X in a meaningful way.  This model is referred to as the generalized normal linear
regression model and includes the classical normal linear regression model as a special case, i.e., when

1 k3 = F I.  The unknown parameters in the generalized regression model are the $'s = ($ , . . ., $ )', and2

the n(n + 1)/2 independent elements of the covariance matrix.  In general it is not possible to estimate
3 unless simplifying assumptions are made since one cannot estimate k + [n(n+1)/2] parameters with
n observations.

5. Least squares estimations of $ in the general linear model with G = F S known2

Least squares estimation makes no assumptions about the disturbance matrix and so is defined as before
using the sum of squared errors.  The sum of squared errors is defined by

The necessary condition for to be a minimum is that
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This gives the normal equations which can then be solved to obtain the least squares estimator

The least squares estimator is exactly the same as before.   Its properties may be different, however, as
will be shown in a later section.

6. Maximum likelihood estimation with G known

The likelihood function for the vector random variable y is given by the multivariate normal density. For
this model

Therefore the likelihood function is given by

The natural log of the likelihood function is given as 

The M.L.E. of $ is defined by maximizing 31

This then yields as an estimator of $

This estimator differs from the least squares estimator.  Thus the least squares estimator will have
different properties than the maximum likelihood estimator.  Notice that if G is equal to F I, the2

estimators are the same.
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7. Best linear unbiased estimation with G known

BLUE estimators are obtained by finding the best estimator that satisfies certain conditions.  BLUE
estimators have the properties of being linear, unbiased, and minimum variance among all linear
unbiased estimators.  Linearity and unbiasedness can be summarized as 

The estimator must also be minimum variance.  One definition of this is that the variance of each 

must be a minimum.  The variance of the ith $ is given by the ith diagonal element of

This can be denoted as

where  is the ith row of the matrix A,  is  and  is given as  where iN is the ith row

of an kxk identity matrix.  The construction of the estimator can be reduced to selecting the matrix A
so that the rows of A

i iBecause the result will be symmetric for each $  (hence, for each a ), denote  by  where a is an (n

by 1) vector. The problem then becomes:
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The column vector i is the ith column of the identity matrix.    The Lagrangian is as follows

To minimize it take the derivatives with respect to a and 8

Now substitute a' = (1/2)8'X'G  into the second equation in 41 to obtain-1

It is obvious that AX = I.

The BLUE and MLE estimators of $ are identical, but different from the least squares estimator of $.
We sometimes call the BLUE estimator of $ in the general linear model, the generalized least squares

GLSestimator, $ .  This estimator is also sometimes called the Aitken estimator after the individual who
first proposed it.

8. A note on the distribution of 

a. introduction
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For the Classical Normal Linear Regression Model we showed that

For the Generalized Regression Model

b. unbiasedness of ordinary least squares in the general linear model

As before write  in the following fashion.

Now take the expected value of equation 45

Because  is either fixed or a function only of X if X is stochastic, it can be factored out
of the expectation, leaving E(,|X), which has an expectation of zero by assumption II.  Now find

the unconditional expectation of  by using the law of iterated expectations.  In the sense of

Y|XTheorem 3 of the section on alternative estimators, h(X,Y) is  and E  computes the expected

value of  conditioned on X.  

The interpretation of this result is that for any particular set of observations, X, the least squares
estimator has expectation $.  

c. variance of the OLS estimator

First rewrite equation 42 as follows
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Now directly compute the variance of  given X.

If the regressors are non-stochastic, then this is also the unconditional variance of .  If the

regressors are stochastic, then the unconditional variance is given by 

d. unbiasedness of MLE and BLUE in the general linear model

First write the GLS estimator as follows

Now take the expected value of equation 50

Because  is either fixed or a function only of X if X is stochastic, it can be factored out
of the expectation, leaving E(,|X), which has an expectation of zero by assumption II.  Now find

the unconditional expectation of  by using the law of iterated expectations.

The interpretation of this result is that for any particular set of observations, X, the generalized least
squares estimator has expectation $.  

e. variance of the GLS (MLE and BLUE) estimator
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First rewrite equation 50 as follows

Now directly compute the variance of  given X.

