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1- Some Fundamental Concepts

1-1- Physical Problems, Mathematical Models, Solutions

The main objective of this section is describing the concepts of body and
mathematical modeling. Procedures for formulation and solution of a
Mathematical model of a physical problem are discussed. The following
diagram shows a general view of the modeling from body to model to
solution.
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State variables involve displacements, velocities, pressure, temperature,
stress, strain, charge, position, etc.

Influence of environment can be due to forces, temperature changes, etc.
Properties are determined from laboratory testing.

1-2- Continuum Mechanics
Things that we can perceive, see, hear, or build can be explained by using
certain principles and laws of natures: conservation of mass, energy, linear



and angular momenta, the laws of electromagnetic flux, and the concept of
thermodynamic irreversibility. These are among the fundamental principles
on which the subject of mechanics is based.

The subject of continuum mechanics is based on the foregoing governing
principles, which are independent of the internal constitution of material.
However, the response of a system or a medium subjected to (external)
forces can not be determined uniquely only with the governing field
equations derived from the basic principles. The internal constitution of
material plays an important role in the subject of continuum mechanics.

Study of the response of a substance or body under external excitation
constitutes the major endeavor in engineering. In engineering applications,
the response behavior can be studied at macroscopic level without
considering atomic and molecular structure. The subject of studying
material behavior at the macroscopic level can be called continuum
mechanics.
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By invoking physical principles and constitutive behavior, we obtain
equations governing the behavior of continuous system (a boundary value
problem).

A solution to a boundary value problem in continuum mechanics requires
constitutive equations in addition to the governing field equations. The
basic principles governing Newtonian mechanics are a) conservation of
mass, b) conservation of momentum, c) conservation of moment of



momentum (or angular momentum), d)conservation of energy, and e)laws
of thermodynamics; these principles are considered to be valid for all
materials irrespective of their internal constitution. Therefore, a unique
solution to a boundary value problem in continuum mechanics cannot be
obtained only with the application of governing field equations. Hence a
unique determination of the response require additional consideration that
account for the nature of different materials. The equations that model the
behavior of a material are called ‘constitutive equations’ or ‘constitutive
laws’ or ‘constitutive model’.

1-3- Boundary value problem solution
A solution to a BVP can be obtained using different approaches. The
following diagram shows a schematic view of the problem.
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Model studies or direct experiment include checking of the approximate
solution with the state variables in laboratory which involves dimensional
analysis and similitude.
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1-4- Approximate solution of a boundary value problem

A mathematical model (BVP) of a real-life problem is often difficult to
obtain an exact solution. The finite element method (FEM) can be viewed
as a method of finding approximate solutions for the BVP problems.

Two approaches of Weighted Residual Method (WRM) and Energy
Methods (EM) are used for finding approximate solution of BVP. A number
of schemes are employed under the WRM, among which are collocation,
subdomain, least squares, and Galerkin’s methods. Galerkin’s method has
been the most commonly used residual method for finite element
applications. This method is based on minimization of the residual left after
an approximate or trial solution is substituted into the differential equation
governing a problem. The EM procedures are based on the idea of finding
consistent states of bodies or structures associated with stationary values of
a scalar quantity assumed by the loaded bodies. In engineering, usually this
quantity is a measure of energy or work. The process of finding stationary
values of energy requires use of mathematical disciplines called variational
calculus involving use of variational principles. For many problems, both
approaches yield exactly the same results.

The following diagram shows a schematic view of use of these two
approaches. Primitives are those involve physical quantities associated with
the state variables, e.g. Time, Length, Force, etc. Based on the primitives
we establish the axioms for problem solving, i.e. try to obtain a solution for
the assumed model. Here the primary objective is to make sure that the
mathematical model represents the real body.

Choice of axioms depends on the type of problem, form of geometry and
the physical quantities involved. There are two kinds of axioms in applied
mechanics.

1) Newtonian Axiom (Newton’s Axiom)
It defines force as momentum change, vector forces act on each
particle of the body and an equilibrium differential equation
(or momentum balance) governs the solution throughout the body.

i1) Leibnitz Axiom (Work Axiom)
It defines work as the effect of forces acting on the body from
which a work function is obtained, e.g. potential energy,
complementary energy, kinetic energy, etc. A solution is



obtained as an extremum problem, e.g., a minimum or a
maximum or a saddle point problem.
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2- Concepts of Stress, Strain, Constitutive Relations and Various Form of
Energy

Ref : Energy and Finite Element Methods in Structural Mechanics
By: I.LH. Shames 1985

2-1-  STRESS

2-1-1- Force Distributions
In study of continuous media 2 classes of forces exist:

a. body force distribution
It acts directly on the distribution of matter in the
domain of specification.
B (x,Y,zt) or B, (X,,%,, X;,1) {Per unit mass

Vector notation Index notation Per unit volume

b. Surface Tractions

In discussing a continuum there may be some boundary
with force distributed on the boundary.
The force is applied to such boundary directly from
material outside the domain.
_ Per unit area
T (X: y: Zot) or Ti (Xl s X2: X39t)

need not be normal tothe areaelement

\/

)\ v normal to dA

X2
Superscript referring to the direction of the
area element at the point of application of the
X, surface traction

TY XY,z or TY(X,X,X,t)
If the area element has the unit normal in the x; direction then
We would express the traction vector on this element as:

i ji



2-1-2- STRESS

X, TO
M _
T =17,,715,7)3
Ti(z) =7T,,T9 T3 Tji =7 (Stress)
G) _
T =175,75, 75 ~
T () T ()
7; = normal stress T T
r; = off diagonal terms i = j (shear stress)

X,

Traction forces on orthogonal faces

X

Sign convention: Normal stress directed outward from interface (+) tensile stress
Normal stress directed toward surface (-) compressive stress
Shear stress is (+) if both stress itself and unit normal point in
+ive coordinates directions or both points in —ive coordinate
directions.

