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1- Some Fundamental Concepts 
 
1-1- Physical Problems, Mathematical Models, Solutions 
The main objective of this section is describing the concepts of body and 
mathematical modeling. Procedures for formulation and solution of a 
Mathematical model of a physical problem are discussed.  The following 
diagram shows a general view of the modeling from body to model to 
solution. 
 
 
 
 
 
                               Influence of environment 
 
 
 
 
 
 
 
 
 
 
 
 
                                    Applied Mechanics 
 
 
 
 
 
State variables involve displacements, velocities, pressure, temperature, 
stress, strain, charge, position, etc. 
Influence of environment can be due to forces, temperature changes, etc. 
Properties are determined from laboratory testing. 
 
 
1-2- Continuum Mechanics 
Things that we can perceive, see, hear, or build can be explained by using 
certain principles and laws of natures: conservation of mass, energy, linear 
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and angular momenta, the laws of electromagnetic flux, and the concept of 
thermodynamic irreversibility. These are among the fundamental principles 
on which the subject of mechanics is based.  
 
The subject of continuum mechanics is based on the foregoing governing 
principles, which are independent of the internal constitution of material. 
However, the response of a system or a medium subjected to (external) 
forces can not be determined uniquely only with the governing field 
equations derived from the basic principles. The internal constitution of 
material plays an important role in the subject of continuum mechanics. 
 
Study of the response of a substance or body under external excitation 
constitutes the major endeavor in engineering. In engineering applications, 
the response behavior can be studied at macroscopic level without 
considering atomic and molecular structure. The subject of studying 
material behavior at the macroscopic level can be called continuum 
mechanics.  
 

 
By invoking physical principles and constitutive behavior, we obtain 
equations governing the behavior of continuous system (a boundary value 
problem).  
A solution to a boundary value problem in continuum mechanics requires 
constitutive equations in addition to the governing field equations. The 
basic principles governing Newtonian mechanics are a) conservation of 
mass, b) conservation of momentum, c) conservation of moment of 

P1 

P2 

Continuous 
body 

External forces 

Physical principles 

Constitutive behavior 

Solution procedure 

Response 



 5

momentum (or angular momentum), d)conservation of energy, and e)laws 
of thermodynamics; these principles are considered to be valid for all 
materials irrespective of their internal constitution. Therefore, a unique 
solution to a boundary value problem in continuum mechanics cannot be 
obtained only with the application of governing field equations. Hence a 
unique determination of the response require additional consideration that 
account for the nature of different materials. The equations that model the 
behavior of a material are called ‘constitutive equations’ or ‘constitutive 
laws’ or ‘constitutive model’. 
 
1-3- Boundary value problem solution 
A solution to a BVP can be obtained using different approaches. The 
following diagram shows a schematic view of the problem. 
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1-4- Approximate solution of a boundary value problem 
A mathematical model (BVP) of a real-life problem is often difficult to 
obtain an exact solution.  The finite element method (FEM) can be viewed 
as a method of finding approximate solutions for the BVP problems.  
 
Two approaches of Weighted Residual Method (WRM) and Energy 
Methods (EM) are used for finding approximate solution of BVP. A number 
of schemes are employed under the WRM, among which are collocation, 
subdomain, least squares, and Galerkin’s methods. Galerkin’s method has 
been the most commonly used residual method for finite element 
applications. This method is based on minimization of the residual left after 
an approximate or trial solution is substituted into the differential equation 
governing a problem. The EM procedures are based on the idea of finding 
consistent states of bodies or structures associated with stationary values of 
a scalar quantity assumed by the loaded bodies. In engineering, usually this 
quantity is a measure of energy or work. The process of finding stationary 
values of energy requires use of mathematical disciplines called variational 
calculus involving use of variational principles. For many problems, both 
approaches yield exactly the same results.  
 
The following diagram shows a schematic view of use of these two 
approaches. Primitives are those involve physical quantities associated with 
the state variables, e.g. Time, Length, Force, etc. Based on the primitives 
we establish the axioms for problem solving, i.e. try to obtain a solution for 
the assumed model. Here the primary objective is to make sure that the 
mathematical model represents the real body.  
 