If the regressors are non-stochastic, then this is also the unconditional variance of .  If the

regressors are stochastic, then the unconditional variance is given by 

f. summary of finite sample properties of OLS in the general model

Note that all the estimators are unbiased estimators of $, but .   If
G = F I then the classical model results are obtained.  Thus using least squares in the generalized2

model gives unbiased estimators, but the variance of the estimator may not be minimal.

9. Consistency of OLS in the generalized linear regression model

We have shown that the least squares estimator in the general model is unbiased.  If we can show that
its variance goes to zero as n goes to infinity we will have shown that it is mean square error consistent,
and thus that is converges in probability to $.  This variance is given by

 As previously, we will assume that

With this assumption, we need to consider the remaining term, i.e., 
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The leading term, , will, by itself go to zero.  We can write the matrix term in the following useful

fashion similar to the way we wrote out a matrix product in proving the asymptotic normality of the
non-linear least squares estimator.  Remember specifically that

where    In similar fashion we can show that the matrix in equation 57 can be written as

The second term in equation 59 is a sum of n  terms divided by n.  In order to check convergence of2

this product, we need to consider the order of each term.  Remember the definition of order given
earlier.

Definition of order:  

n1. A sequence {a } is at most of order n , which we denote O(n ) if  is bounded.8 8

n nWhen 8 =0, {a } is bounded, and we also write a  = O(1), which we say as big oh one.

n2. A sequence {a } is of smaller order then n , which we denote o(n ) if .  When8 8

n n8 =0, {a } converges to zero, and we also write a  = o(1), which we say as little oh one.

The first term in the product is of order 1/n, O(1/n).  The second term, in general is of O(n).  So it
appears that if the product of these two terms converges, it might converge to a matrix of non-zero
constants.  If this were the case, proving consistency would be a problem.  At this point we will simply
make an assumption as follows.
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If this is the case, then the expression in equation 59 will converge in the limit to zero, and  will be
consistent.  Using arguments similar to those adopted previously, we can also show that the OLS
estimator will be asymptotically normal in a wide variety of settings (Amemiya, 187).  Discussion of the
GLS estimator will be discussed later.  

10. Consistent estimators of the covariance matrix in the case of general error structures

a. general discussion

If S were known, then the estimator of the asymptotic covariance matrix of  would be

The outer terms are available from the data, and if F S were known, we would have the information2

we need to compute standard errors.  From a sample of n observations, there is no way to estimate

the elements of F S.  But what we really need is an estimator of  which is a2

symmetric k×k matrix.  What we then need is an estimator of this matrix.  We can write this is a
more useful fashion as follows

tJwhere F  is the appropriate element of F S as compared to S.  The idea will be to use information2

*on the residuals from the least squares regression to devise a way to approximate Q .

b. heteroskedasticity only

In the case where there is no auto correlation, that is when F S is a diagonal matrix, we can write2

equation 62 as

White has shown that under very general conditions, the estimator
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The proof is based on the fact that  is a consistent estimate of $, (meaning the residuals are
consistent estimates of g), and fairly mild assumptions on X.  Then rather than using F (XNX)  to2 -1

estimated the variance of  in the general model, we instead use

c. autocorrelation

*In the case of a more general covariance matrix, a candidate estimator for Q  might be

The difficulty here is that to this matrix may not converge in the limit.  To obtain convergence, it
is necessary to assume that the terms involving unequal subscripts in (66) diminish in importance
as n grows.  A sufficient condition is that terms with subscript pairs |t - J| grow smaller as the

*distance between then grows larger.  A more practical problem for estimation is that Q  may not be
positive definite.  Newey and West have proposed an estimator to solve this problem using some

t t-Rof the cross products e e .  This estimator will be discussed in a later section.

E. Stochastic X matrix (possibly less than full rank)

1. X matrix less than full rank

If the X matrix, which is nxk, has rank less than k then X'X cannot be inverted and the least squares
estimator will not be defined.  This was discussed in detail in the section on multicollinearity.

2. Stochastic X
 

Consider the least squares estimator of $ in the classical model.  We showed that it was unbiased as
follows.

If the X matrix is stochastic and correlated with ,, we cannot factor it out of the second term in

equation 48.  If this is the case, .  In such cases, the least squares estimator is usually not only



20

(68)

(69)

(70)

(71)

biased, but is inconsistent as well.  Consider for example the case where converges to a finite

and non-singular matrix Q.  Then we can compute the probability limit of  as 

unless .

