
1 Short Answers 1 (10 pts)

Indicate T(rue) or F(alse).

1. Stemming increases the size of the dictionary in an inverted index

2. Using positional postings lists, we can determine the width of the smallest window
in a document containing all query terms in time linear in the lengths of the postings
lists of the query terms

3. Skip pointers speed up a disjunctive X OR Y query

4. Using SVMs with nonlinear kernels dramatically improves performance for IR
tasks

5. When sufficient data is available, SVMs generally perform as well or better than
other common classifiers

6. K-means clustering (initialized with random centroids) is deterministic

7. K-means requires more memory than C-HAC

8. One can choose the number of clusters after running C-HAC

9. C-HAC has higher running time than one iteration of K-means

10. Recall of documents is more important for a legal domain IR system than for a
modern web search engine

11. Precision at 1 is more important for a legal domain IR system than for a modern
web search engine

12. Specialized queries with /k and wildcards are more important for a legal domain
IR system than for a modern web search engine

13. Compared to just a term’s tf, multiplying by idf to give a tf-idf score always
gives a bigger number

14. For multi-term queries, the WAND algorithm will always provide a savings in
retrieval cost over standard postings traversal

15. Link analysis provides scoring that is spam-proof

16. SVMs are only usable when the classes are linearly separable in the feature
space

17. Adding training data always results in a monotonic increase in the accuracy of
a Naive Bayes classifier

18. The main reason to take the logs of probabilities in Naive Bayes is to prevent
underflow

19. Using a variable byte code gives better compression than using gamma encoding

20. The centroid of a set of (length normalized) unit vectors is a unit vector

Solution

1

1. Stemming increases the size of the dictionary in an inverted index. FALSE

2. Using positional postings lists, we can determine the width of the smallest window in a
document containing all query terms in time linear in the lengths of the postings lists of the
query terms. TRUE

3. Skip pointers speed up a disjunctive X OR Y query
FALSE

4. Using SVMs with nonlinear kernels dramatically improves performance for IR tasks.
FALSE

5. When sufficient data is available, SVMs generally perform as well or better than other common
classifiers
TRUE

6. K-means clustering (initialized with random centroids) is deterministic.
FALSE

7. K-means requires more memory than C-HAC.
FALSE

8. One can choose the number of clusters after running C-HAC.
TRUE

9. C-HAC has higher running time than one iteration of K-means.
TRUE

10. Recall of documents is more important for an IR system for the legal domain than in a modern
web search engine.
TRUE

11. Precision at 1 is more important for an IR system for the legal domain than in a modern web
search engine.
FALSE

12. Specialized queries with /k and wildcard is more important for an IR system for the legal
domain than in a modern web search engine.
TRUE

13. Compared to just a term’s tf, multiplying in an idf to give a tf-idf score always gives a bigger
number.
FALSE

14. For multi-term queries, the WAND algorithm will always provide a savings in retrieval cost
over standard postings traversal
FALSE

15. Link analysis provides scoring that is spam-proof
FALSE

16. SVMs are only usable when the classes are linearly separable in the feature space
FALSE

17. Adding training data always results in a monotonic increase in the accuracy of a Naive Bayes
classifier
FALSE

2

18. The main reason to take the logs of probabilities in Naive Bayes is to prevent underflow
TRUE

19. Using a variable byte code give better compression than using gamma encoding
FALSE

20. The centroid of a set of (length normalized) unit vectors is a unit vector
FALSE

2 Short Answers 2 (10 pts)

1. [2pts] Consider a collection with one billion tokens (i.e., with 109 tokens). Suppose the first
1,000 of these tokens results in a vocabulary size of 1,000 terms, and the first 100,000 tokens
results in a vocabulary size of 10,000 terms. Use Heap’s law to estimate the vocabulary size
of the whole collection.

2. [2pts] For a conjunctive query, is processing postings lists in increasing order of their lengths
guaranteed to be optimal execution order? Explain why it is, or give an example where it isn’t.

3. [2pts] In one sentence, why are pairwise ranking approaches more successful for learning to
rank search results than classification or regression approaches?

