Dist. Sec. TNHSPGTA Kanchipuram Dist. A.Murugiah PGT, GBHSS - Chromepet, CHENNAI- 44 amuru1964@gmail.com Cell: 9444220504 Page 1 of 26
XII PHYSICS PRACTICAL MATERIAL (with sample reading \& calculations)
Q 1. Using the spectrometer, measure the angle of the given prism and angle of minimum deviation. Hence calculate the refractive index of the prism.

1. Spectrometer I - Refractive index ' μ ' of the prism.

FORMULA:

Refractive index of the material of the given prism $\mu=\frac{\sin \frac{A+D}{2}}{\sin \frac{A}{2}}$
Where \mathbf{A} is the angle of the prism \mathbf{D} is the angle of minimum deviation

DIAGRAMS: (Not for examination)

To find the angle of Prism

To find the angle of minimum deviation

PROCEDURE:

I. To determine the angle of the prism

1. The preliminary adjustments for telescope, prism and the collimator are done.
2. The slit is illuminated by a sodium vapour lamp. The prism table is mounted vertically.
3. The refracting edge of the prism placed facing the collimator.
4. The image on one side is seen through through the telescope and the vernier readings ($\mathbf{R}_{\mathbf{1}}$) are noted.
5. The image on other side is seen through through the telescope and the vernier readings ($\mathbf{R}_{\mathbf{2}}$) are noted.
6. $\mathbf{2 A}=\mathbf{R}_{\mathbf{1}} \sim \mathbf{R}_{\mathbf{2}} \Rightarrow$ hence the angle of the prism ' A^{\prime} is determined using $\mathrm{A}=\frac{\boldsymbol{R}_{\mathbf{1}} \sim \boldsymbol{R}_{\mathbf{2}}}{\mathbf{2}}$

II. To determine the angle of minimum deviation

1. The edge of the prism is placed facing away from the collimator.
2. The refracting image is obtained in the telescope. The prism table is slowly rotated.
3. The image moves, then stops and turns back. The position of the image where the image stops and turns back is the minimum deviation.
4. The vernier readings ($\mathbf{R}_{\mathbf{3}}$) are noted at this position and the direct ray reading ($\mathbf{R}_{\mathbf{4}}$) are noted.
5. $D=\mathbf{R}_{\mathbf{3}} \sim \mathbf{R}_{4} \Rightarrow$ hence the angle of minimum deviation ' D ' is determined using $\mathrm{D}=\frac{R_{3} \sim R_{4}}{2}$

Dist. Sec. TNHSPGTA Kanchipuram Dist. A.Murugiah PGT, GBHSS - Chromepet, CHENNAI-44 amuru1964@gmail.com Cell: 9444220504 Page 2 of 26
XII PHYSICS PRACTICAL MATERIAL (with sample reading \& calculations)
6. Refractive index of the prism is calculated using the formula $\mu=\frac{\sin \frac{A+D}{2}}{\sin \frac{A}{2}}$

OBSERVATIONS i) To find the angle of Prism

RAY	VERNIER I				VERNIER II		
	MSR	VC	TR $=$ MSR+ (VC $\times L C)$	MSR	VC	TR $=$ MSR+ (VC \times LC $)$	
Reading of the image reflected from the one face $\left(R_{1}\right)$	36°	13^{\prime}	$R_{1}=36^{\circ} 13^{\prime}$	216°	17^{\prime}	$R_{1}=216^{\circ} 17^{\prime}$	
Reading of the image reflected from other face $\left(R_{2}\right)$	$156^{\circ} 30^{\prime}$	9^{\prime}	$R_{2}=156^{\circ} 39^{\prime}$	$336^{\circ} 30^{\prime}$	11^{\prime}	$R_{2}=336^{\circ} 41^{\prime}$	

$$
\text { Mean } 2 A=120^{\circ} 26^{\prime} \quad A=60^{\circ} 13^{\prime}
$$

ii) To find the angle of minimum deviation: Keep direct ray reading of vernier I as 0^{0} and vernier II as 180°

RAY	VERNIER I			VERNIER II		
	MSR	VC	$\begin{aligned} & \text { TR = MSR+ } \\ & \text { (VC } \times \text { LC }) \end{aligned}$	MSR	VC	TR $=$ MSR $+(\mathrm{VC} \times \mathrm{LC})$
Reading of the image in minimum deviation position (R_{3})	$39^{\circ} 30^{\prime}$	20'	$39^{\circ} 50^{\prime}$	$219^{\circ} 30^{\prime}$	22'	$219^{0} 52^{\prime}$
Reading of the direct image (\mathbf{R}_{4})	0^{0}	0^{\prime}	0^{0}	180°	$0{ }^{\prime}$	180°
	$D=R_{3} \sim R_{4}=39^{\circ} 50^{\prime}-0^{\circ}=39^{\circ} 50^{\prime}$			$D=R_{3} \sim R_{4}=219^{\circ} 52^{\prime}-180^{\circ}=39^{\circ} 52^{\prime}$		

Mean $\mathrm{D}=\frac{3950^{\prime}+3952 \prime}{2}=39^{\circ} 51$

Calculations:

1. To find " A "
$2 A=R_{1} \sim R_{2}=120^{\circ} 26^{\prime}$

$$
2 A=R_{1} \sim R_{2}=120^{\circ} 26^{\prime}
$$

AVERAGE $A=\frac{12026^{\prime}+12026^{\prime}}{2}=\frac{24052 \prime}{2}=120^{\circ} 26^{\prime} \quad A=\frac{12026 \prime}{2}=60^{\circ} 13^{\prime}$
2. To find " D "
$D=R_{3} \sim R_{4}=39^{\circ} 50^{\prime}-0^{0} \quad D=R_{3} \sim R_{4}=219^{\circ} 52^{\prime}-180^{\circ}$
D $=39^{\circ} 50^{\prime}$
$D=39^{\circ} 52^{\prime}$

Dist. Sec. TNHSPGTA Kanchipuram Dist. A.Murugiah PGT, GBHSS - Chromepet, CHENNAI- 44 amuru1964@gmail.com Cell: 9444220504 Page 3 of 26
XII PHYSICS PRACTICAL MATERIAL (with sample reading $\&$ calculations)
Average $\mathrm{D}==\frac{3950^{\prime}+3952^{\prime}}{2}=\frac{7942 \prime}{2}=\mathrm{D}=39^{\circ} 51^{\prime}$
3. To find " μ "

$$
\begin{gathered}
\mu=\frac{\sin \left(\frac{A+D}{2}\right)}{\sin \left(\frac{A}{2}\right)}=\frac{\sin \left(\frac{6013^{\prime}+3951^{\prime}}{2}\right)}{\sin \left(\frac{6013^{\prime}}{2}\right)}=\frac{\sin \left(\frac{1004 \prime}{2}\right)}{\sin \left(\frac{6013^{\prime}}{2}\right)}=\frac{\sin (502 \prime)}{\sin (306 \prime)}=\frac{0.7662}{0.5015}=1.528 \\
\mu=1.528
\end{gathered}
$$

RESULT:

1. The angle of the prism
$A=60^{\circ} 13^{\prime}$ (degree)
2. The angle of minimum deviation
D $=39^{\circ} 51^{\prime}$ (degree)
3. Refractive index of the material of the given prism $\mu=1.528$ (no unit)

Q 2. Adjust the grating for normal incidence method using the spectrometer. Assuming the number of lines per unit metre of the grating, determine the wavelength of green, blue and yellow lines of mercury spectrum.