1 \5

X

Knowing T for a set of axes, i.e. for three orthogonal interfaces at a point,

we can determine a stress vector T ¢ for an interface at the point having
any direction whatever.



Consider a point P in a continuum (any point in the domain)

X X ABC has normal vector 1_/
3
_ TY; v
y I :T
TV
T, 2
Xz X2
P

Newton’s law for the mass center in x, direction == Cauchy’s Formula

TV =Ty, +T,v, +Tuv, or -?i(l/) =Ty =Tyv;
Knowing T; we can get the traction vector for any interface at the point.

This formula can be used to relate tractions on the boundary to stresses
directly next to the boundary.

Prove Cauchy’s Formula.
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2-1-3- Equations of Motion

Consider an element of the body of mass dm at P
Newton’s 2™ law:

df =dm V.

ff oo J{[B.0v < ][ v

D
|;> Tjj \% i
Gauss’ Theorem

Consider a continuous, differentiable n™ order tensor field Tjc...over a volume V with its
boundary surface defined by S. The Gauss’s Theorem in a generalized form is given by:

(1] 2 av= ]l e o

TJI (Ty. )i dV =ﬁs (Tj-k...)vi dA

where v; are the direction cosines of the unit outward normal. For Tj. _a zero order Tensor, say a
scalar function ¢,

_H\J; @, dV :ﬁs v, dA

}rJ.\J/- ﬁgodV :ﬁs Q dA

where the differential area d A = v dA. The above equation is generally referred to as Gauss’

Law.

I” (ry; +B, —\7ip) dv =0

D

D is arbitrary S . Ty tBi = oV,

Using moment of momentum equation will also result in:

M=H, = Ty =T

Further investigations:
- Transformation Equations for stress
- Principal stresses (given a system of stresses for an orthogonal
set of interfaces at a point , we can associate a stress vector for
interfaces having any direction in space

T =7v,

Now: is there a direction v such that stress vector is collinear withv ?

11




2-2- STRAIN

Means of expressing the deformation of a body

Xl
Line segment in the undeformed geometry

If body is given a rigid body motion == each line segment in the body
under goes no change in length.

Change in length of line segments in the body, (or distance between points)

can serve as a measure of deformation (change of shape and size) of the
body.

(AB)? = ds? = dx,dx, distance between points
When forces are applied, body will deform. It is convenient now to consider

that the x; reference is labeled the & reference when considering deformed
state:

S

.yB*

A*

S

S

Deformation can be depicted by mapping of each point from coordinate x,
to coordinate & . We can say then for a deformation:

& =& (X, %,,X3)
Since mapping is one-to-one:
X, =X (,,6,,6):

12



We can express:

ax, =| 2| e, ag=| 21 | ax,
0¢; OX;
ds?—dx,dx, =25 X g ge
aé:m agk
A*B* szs*zzdéfi ngZ% % ka dXI
X, OX
ds” —ds?=| 9o ai—5” dx, dx; =2¢; dx, dx;
oX;  OX;
2 OX, OX
ds" —ds’=| 5, - — X |d¢& dE =2, d& d&.
( ij ag] (95]} §I é:j 77., é:| é:]

Strain terms:

Green strain

20X OX;

J
Lagrange coordinates (&; expressed as function of coordinates in the undeformed state)

Almansi measure of strain

1 oX,  OX
i = 5 5 — a_k a_k
i 0g;

Eulerian coordintes (77; formulated as function of coordinate for deformed state)

displacement field u, X;,&;
u, = é:i =X

13



We may express u; as a function of Lagrange coordinate x,, in which case it
expresses the displacement from the position x; in the undeformed state to
the deformed position ¢&,.

On the other hands u, can equally well be expressed in terms of¢,, the

Eulerian coordinates; in which case it expresses the displacement that must
have taken place to get to the position ¢ from some undeformed

configuration.
N _ o ou
oz,
% _ % : substitution in previous equation for &;
o, ox;
ou, Ou; ou, ou
g = 1]y +—L 4 —K K » Initial undeformed geometry
2(ox;  ox  0X OX

Indicate what must occur during a given deformation.
1{ou, Odu; ou, au,
Ty == + -
2\0¢; " og  og g

J » Deformed instantaneous

geometry of body
Indicate what must have occurred to reach this geometry from an earlier undeformed
state.