Choice of axioms depends on the type of problem, form of geometry and 
the physical quantities involved. There are two kinds of axioms in applied 
mechanics. 
 

i) Newtonian Axiom (Newton’s Axiom) 
  It defines force as momentum change, vector forces act on each    
  particle of the body and an equilibrium differential equation 
 (or momentum balance) governs the solution throughout the body. 
 

ii) Leibnitz Axiom (Work Axiom) 
  It defines work as the effect of forces acting on the body from  
  which a work function is obtained, e.g. potential energy,  
  complementary energy, kinetic energy, etc. A solution is  
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  obtained as an extremum problem, e.g., a minimum or a  
  maximum or a saddle point problem. 
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 2- Concepts of Stress, Strain, Constitutive Relations and Various Form of 
Energy  
 
Ref : Energy and Finite Element Methods in Structural Mechanics 
 By: I.H. Shames 1985  
 
2-1- STRESS 
 
2-1-1- Force Distributions  
In study of continuous media 2 classes of forces exist:  
 

a. body force distribution 
It acts directly on the distribution of matter in the 
domain of specification. 

⎩
⎨
⎧

volumeunitPer
massunitPer

notationIndex
txxxBor

notationVector
tzyxB i ),,,(),,,( 321  

 
b. Surface Tractions 

In discussing a continuum there may be some boundary 
with force distributed on the boundary. 
The force is applied to such boundary directly from 
material outside the domain. 
               

⎩
⎨
⎧

elementareathetonormalbenotneed
areaunitPer
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                         ν           T  

                                                     3x  
 
                                                                                            dAtonormalν  
                                                                    
 
 
                                                                                        2x  
                                                             Superscript referring to the direction of the 
                                                            area element at the point of application of the  
                             1x                            surface traction 
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νν  

 If the area element has the unit normal in the xj direction then 
 We would express the traction vector on this element as:  
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2-1-2-  STRESS 
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                                      1x  
 
Sign convention:  Normal stress directed outward from interface (+) tensile stress 
        Normal stress directed toward surface (-) compressive stress  

Shear stress is (+) if both stress itself and unit normal point in 
+ive coordinates directions or both points in –ive coordinate 
directions. 

 
 
           3x  
        
 
 
 
 
 
               2x  
    
 
 
       1x  
 
Knowing ijT  for a set of axes, i.e. for three orthogonal interfaces at a point, 
we can determine a stress vector )(νT for an interface at the point having 
any direction whatever. 
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Consider a point P in a continuum (any point in the domain) 
 
                3x                                                       
 
 
 
                                              2x                                                             
                P                                                                       
 
 
 
 
Newton’s law for the mass center in 1x  direction               Cauchy’s Formula  
    jijjjiiiiii TTTorTTTT ννννν

νν ==++=
)(

332211
)(  

Knowing ijT  we can get the traction vector for any interface at the point. 
This formula can be used to relate tractions on the boundary to stresses 
directly next to the boundary. 
 
Prove  Cauchy’s Formula. 
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2-1-3-  Equations of Motion 
Consider an element of the body of mass dm  at P   
Newton’s 2nd law: 

   Vdmfd &=  
  ∫ ∫ ∫ ∫ ∫∫∫∫ =+

D D
iiiS dVVdVBdAT ρυ &)(  

 
                                    jij vτ  
 

Gauss’ Theorem 
Consider a continuous, differentiable nth order tensor field Tjk….over a volume V with its 
boundary surface defined by S. The Gauss’s Theorem in a generalized form is given by: 

 ( ) dAT
x

T
ijkS

i

jk

V

ν...dV
...

∫∫∫ ∫ ∫ =
∂

∂
 

or: 
( ) dATT ijkSijk

V

ν...dV)( ,... ∫∫∫ ∫ ∫ =  

where νi are the direction cosines of the unit outward normal. For Tjk….a zero order Tensor, say a 
scalar function φ, 

dAiSi
V

νϕϕ ∫∫∫ ∫ ∫ =dV,  

or: 
−−

∫∫∫ ∫ ∫ =∇ Ad
S

V

ϕϕ dV  

where the differential area dAAd
−−

=ν . The above equation is generally referred to as Gauss’ 
Law. 