2. Spectrometer II - Grating

FORMULA:

The wavelength (λ) of a spectral line using normal incidence arrangement of the grating is given by $\lambda=\frac{\sin \theta}{m N}$
where ' $\boldsymbol{\theta}$ ' is the angle of diffraction, ' \boldsymbol{m} ' is the order of diffraction and \mathbf{N} is the number of lines per unit length drawn on the grating

Adjusting the grating for normal incidence: (Not for examination)

(A)

Direct ray

(B)

Rotating Telescope through 90°

(C)

Getting reflected image

(D)

Normal incidence position

Dist. Sec. TNHSPGTA Kanchipuram Dist. A.Murugiah PGT, GBHSS - Chromepet, CHENNAI- 44 amuru1964@gmail.com Cell: 9444220504 Page 4 of 26
XII PHYSICS PRACTICAL MATERIAL (with sample reading \& calculations)

Determination of angle of diffraction: (Not for examination)

PROCEDURE:

1. The preliminary adjustments for telescope, prism and the collimator are done. The slit is illuminated by a mercury vapour lamp.
2. By adjusting the prism and the telescope suitably, light is made to fall normally on the grating.
3. The first order diffracted image is obtained in the telescope.
4. Reading ($\mathbf{R}_{\mathbf{1}}$) are noted for blue, green and yellow lines.
5. The direc ray reading $\left(\mathbf{R}_{\mathbf{2}}\right)$ is noted and therefore angle of diffraction $\boldsymbol{\theta}=\mathbf{R}_{\mathbf{1}} \sim \mathbf{R}_{\mathbf{2}}$ is found out.
6. The wavelength of the spectral lines are calculated using the formula $\lambda=\frac{\sin \theta}{m N}$

OBSERVATIONS

RAY		VERNIER I (degree)			VERNIER II (degree)		
		MSR	VC	$\begin{aligned} & \text { TR = MSR+ } \\ & \text { (VC×LC) } \end{aligned}$	MSR	VC	TR = MSR $+(\mathrm{VC} \times \mathrm{LC})$
Direct reading		0^{0}	0	$\mathrm{R}_{\mathrm{D} 1}=0^{0}$	180°	0	$\mathrm{R}_{\mathrm{D} 2}=180^{\circ}$
	BLUE	15^{0}	9	$\mathrm{R}_{B 1}=15^{0} 9^{\prime}$	$195{ }^{\circ}$	11^{\prime}	$\mathrm{R}_{\mathrm{B} 2}=195^{\circ} 11^{\prime}$
	GREEN	19^{0}	$7{ }^{\prime}$	$\mathrm{R}_{61}=19^{0} 7^{\prime}$	199°	$9{ }^{\prime}$	$\mathrm{R}_{62}=199^{\circ} 9^{\prime}$
	YELLOW	20°	15'	$\mathrm{R}_{\mathrm{Y} 1}=20^{\circ} 15^{\prime}$	200°	19'	$\mathrm{R}_{\mathrm{Y} 2}=200^{\circ} 19^{\prime}$

TO FIND THE " $\theta^{\prime \prime}$

Image	Angle of diffraction $\mathbf{R}_{\mathrm{D} 1} \sim \mathbf{R}_{1}$ (vernier I)	Angle of diffraction $\mathbf{R}_{\mathrm{D} 2} \sim \mathbf{R}_{\mathbf{2}}($ vernier II)	Mean θ
BLUE	$15^{\circ} 9^{\prime}$	$15^{\circ} 11^{\prime}$	$\theta_{\mathrm{B}}=15^{\circ} 10^{\prime}$
GREEN	$19^{\circ} 7^{\prime}$	$19^{\circ} 9^{\prime}$	$\theta_{\mathrm{G}}=19^{\circ} 8^{\prime}$
YELLOW	$20^{\circ} 15^{\prime}$	$20^{\circ} 19^{\prime}$	$\theta_{\mathrm{Y}}=20^{\circ} 17^{\prime}$

$$
m=1 \quad N=6 \times 10^{5}
$$

Dist. Sec. TNHSPGTA Kanchipuram Dist. A.Murugiah PGT, GBHSS - Chromepet, CHENNAI-44 amuru1964@gmail.com Cell: 9444220504 Page 5 of 26
XII PHYSICS PRACTICAL MATERIAL (with sample reading \& calculations)

CALCULATIONS:

$$
\begin{array}{cc}
\hline \mathrm{R}_{\mathrm{D} 1} \sim \mathrm{R}_{\mathrm{B} 1}=0^{0} \sim 15^{0} 9^{\prime}=15^{\circ} 9^{\prime} & \mathrm{R}_{\mathrm{D} 2} \sim \mathrm{R}_{\mathrm{B} 2}=180^{\circ} \sim 195^{\circ} 11^{\prime} \\
\theta_{\mathrm{B}}=15^{\circ} 9^{\prime} & \theta_{\mathrm{B}}=15^{\circ} 11^{\prime} \\
\text { Average } \theta_{\mathrm{B}}=\frac{159^{\prime}+1511^{\prime}}{2} & =15^{\circ} 10^{\prime} \\
\hline
\end{array}
$$

$$
\begin{aligned}
\mathrm{R}_{\mathrm{D} 1} \sim \mathrm{R}_{\mathrm{G} 1}=0^{0} \sim 19^{\circ} 7^{\prime} & =19^{\circ} 7^{\prime} & \mathrm{R}_{\mathrm{D} 2} \sim \mathrm{R}_{\mathrm{G} 2} & =180^{\circ} \sim 199^{\circ} 9^{\prime} \\
\theta_{\mathrm{G}} & =19^{\circ} 7^{\prime} & \theta_{\mathrm{G}} & =19^{\circ} 8^{\prime}
\end{aligned}
$$

$$
\text { Average } \theta_{G}=\frac{197^{\prime}+198^{\prime}}{2}=19^{\circ} 8^{\prime}
$$

$$
R_{D 1} \sim R_{Y 1}=0^{\circ} \sim 20^{\circ} 15^{\prime}=20^{\circ} 15^{\prime} \quad R_{D 2} \sim R_{Y 1}=180^{\circ} \sim 200^{\circ}
$$

$$
19^{\prime}
$$

$$
\begin{aligned}
& \theta_{Y}=20^{\circ} 15^{\prime} \\
& \quad \text { Average } \theta_{Y}=\frac{2015^{\prime}+2019^{\prime}}{2}=20^{\circ} 17^{\prime}
\end{aligned}
$$

$$
\theta_{Y}=20^{\circ} 19^{\prime}
$$

ORDER OF DIFFRACTION: $m=1 \quad$ Number of lines per unit metre of grating $N=6 \times 10^{5}$

1. $\lambda_{B}=\frac{\sin \theta_{B}}{m N}=\frac{1510^{\prime}}{1 \times 6 \times 10^{5}}=\frac{0.2616}{6 \times 10^{5}}=\frac{26.16 \times 10^{-2} \times 10^{-5}}{6}=4.36 \times 10^{-7} \mathrm{~m}=4360 \mathrm{~A}^{0}$
2. $\lambda_{G}=\frac{\sin \theta_{G}}{m N}=\frac{198^{\prime}}{1 \times 6 \times 10^{5}}=\frac{0.3277}{6 \times 10^{5}}=\frac{32.77 \times 10^{-2} \times 10^{-5}}{6}=5.462 \times 10^{-7} \mathrm{~m}=5462 \mathrm{~A}^{0}$
3. $\lambda_{Y}=\frac{\sin \theta_{Y}}{m N}=\frac{2017 \prime}{1 \times 6 \times 10^{5}}=\frac{0.3466}{6 \times 10^{5}}=\frac{34.66 \times 10^{-2} \times 10^{-5}}{6}=5.776 \times 10^{-7} \mathrm{~m}=5776 \mathrm{~A}^{0}$

RESULT:

i) wavelength of blue colour $\quad \lambda_{B}=4.36 \times 10^{-7} \mathrm{~m} \quad$ OR $\quad 4360 \mathrm{~A}^{0}$
ii) wavelength of green colour $\quad \lambda_{G}=5.462 \times 10^{-7} \mathrm{~m}$ OR $5462 \mathrm{~A}^{0}$
iii) wavelength of yellow colour $\quad \lambda_{Y}=5.776 \times 10^{-7} \mathrm{~m}$ OR $5776 \mathrm{~A}^{0}$

Q 3. Using a metre bridge, find the resistance of the given wire. (Take atleast 5 readings) and hence determine the specific resistance of the material of the wire.