So far no restriction on magnitude of deformation,
Infinitesimal strain:

ou, ou,
— << — <<
X; i
) _ 0 (&) _ a1 |0 (o] [s5_ )a
o5,  ox; \og ) ox |ag T "og ) ox,
: o . 0u; ) )
for infinitesimal strain — can be dropped — | = - %
g ag 0

= no need to distinguish between Eulerian and lograngian coordinates in
expressing strains

A T T
i~ i =5 ox; o, g v a

14



; ou, o o] auX+5Uy 1 ering shear sirai
= = — | —— —_— | = — = engineering snear strain
"X YT lay | ox | 27w T cnemceme

au, 1(ou, du,) 1
Ey = =77 T = |57y

oy 2lez oy ) 2

ou, 1(ou, ou, 1
€y = Exw == +— =—7n

0z 2\ oz OX 5

2-2-1- Physical interpretation of strain terms
A small rectangular parallelepiped at P.

We have also placed a Cartesian reference at P. Imagine the body has some
deformation:

Deformed geometry

Let’s focus on line PQ= Ay
S P—>P
> Q-Q
N
AX
P Ay Q y
R

Projection of P'Q" inthe y direction (P'Q"),
(P*Q*)y = Ay+(uy)Q - (uy)P
Taylor series for (U, ), in terms of (U, ) :

—A+(u)+[6u—y]A+ -(u,)
= Ay o aypy... o

=AY+ [ u Y j y+
A P Ay +...
Net y component of elongation of segment PQ

(P'Q"), — Ay :(%J Ay+...
’ oy

P

15



Where with coalescence of P & Q , we may drop subscript P :

(PQ), -4y du, _
= =&
Ay oy 7
¢,,=change in length in the y direction per uint original length of

vanishingly small line segment originally in the y direction.

Now consider PR of Ax and PQ of Ay

Line segments in initial and L
deformed geometry Se R

We are interested in the projection of P'/R™ and P'Q" on to the xy place (on
to the place the line segments were in undeformed state)

Q
p—AY o = y (U,)p = displacement component of
Ay + oy AR
AX P in X direction
(UX)P * l a
* P (Uy)p + AY+... = displacement component
Re ~< 0 %y ), , S
\ ~ <l of Q in the x direction
-\ T~ e
EA Q"
\\ §y2 = second order increment
X e for a small deformation
R
ou
( 8ij Ay +...
ou
gl = P =190 = = —*
AY + 0y oy
Ay =0

- au,
similarly : g = _8
X

16



ou
6’+,6’=%+a—y=2(9xy=yxy
X

y; = change from a right angle of vanishingly small line segments
originally in the i& j directions at a point

Now effect of strain on a infinitesimal rect. Parallelepiped in the
undeformed geometry.

-------------------

e

Zero shear stress means side will remain orthogonal on deformation.
However position and orientation of the element may change as length of
the sides and volume.

Existence of shear stress means sides may lose they mutual
perpendicularity, (parallelograms instead of rectangles)

~.Size of the rectangular parallelepiped is changed by normal strain while
the basic shape is changed by shear strain.

Prove : (ﬂ: g“j
Vv

2-2-2- The Rotation Tensor
Previously, we considered stretching of a line element to generate &; and

then used the deformation of a vanishingly small rectangular parallelepiped
to give physical interpretation to the component of strain tensor.

We now introduce rotation tensor. This time rather than considering just the
stretch of a vanishingly small line element, we consider the complete
mutual relative motion of the end points of line element. (include rotation as
well as stretching)

17



Consider PN the relative movement of end points can be given by using

disp. field.
ou
UN _Up =|:Up+ La]p AXJ- + :| _UP

Expand U, as a Taylor series about P
Inlimit Ax;—»>0 du= u dx; |index notation du; = a; dx;
oX, OX;

J
Thus the relative movement du, between the two adjacent point dx
a part is

1 1
Ui ; :5 (ui,j+ uj,i) +E (ui,j_ uj,i)

oo

& W; (rotation tensor skew-symetric)

Assume Rigid body motion PQ,PG ; same &g,
z

(u) +[%j AZ +... |
ola ), T« ’
A) Ay 5 ]
Ge o - (UZ)PJ{GUZ] AY +...
A, & Je
@
P AY Q y
ou
(%] sy
Sin 8¢, = £
Ay’
Ay -0 (Ay=Ay')
ou
o, = —
oy
ou
(uy)P—{(uy)P+[azyJ Az+..}
PG : — Sin &g, = —
Az
54, = ou,
&

18



ou
_>5¢le aUZ__y = W5, = — Wy,
2\ oy 0z

For other 2 components:

1(ou, ou,
5¢y:5(8z - axj:W”:_W31

1 (ou, ou

op, =—|—L - 2l=w, =-Ww,
¢Z 2 ( aX ayj 21 12

For rigid body movement, the nonzero components of the rotation tensor

give the infinitesimal rotation components of the element. What does w;

represent when the rectangular parallelepiped is undergoing a movement
including deformation of the element and not just R.B rotation? Each line
segment in the rectangular volume has its own angle of rotation and we can
show that w; for such situation gives the average rotation components of all

the line segments in the body. However we shall term the component of w;
the rigid body rotation components.

From experimenteg; portion of equationw, related to the stress z;

Further investigation: Transformation equation for strain.

2-2-3- Compatibility equations
Strain-displacement relations
1
&j = 3 (ui,j + uj,i) *)
If u;'s are know, & can be obtained.

The inverse problem of finding the displacement field from a strain field is
not so simple.