 
 ∫ ∫ ∫ =−+ 0)( , dVVB iijij

D

ρτ &  

 
D is arbitrary                   

 
Using moment of momentum equation will also result in:       

kjjkHM ττ =⇒= 0
&  
 

Further investigations:  
- Transformation Equations for stress 
- Principal stresses (given a system of stresses for an orthogonal 
set of interfaces at a point , we can associate a stress vector for 
interfaces having any direction in space 

jντ ij
V

iT =  
Now: is there a direction ν  such that stress vector is collinear withν ? 

iijij VB &ρτ =+,  
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2-2- STRAIN 
 
Means of expressing the deformation of a body 
 

 
 
 
 
 
 

Line segment in the undeformed geometry 
If body is given a rigid body motion               each line segment in the body 
under goes no change in length. 
Change in length of line segments in the body, (or distance between points) 
can serve as a measure of deformation (change of shape and size) of the 
body. 

iidxdxdsAB == 22)(      distance between points 
When forces are applied, body will deform. It is convenient now to consider 
that the xi reference is labeled the iξ  reference when considering deformed 
state: 

 
                   3ξ  
                                                                  
                                 *ξd        *B  
                                                                   
                             *A                          
                                                  2ξ      
 
 
 
  1ξ                                      

 
Deformation can be depicted by mapping of each point from coordinate ix  
to coordinate iξ . We can say then for a deformation:  

),,( 321 xxxii ξξ =  
Since mapping is one-to-one: 

),,( 321 ξξξii xx = : 
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We can express: 
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We may express iu  as a function of Lagrange coordinate ix , in which case it 
expresses the displacement from the position ix  in the undeformed state to 
the deformed position iξ . 
On the other hands iu  can equally well be expressed in terms of iξ , the 
Eulerian coordinates; in which case it expresses the displacement that must 
have taken place to get to the position iξ from some undeformed 
configuration. 
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So far no restriction on magnitude of deformation,  
Infinitesimal strain:    

11 <<
∂
∂

<<
∂
∂

j

i

j

i u
x
u

ξ
 

( )
ji

j
ijjj

iji

j

ji

i

x
Ju

u
x
Jx

x
JxJ

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
−=⎥

⎦

⎤
⎢
⎣

⎡
−

∂
∂

∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

=
∂

∂
ξ

δξ
ξξξ

)(  

for infinitesimal strain  
i

ju
ξ∂
∂

 can be dropped  

 
 
  

       no need to distinguish between Eulerian and lograngian coordinates in 
expressing strains  

( )ijji
i

j

j

i
ijij uu

x
u

x
u

,,2
1

2
1

+=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+

∂
∂

== ηε  

ii x∂
∂

=
∂
∂
ξ

 



 15

 

xy
yx

xy
x

xx x
u

y
u

x
u

γεε
2
1

2
1

=
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

∂

∂
+

∂
∂

=
∂
∂

=        =ijγ engineering shear strain 

yz
zy

yz
y

yy y
u

z
u

y
u

γεε
2
1

2
1

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂

∂
=

∂

∂
=  

nz
zu

xx
z

zz x
u

z
u

z
u

γεε
5
1

2
1

=⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

=
∂
∂

=  

 
2-2-1-  Physical interpretation of strain terms    
 
A small rectangular parallelepiped at P.  
We have also placed a Cartesian reference at P. Imagine the body has some 
deformation:  
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Where with coalescence of QP & , we may drop subscript P : 
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=∴ yyε change in length in the y  direction per uint original length of 
vanishingly small line segment originally in the y direction. 

 
Now consider PR  of xΔ  and PQ  of yΔ  
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ijγ  = change from a right angle of vanishingly small line segments 
originally in the ji&  directions at a point 

 
Now effect of strain on a infinitesimal rect. Parallelepiped in the 
undeformed geometry. 

 
 
 
 
 
 
 
 
 
 
 

 
Zero shear stress means side will remain orthogonal on deformation. 
However position and orientation of the element may change as length of 
the sides and volume. 