3. Metre bridge

FORMULA:

1. Resistance of the wire $\mathrm{X}=\mathrm{R} \frac{l_{\mathrm{X}}}{l_{R}}$
2. Specific resistance of the material of the wire $\boldsymbol{\rho}=\frac{\pi r^{2} X}{l}$

Where 'R' is known resistance, $\boldsymbol{l}_{\boldsymbol{R}}$ is the balancing length of R,
$\boldsymbol{l}_{\mathbf{x}}$ is the balancing length of unknown \mathbf{X}, \mathbf{r} is the radius of the wire, \boldsymbol{l} is the length of the wire

CIRCUIT DIAGRAM 1 : Before interchanging

CIRCUIT DIAGRAM 2 : After interchanging

PROCEDURE:

1. The connections are made as shown in the circuit diagram. $R=2 \Omega$ is set in the resistance box. The Jockey is pressed on the metre bridge wire.
2. The point (J) where the galvanometer shows zero (null) deflection is noted.
3. The balancing length $\mathbf{A J}=\boldsymbol{l}_{\mathbf{1}}$ is measured and $\left.\boldsymbol{l}_{\mathbf{2}}=\mathbf{(1 0 0}-\boldsymbol{l}_{\mathbf{1}}\right)$ is calculated.
4. \mathbf{R} and \mathbf{X} are interchanged.
5. The earlier procedure is repeated and $\mathbf{A J}=\boldsymbol{l}_{\mathbf{3}}$ is measured and $\left.\boldsymbol{l}_{\mathbf{4}}=\mathbf{(1 0 0}-\boldsymbol{l}_{\mathbf{3}}\right)$ is calculated.
6. The above steps are repeated for $R=3 \Omega, 4 \Omega, 5 \Omega$ and the readings are tabulated.

The unknown resistance of the given wire is calculated from the formula $\mathrm{X}=\mathrm{R} \frac{l_{\mathrm{X}}}{\boldsymbol{l}_{\boldsymbol{R}}}$, where $\boldsymbol{l}_{\boldsymbol{R}}=\frac{\boldsymbol{l}_{1}+\boldsymbol{l}_{3}}{2} \quad$ and $l_{X}=\frac{l_{2}+l_{4}}{2}$
7. The specific resistance of the wire is calculated from formula $\rho=\frac{\pi r^{2} X}{l}$

$\underline{\text { OBSERVATIONS (i) To determine the resistance of the given coil }}$

$\underset{i}{\mathbf{2}}$	R (ohm)	Balancing length before interchanging		Balancing length after interchanging		Mean		
		$\ell_{1}(\mathrm{~cm})$	$\begin{gathered} \ell_{2}=100-\ell_{1} \\ (\mathrm{~cm}) \end{gathered}$	$\begin{gathered} e_{4} \\ (\mathrm{~cm}) \end{gathered}$	$\begin{gathered} e_{3}=100-e_{4} \\ (\mathrm{~cm}) \end{gathered}$	$\begin{gathered} l_{R}=\frac{l_{1}+l_{3}}{2} \\ (\mathrm{~cm}) \end{gathered}$	$\begin{aligned} & l_{X}=\frac{l_{2}+l_{4}}{2} \\ &(\mathrm{~cm}) \end{aligned}$	$\begin{gathered} \mathrm{X}=\mathrm{R} \frac{l_{\mathrm{X}}}{l_{R}} \\ \text { (ohm) } \end{gathered}$
1	2	58.4	41.6	42.2	57.7	58.05	41.95	1.45
2	4	72.6	27.4	26.3	73.7	73.15	26.85	1.46
3	6	79.6	20.4	20.1	79.9	74.75	20.25	1.62
4	8	83.5	16.5	15.2	84.8	84.15	15.85	1.79
5	10	85.7	14.3	13.7	86.3	84	14	1.62

$$
\text { Mean } X=\frac{7.94}{5}=1.588 \Omega
$$

(ii) To determine the radius of the coil: $L C=0.01 \times 10^{-3} \mathrm{~m} \quad$ ZERO ERROR $=+23$ ZERO CORRECTION $=-23$

S.No	PSR	HSC	HSR	CR = PSR+HSR \times L.C (mm)
1	0	79	56	0.56
2	0	77	54	0.54
3	0	74	51	0.51
4	0	78	55	0.55

Mean diameter $2 r=0.54 \mathrm{~mm}$
Mean radius $\mathrm{r}=0.27 \mathrm{~mm} 0.27 \times 10^{-3} \mathrm{~m}$

Dist. Sec. TNHSPGTA Kanchipuram Dist. A.Murugiah PGT, GBHSS - Chromepet, CHENNAI- 44 amuru1964@gmail.com Cell: $9444220504 \quad$ Page 7 of 26

S.No	Calculation of l_{R}	Calculation of l_{X}	Calculation of $\mathrm{X}=\mathrm{R} \frac{l_{\mathrm{X}}}{l_{R}}$
$\mathbf{1}$	$\boldsymbol{l}_{R}=\frac{l_{1}+l_{3}}{2}=\frac{58.4+57.7}{2}=58.05$	$\boldsymbol{l}_{X}=\frac{l_{2}+l_{4}}{2}=\frac{41.6+42.2}{2}=41.95$	$2 \times \frac{41.95}{58.05}=1.45$
$\mathbf{2}$	$\boldsymbol{l}_{R}=\frac{l_{1}+l_{3}}{2}=\frac{72.6+73.7}{2}=73.15$	$\boldsymbol{l}_{X}=\frac{l_{2}+l_{4}}{2}=\frac{27.4+26.3}{2}=26.85$	$4 \times \frac{26.85}{73.15}=1.46$
$\mathbf{3}$	$\boldsymbol{l}_{R}=\frac{l_{1}+l_{3}}{2}=\frac{79.6+79.9}{2}=74.75$	$\boldsymbol{l}_{X}=\frac{l_{2}+l_{4}}{2}=\frac{20.4+20.1}{2}=20.25$	$\frac{l_{X}}{l_{R}}=6 \times \frac{20.25}{74.75}=1.62$
$\mathbf{4}$	$\boldsymbol{l}_{R}=\frac{\boldsymbol{l}_{1}+l_{3}}{2}=\frac{83.5+84.8}{2}=84.15$	$\boldsymbol{l}_{X}=\frac{l_{2}+l_{4}}{2}=\frac{16.5+15.2}{2}=15.85$	$8 \times \frac{15.85}{84.15}=1.79$
$\mathbf{5}$	$\boldsymbol{l}_{R}=\frac{l_{1}+l_{3}}{2}=\frac{85.7+86.3}{2}=84$	$\boldsymbol{l}_{X}=\frac{l_{2}+l_{4}}{2}=\frac{14.3+13.7}{2}=14$	$10 \times \frac{14}{84}=1.62$

Calculation of specific resistance ρ :

$$
\begin{aligned}
\rho=\frac{\pi r^{2} X}{l}= & \frac{3.14 \times 0.27 \times 10^{-3} \times 0.27 \times 10^{-3} \times 1.588}{1} \\
& =\frac{3.14 \times 1.588 \times 0.27 \times 0.27 \times 10^{-6}}{1} \\
& =\frac{3.14 \times 1.588 \times 0.27 \times 0.27 \times 10^{-6}}{1} \\
& =\frac{4.99 \times 0.0729 \times 10^{-6}}{1} \\
& =\frac{3.14 \times 1.588 \times 0.27 \times 0.27 \times 10^{-6}}{1} \\
& =\frac{0.3638 \times 10^{-6}}{1}=0.3638 \times 10^{-6} \\
\rho & =3.638 \times 10^{-7}=3.64 \times 10^{-7}
\end{aligned}
$$

RESULT:

Resistance of the wire $\quad \mathrm{X}=1.588 \Omega$
Specific resistance of the material of the wire $\rho=3.64 \times 10^{-7} \Omega \mathrm{~m}$
Q 4. Compare the e.m.f s of the given two primary cells using potentiometer. Take atleast 6 readings.