We showed previously that a consistent estimator of $ could be obtained using instrumental variables
(IV).  The idea of instrumental variables is to devise an estimator of $ such that the second term in
equation 49 will have a probability limit of zero.  The instrumental variables estimator is based on the
idea that the “instruments” used in the estimation are not highly correlated with g and any correlation
disappears in large samples.  A further condition is that these instruments are correlated with variables
in the matrix X.  We defined instrumental variables estimators in two different cases, when the number
of instrumental variables was equal to the number of columns of the X matrix, i.e., Z was n x k matrix,
and cases where there were more than k instruments.  In either case we assumed that had the following
properties

Then the instrumental variables estimator was given by

By finding the plim of this estimator, we showed that it was consistent
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In the case where the number of instrumental variables was greater than k, we formed k instruments by
projecting each of the columns of the stochastic X matrix on all of the instruments, and then used the
predicted values of X from these regressions as instrumental variables in defining the IV estimator.   If

Zwe let P  be the matrix that projects orthogonally onto the column space defined by the vectors Z, S(Z),
then the IV estimator is given by

ZWe always assume that the matrix XNP X has full rank, which is a necessary condition for  to be

identified.  In a similar fashion to equation 52, we can show that this IV estimator is consistent.
 
F. Random disturbances are not distributed normally (assumptions I-IV hold)

1. General discussion

An inspection of the derivation of the least squares estimator  reveals that the deduction is not
dependent upon any of the assumptions II-V except for the full rank condition on X.  It really doesn't
depend on I, if we are simply estimating a linear model no matter the nature of the underlying model.
Thus for the model

the OLS estimator is always

even when assumption V is dropped.  However, the statistical properties of  are very sensitive to the
distribution of g.

Similarly, we note that while the BLUE of $ depends upon II-IV,  is invariant with respect to the
assumptions about the underlying density of g as long as II-IV are valid.  We can thus conclude that

even when the error term is not normally distributed.

2. Properties of the estimators (OLS and BLUE) when g is not normally distributed

When the error terms in the linear regression model are not normally distributed, the OLS and BLUE
estimators are:

a. unbiased
b. minimum variance of all unbiased linear estimators  (not necessarily of all unbiased estimators

since the Cramer Rao lower bound is not known unless we know the density of the residuals)
c. consistent
d. but standard t and F tests and confidence intervals are not necessarily valid for nonnormally
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distributed residuals

The distribution of  (e.g., normal, Beta, Chi Square, etc.) will depend on the distribution of g which
determines the distribution of y (y = X$ + g).

The maximum likelihood estimator, of course, will differ since it depends explicitly on the joint density
function of the residuals.  And this joint density gives rise to the likelihood function 

and requires a knowledge of the distribution of the random disturbances.  It is not defined otherwise.
MLE are generally efficient estimators and least squares estimators will be efficient if f(y;@) is normal.
However, least squares need not be efficient if the residuals are not distributed normally.
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3. example

Consider the case in which the density function of the random disturbances is defined by the Laplace
distribution 

which can be graphically depicted as

The associated likelihood function is defined by

t t2 tk 1 kwhere x  = (1, x , . . ., x ), $' = ($ , . . ., $ ).  The log likelihood function is given by

The MLE of $ in this case will minimize

and is sometimes called the "least lines," minimum absolute deviations (MAD), or least absolute
deviation (LAD) estimator.  It will have all the properties of maximum likelihood estimators such as
being asymptotically unbiased, consistent, and asymptotically efficient.  It need not, however, be
unbiased, linear, or minimum variance of all unbiased estimators.

4. Testing for and using other distributions

The functional form of the distribution of the residuals is rarely investigated.  This can be done,

thowever, by comparing the distribution of g  with the normal.  
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Various tests have been proposed to test the assumption of normality.  These tests take different forms.
One class of tests is based on examining the skewness or kurtosis of the distribution of the estimated
residuals.  Chi square goodness of fit tests have been proposed which are based upon comparing the
histogram of estimated residuals with the normal distribution.  The Kolmogorov-Smirnov test is based
upon the distribution of the maximum vertical distance between the cumulative histogram and the
cumulative distribution of the hypothesized distribution.  

An alternative approach is to consider general distribution functions such as the beta or gamma which
include many of the common alternative specifications as special cases.
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