 
Existence of shear stress means sides may lose they mutual 
perpendicularity, (parallelograms instead of rectangles) 
∴Size of the rectangular parallelepiped is changed by normal strain while 
the basic shape is changed by shear strain. 
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2-2-2-  The Rotation Tensor 
Previously, we considered stretching of a line element to generate ijε  and 
then used the deformation of a vanishingly small rectangular parallelepiped 
to give physical interpretation to the component of strain tensor. 
We now introduce rotation tensor. This time rather than considering just the 
stretch of a vanishingly small line element, we consider the complete 
mutual relative motion of the end points of line element. (include rotation as 
well as stretching) 
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Consider PN  the relative movement of end points can be given by using 
disp. field. 
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 For rigid body movement, the nonzero components of the rotation tensor 
give the infinitesimal rotation components of the element. What does ijw  
represent when the rectangular parallelepiped is undergoing a movement 
including deformation of the element and not just BR.  rotation? Each line 
segment in the rectangular volume has its own angle of rotation and we can 
show that ijw  for such situation gives the average rotation components of all 
the line segments in the body. However we shall term the component of ijw  
the rigid body rotation components. 

 
From experiment ijε  portion of equation ijw related to the stress ijτ  

 
Further investigation:   Transformation equation for strain. 

 
 
2-2-3- Compatibility equations 
Strain-displacement relations 

       ( )ijjiij uu ,,2
1

+=ε    (*) 

If sui '  are know, ijε  can be obtained. 
The inverse problem of finding the displacement field from a strain field is 
not so simple. 

 
Three functions iu  must be determined by integral of 6 partial differential 
equations (*) to ensure single-valued continuous solution iu , we must 
impose certain restriction of ijε  

 
            can not set forth any ijε .  to expect unique solution, the following 
equations are to be satisfied: 
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2.3       HOOKE’S Law 
      
 Linear elastic behavior 
 
    klijklij C ετ =   generalized Hook law 
 
     tensororderCtensororder th

ijkl
nd

ijij 42, ⇒ετ  
 
     jiklijklijklij CCsymmetricCsymmetric =⇒τ  
 
     ijlkijklkl CCsymmetric =⇒ε  
It can be shown that  Cijkl =Cklij  ( Using Energy Concept It can be proved.)    
Thus, starting with 81 terms for Cijkl (=34), we may show, using the 
three aforementioned symmetry relations for Cijkl , that only 21 of 
these terms are independent.  
We will assume now that the material is homogeneous (which has 
same composition throughout) so we may consider Cijkl to be a set of 
constants for a given reference. 
For an isotropic material, in which the material properties at a point 
are not dependent on direction, we have: 
 

ijeeijij Gεεδλτ 2+=  
 

This is the general form of Hooke’s law giving stress components in 
terms of strain components for isotropic materials. The constant λ 
and G are the so-called Lame constants. It can be seen that as a result 
of isotropy the number of independent elastic moduli has been 
reduced fron 21 to 2. The inverse of Hooke’s law yielding: 
 
    ijkkijij T

EE
δντνε −

+
=

1  

equationstotal 6  
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E and ν are Young’s modulus and the poisson ratio stemming from 
one-dimensional test data.  
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3- Boundary-value problems for linear elasticity 
 

The complete system of equations for linear elasticity for homogeneous, 
isotropic solid includes the equilibrium equations:     

)3(0, equationsB ijij =+τ  
 

The stress-strain law: 
 
         )6(2 equationsG ijijllij ⊕+= εδελτ  
 
Strain displacement relations:  
 

)6(*)(
2
1

,, equationsvu ijjiij +=ε  

We have 15 equations and 15 unknowns. When explicit use of the 
displacement field is not made, we must be sure that the compatibility 
equations are satisfied. 
 
It must be understood that iB  and )(v

iT  have resultants that satisfy  
equilibrium equations for the body as dictated by Rigid body mechanics. In 
this regard that iB  and )(v

iT  must be statically compatible. 
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We may pose three classes of boundary values problems: 
 

1st kind B.V. problem: determine the distribution of stresses and  
              displacements in the interior of the body  
              under a given body force distribution and  
             a given surface traction over the boundary. 

 
2nd kind B.V. problem: determine the distribution of stresses and  
              displacements in the interior of the body  
              under the action of a given body force  
              distribution and a prescribed displacement  
              distribution over the entire boundary. 

 
Mixed B.V. problem: determine the distribution of stresses and  
              displacements in the interior of the body  
              under the action of a given body force  
              distribution with a given traction  
              distribution over part of the boundary )( 1s  
              and a prescribed displacement distribution  
              over the remaining part of the boundary 2s . 

 
Note :  on the surfaces where the  )(v

iT  are prescribed,  Cauchy’s 
formula jij

v
i TT ν=)(  must apply. 