4. POTENTIOMETER - COMPARISON OF emf OF TWO CELLS

FORMULA:

$\frac{E_{1}}{E_{2}}=\frac{l_{1}}{l_{2}}$
$\boldsymbol{E}_{\mathbf{1}}$ emf of primary cell 1 (Lechlanche cell), $\boldsymbol{l}_{\mathbf{1}}$ is the balancing length for cell 1
\boldsymbol{E}_{2} emf of primary cell 2 (Daniel cell), \boldsymbol{l}_{2} is the balancing length for cell 2

CIRCUIT DIAGRAM:

PROCEDURE:

1. The connections are made as shown in the circuit diagram. The circuit is checked for opposite side deflections.
2. Using DPDT switch the Leclanche cell is included in the secondary circuit. The jockey is pressed on the potentiometer wire.
3. The point (\mathbf{J}) where the galvanometer wire shows full scale deflection is noted.
4. The balancing length $\mathbf{A J}=\boldsymbol{l}_{\mathbf{1}}$ is measured.
5. Using DPDT switch the Daniel cell is included in the secondary circuit.
6. The above steps are repeated and the balancing length $\boldsymbol{l}_{\mathbf{2}}$ is measured.
7. By varying the rheostat values $\boldsymbol{l}_{\boldsymbol{1}}, \boldsymbol{l}_{\mathbf{2}}$ are measured and the readings are tabulated.
8. The ratio of emf of the given two primary calls are calculated using the formula $\frac{E_{1}}{E_{2}}=\frac{l_{1}}{l_{2}}$ OBSERVATIONS:

S.No	balancing length for Lechlanche cell	balancing length for Daniel cell	$\frac{E_{1}}{E_{2}}=\frac{l_{1}}{l_{2}}$
$\mathbf{l} \mathbf{~ c m ~}$	$l_{2} \mathrm{~cm}$	422	
$\mathbf{1}$	576	440	1.293
$\mathbf{2}$	569	335	1.352
$\mathbf{3}$	453	333	1.346
$\mathbf{4}$	448	334	1.350
$\mathbf{5}$	451	340	1.352
$\mathbf{6}$	460	Mean $\frac{E_{1}}{E_{2}}$	1.337

CALCULATIONS:

$$
\frac{E_{1}}{E_{2}}=\frac{546}{422}=1.360
$$

$$
\frac{E_{1}}{E_{2}}=\frac{448}{333}=1.346
$$

Dist. Sec. TNHSPGTA Kanchipuram Dist. A.Murugiah PGT, GBHSS - Chromepet, CHENNAI- 44 amuru1964@gmail.com Cell: $9444220504 \quad$ Page 9 of 26
XII PHYSICS PRACTICAL MATERIAL (with sample reading \& calculations)

$\frac{E_{1}}{E_{2}}=\frac{569}{440}=1.293$	$\frac{E_{1}}{E_{2}}=\frac{451}{334}=1.350$
$\frac{E_{1}}{E_{2}}=\frac{453}{335}=1.532$	$\frac{E_{1}}{E_{2}}=\frac{460}{340}=1.352$
Mean $\frac{E_{1}}{E_{2}}=\frac{1.360+1.293+1.532+1.346+1.350+1.352}{6}=\frac{8.233}{6}=1.3721$	

RESULT: The mean ratio of emf of the two cells $=1.3721$ (no unit)
Q 5. Determine the value of the horizontal component of magnetic induction of the earth's magnetic field using the tangent galvanometer. (take atleast 4 readings)

5. Tangent Galvanometer - Determination of B_{H}

FORMULA:

$$
B_{H}=\frac{\mu_{0} n}{2 a}\left(\frac{I}{\tan \theta}\right)
$$

B_{H} - horizontal component of earth's magnetic field, μ_{0} - permeability of free space n - number of turns, I - current, a - radius of coil θ - mean deflection produced in TG

CIRCUIT DIAGRAM:

PROCEDURE:

1. The connections are made as shown in the circuit diagram. The preliminary adjustments of the tangent galvanometer are done.
2. For a current of $\mathbf{0 . 6}$, the readings $\boldsymbol{\theta}_{\mathbf{1}}, \boldsymbol{\theta}_{2}$ are noted in tangent galvanometer.
3. The commudator is reversed, and the readings $\boldsymbol{\theta}_{3}, \boldsymbol{\theta}_{4}$ are noted in tangent galvanometer. The readings are tabulated.
4. Now the mean deflection $\boldsymbol{\theta}=\frac{\boldsymbol{\theta}_{1}+\boldsymbol{\theta}_{2} \boldsymbol{\theta}_{3}+\boldsymbol{\theta}_{4}}{4}$ is calculated.
5. By changing the values of current ' \boldsymbol{I} ' in T.G the $\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}, \boldsymbol{\theta}_{3}, \boldsymbol{\theta}_{4}$ are measured and tabulated.

6 . The circumference of the circular coil ($2 \pi a$) is measured and from which ' $\mathbf{2 a}$ ' is calculated.
7. The horizontal component of earth's magnetic field is calculated from the formula $\boldsymbol{B}_{\boldsymbol{H}}=\frac{\mu_{0} n}{2 a} \times \frac{\boldsymbol{I}}{\tan \boldsymbol{\theta}}$

Dist. Sec. TNHSPGTA Kanchipuram Dist. A.Murugiah PGT, GBHSS - Chromepet, CHENNAI- 44 amuru1964@gmail.com Cell: 9444220504 Page 10 of 26
XII PHYSICS PRACTICAL MATERIAL (with sample reading \& calculations)

OBSERVATIONS:

CALCULATIONS:

Circumference of the coil $(2 \pi \mathrm{a})=49.8 \times 10^{-2} \mathrm{~m} \Rightarrow 2 \mathrm{a}=\frac{49.8 \times 10^{-2}}{2 \pi}=0.1586 \mathrm{~m}$

$\frac{I}{\tan \theta}=\frac{0.6}{0.6128}=0.9792$	$\frac{I}{\tan \theta}=\frac{1}{1.0176}=0.9823$
$\frac{I}{\tan \theta}=\frac{0.8}{0.8243}=0.9705$	$\frac{I}{\tan \theta}=\frac{1.2}{1.2131}=0.9892$

Mean $\frac{I}{\tan \theta}=\frac{0.9792+0.9705+0.9823+0.9892}{4}=\frac{3.9212}{4}=0.9803, \quad[4 \pi=4 \times 3.14=12.56]$

$$
\begin{aligned}
B_{H} & =\frac{\mu_{0} n}{2 a}\left(\frac{I}{\tan \theta}\right)=\frac{4 \pi \times 10^{-7} \times 5 \times 0.9803}{0.1586} \\
& =\frac{12.56 \times 5 \times 0.9803 \times 10^{-7}}{0.1586}=\frac{62.8 \times 0.980310^{-7}}{0.1586} \\
& =\frac{61.56 \times 10^{-7}}{0.1586}=388.146 \times 10^{-7}=3.88 \times 10^{-5} \mathrm{Tesla}
\end{aligned}
$$