Three functions u; must be determined by integral of 6 partial differential
equations (*) to ensure single-valued continuous solutionu,, we must
impose certain restriction of &

= can not set forth any &;. to expect unique solution, the following
equations are to be satisfied:

19



2.3

2 2 2
0 gxx+a gyy:a Vxy

(2 more equations)

oy>  ox’
2 %:ﬂ(_ 28" + 0 + ay“} (2 more equations)
total 6 equations oyor ox\ ox oy oz
HOOKE’S Law
Linear elastic behavior
Ty =CijkI Eq generalized Hook law

7, & 2™ order tensor = C;,, 4" order tensor

r; symmetric = Cy, symmetric C;, =Cy,

&g symmetric = Cy, =Cy,
It can be shown that Cj;q =Cyij ( Using Energy Concept It can be proved.)
Thus, starting with 81 terms for Cjy (=3%), we may show, using the
three aforementioned symmetry relations for Cjy , that only 21 of
these terms are independent.
We will assume now that the material is homogeneous (which has
same composition throughout) so we may consider Cjy to be a set of
constants for a given reference.
For an 1sotropic material, in which the material properties at a point
are not dependent on direction, we have:

7 =10 ¢ +2Ggij

ij ©ee

This is the general form of Hooke’s law giving stress components in
terms of strain components for isotropic materials. The constant A
and G are the so-called Lame constants. It can be seen that as a result
of isotropy the number of independent elastic moduli has been
reduced fron 21 to 2. The inverse of Hooke’s law yielding:

1+v v
&= E Tij_E Tkk5ij

20



E and v are Young’s modulus and the poisson ratio stemming from
one-dimensional test data.

1 [ ( )] _l+v 1
E v —E Ty —V Tyy +TZZ gxy = E Txy —Efxy
Eyy Zé[fyy - v(rXX +rzz)]
p— Py— s A g_GBA+206)
2(1+V) 1+VvH)a-2v) 2(1+G6) A+G

3- Boundary-value problems for linear elasticity
The complete system of equations for linear elasticity for homogeneous,

1sotropic solid includes the equilibrium equations:
T;.;+B;=0 (3 equations )

The stress-strain law:
r; =1,0; +2C¢; @ (6 equationy
Strain displacement relations:

& :% (U +vii) * (6 equations)

We have 15 equations and 15 unknowns. When explicit use of the
displacement field is not made, we must be sure that the compatibility
equations are satisfied.

It must be understood that B, and T have resultants that satisfy

equilibrium equations for the body as dictated by Rigid body mechanics. In
this regard that B, and T,"” must be statically compatible.

21



We may pose three classes of boundary values problems:

1 kind B.V. problem: determine the distribution of stresses and
displacements in the interior of the body
under a given body force distribution and
a given surface traction over the boundary.

2" kind B.V. problem: determine the distribution of stresses and
displacements in the interior of the body
under the action of a given body force
distribution and a prescribed displacement
distribution over the entire boundary.

Mixed B.V. problem: determine the distribution of stresses and
displacements in the interior of the body
under the action of a given body force
distribution  with a  given traction
distribution over part of the boundary (s))
and a prescribed displacement distribution
over the remaining part of the boundary s, .

Note : on the surfaces where the T are prescribed, Cauchy’s
formula T =T, v, must apply.

1* kind: convenient to express basic equations in terms of stresses. To do
this:

substitutide

1+ . s .
& = EV Ti— Erkké' ——»in compatibility euations
Using equilibrium equations, we can arrive at the Beltrami-Michell system of
equations:
1
Vi, +—Ku—— 0 VK = - -(B;i; +B;,)
I+v 7 1+4v ’ ’

where K =17,,
The solution of these equations, subject to the satisfaction of Cauch’s
formula on the boundary for simply connected domains, will lead to a set of
stress components that both satisfy the equilibrium equations and are
derivable from a single-valued continuous displacement field.

22



2" kind: Substitute equations * and © in the equilibrium equations to
yield differential equations with the displacement field as the dependent
variable. Then we get Navier equations of elasticity:

GV’u+(A+G)u, ,+B =0 v

Nl

For dynamic conditions we need only employ the following equations in
place of the equilibrium equations.

7 +Bi=p4
The results are the addition of the term p U, on the right side of the above
equations. If the above equation can be solved in conjunction with the
prescribed displacements on the surface and if the resulting solution is
singled —valued and continuous the problem may be considered solved.

Solution for mixed BV problems will be investigated using different
techniques introduced partly in this notes such as variational approach.

23



4-  Energy consideration

We have described the stress tensor arising from equilibrium consideration
and the strain tensor from kinematics considerations. These tensors are
related to each other by laws that are called constitutive laws. In general
such relations include temperature and time as other variables. In addition,
they often require knowledge of the history of deformation lending to the
instantaneous condition of interest in order to properly relate stress and
strain. We assume that the constitutive laws relate stress and strain directly
and uniquely. That is,

Ty = T (8158 s ,E33) Constitutive law (C.L.)