 
1st kind: convenient to express basic equations in terms of stresses. To do 
this: 

        
        ijkkijij EE

δτντνε −
+

=
1           in compatibility euations 

Using equilibrium equations, we can arrive at the Beltrami-Michell system of 
equations: 
 

        )(
11

1
,,

2
,

2
ijjiijijij BBKK +−=∇

+
−

+
+∇ δ

ν
ν

ν
τ  

     
where kkK τ=  

The solution of these equations, subject to the  satisfaction of Cauch’s 
formula on the boundary for simply connected domains, will lead to a set of 
stress components that both satisfy the equilibrium equations and are 
derivable from a single-valued continuous displacement field. 

 

substitutide 
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2nd kind: Substitute equations * and ☺   in the equilibrium equations to 
yield differential equations with the displacement field as the dependent 
variable. Then we get Navier equations of elasticity: 
 
 
        0)( ,

2 =+++∇ ijiji BuGuG λ  
 

For dynamic conditions we need only employ the following equations in 
place of the equilibrium equations. 

       iijij uB &ρτ =+,  
The results are the addition of the term tup &&   on the right side of the above 
equations. If the above equation can be solved in conjunction with the 
prescribed displacements on the surface and if the resulting solution is 
singled –valued and continuous the problem may be considered solved.  
 
Solution for mixed BV problems will be investigated using different 
techniques introduced partly in this notes such as variational approach.  
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4- Energy consideration  
 

We have described the stress tensor arising from equilibrium consideration 
and the strain tensor from kinematics considerations. These tensors are 
related to each other by laws that are called constitutive laws. In general 
such relations include temperature and time as other variables. In addition, 
they often require knowledge of the history of deformation lending to the 
instantaneous condition of interest in order to properly relate stress and 
strain. We assume that the constitutive laws relate stress and strain directly 
and uniquely. That is, 

 
  .).(),........,,( 331211 LClawveConstitutiijij εεεττ =  
 

Consider an infinitesimal rectangular element under the action of normal 
stresses only. 

 
 
 
 
 
 
 
 
 
 

The displacements of faces 1 and 2 in the x  direction are xu  as ,dx
x
uu x

x ∂
∂

+  

Increment of mechanical work done by the stresses on the element during 
deformations is: 
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Canceling terms and deleting the higher order expressions: 
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Similar expression for y  and z  directions can be obtained.  Thus for normal 
stresses on an element, the incremental of mechanical work for isotropic 
materials is:  

 
( ) )( stressesnormaldVddd zzzzyyyyxxxx ετετετ ++  
 

=w Mechanical work per unit volume 
 
      zzzzyyyyxxxx ddddw ετετετ ++=  
 

Now consider the case of pure shear:  
 

The mechanical increment of work 
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dVddxdydzd xyxyxyxy ετγτ 2=→  

 
Thus, for pure shear stresses on all faces we get the following result for 
increments of mechanical work: 
 

 
 

Mechanical work increment per unit volume at a point for a general state of 
stress is:  

 
     ijijddw ετ=  (valid only for infinitesimal deformation) 
 

Now integrating from 0  to some strain level ijε  we get: 

 ∫ === ij udW ijij

ε
ετ

0
 strain energy density function which is the mechanical 

work performed on an element per unit volume at a point during a deformation. 
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ij
ij

ijij
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ετ =
∂
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( u is point function, integral independent of path then perfect differential ) 
 

Total strain energy  dVdU
v
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Examples of Calculating Total strain energy 
 

Uniaxial stress 
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Pure bending 
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Shear stress 
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5- Principles of virtual work  
 
  Particle Mechanics : Virtual work is defined as the work done on a  
        particle by all the forces acting on the particle as  
        this particle is given a small hypothetical  
        displacement , a virtual displacement , which is  
        consistent with the constraints present.  
        The applied forces are kept constant during the  
        virtual displacement. 
  Deformable body:  Same as particle with specifying a continuous  

 displacement field with small deformation and                   
constraint, applied force kept constant. We 
conveniently denote a virtual displacement by 
employing the variational operationδ . 