RESULT:

The horizontal component of earth's magnetic field $\left(B_{H}\right)=3.88 \times 10^{-5}$ Tesla

Dist. Sec. TNHSPGTA Kanchipuram Dist. A.Murugiah PGT, GBHSS - Chromepet, CHENNAI-44 amuru1964@gmail.com Cell: 9444220504 Page 11 of 26
XII PHYSICS PRACTICAL MATERIAL (with sample reading \& calculations)

Q 6. Dermine the frequency of A.C using sonometer (Take 4 readings)

6. SONOMETER - FREQUENCY OF AC

FORMULA:-

The frequency of the A.C main $n=\frac{1}{2} \times \frac{\sqrt{T}}{l} \times \frac{1}{\sqrt{m}}$
where \mathbf{T} is the tension of the sonometer wire, $\boldsymbol{\ell}$ is the resonating length, m is the linear density of the wire

PROCEDURE:

1. The ends of the sonometer wire wire are connected to a suitable power supply of 6 V A.C.
2. A magnet is held at the centre of the wire.
3. The wire is subjected to a suitable load of 0.1 kg
4. Two movable bridges are placed under the wire.
5. A paper rider is placed on the wire between the bridges.
6. The bridges are adjusted until the rider flutters and falls down now the distance $\boldsymbol{l}_{\mathbf{1}}$ between the bridges is measured.
7. The same procedure is repeated again and distance \boldsymbol{l}_{2} is measured. The average of \boldsymbol{l}_{1} and \boldsymbol{l}_{2} is \boldsymbol{l}
8. The experiment is repeated for different loads and the readings are tabulated.
9. The radius of the sonometer wire (r) is measured. The linear density of the wire is $m=\pi r^{2} \rho$, where ρ is its density.
10. The frequency of the A.C main is calculated from the formula $\quad n=\frac{1}{2} \times \frac{\sqrt{T}}{l} \times \frac{1}{\sqrt{m}}$

OBSERVATIONS:

S.No:	Load	Length of the vibrating segment		$\ell_{2}(\mathrm{~cm})$	$\ell(\mathrm{cm})$	(newton)	$\mathrm{T}=\mathbf{M g}$
	$\mathrm{M}(\mathrm{gram})$	$\ell_{1}(\mathrm{~cm})$	$\sqrt{\boldsymbol{T}}$	$\frac{\sqrt{\boldsymbol{T}}}{\boldsymbol{l}}$			
$\mathbf{1 .}$	100	26.7	26.3	26.5	0.98	0.99	3.736
$\mathbf{2 .}$	150	33	31	32	1.47	1.212	3.788
$\mathbf{3 .}$	200	36.5	39.5	38	1.96	1.4	3.624
$\mathbf{4 .}$	250	40	42	40	41	1.565	3.796

Mean $\frac{\sqrt{T}}{l}=3.736$
(ii) To determine the radius of the sonometer wire
$\mathrm{LC}=0.01 \times 10^{-3} \mathrm{~m} \quad$ ZERO ERROR $=+2$ divisions \quad ZERO CORRECTION $=-2$ divisions

S.No	PSR	HSC	HSR(mm)	$C R=P S R+(H S R \times L . C)(m m) ~$
1	0	47	0.45	0.45
2	0	49	0.47	0.47
3	0	45	0.43	0.43
4	0	47	0.45	0.45
Mean 'd'				0.456

Dist. Sec. TNHSPGTA Kanchipuram Dist. A.Murugiah PGT, GBHSS - Chromepet, CHENNAI- 44 amuru1964@gmail.com Cell: $9444220504 \quad$ Page 12 of 26
XII PHYSICS PRACTICAL MATERIAL (with sample reading \& calculations)

$$
\text { Radius } r=0.228 \times 10^{-3} \mathrm{~m}
$$

CALCUATIONS:

Diameter of the wire $\mathrm{d}=0.456 \mathrm{~mm}$
Radius of the wire $r=\frac{d}{2}=0.228 \times 10^{-3} \mathrm{~m}$
Density of the steel wire $(\rho)=8500 \mathrm{kgm}^{-3}$
Linear density $\mathrm{m}=\pi r^{2} \rho=3.14 \times 0.228 \times 10^{-3} \times 0.228 \times 10^{-3} \times 8500=13.80 \times 10^{-4} \mathrm{~kg}$

$$
\sqrt{m}=3.724 \times 10^{-2} \quad \frac{1}{\sqrt{m}}=0.269 \times 10^{2}=26.9
$$

$\mathbf{T}=\mathbf{m g}=0.1 \times 9.8=0.98$	$\sqrt{T}=0.99$	$\ell=26.5 \times 10^{-2}$	$\frac{\sqrt{T}}{l}=\frac{0.99}{26.5 \times 10^{-2}}=3.736$
$\mathbf{T}=\mathbf{m g}=0.15 \times 9.8=1.47$	$\sqrt{T}=1.212$	$\ell=32 \times 10^{-2}$	$\frac{\sqrt{T}}{l}=\frac{1.212}{32 \times 10^{-2}}=3.788$
$\mathbf{T}=\mathbf{m g}=0.2 \times 9.8=1.96$	$\sqrt{T}=1.4$	$\ell=38 \times 10^{-2}$	$\frac{\sqrt{T}}{l}=\frac{1.4}{38 \times 10^{-2}}=3.624$
$\mathbf{T}=\mathbf{m g}=0.25 \times 9.8=2.45$	$\sqrt{T}=1.565$	$\ell=41 \times 10^{-2}$	$\frac{\sqrt{T}}{l}=\frac{1.565}{41 \times 10^{-2}}=3.796$

$$
\begin{gathered}
\text { Mean } \frac{\sqrt{T}}{l}=\frac{3.736+3.788+3.624+3.796}{4}=\frac{14.944}{4}=3.736 \\
\frac{\sqrt{T}}{l}=3.736 \quad \frac{1}{\sqrt{m}}=0.269 \times 10^{2}=26.9 \\
n=\frac{1}{2} \times \frac{\sqrt{T}}{l} \times \frac{1}{\sqrt{m}}=\frac{1}{2} \times 3.736 \times 26.9=50.25
\end{gathered}
$$

RESULT:

$$
\text { The frequency of the ac main } \mathbf{n}=\mathbf{5 0 . 2 5} \mathrm{Hz}
$$

Q 7. i) By doing suitable experiment, draw the forward bias characteristic curve of a junction diode and determine its forward resistance
ii) By performing an experiment, draw the characteristic curve of the given zener diode and determine its breakdown voltage.

7. Junction diode and Zener diode

FORMULA:

Forward resistance of the PN junction diode $\boldsymbol{R}_{\boldsymbol{f}}=\frac{\Delta \mathbf{V}_{\boldsymbol{f}}}{\Delta \boldsymbol{I}_{\boldsymbol{f}}}$
$\Delta \mathbf{V}_{\boldsymbol{f}}$ is the forward voltage, $\Delta \boldsymbol{I}_{\boldsymbol{f}}$ is the forward current

CIRCUIT DIAGRAMS

1. JUNCTION DIODE - FORWARD BIAS

$$
R_{f}=\frac{\Delta \mathbf{V}_{f}}{\Delta I_{f}}=\frac{B C}{A B}
$$

II. ZENER DIODE - REVERSE BIAS

PROCEDURE:

I. Junction diode (Forward bias)

1. The connections are made as shown in the circuit diagram.
2. For various forward voltages V_{F}, the forward current I_{F} is measured and the readings are tabulated.
3. A graph is plotted by taking V_{F} along X -axis and I_{F} along Y - axis.
4. The forward voltage of the diode is calculated from reciprocal of the slope of the graph using the formula $\boldsymbol{R}_{\boldsymbol{f}}=\frac{\Delta \mathbf{V}_{\boldsymbol{f}}}{\Delta \boldsymbol{I}_{\boldsymbol{f}}}$

II . Junction diode (Forward bias)

1. The connections are made as shown in the circuit diagram.
2. For various voltage V_{0}, the corresponding zener current I_{z} is measured and the readings are tabulated.
3. A graph is plotted by taking V_{0} along X -axis and I_{Z} along Y - axis.
4. Zener breakdown voltage is calculated from the graph.