Consider an infinitesimal rectangular element under the action of normal

stresses only.

z-ZZ

+%dz
0z

vy

1

or
I < s rxx+a—xxdx
< X

71

The displacements of faces 1 and 2 in the x direction are u, as ux+6aux dx ,
X

Increment of mechanical work done by the stresses on the element during
deformations is:

-7, du, dydz+ rXX+aT—XX dx | d (ux+auX dxj dydz +
0, OX
Ou,
B,d,d,d, d(ux+k ~ dxj o(k (1

Canceling terms and deleting the higher order expressions:

rod[ M) [T | du, |d, d d,
oX | oX | y
I

equilibrium =0

24



7, d(a”Xj d,d, d, =z, de, dV
OX

Similar expression for y and z directions can be obtained. Thus for normal

stresses on an element, the incremental of mechanical work for isotropic
materials is:

(rxxdgXX +r,de, +7,de, ) av (normal stresses)

w = Mechanical work per unit volume

T, +—>dy
dw = 7,,dé&,, + z-yyd‘gyy +7,de, ST —— ’
Now consider the case of pure shear: )-?3-5-;4-. -------------- {
dy t:: ................. _. oy
The mechanical increment of work “;/Xy ‘Txy ::7/ N sy dx
dx voox

07, 0y x
KTW +a—yy dyJ dzdx} {d [;/Xy +p3 axy dxj dy}

07y
+B, dxdydz d|y,, +7 . dx | (k dy) 0<fB,nk<1
X

— 1,,dy, dxdydz = 2 7, de, dV

Thus, for pure shear stresses on all faces we get the following result for
increments of mechanical work:

2 (rxydgxy +7,,de,, +ryzd5yz) dv

Mechanical work increment per unit volume at a point for a general state of
stress 1s:

dw=r;dg;  (valid only for infinitesimal deformation)

Now integrating from 0 to some strain level g; we get:

W = r” r;de; =u = strain energy density function which is the mechanical
0
work performed on an element per unit volume at a point during a deformation.

25



du = rijdgij = 8_u =7
0¢;

Il

(u is point function, integral independent of path then perfect differential )

&ij

Total strain energy U = .[H.Uolrijdeij} dv

&jj
W= L r;de; = Irxxdgxx +r,de, +7,de, +2(z, de, +7,de,, +7,,de )

U:j”w dv

Examples of Calculating Total strain energy

Uniaxial stress

o=Ee¢ dg:d?a
U= _”_[(_EJ o,de,)dVv
W—ja de —J.ﬁ do 1 o, W_l
IR =S = "9
10,
=[]y %
MY
o=
Pure bending |
o=E¢
w=[" O'XngXX=—O-X2 d
E Ii
1 (MY L,
Jlfe (M) o AR
1 M? 1 M 2
=loe 1 [ Jyraa=—[=-d
El ) 1 ! ,
M __:EIWXX U :—.[E | Wxx dx
P 29
Shear stress
W =Irijdgij —J'T” déij :%%2
z-><y:G7/xy
U=1[7,/G av

26



5- Principles of virtual work

Particle Mechanics : Virtual work is defined as the work done on a
particle by all the forces acting on the particle as
this particle is given a small hypothetical
displacement , a virtual displacement , which is
consistent with the constraints present.

The applied forces are kept constant during the
virtual displacement.

Deformable body: Same as particle with specifying a continuous
displacement field with small deformation and
constraint, applied force kept constant. We
conveniently denote a virtual displacement by
employing the variational operations .

In general situation we would have as load possibilities a body force
distribution B, through out the body as well as surface tractions T, over

part of the boundary ,S,, of the body. Over the remaining part of the
boundary, S,, we have prescribed the displacement field u;,in which case,
to avoid violating the constraints we must be sure that &u, =0 on S,.

Virtual work for such a general solution would be:
M, = [ [ B dudv + §[TY u ds

B, and T, must not depend on &u, in computation of sW, .. We can expand
the surface integral to cover entire surface sincedy, =0 on S,, thus
S=S,+8,

We now develop the principle of virtual work for a deformable body

M, = [[[B du dv + § [z, v, du ds
= [[[B o dv+[[[(z; ), dv
= [[[®+zy pou dv+[[ [z, @) dv

We now introduce a kinematically compatible strain field variation ds; (it
is because it is formed directly from the displacement field variation).

(&) ;=0 (U; ;) = 5(&; +Wy) = dg; + W,
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Because of skew symmetry of the rotation tensor and the symmetry of the
stress tensor, z; dw; =0

Tijj (5Ui),j = Tjj 5‘9ij
=[[[B dundv+§[T" qu ds = [[[(z,;+B)du aV +[[ [z, o5, dV

We now impose the condition that we have static equilibrium. This means
in the above equation that:
1. External load B, and T, are such that there is overall equilibrium

for the body from the point of view rigid body mechanics we say
that B, and T, are statically compatible.

2. At any point in the body T, ;+B, =0

3|H£Bi Su; dv +iji<V’aui olsI =|”!Tij Se; dV

;]

external virtual work  internal virtual work

This is the principle of v.w. for a deformable body
We can say that necessary condition for equilibrium is that for any
kinematically compatible deformation field (&u;,ds;), the external v.w. with
statically compatible body forces and surface traction , must equal the
internal v.w.
This is sufficient for equilibrium.
Another more useful interpretation of the principle of v.w. is as follows.
The necessary requirements for equilibrium of a particular stress field z; are
that :

1. B and T, are statically compatible

2. The particular stress field z; satisfies the v.w. equilibrium for
any kinematically compatible, admissible, deformation field.

Note: the mathematical relation between a deformation field and a stress
field is independent of any constitutive law and applies to all
materials within the limitations of small deformation.
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We have shown that the satisfaction of the principle of v.w. is a necessary
relation between the external loads and stresses in a body in equilibrium.