 
In general situation we would have as load possibilities a body force 
distribution iB  through out the body as well as surface tractions )(v

iT  over 
part of the boundary , 1S , of the body. Over the remaining part of the 
boundary, 2S , we have prescribed the displacement field iu ,in which case, 
to avoid violating the constraints we must be sure that 0=iuδ  on 2S . 
Virtual work for such a general solution would be: 

    ∫ ∫ ∫ ∫ ∫+=
v s

i
v

iiivirt dsuTdvuBW δδδ )(  

iB  and )(v
iT  must not depend on iuδ  in computation of virtWδ . We can expand 

the surface integral to cover entire surface since 20 Sonui =δ , thus     
21 SSS +=  

We now develop the principle of virtual work for a deformable body  
 
     

dsudvuBW ij
v s

ijiivirt δυτδδ ∫ ∫ ∫ ∫ ∫+=    

            ∫ ∫ ∫ ∫ ∫ ∫+=
v v

jiijii dVudVuB ,)( δτδ  

            ∫ ∫ ∫ ∫ ∫ ∫++=
v v

jiijijiji dVudVuB ,, )()( δτδτ  

We now introduce a kinematically compatible strain field variation ijδε  (it 
is because it is formed directly from the displacement field variation). 
 
          ijijijijjiji WWuu δδεεδδδ +=+== )()()( ,,  
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Because of skew symmetry of the rotation tensor and the symmetry of the 
stress tensor, 0=ijij wδτ  
       ijijjiij u δετδτ =,)(  
   

∫ ∫ ∫∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ++=+⇒
v

ijij
v s v

iijiji
v

iii dVdVuBdsuTdVuB δετδτδδ )( ,
)(  

 
We now impose the condition that we have static equilibrium. This means 
in the above equation that: 

1. External load iB and )(v
iT are such that there is overall equilibrium 

for the body from the point of view rigid body mechanics we say 
that iB  and )(v

iT  are statically compatible. 
2. At any point in the body   0, =+ ijij BT  
 

  ∫ ∫ ∫∫ ∫ ∫ ∫ ∫ =+⇒
v

ijij
v s

i
v

iii dVTdsuTdVuB δεδδ )(  

     
 
 
 
       

This is the    principle of v.w. for a deformable body  
We can say that necessary condition for equilibrium is that for any 
kinematically compatible deformation field ),( ijiu δεδ , the external v.w. with 
statically compatible body forces and surface traction , must equal the 
internal v.w. 
This is sufficient for equilibrium. 
Another more useful interpretation of the principle of v.w. is as follows.  
The necessary requirements for equilibrium of a particular stress field ijτ  are 
that :  

1. iB  and )(v
iT  are statically compatible 

2. The particular stress field ijτ  satisfies the v.w. equilibrium for 
any kinematically compatible, admissible, deformation field. 

 
Note: the mathematical relation between a deformation field and a stress  
           field is independent of any constitutive law and applies to all  
           materials within the limitations of small deformation. 

 
 
 

external virtual work internal virtual work 
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We have shown that the satisfaction of the principle of v.w. is a necessary 
relation between the external loads and stresses in a body in equilibrium. 

   
We can also show that satisfaction of the principle of v.w. is sufficient to  
 satisfy the equilibrium requirement of a body. 

 
Assume v.w. equilibrium is valid 

 dV
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               ∫ ∫ ∫=
v

jiij dVu ,)(δτ  

 
We made use of symmetry of ijτ . We can write the last expression as 
follows: 

 
      ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫−=

v v v
ijijjiijjiij dVudVudVu δτδτδτ ,,, )()(  

 
Using divergence theorem 

 
       ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫−=

v s v
ijijjiijjiij dVudsudVu δτυδτδτ ,,)(  

 
         ∫ ∫ ∫ ∫ ∫−=

1

,
s v

ijijjiij dVudsu δτυδτ  

We have made use of the fact that  20 Sonui =δ  
Now substituting these results for the last integral in the principle of virtual work, that 
was found previously and is as the following: 

∫ ∫ ∫∫ ∫ ∫ ∫ ∫ =+
v

ijij
v s

i
v

iii dVdsuTdVuB δετδδ )(  

Results in the followings: 
 

0)()( )(
, =−++∫ ∫ ∫ ∫ ∫ dsuTdVuB

V s
ijij

v
iiijij δυτδτ  

Since iuδ is arbitrary, we must conclude   VinBiiij 0, =+τ  
By the same reasoning    1

)( SonT jij
v

i υτ=  
We have generated Newton’s law for equilibrium at any point inside the 
body and Cauchy’s formula, which ensure equilibrium at the boundary. 
 