OBSERVATIONS:

Junction diode forward bias

S.No:	$V_{F}(V)$	$I_{F}(\mathrm{~mA})$
$\mathbf{1}$	0.1	0
$\mathbf{2}$	0.2	0
$\mathbf{3}$	0.3	0
$\mathbf{4}$	0.4	0
$\mathbf{5}$	0.5	1.1
$\mathbf{6}$	0.65	4.8
$\mathbf{7}$	0.7	17.4
$\mathbf{8}$	0.8	10.5
$\mathbf{9}$	0.9	31
$\mathbf{1 0}$	1.0	51

S.No:	$\mathrm{Vo}(\mathrm{V})$	$\mathrm{I}_{\mathrm{Z}}(\mathrm{mA})$
$\mathbf{1}$	5.1	0.1
$\mathbf{2}$	5.2	0.1
$\mathbf{3}$	5.3	0.1
$\mathbf{4}$	5.4	0.1
$\mathbf{5}$	5.5	0.4
$\mathbf{6}$	5.6	9
$\mathbf{7}$	5.7	12.8
$\mathbf{8}$	5.8	15.8
$\mathbf{9}$	5.9	25.2
$\mathbf{1 0}$	6.0	31

Zener breakdown voltage is 5.6 volt

CALCULATIONS:

$$
R_{f}=\frac{\Delta \mathrm{V}_{f}}{\Delta I_{f}}=\frac{B C}{A B}=\frac{0.08}{7 \times 10^{-3}}=\frac{80}{7}=11.4 \Omega
$$

RESULT:
i) The forward resistance of the junction diode $=\mathbf{1 1 . 4} \Omega$
ii) The zener breakdown voltage $=\mathbf{5 . 6}$ volt

Q 8. Construct a suitable circuit with the given NPN transistor in CE mode. Draw the input characteristic and output characteristic curves. Find the input impedance and output impedance.

8. Common Emitter NPN Transistor Characteristics

FORMULA:

1. input impedance $r_{i}=\left(\frac{\Delta V_{B E}}{\Delta I_{B}}\right)$ 2. output impedance $r_{o}=\left(\frac{\Delta V_{C E}}{\Delta I_{C}}\right)$ where $\Delta V_{B E}$ is the change in base emitter voltage, ΔI_{B} is the change in base current

CIRCUIT DIAGRAM:

$r_{i}=\left(\frac{\Delta V_{B E}}{\Delta I_{B}}\right)=\frac{B C}{A B}$

$$
r_{o}=\left(\frac{\Delta V_{C E}}{\Delta I_{C}}\right)=\frac{B C}{A B}
$$

PROCEDURE:

1. INPUT CHARACTERISTICS:

1. The connections are made as shown in the circuit diagram.
2. $\boldsymbol{V}_{C E}$ is kept constant at $\mathbf{5} \mathrm{V}, \boldsymbol{I}_{\boldsymbol{B}}$ is set at $\mathbf{2 0} \mu \mathrm{A}$ and $\boldsymbol{V}_{\boldsymbol{B E}}$ is noted.
3. $\boldsymbol{I}_{\boldsymbol{B}}$ is increased in steps of $\mathbf{2 0} \mu \mathrm{A}$ and $\boldsymbol{V}_{\boldsymbol{B}}$ is noted and the readings are tabulated.
4. A graph is plotted by taking $\boldsymbol{V}_{\boldsymbol{B} \boldsymbol{E}}$ along X - axis and $\boldsymbol{I}_{\boldsymbol{B}}$ along y - axis.
5. The input impedance is calculated from the reciprocal of the slope of the curve using the formula $r_{i}=\left(\frac{\Delta V_{B E}}{\Delta I_{B}}\right)$

2. OUTPUT CHARACTERISTICS:

1. The connections are made as shown in the circuit diagram.
2. I_{B} is set at $20 \mu \mathrm{~A}$ and $\boldsymbol{V}_{B E}$ is noted and the readings are tabulated.
3. For various values of $\boldsymbol{V}_{\boldsymbol{C}}, \boldsymbol{I}_{\boldsymbol{C}}$ is noted and $\boldsymbol{I}_{\boldsymbol{B}}$ is set at $\mathbf{4 0} \mu \mathrm{A}$.
4. For various values of $\boldsymbol{V}_{\boldsymbol{C E}}, \boldsymbol{I}_{\boldsymbol{C}}$ is noted and the readings are tabulated.
5. A graph is plotted by taking $\boldsymbol{V}_{\boldsymbol{C E}}$ along X - axis and $\boldsymbol{I}_{\boldsymbol{C}}$ along y - axis.
6. The output impedance is calculated from the reciprocal of the slope of the curve using the formula $r_{o}=\left(\frac{\Delta V_{C E}}{\Delta I_{C}}\right)$

OBSERVATIONS:

INPUT CHARACTERISTICS

$$
V_{C E}=5 \mathrm{~V}
$$

$\mathbf{S . N o}:$	$\mathrm{V}_{\mathrm{BE}}(\mathrm{V})$	$\mathrm{I}_{\mathrm{B}}(\mathrm{mA})$
$\mathbf{1}$	0.1	0
$\mathbf{2}$	0.2	0
$\mathbf{3}$	0.3	0
$\mathbf{4}$	0.4	0
$\mathbf{5}$	0.5	0
$\mathbf{6}$	0.6	3
$\mathbf{7}$	0.7	37
$\mathbf{8}$	0.8	107
$\mathbf{9}$	0.9	170
$\mathbf{1 0}$	1.0	245

S.No	V_{0} (V)	$I_{\mathbf{c}}$ $(m A)$	$I_{\mathbf{c}}$ $(\mathbf{m A})$	$\mathbf{I}_{\mathbf{c}}$ $(\mathbf{m A})$	$\mathbf{I}_{\mathbf{c}}$ $(\mathbf{m A})$
$\mathbf{1}$	0.1	0.9	0.9	1	1.3
$\mathbf{2}$	0.3	2.2	2.4	2.6	2.6
$\mathbf{3}$	0.5	4	4.2	4.6	4.8
$\mathbf{4}$	0.7	5.5	6.1	6.4	6.5
$\mathbf{5}$	0.9	6.7	7.8	8.1	8.4
$\mathbf{6}$	1	7	9.2	9.9	10.2
$\mathbf{7}$	$\mathbf{2}$	7.3	12.6	18	19.4
$\mathbf{8}$	3	7.6	13.3	19.2	25.4
$\mathbf{9}$	4	7.7	14	20.6	27
$\mathbf{1 0}$	5	7.7	15	20.7	28

CALCULATIONS:

$$
\begin{aligned}
\mathrm{r}_{\mathrm{i}}=\left(\frac{\Delta \mathrm{V}_{\mathrm{BE}}}{\Delta \mathrm{I}_{\mathrm{B}}}\right)= & \frac{1}{\text { slope }}=\frac{B C}{A B} \\
& =\frac{0.14 \mathrm{volt}}{85 \times 10^{-6}}=\frac{140000}{85}=1647 \Omega \\
\mathrm{R}_{\mathrm{o}}=\left(\frac{\Delta \mathrm{V}_{\mathrm{CE}}}{\Delta \mathrm{I}_{\mathrm{C}}}\right)= & \frac{1}{\text { slope }}=\frac{\mathrm{BC}}{\mathrm{AB}} \\
= & \frac{2.2 \times 10^{-3}}{1}=2.2 \times 10^{-3} \Omega
\end{aligned}
$$