4. [2pts] For learning search engine rankings, what are two problems with adopting a straightfor-
ward approach of minimizing pairwise ranking errors, which have been studied and corrected
in subsequent research?

a)

b)

5. [2pts] In the Binary Independency Model, the retrieval status value formula for each query
term i contains the fraction (1 − ri)/ri where ri = (ni − si)/(N − S). Here, ni is the total
number of documents containing the term i, of which si documents are relevant to the query.

3

N is the total number of documents in the collection, of which S documents are relevant.

It was suggested that this quantity log(1 − ri)/ri can be well approximated by the IDF for
term i = logN/ni. What are the two assumptions necessary to get this result?

a)

b)

Solution

1. According to Heaps’ law, n = kT b. So, 1000 = k1000b and 10000 = k100000b. Solving the
two eqs, log k is 1.5 and b is 0.5. The final answer is 106.

2. Not guaranteed to be optimal. Counterexample
a := 5, 6
b := 5,6,15
c := 7,8,9,10

3. The scale of goodness of a search result to a query is not an absolute scale; it it a decision
of goodness relative to other documents in the collection (or just information available in the
world).

4. a) Correct ranking of highly relevant documents is more important than correct ranking of
slightly relevant documents versus other slightly relevant or nonrelevant documents
b) If some queries have very many results, the pairwise rankings between them tend to
dominate the training of the classifier. You want a learning regime more like each query
contributes equally in training the classifier.

5. Since log(1− ri)/ri = log(N − ni − S − si)/(ni − si), the two assumptions:

(a) Non-relevant documents with and without the term i are approximated by all documents
in the collection with and without the term respectively.

(N − ni − S − si ≈ N − ni and ni − si ≈ ni)
(b) The total number of documents in the collection is much larger than the number of
documents containing a term.

(N � ni ⇒ log N−ni
ni
≈ log N

ni
)

3 Short Answers 3 (10 pts)

1. [1pt] What is the largest number that can be stored in 4 bytes using unary encoding?

4

2. [2pts] Many systems, e.g., Lucene, provide a separate function to index a set of documents in
bulk, instead of just one document? What do you think is an advantage of such a function?

3. [3pts] Assume that postings lists are gap encoded using γ codes. Using this encoding, suppose
that the postings list for the term information is the bit sequence:

1111 1111 1011 1100 1101 0011 1110 0000 0

and the postings list for the term retrieval is the bit sequence:

1111 1111 1100 0000 0011 1011 1101 111

What docids match the following query:

information AND NOT retrieval

4. [4pts] Suppose the vocabulary for your inverted index consists of the following 6 terms:

elite
elope
ellipse
eloquent
eligible
elongate

Assume that the dictionary data structure used for this index stores the actual terms using
dictionary-as-a-string storage with front coding and a block size of 3. Show the resulting
storage of the above vocabulary of 6 terms. Use the special symbols * and ♦ as used in the
discussion on front coding in Chapter 5.

Solution

1. 31 (11111111 11111111 11111111 11111110)

2. Bulk indexing can be much faster than indexing individual documents because less number
of merges (and hence disk seeks) may be required to construct the final index.

5

3. Gaps for “information” are
998, 2, 32
So. Docids for “information” are
998, 1000, 1032

Gaps for “retrieval” are
1031, 1, 31
So docids for “retrieval” are
1031, 1032, 1063

So information AND NOT retrieval has docids
998, 1000

(Remember that gamma code 0 means the value 1)

4. 8el*igible3 � ite5 � lipse
8elo*ngate2 � pe5 � quent

4 Clustering (10 pts)

1. [4pts] Calculate purity and Rand Index of the following two clusterings. Di’s are documents
and Ci’s are classes. (Purity of a clustering is an average of purity of individual clusters.)
The true labels of the documents are:
{(D1 : C1), (D2 : C2), (D3 : C1), (D4 : C1), (D5 : C2)}

Clustering 1: Purity:
Cluster 1: D1

Cluster 2: D2 Rand Index:
Cluster 3: D3

Cluster 4: D4

Cluster 5: D5

Clustering 2: Purity:
Cluster 1: D1, D2, D3, D4

Cluster 2: D5 Rand Index:

2. [2pts] Is purity a good evaluation measure by itself? In 1–2 sentences write why or why not.