  ⇒   Satisfaction of principle of v.w. is both necessary and sufficient  
          for equilibrium. 



 30

6- The Method of Total Potential Energy 
Note: Calculus of Variations has to be reviewed. 

We now develop from the virtual work idea, the concept of total potential 
energy which applies to elastic body (not necessary linear elastic): 
 

∫ ∫ ∫∫ ∫ ∫ ∫ ∫ =+
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Note: iuδ is virtual displacement field. A priori not related to stress field  
We define potential energy V of applied load as a functional of 
displacement field ui  
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dsuTdVuBV
v s

i
v

iii∫ ∫ ∫ ∫ ∫−−= δδδ )(1  

 

0)(1 =+VUδ  (Principle of total potential energy) 
 

VU +=π  (Total Potential Energy) 

dsuTdVuBU
v s

i
v

iii∫ ∫ ∫ ∫ ∫−−= )(π  

0)(1 =πδ  Principle of total potential energy 
 

Interpretation: The necessary requirements for equilibrium of a particular 
stress field ijτ : 

1. Bi and Ti
ν are statically compatible 
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2. The deformation field, to which the field ijτ is related through a 
constitutive law for elastic behavior, extremize  TPE with respect to all 
other kinematically compatible admissible deformation fields. 

Extremization of the TPE w.r.t admissible deformation fields is necessary 
for equilibrium to exist between the forces and the stresses in a body. Just in 
the method of virtual work, we can show it to be a sufficient condition for 
equilibrium. 
We can show that TPE is actually a local minimum for the equilibrium 
configuration under loads Bi and Ti

ν compared with the TPE corresponding 
to neighboring admissible configurations with the same Bi and Ti

ν. 
 

Examine the difference between TPE of equilibrium state and an admissible 
neighboring state ii uu δ+  and ijij δεε +  show that the second variation of TPE 
is positive.  

 
The total potential energy theorem states that’ of all the admissible fields 
which satisfy compatibility and essential boundary conditions, the actual 
one which satisfies equilibrium and stress BC’s provide a minimum to π. 

 
The total potential (π) is also called the functional of the problem. 

 
Assume that in the functional (π) the highest derivative of a state variable 
(wrt a space coordinates) is of order m, i.e. the operator contains at most mth 
order derivatives. Such a problem we call Cm-1variational problem. 
Considering the boundary of the problem, we can identify two classes on 
bc’s: 
Essential bc’s (geometric): correspond to prescribed displacement and 
rotations. The order of the derivatives in the essential bc’s is in a Cm-1  
Problem, at most m-1. 

 
Natural boundary conditions (force bc’s): corresponds to prescribed 
boundary force and momentums. The highest derivative in this bc’s are of 
order m to 2m-1. 
By invoking the stationary of the functional a problem, the problem 
governing differential equation and natural and essential bc’s can be 
derived. 
In Cm-1  variational problem, the order of the highest derivative presented in 
the problem governing differential equation is 2m. 
Therefore, integration by parts is employed m times. 
Effect of bc’s are included implicitly in π. 
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7- Differential Equations VS functional for continuous systems 
 

We can get a solution to a partial differential equation which is satisfied at 
each point in the body and also satisfy a set of boundary conditions. A 
solution obtained, maybe for displacements or stresses, etc. 
 
A functional represents a number (scalar) and for naturally occurring 
functional, it may represent work, energy or power or etc. In some 
instances, it may not represent any physical quantity. At extremum, it yields 
a solution to the differential equation (equilibrium or momentum balance or 
heat balance, etc.). 
 
   ∫= )()(.. functionaldxyfIge  
 
Existence of a functional and solution obtained as extremum of this 
functional also helps to determine as to what kind of equilibrium is 
achieved. This leads to theory of stability, for example, if it is a minimum at 
extremum then the solution obtained is stable! 
 
To go from differential equation to variational problem we need to know 
operational algebra or calculus (functional analysis) and to go from 
variational problem to differential equation we need to know the calculus of 
variations.  
 