RESULT:

1. The input and output characteristic curves of the transistor in CE configuration are drawn.
2. The input impedance $r_{i}=1647 \Omega$
3. The output impedance $r_{0}=2.2 \times 10^{-3} \Omega$

Q 9. Construct a suitable circuit with the given NPN transistor in CE mode. Draw the output characteristic and transfer characteristic curves. Find the output impedance and current gain.
9. Common Emitter NPN Transistor Characteristics II

FORMULA:

1. output impedance $r_{o}=\left(\frac{\Delta V_{C E}}{\Delta I_{C}}\right)$
2. Current gain

$$
\beta=\left(\frac{\Delta I_{C}}{\Delta I_{B}}\right)
$$

CIRCUIT DIAGRAM:

PROCEDURE:

1. OUTPUT CHARACTERISTICS:

1. The connections are made as shown in the circuit diagram.
2. $\boldsymbol{I}_{\boldsymbol{B}}$ is set at $20 \mu \mathrm{~A}$ and $\boldsymbol{V}_{\boldsymbol{B E}}$ is noted and the readings are tabulated.
3. For various values of $\boldsymbol{V}_{\boldsymbol{C E}}, \boldsymbol{I}_{\boldsymbol{C}}$ is noted and $\boldsymbol{I}_{\boldsymbol{B}}$ is set at $40 \mu \mathrm{~A}$.
4. For various values of $\boldsymbol{V}_{\boldsymbol{C E}}, \boldsymbol{I}_{\boldsymbol{C}}$ is noted and the readings are tabulated.
5. A graph is plotted by taking $V_{C E}$ along X - axis and I_{C} along y - axis.
6. The output impedance is calculated from the reciprocal of the slope of the curve using the formula

$$
r_{o}=\left(\frac{\Delta V_{C E}}{\Delta I_{C}}\right)
$$

2 .TRANSFER CHARACTERISTICS:

1. $V_{C E}$ is kept constant at $5 \mathrm{~V}, I_{B}$ is set at $50 \mu \mathrm{~A}$ and I_{C} is noted.
2. I_{B} is increased in steps of $50 \mu \mathrm{~A}$ and \boldsymbol{I}_{C} is noted, the readings are tabulated.
3. A graph is plotted by taking \boldsymbol{I}_{B} along X - axis and \boldsymbol{I}_{C} along $\mathrm{y}-$ axis.
4. The current gain is calculated from the reciprocal of the slope of the curve using the formula $\beta=\left(\frac{\Delta I_{C}}{\Delta I_{B}}\right)$

$\beta=\left(\frac{\Delta I_{C}}{\Delta I_{B}}\right)=\frac{A B}{B C}$

$r_{0}=\left(\frac{\Delta V_{C E}}{\Delta I_{C}}\right)=\frac{B C}{A B}$

OUTPUT CHARACTERISTICS

$$
\mathrm{I}_{\mathrm{B}}=20 \mu \mathrm{~A}, \quad 40 \mu \mathrm{~A}, \quad 60 \mu \mathrm{~A}, \quad 80 \mu \mathrm{~A}
$$

S.No $\mathbf{:}$	$\mathbf{V o}$ (\mathbf{V})	$\mathbf{I}_{\mathbf{C}}$ (mA)	$\mathbf{I}_{\mathbf{C}}$ (mA)	$\mathbf{I}_{\mathbf{C}}$ (mA)	$\mathbf{I}_{\mathbf{C}}$ (mA)
$\mathbf{1}$	0.1	0.9	0.9	1	1.3
$\mathbf{2}$	0.3	2.2	2.4	2.6	2.6
$\mathbf{3}$	0.5	4	4.2	4.6	4.8
$\mathbf{4}$	0.7	5.5	6.1	6.4	6.5
$\mathbf{5}$	0.9	6.7	7.8	8.1	8.4
$\mathbf{6}$	1	7	9.2	9.9	10.2
$\mathbf{7}$	2	7.3	12.6	18	19.4
$\mathbf{8}$	3	7.6	13.3	19.2	25.4
$\mathbf{9}$	4	7.7	14	20.6	27
$\mathbf{1 0}$	5	7.7	15	20.7	28

TRANSFER CHARACTERISTIC ($\mathrm{V}_{\underline{\text { EE }}}=5 \mathrm{~V}$)

$\mathbf{S . N O}$	$\mathrm{I}_{\mathrm{B}}(\mu \mathrm{A})$	$\mathrm{I}_{\mathrm{C}}(\mathrm{mA})$
$\mathbf{1}$	20	7.4
$\mathbf{2}$	40	15.1
$\mathbf{3}$	60	21.7
$\mathbf{4}$	80	28.5
$\mathbf{5}$	100	35.3
$\mathbf{6}$	120	41.5

CALCULATIONS:

$$
\begin{aligned}
r_{0}=\left(\frac{\Delta V_{\mathrm{CE}}}{\Delta \mathrm{I}_{\mathrm{C}}}\right) & =\frac{1}{\text { slope }}=\frac{\mathrm{BC}}{\mathrm{AB}} \\
& =\frac{2.2 \times 10^{-3}}{1}=2.2 \times 10^{-3} \Omega \\
\beta=\left(\frac{\Delta \mathrm{I}_{\mathrm{C}}}{\Delta \mathrm{I}_{\mathrm{B}}}\right)= & \frac{\mathrm{AB}}{\mathrm{BC}} \\
& =\frac{13 \times 10^{-3}}{40 \times 10^{-6}}=\frac{13000}{40}=325
\end{aligned}
$$

RESULT:

1. The output and transfer characteristic curves of the transistor in CE configuration are drawn.
2. The output impedance $r_{0}=2.2 \times 10^{-3} \Omega$
3. The current gain $\quad \beta=325$

Dist. Sec. TNHSPGTA Kanchipuram Dist. A.Murugiah PGT, GBHSS - Chromepet, CHENNAI- 44 amuru1964@gmail.com Cell: $9444220504 \quad$ Page 19 of 26
XII PHYSICS PRACTICAL MATERIAL (with sample reading \& calculations)
10. Using IC 741, construct i) an inverting amplifier ii) summing amplifier study their performance

10. OPERATIONAL AMPLIFIER I

FORMULA:

i) Voltage gain of the inverting amplifier, $A_{V}=-\left(\frac{V_{o}}{V_{i n}}\right)=-\left(\frac{R_{f}}{R_{s}}\right)$
ii) The output voltage of the inverting summing amplifier, $\mathbf{V}_{0}=-\left(\mathbf{V}_{1}+\mathbf{V}_{2}\right)$

Where \mathbf{V}_{0} output voltage, $\mathbf{V}_{\mathbf{i n}}, \mathbf{V}_{\mathbf{1}}$ and $\mathbf{V}_{\mathbf{2}}$ are the input voltages, \mathbf{R}_{f} and $\mathbf{R}_{\mathbf{s}}$ are the external resistances

CIRCUIT DIAGRAM : 1 . Inverting amplifier

CIRCUIT DIAGRAM : 2. Summing amplifier

Gnd

PROCEDURE: 1. INVERTING AMPLIFIER:-

1. Connections are made as shown in the circuit diagram.
2. R_{S} is kept at $10 \mathrm{~K} \Omega, R_{F}$ is kept at $22 \mathrm{~K} \Omega$.
3. For various input voltages $\mathrm{V}_{\text {in }}$, the corresponding output voltages V_{0} is measured and the readings are tabulated.
4. Second Set of readings is taken by keeping $V_{i n}=1 \mathrm{~V}$ and $\mathrm{Rs}=10 \mathrm{~K} \Omega$ and changing R_{F} as $10 \mathrm{~K} \Omega, 22 \mathrm{~K} \Omega, 33 \mathrm{~K} \Omega$ \& $47 \mathrm{~K} \Omega$.
5. The voltage gain calculated as : Experimental gain $A_{V}=-\left(\frac{V_{o}}{V_{i n}}\right)$ and the theoretical gain $\boldsymbol{A}_{V}=-\left(\frac{\boldsymbol{R}_{f}}{\boldsymbol{R}_{s}}\right)$
6. The experimental value is compared with the theoretical value and the inverting action is verified.