6

3. [4pts] Each iteration of K-means can be run using the Map-Reduce framework. Write down
in 1-2 sentences what would be the (key, value) pairs in the map and the reduce step.

Map step:

Reduce step:

Solution

1. Purity Clustering1 is 1 and Clustering2 is 7/8
Purity of individual clusters in Clustering1 is 1, so the average purity is 1. For Clustering2,
purity of Cluster 1 is 3/4 and of Cluster 2 is 1, giving an average of 7/8.

RI of Clustering1 is 5/10 and Clustering2 is 6/10
RI is defined as (number of pairs of elements that are in the same set and have same class
+ number of pairs of elements that are in different sets and have different class) divided by
total number of possible pairs of elements, which is

(
5
2

)
.

2. Purity is not a good measure of evaluation itself. As we can see in the above question, purity
of Clustering1 is more than that of Clustering2; purity is maximum when each data point is
in a different cluster.

3. Map step: (keys are docids with their document vectors, the values are clusterids with the
centroid vectors)

Reduce step: (keys are clusterids, values are documents (docids and their vectors) assigned
to the clusterid)

In the map step, the distance between documents and centroids are computed, and each
document is assigned to a cluster. In the reduce step, new centriods are computed.

5 Link Analysis (10 pts)

Given a collection of text, consider a Markov Chain M built as follows. We have one state for each
term in the collection. The transition probability from any state t1 to another t2 is the fraction (in
the text collection) of times that term t1 is immediately followed by term t2. We only have states

7

for dictionary terms; ignore start/end-of-string markers/symbols.

Consider the text: a rose is a rose is a rose

1. [2pts] Draw the corresponding Markov Chain M .

2. [1pt] Is M ergodic?

3. [1pt] We now augment M with a teleportation operation, to create a new Markov Chain M1.
At each step of M1, we follow M with probability 87%, while with probability 13% we jump
to a random state. Is M1 ergodic?

4. [3pts] Compute the stationary distribution of M1.

5. [1pt] Is the vector of stationary probabilities of M1 the same as the vector of fractions of
occurrences for each term in the text of part (1)?

6. [2pts] Show where the addition of a single word in the text of part (1) would change the
answer in part (5) to the question: are the two vectors the same?

Solution:

1. The Markov chain is a triangle with arrows in one direction only. The three states are ”a”,
”rose” and ”is” with arrows from each to the next cyclically in this order.

8

2. No. It is periodic.

3. Yes.

4. By symmetry the distribution is uniform, hence (1/3, 1/3, 1/3).

5. No; the occurrence frequencies are (3/8, 3/8, 1/4).

6. Append the word ”is” to either the beginning or the end of the given text.

6 Classification (10 pts)

We are training an SVM classifier on this small training data set of 4 points:

(2,0) Class A (2, 2) Class not-A
(0,2) Class A (4, 4) Class not-A

-1

0

1

2

3

4

-1 0 1 2 3 4

x2

x1

Training Data

A

notA

Let the class A correspond to yi = +1.

1. [1pt] Is this data linearly separable?

2. [1pt] What is the (geometric) margin for a hard-margin SVM on this data?

3. [2pts] Write an equation for the optimal separating hyperplane for a hard-margin SVM trained
on this data. Work out the answer geometrically, based on the data points above.

9

4. [1pt] What is the SVM decision function (giving the class assignment)?

5. [2pts] For the algebraic formulation, we impose the standard constraint that wTxi + b ≥ 1
if yi = 1 and wTxi + b ≤ −1 if yi = −1, and then proceed to minimize ‖w‖. What weight
vector w and corresponding b achieves this?

6. [1pt] What is the name of the quantity calculated by 2/‖w‖ and what is its value here?

7. [2pts] Consider now a soft-margin SVM, where the value of C is not too high, so that one but
only one point will be moved with a slack variable, as far as needed to maximize the margin
(concretely, C = 0.1 will achieve this effect given this data, but you don’t need to use this
value to answer the question). What will the SVM decision function be now, and what is the
margin?

Solution

1. Yes

2.
√

2

The sides of the square are length 2, so the diagonal between the blue points is length√
8 = 2

√
2, and so the margin is half this.