We can also show that satisfaction of the principle of v.w. is sufficient to
satisfy the equilibrium requirement of a body.

Assume v.w. equilibrium 1s valid

1y 00 = [ oo %50 av =[], O v ],

= J.J-J.Tij (&'i),j av

We made use of symmetry ofz;. We can write the last expression as

follows:

”{ru (wi),jdvzjjl(ruwi),jdv _”{T”,jaji dv
Using divergence theorem

jurij (8u;) ; dv =j!rij &, v, ds _”{TUJ su, dv

J.IT N, v; dS—J.'[ 7. ou; dV

We have made use of the fact that &Ji =0 on S 2

Now substituting these results for the last integral in the principle of virtual work, that
was found previously and is as the following:

”!Bi &, dV+iiji(v>5lJi ds = ”{T“ Sz, dV

Results in the followings:

j”(r,”+|3)5u dV+“(T(V)—r” v;)du; ds = 0

Slnceé‘ui is arbitrary, we must conclude 7;;+B, =0 in V

By the same reasoning T, =r;v; on S

We have generated Newton’s law for equilibrium at any point inside the
body and Cauchy’s formula, which ensure equilibrium at the boundary.

= Satisfaction of principle of v.w. is both necessary and sufficient
for equilibrium.
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6- The Method of Total Potential Energy

Note: Calculus of Variations has to be reviewed.
We now develop from the virtual work idea, the concept of total potential
energy which applies to elastic body (not necessary linear elastic):

”f B, o, dv +§S3jTi<“ &u; ds = ”{rij Se; dV

du = r;de; = ou _ Ty = ou Sy =46'u
65‘”' 88”

”.V[Biéui o|V+§S§jTi<V>5ui ds = ”Fudv =5'[[[udv = s'U

Note: Su, is virtual displacement field. A priori not related to stress field

We define potential energy V of applied load as a functional of
displacement field u;

V= —”j B, u, dV —HTJ” u,ds Bjand T;” prescribed

5'V =—”{Bi27”;ajjdV—iji“>ST“;mjds

ou.

ou Y

]

5'V ==[[[B du dv [T du ds

5' (U +V)=0 (Principle of total potential energy)

7 =U+V (Total Potential Energy)
7=U-[[[Budv—-§[Tuds

5'(z)=0 Principle of total potential energy

Interpretation: The necessary requirements for equilibrium of a particular
stress field z; :

1.B;and T;" are statically compatible
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2. The deformation field, to which the field z; is related through a

constitutive law for elastic behavior, extremize TPE with respect to all

other kinematically compatible admissible deformation fields.
Extremization of the TPE w.r.t admissible deformation fields is necessary
for equilibrium to exist between the forces and the stresses in a body. Just in
the method of virtual work, we can show it to be a sufficient condition for
equilibrium.
We can show that TPE is actually a local minimum for the equilibrium
configuration under loads B; and T;” compared with the TPE corresponding

to neighboring admissible configurations with the same B; and T;".

Examine the difference between TPE of equilibrium state and an admissible
neighboring state u; + &, and ¢; + 5¢; show that the second variation of TPE

1s positive.

The total potential energy theorem states that’ of all the admissible fields
which satisfy compatibility and essential boundary conditions, the actual
one which satisfies equilibrium and stress BC’s provide a minimum to 7.

The total potential (7) is also called the functional of the problem.

Assume that in the functional (w) the highest derivative of a state variable
(wrt a space coordinates) is of order m, i.e. the operator contains at most m™
order derivatives. Such a problem we call C™'variational problem.
Considering the boundary of the problem, we can identify two classes on
bc’s:

Essential bc’s (geometric): correspond to prescribed displacement and
rotations. The order of the derivatives in the essential b¢e’s is in a C™'
Problem, at most m-1.

Natural boundary conditions (force bc’s): corresponds to prescribed
boundary force and momentums. The highest derivative in this b¢’s are of
order m to 2m-1.

By invoking the stationary of the functional a problem, the problem
governing differential equation and natural and essential bc’s can be
derived.

In C™' variational problem, the order of the highest derivative presented in
the problem governing differential equation is 2m.

Therefore, integration by parts is employed m times.

Effect of be’s are included implicitly in 7.
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7- Differential Equations VS functional for continuous systems

We can get a solution to a partial differential equation which is satisfied at
each point in the body and also satisfy a set of boundary conditions. A
solution obtained, maybe for displacements or stresses, etc.

A functional represents a number (scalar) and for naturally occurring
functional, it may represent work, energy or power or etc. In some
instances, it may not represent any physical quantity. At extremum, it yields
a solution to the differential equation (equilibrium or momentum balance or
heat balance, etc.).

e.g. I :J' f(y)dx (functional)

Existence of a functional and solution obtained as extremum of this
functional also helps to determine as to what kind of equilibrium is
achieved. This leads to theory of stability, for example, if it is a minimum at
extremum then the solution obtained is stable!

To go from differential equation to variational problem we need to know
operational algebra or calculus (functional analysis) and to go from
variational problem to differential equation we need to know the calculus of
variations.

7.1 Formulation of continuous systems

We consider a typical differential element with the objective of obtaining
differential equations that express the element equilibrium requirements,
constitutive relations, and element interconnectivity requirements. These
differential equations must hold throughout the domain of the system and
before the solution can be obtained they must be supplemented by boundary
conditions and, in dynamic analysis, also by initial conditions.