7.1 Formulation of continuous systems  
 
We consider a typical differential element with the objective of obtaining 
differential equations that express the element equilibrium requirements, 
constitutive relations, and element interconnectivity requirements. These 
differential equations must hold throughout the domain of the system and 
before the solution can be obtained they must be supplemented by boundary 
conditions and, in dynamic analysis, also by initial conditions.  
 
Two different approaches can be followed to generate the system governing 
differential equations. 

1. The direct method (differential equations) 
2. The variational method 
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The direct method  
In this method, we establish the equilibrium and constitutive requirements 
of typical differential elements in terms of state variables. These 
considerations lead to a system of differential equations in the state 
variables. In general the equations must be supplemented by additional 
differential equations that impose appropriate constraints on the state 
variables in order that all compatibility requiremvents be satisfied. Finally 
to complete the formulation all the boundary conditions and in a dynamic 
analysis the initial conditions are stated in differential formulation for a 
continous system, a differential element with objective of obtaining 
differential equation that express element equilibrium is found. This 
differential equation must hold through the domain of the system. The D.E 
must be supplemented by B.C.’S and dynamic analysis, initial condition 
example. 
 
 
7.1.1 Examples of differential approach 
 
 
Example 1- Beam element 
     u  
 
 
    a) Differential Ele. 
 

 
 
 
 
    b) Equilibrium in vertical direct 
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   ⇒       Transverse vibrate of beam 
 
 
 
For a unique solution we must specify bc’s 
 
  
 
 
 
 
 
 
 
Note of the elementary beam theory 
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Example 2- Dam’s Reservoir 
 
 
               
 
 
 
 
Example 3- Rod subjected to step load 
 
E  young modulus  p 
ρ mass density 
A cross section 
 
 
 
 
 
 
 
  1) Differential element  
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7-1-2  Examples of Variational approach 
 
Example1. Beam  
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Example2:     
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Example3. Rod subjected to STEP load 
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Example 4.  2-D  Variational Principle 
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Heat Conduction :  
 
  If Qk &    constant =∇ φ2 const.  Poisson’s equation 
 
  If 0&1 == Qk     02 =∇ φ   Laplace equation 
 
Also other form of equations such as Torsion problem (Poisson’s equation) 
or Irrotational flow (Laplace equation), seepage problem or flow through 
porous media are examples of the above equations.  
 
 
Example5. Transient 2-D Heat  
Equivalent steady state variational principle for any time t  : 
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* Problem: For a transient 2-D heat flow, the equivalent steady state   
                       variational principle at time t can be written as:  
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You are asked to find the Euler equation and the appropriate boundary 
condition  

1- assumption about displacement field 
2- sometime assumption about constitutive law 
3- variational process as it relates to the T.P.E 
4- it gives us proper equations of equilibrium and proper BC’S  

(Certain internal constraints due to displacement assumptions) 
 
 
 
 
8. No. of Rigid body modes in a system 
 
In a variational form we try to find the strain energy U.  
The rigid body motions are not accompanied by change in strain energy.  
The No. of non contributing terms (from the displacement model) to the 
strain energy are the No. of rigid body modes. 
 
 
“Bathe”   P.173 
 If the structure is not supported, there will be a number of linearly 
independent vectors, qVUU ,.......,, 21 for which the expression i

T
i UKU  is equal 

to zero, i.e. zero strain energy is stored in the system when iU  is the 
displacement vector. Such vector iU  is said to represent a rigid body mode 
of the system. 
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9. Sample Problems 
 
1- For the beam shown, write down the variational principle (Potential  
     Energy) which also includes the boundary actions. 
     Find out the Euler Lagrange equation and the associated boundary  
     conditions. 

 
 
 
 
 
 
  
 
 
 
   21 , KK  are translational spring constnts 
   21 , θθ KK  are rotational spring constnts 
  

     Are there any rigid body modes present? 
 
2- Figure 2 show a system of beam-column with transverse and tangential  
     springs.  
a) Write down the functional (Total Potential Energy) for the system.   
     Perform the first variation (Fig 2). 
b) Derive the Euler-Lagrange equations and  
     the associated bc’s 
c) How many rigid body modes do exist? 
 
 
 
 
d) Perform the second variation Π2δ  to 
     show weather the problem is a minimum 
     or maximum. 
     Note:    )(2 Π=Π δδδ  
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