10

3. −x1 − x2 + 3 = 0

The separating hyperplane will have slope −1 and go through (1.5, 1.5). The normal vector
will have slope 1, so coefficients w = (a, a). So the decision boundary will be x1 +x2− 3 = 0.
SVM linear classifier will be y = −x1 − x2 + 3 = 0 (or y = x1 + x2 − 3 = 0)

4. y = sign(3− x1 − x2)
Or any scaling of this by a constant. Note that it’s the bottom left side that is class +1.

5. w = (−1,−1), with ‖w‖ =
√

2, and b = 3.

‖w‖ will be minimized when the ≥ and ≤ relations shown in the question are replaced by
equalities for the support vectors, such as (2, 2). So we have:
a.2 + a.2 + b = −1
a.0 + a.2 + b = +1
Therefore a = −1 and b = 3. So the weight vector is w = (−1,−1), with ‖w‖ =

√
2, and

b = 3.

6. The (functional) margin for the dataset. Again,
√

2.

7. y = sign(−x1 − x2 + 5). The margin is now 3
√

2.

7 Evaluation (12 pts)

1. [2pts] In the class, we discussed several ways to evaluate ranking systems, for e.g., precision,
recall, NDCG etc. However, for all these metrics, we need the relevance values for the results.
Two possible methods to collect relevance values, as mentioned in class, are: a) click feedback
from users, b) expert judgements (like what we did for the search ratings task for PA3). Write
one advantage and one disadvantage of each of these methods.

a) Click feedback:

b) Expert judgments:

2. [1pt] An alternative method to evaluate ranking systems is to do a pairwise comparison of
two ranking systems instead of evaluating an individual system, i.e. if you have two ranking
systems A and B, instead of evaluating them independently, you can perform the same query
on both systems and compare the results. Write why this might give better results than

11

evaluating individual systems independently.

3. [3pts] One such method, which uses click feedback to compare two ranking systems, is bal-
anced interleaving. Given a query q, it combines the results, A = (a1, a2, . . .) of the first
system and B = (b1, b2, . . .) of the second system, into one consolidated ranking, I as shown
in Algorithm 1. Note that this is a simple merge algorithm which breaks ties using a random
coin toss (done once at the beginning).

Algorithm 1 Balanced Interleaving

Input: Rankings A = (a1; a2; . . .) and B = (b1; b2; . . .)

I := (); //output ranking list, initialized to empty list
ka := 1; kb := 1; //counters for the lists A and B, respectively
AFirst := randomly select 0 or 1 //decide which ranking gets priority
while (ka <= |A| and kb <= |B|) do //if not at end of A or B

if (ka < kb or (ka == kb and AFirst == 1)) then
if A[ka] /∈ I then I.append(A[ka]) //append a result from A
ka := ka + 1

else
if B[kb] /∈ I then I.append(B[kb]) //append a result from B
kb := kb + 1

end if
end while
Output: Interleaved ranking I = (i1; i2; . . .)

If the two input ranking lists are:
A: (a; b; c; d; g; h)
B: (b; e; a; f; g; h)

what is the output ranking I (if A wins the toss, i.e., AFirst = 1)?

4. [3pts] When the user enters a query q in the search engine, the back end merges the results
of the two systems A and B using Algorithm 1, and the user is presented with the output list
I. The user then clicks on one or more of the results, and these clicks are used to figure out
which ranking, A or B, is preferred by the user.

12

Formally, let (c1; c2; . . .) be the ranks of the clicks w.r.t. I and cmax be the rank of the lowest
clicked link, (with icmax being the corresponding result in list I), i.e., if the user clicks on the
1st, 3rd and 7th link, cmax = 7. Let, k = min{j : (icmax = aj) ∨ (icmax = bj)}; we find how
many clicked results occur in the top k results for each list.

For example, if the lowest link clicked by the user on I corresponds to the 5th result in A and
7th result in B, then k = 5 and we’ll look at the number of clicked results present in the top 5
results of A and B. To derive a preference between A and B, we simply compare the number
of clicks in the top k results of A and B, i.e., if more results from A are clicked, then A is
preferred.

In the example lists given in part 3 above, which system, A or B, is preferred if
the user clicks on the 1st and 4th link in the output I? Explain your answer.