Two different approaches can be followed to generate the system governing
differential equations.

1. The direct method (differential equations)

2. The variational method
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The direct method

In this method, we establish the equilibrium and constitutive requirements
of typical differential elements in terms of state variables. These
considerations lead to a system of differential equations in the state
variables. In general the equations must be supplemented by additional
differential equations that impose appropriate constraints on the state
variables in order that all compatibility requiremvents be satisfied. Finally
to complete the formulation all the boundary conditions and in a dynamic
analysis the initial conditions are stated in differential formulation for a
continous system, a differential element with objective of obtaining
differential equation that express element equilibrium is found. This
differential equation must hold through the domain of the system. The D.E
must be supplemented by B.C.’S and dynamic analysis, initial condition
example.

7.1.1 Examples of differential approach

u(x,t)
pP(X,t)
Example 1- Beam element / X
u ‘ X/ m
|
7 vy
. . M P(x)
a) Differential Ele. ( T i l) Mo % ix
\
} v+
/ OX
o’u

crep . . . m-—-
b) Equilibrium in vertical direct ot?

2
N dx + pdx = ma—l;dx
OX ot

2
or ﬂ_ma_u_kp:()
OX ot?

equating sum of the moment about the left hand face to zero
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2
(V+ﬂ dxj dx+pdx%+ ma l; dx %—M—%dx-f- M=0
OX 2 ot 2 OX
\Y +8ﬂ =0
OX
now 6= u also from elementary beam theory M =ElI a9
OX OX
2 2
o= M=e12Y vy [gY
OX OX OX
0’ o’u o’u .
= y El F m ? =P Transverse vibrate of beam

=0 @ x=0 | M- ZU_y a
- B T Simply
u=0 @ x=I supported. B
M=0 -
— ou
V=0 free 0= x =0
Note of the elementary beam theory 40
Plain remain plain M = El =~
[ AN -
\ = IydA:O
[~ 0 dm=0
A A c
M = j (_ l Gmaxj dAy
c
dy
p O :w
I
Ae
y 4 ngg (Hook's 34
dé M & (Ae/AX) _Ae/y do 1
I Ax I El 'y y Ax dx p
M 1 d’x



Example 2- Dam’s Reservoir

bc(4)
2 1 oe
bc(3) | V'p =P be (1)
bc(2)
Example 3- Rod subjected to step load
y o(xt)
E young modulus p Ro
0 mass density A—x ° —
A cross section g o - - B
4 R(®
Ro
>t
1) Differential element Rod
oA —_—
v (0, +2% dx)A
OX
—
dx
cqep - oo .
Equilibrium | (a+§ dxj A—(cA)=Apdx U
o . ou
Constitutive relation oc=E ™
X
2 2
Combining equations: a—l; = Lz 6_121 C= E
OX C° ot Yo,
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b CaS

Initial load

u(o,t)=0

u(x,0)=0

EA au (I,t) =Ro
OX

ou
—(X,00=0
at( )
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7-1-2 Examples of Variational approach

Examplel. Beam

IT(w) El .[LWZ dx J-L (X)W(X) dx m
- 2 0 XX 0 p i
1 > L
U (w) strain energy potential energy of loading
m=2
Cm—l — Cl

essential bc = w,w,

o= EL ["2w,, dw, dx [ Paw dx
2 Jo 0
O = = Elw,, 6w, |; —EI _[L W, oW, dx
0

= EIW,, 6w, |; ~EM,, 5[ +EI [ w, v dx

XXXX

dl = ,LL (EIWxxxx _P) A dx+ EIWxx 5WX |I(; - EIWXXX aN| : =

0

0<x<l Elw P=0

XXX
’S L
be Elw,, dw, | =0

EIW,,, dw| =0

In general on the be™

at Xx=0 or x=L
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Example2:

w Buckling of the column
i X “p
k

s 2 P, 1 2
H_EJ.O El'(w,) dx—EJ.OWX dx+5kwL

I
prove it * m=>2
Cm—l — Cl
ess. b.c = w,w,
W
L' )
<
ds
dx dW
* U :lJ.LEI w2, dx ¢
29 < >
L

w=Po6 o=L-L'
L= Ids (no change in length due to w)

2 ’
ds = /dw’ +dx* = 1+(2—Wj dx = L= J.OL J1+w? dx (0 > L)
\ X
L~ IL,(HLW’Z} dx  for small disp.
0 2
~ L 1 L 12 N 1 L 12
L~de+ELw dx_L+ELW dx

[ 1 L 12 H !
5=|_—L=—jw dx Sissmall L~L
20

W =E‘[LW’2 dx
2 0
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Example3. Rod subjected to STEP load u(x,t)

—
/]
Ro
A X ¢ —
e B A B
=3 EA - [Tu o uR be's u,=0=u(0,1)
ULZU(L,t)
B_
STI=0 :J-EAUanXdX—J-LgufBdX—éULR:O f —boq force for
0 unit length

= EAU, ul; — [ EAu, &0 dx - [ 6u £° dx - R

=- J.OL(EAuXX+ £8)su dx-+[EAU, |L—R]§uL—EAuX |, S, =0
ou is arbitrary
= EAu, +f%=0
x=L EAu, =R or d =0