5. [3pts] Now, consider a bot which clicks on the results presented by the search engine uniformly
at random, i.e., each link is equally likely to be clicked by the bot. Write an example of input
lists A, B so that such a random clicker generates a strict preference for one of the lists in
expectation. Is this a problem? Why or why not?

Solution

1.

13

Method Advantage Disadvantage

Click feedback easily available at scale very noisy

Expert judgement much less noisy hard/expensive to obtain at scale

2. The argument here is same as that for pairwise vs pointwise learning, i.e., the judgements are
better if two things are compared to each other.

3. I : (a; b; e; c; d; f ; g;h)

4. A is preferred as 2 links a, c are clicked in A whereas only one link a is clicked in B.

5. Consider A:(a;b;c;d) and B:(b;c;d;a). If A wins the toss, I:(a;b;c;d), else if B wins the toss
I:(b;c;d;a). In either case, clicking on a generates a preference for A while clicking on anything
else generates a preference for B. Therefore, if a bot clicks unformly at random on the links,
we will get a strict preference for B, which is undesirable.

8 Vector Space (8 pts)

Consider the following retrieval scheme:
Eg. for a query rising interest rates

• Run the query as a phrase query

• If < K docs contain the phrase rising interest rates, run two phrase queries rising interest
and interest rates

• If we still have < K docs, run the vector space query rising interest rates. Rank matching
docs by vector space scoring

Consider the following set of documents:

D1 : Do you like green eggs and ham

D2 : I do not like them Sam I am

D3 : I do not like green eggs and ham

D4 : I do not like eggs

D5 : Why are they green

Let the query be green eggs and suppose we eventually want to show the user 4 documents. That
is, K = 4.

1. [2pts] Run the phrase query green eggs. What are the documents that get retrieved in this
step ?

14

2. [2pts] What are the scores of the documents you retrieved in part (1) for the phrase query
using cosine similarity on a bigram vector space ?

3. [4pts] If you did not have K documents in the first step, continue scoring according to the
technique. What are the final 4 documents that you return and their scores) ?

Solution

1. D1 and D3

2. Score(D1) = 1 /
√

6
Score(D3) = 1 /

√
7

3. Score(D4) = 1/
√

2 * 1/
√

8 + 1/
√

2 * 1/
√

8 = 0.5
Score(D5) = 1/

√
2 * 1/

√
4 + 1/

√
2 * 1/

√
4 = 1/

√
2

9 Ranking (8 pts)

BM25 is a measure of how relevant a document is for a query. Below is the formula for Okapi
BM25:

RSV BM25 =
∑
i∈q

(log
N

dfi
)

(k1 + 1)tfi

k1((1− b) + b dl
avdl) + tfi

where q is the query.

1. In this part of the problem, we will consider how BM25 performs on the query “employee ben-
efits”. Below are some statistics for our corpus.

Number of webpages 1000

Number of webpages containing “employee” 10

Number of webpages containing “benefits” 100

Average document length 78

There are only two documents relevant to “employee benefits”. Below are their statistics.

benefits.pdf welcome.pdf

Document Length 26 39

Frequency of “employee” 3 4

Frequency of “benefits” 3 2

15

Let k1 = 1 and b = 0.6. Calculate the RSV BM25 for each document for the query “employee
benefits”.

(a) [1pt] RSVbenefits.pdf :

(b) [1pt] RSVwelcome.pdf :

16

2. Suppose our query has only one term, briefly answer in 1 or 2 sentences for each of the follow-
ing questions on the effects of varying different parameters to the RSV BM25. Assuming all other
parameters are fixed:

(a) [2pts] What is the effect on RSV BM25 of varying b from 0 to 1?

(b) [2pts] What is the effect on RSV BM25 when tfi goes to infinity?

(c) [2pts] How would you manipulate the parameters k1 and b so that the RSV BM25 approximates
TF-IDF? Justify your answer.