Xx=0 EAu,=0 or du,=0
Xx=0

m=1 C° variational problem
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Example 4. 2-D Variational Principle

=f[g¢f+g¢§—Q¢}dQ—ﬁ¢dF

K & Q are functions of positions only

op=0 on TI¢ (partof the boundary)

q specified on T, Y a
Fq
l_‘f
I'¢
> X
53 =[lk¢, op+kg, 56,-Qsgld~ [qopdr v,
Q T, Vv
. >
o [N
o¢ 0 y v,
Note: ¢, =0 — =—(5¢) = (69),
OX  OX I
Integrate by part the first two terms v.dr dy=dI cos @
f dx=dT sin @

MM
[k, 54, dxdy = [kg, (59), dxdy = [kg, dpdy - [(kg,), 56 dQ

[k, op, dxdy =—[(kg,), 5pdQ+ [k ¢, 5¢3
Q Q r Vde

0J=|-|kg),+(ke,), +QlopdQ+ | kg Vv, +kp Vv |0p dT — |G op dT
J. [ X/ X y’y ] '[[ X "X yy] _[

i 99
on
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C=T+,+T¢
ikgﬁ §¢dF=J+TJ‘+rJ. 56=0 on T'é

:>5J_—j © 5¢dQ+j(k¢ q)5¢dr+jk¢ 5¢ dT =0

o¢ = Arbitrary

Euler. equ = O =0 inQ

kg,—q=0 on L,
op=0 or kg =0 T,

Heat Conduction :

If k& Q constant V’ ¢ = const. Poisson’s equation
If k=1 & Q=0 Vig=0 Laplace equation

Also other form of equations such as Torsion problem (Poisson’s equation)
or Irrotational flow (Laplace equation), seepage problem or flow through
porous media are examples of the above equations.

Example5. Transient 2-D Heat
Equivalent steady state variational principle for any time t :

J(¢)=TJB{kx¢f+ ky¢y2}—Q¢+2C¢3¢} dxdy +Tqu¢dr+Tj{qc+a(§—¢7cj¢}dr

@ is a function of X,y and time t ¢=—=
0J(¢)=0 atany timet

o

E must be considered fixed in the calculus of variation formulation
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5P =T [lk, 450, + K, 4,64, - Q54 + Cipp + Chap] dA
+T[0,0pd0+T [[a 69+ apop - a . opldr

=T [k gy 54 dT - [(k,), 5pdQ+ [k 5pv,dT - [(k,g,), 9 dQ

-[QopdQ+[ChopdQ+T[q,86dT +T [(dL + ag—ag)dpdT =0
(kx¢x)x + (ky¢y)y + Q - C¢ =0
. y T,
5T =T[[- kg, - k), -Q+Clspda

4 FB@
+T[(gy, +kgv,) SpdT +T [q, spdT I

r Ta » X

S I'=I,+I+I¢

+Trjqc+a(¢—¢c)§¢dl“=0 T = Thickncss

On Ty ¢ =g
I, kav,+kgv, +7,=0
IﬂC kx¢xvx + ky¢yvy + qC + (Z(¢ - ¢C) = 0

¢ =tempreature k, = Thermal Conductivity in x direction
k, = Thermal Conductivity in y direction
Q = Heat input per unit volume
d, , 0. = specified heat input per unit area
on I, and I, respectively
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* Problem: For a transient 2-D heat flow, the equivalent steady state
variational principle at time t can be written as:

3@ =[5 [+ k,8)- Qg+ 2y dxay + [q,par + J{w a@ —&}zﬁ} dr

=[xyt 4= kok Q G.g
FC
r

A

[
»

=T, +I;+I¢

You are asked to find the Euler equation and the appropriate boundary
condition
1- assumption about displacement field
2- sometime assumption about constitutive law
3- variational process as it relates to the T.P.E
4- it gives us proper equations of equilibrium and proper BC’S
(Certain internal constraints due to displacement assumptions)

8. No. of Rigid body modes in a system

In a variational form we try to find the strain energy U.

The rigid body motions are not accompanied by change in strain energy.
The No. of non contributing terms (from the displacement model) to the
strain energy are the No. of rigid body modes.

“Bathe” P.173
If the structure is not supported, there will be a number of linearly
independent vectors, U,,U,,.......,V, for which the expression U] K U, is equal

to zero, i.e. zero strain energy is stored in the system when U, is the
displacement vector. Such vector U, is said to represent a rigid body mode
of the system.
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9. Sample Problems

1- For the beam shown, write down the variational principle (Potential
Energy) which also includes the boundary actions.
Find out the Euler Lagrange equation and the associated boundary
conditions.

A V
A PZ
P constant P i 1
Ml[\l o/umt lenf/‘lchk\
2 k&, E
k& K, X uniform EI K,

K,,K, are translational spring constnts
K6, ,K8, are rotational spring constnts

Are there any rigid body modes present?

2- Figure 2 show a system of beam-column with transverse and tangential
springs.

a) Write down the functional (Total Potential Energy) for the system.
Perform the first variation (Fig 2).

b) Derive the Euler-Lagrange equations and
the associated bc’s

¢) How many rigid body modes do exist?

d) Perform the second variation §°I1 to
show weather the problem is a minimum

or maximum. o i&x)_’ L X,U
Note: 61 =5(51) 3 3 3 2 E >
Ks
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