Solution

(a) 1. benefits.pdf 2. welcome.pdf

Using the BM25 formula, we add the BM25 scores for ”employee” and ”benefits”.

benefits.pdf:

RSV BM25

= log
1000

10
× (1 + 1)× 3

1× (1− 0.6 + 0.6× 26
78) + 3

+ log
1000

100
× (1 + 1)× 3

1× (1− 0.6 + 0.6× 26
78) + 3

= 5

welcome.pdf:

RSV BM25

= log
1000

10
× (1 + 1)× 4

1× (1− 0.6 + 0.6× 39
78) + 4

+ log
1000

100
× (1 + 1)× 2

1× (1− 0.6 + 0.6× 39
78) + 2

= 4.886

17

Ranking:
1. benefits.pdf
2. welcome.pdf

(b) When b=0, the document length is not taken into account, and as b increases the relative
document length matters more.

(The higher the document length is, the more term frequency is discounted.)
(c) As tf goes to∞, the effect of tf is canceled and the RSV approximates a scaled version of IDF.
(d) Set b = 0 and make k1 very large, ideally infinite. This removes length normalization and the
RSV approximates TF-IDF.

lim
k1→∞

BM25 = lim
k1→∞

log
N

df
× (k1 + 1)tf

(k1 + tf)

= log
N

df
× tf k1 + 1 ≈ k1 + tf

= idf × tf

10 Index Construction (12 pts)

Consider constructing a nonpositional index. Due to hardware constraints and the nature of each
document collection, several indexing algorithms have been proposed, e.g., the blocked sort-based
indexing (BSBI) algorithm, the single-pass in-memory indexing (SPIMI) algorithm, and dynamic
indexing. In this exam question, we will test your understanding of various indexing algorithms.

1. Briefly answer in one sentence each of the below questions:

(a) [1pt] What hardware constraint does BSBI address?

(b) [1pt] What is the advantage of using termIDs instead of terms in BSBI?

(c) [1pt] What limitation of BSBI does SPIMI address?

(d) [1pt] When do we need to use dynamic indexing?

2. [3pts] In the text book (IIR Figure 4.4), only part of the SPIMI algorithm, the inversion
procedure for each block, is described, not the entire algorithm.

18

Your task is to complete the SPIMI algorithm (in no more than 10 lines of code), similar
to the BSBI algorithm as detailed in IIR Figure 4.2 or below.

BSBINDEXCONSTRUCTION()
1 n← 0
2 while (all documents have not been processed)
3 do n← n + 1
4 block← PARSENEXTBLOCK()
5 BSBI-INVERT(block)
6 WRITEBLOCKTODISK(block, fn)
7 MERGEBLOCKS(f1, . . . , fn; f merged)

For your convenience, you can:
• Call the function SPIMI-Invert(token stream)
• Call any functions used in the BSBIndexConstruction algorithm above.
• View all documents in a collection as a single token stream given by the function Get-

Collection-Stream().
• Query the method Has Next(token stream) which will return False if the end of the col-

lection has been reached.

(continues on next page)

19

3. [5pts] Now, apply the SPIMI algorithm to the following collection:

d1: bsbi use term id
d2: sort term id doc id
d3: spimi use term
d4: no term id sort

Assume that main memory can only hold two documents at a time, i.e., the SPIMI algorithm will
write to disk each time after two documents, a block, have been processed.

Write out the content of each block just before merging and the result after merging in
the following format:

Block 1:
bsbi → 1
...
term → 1, 2

Solution

1. (a) Insufficient main memory. (The sorting step needs to be done externally, i.e. using disk,
and we want to have an algorithm that minimizes the number of random disk seeks during
sorting).
(b) For space efficiency. (An integer costs less space than a string).
(c) For very large collections, the dictionary that maps from terms to termIDs in BSBI does
not fit into memory. SPIMI uses terms instead of termIDs and does not hold the vocabulary
in memory.
(d) When documents in the collection are frequently updated, e.g. the Web.

2. n = 0
token stream = Get-Collection-Stream()
while Has-Next(token stream) do

n = n + 1
fn = SPIMI-Invert(token stream)

end while
MergeBlocks(f1, . . . , fn; fmerged)

3. Block 1:
bsbi → 1
doc → 2
id → 1, 2
sort → 2
term → 1, 2
use → 1

Block 2:
id → 4

20

no → 4
sort → 4
spimi → 3
term → 3, 4
use → 3

Merged Block of 1 and 2:
bsbi → 1
doc → 2
id → 1, 2, 4
no → 4
sort → 2, 4
spimi → 3
term → 1, 2, 3, 4
use → 1, 3

21