2. SUMMING AMPLIFIER:-

1. Connections are made as shown in the circuit diagram.
2. R_{1}, R_{2} and R_{F} are kept as $10 \mathrm{~K} \Omega$.

Dist. Sec. TNHSPGTA Kanchipuram Dist. A.Murugiah PGT, GBHSS - Chromepet, CHENNAI-44 amuru1964@gmail.com Cell: 9444220504 Page 20 of 26
XII PHYSICS PRACTICAL MATERIAL (with sample reading \& calculations)
3. For various values of V_{1} and V_{2} the corresponding output voltage Vo is measured and the readings are tabulated.
4. The experimental value is compared with the expected output voltage $\mathbf{V}_{0}=-\left(\mathbf{V}_{1}+\mathbf{V}_{2}\right)$.
5. Thus the summing action of the amplifier is verified.

OBSERVATION: 1 . Inverting amplifier

$\mathbf{S E T}$	$\mathbf{S . N O}$	$\mathbf{R}_{\mathbf{s}}(\boldsymbol{\Omega})$	$\mathbf{R}_{\mathbf{f}}(\boldsymbol{\Omega})$	$\mathbf{V}_{\text {in }}(\mathbf{V})$	$\mathbf{V}_{\text {out }}(\mathbf{V})$	Experimental Gain $\boldsymbol{A}_{\boldsymbol{V}}=\left(\frac{\boldsymbol{V}_{o}}{\boldsymbol{V}_{\text {in }}}\right)$	Theoretical Gain $\boldsymbol{A}_{\boldsymbol{V}}=-\left(\frac{R_{f}}{\boldsymbol{R}_{\mathbf{s}}}\right)$
\mathbf{I}	$\mathbf{1}$	$10 K$	$22 K$	1	-2.28	-2.28	-2.2
	$\mathbf{2}$	$10 K$	$22 K$	1.5	-3.34	-2.22	-2.2
	$\mathbf{3}$	$10 K$	$22 K$	2	-4.41	-2.23	-2.2
	$\mathbf{4}$	$10 K$	$22 K$	2.5	-5.4	-2.16	-2.2
	$\mathbf{1}$	$10 K$	$10 K$	1	-1.04	-1.04	-1.0
	$\mathbf{2}$	$10 K$	$22 K$	1	-2.2	-2.2	-2.2
	$\mathbf{3}$	$10 K$	$33 K$	1	-3.8	-3.8	-3.3
	$\mathbf{4}$	$10 K$	$47 K$	1	-4.74	-4.74	-4.7

OBSERVATION: 2 . Summing amplifier

$$
R_{1}=R_{2}=R_{f}=10 \mathrm{~K} \Omega
$$

S.NO	$\mathbf{V}_{\mathbf{1}}$ (Volt)	$\mathbf{V}_{\mathbf{2}}$ (Volt)	Experimental Output voltage $\mathbf{V}_{\mathbf{0}}$ (Volt)	Theoretical output voltage $\mathbf{V}_{\mathbf{0}}=-\left(\mathbf{V}_{\mathbf{1}}+\mathbf{V}_{\mathbf{2}}\right)$ (Volt)
$\mathbf{1}$	1.0	0.5	1.6	-1.5
$\mathbf{2}$	1.0	1.0	2.1	-2.0
$\mathbf{3}$	1.0	1.5	2.6	-2.5
$\mathbf{4}$	1.0	2.0	3.1	-3.0

CALCULATIONS:

1. INVERTING AMPLIFIER

Experimental gain	Theoretical gain
$A_{V}=\left(\frac{V_{o}}{V_{\text {in }}}\right)=\frac{-2.28}{1}=-2.28$	$A_{V}=-\left(\frac{R_{f}}{R_{s}}\right)=\frac{-22}{10}=-2.2$
$A_{V}=\left(\frac{V_{o}}{V_{i n}}\right)=\frac{-3.34}{1.5}=-2.2$	$A_{V}=-\left(\frac{R_{f}}{R_{s}}\right)=\frac{-22}{10}=-2.2$
$A_{V}=\left(\frac{V_{o}}{V_{i n}}\right)=\frac{-4.42}{2}=-2.205$	$A_{V}=-\left(\frac{R_{f}}{R_{s}}\right)=\frac{-22}{10}=-2.2$

Dist. Sec. TNHSPGTA Kanchipuram Dist. A.Murugiah PGT, GBHSS - Chromepet, CHENNAI- 44 amuru1964@gmail.com Cell: $9444220504 \quad$ Page 21 of 26
XII PHYSICS PRACTICAL MATERIAL (with sample reading \& calculations)

$A_{V}=\left(\frac{V_{o}}{V_{i n}}\right)=\frac{-5.4}{2.5}=-2.16$	$A_{V}=-\left(\frac{R_{f}}{R_{s}}\right)=\frac{-22}{10}=-2.2$
$A_{V}=\left(\frac{V_{o}}{V_{i n}}\right)=\frac{-1.04}{1}=-1.04$	$A_{V}=-\left(\frac{R_{f}}{R_{s}}\right)=\frac{-10}{10}=-1$
$A_{V}=\left(\frac{V_{o}}{V_{i n}}\right)=\frac{-2.2}{1}=-2.2$	$A_{V}=-\left(\frac{R_{f}}{R_{s}}\right)=\frac{-22}{10}=-2.2$
$A_{V}=\left(\frac{V_{o}}{V_{i n}}\right)=\frac{-3.8}{1}=-3.8$	$A_{V}=-\left(\frac{R_{f}}{R_{s}}\right)=\frac{-3.3}{10}=-3.3$
$A_{V}=\left(\frac{V_{o}}{V_{\text {in }}}\right)=\frac{-4.74}{1}=-4.74$	

2. SUMMING AMPLIFIER

1) $\mathrm{V}_{0}=-\left(\mathrm{V}_{1}+\mathrm{V}_{2}\right)=-(1+0.5)=-1.5$ volt
2) $\mathrm{V}_{\mathrm{o}}=-\left(\mathrm{V}_{1}+\mathrm{V}_{2}\right)=-(1+1)=-2$ volt
3) $\mathrm{V}_{0}=-\left(\mathrm{V}_{1}+\mathrm{V}_{2}\right)=-(1+1.5)=-2.5$
4) $\mathrm{V}_{\mathrm{o}}=-\left(\mathrm{V}_{1}+\mathrm{V}_{2}\right)=-(1+2.5)=-3$ volt

RESULT :

i) The inverting amplifier is constructed using OP-AMP and gain is determined.
ii) The summing amplifier is constructed and the output voltage is found to be the sum of the applied input voltages

Q 11. Using IC 741, construct i) non- inverting amplifier ii) summing amplifier study their Performance.

11. OPERATIONAL AMPLIFIER II

FORMULA:

1. Voltage gain of the non-inverting amplifier, $A_{V}=\left(\frac{V_{o}}{V_{i n}}\right)=\mathbf{1}+\left(\frac{R_{f}}{R_{s}}\right)$
2. The output voltage of the inverting summing amplifier, $\mathbf{V}_{0}=-\left(\mathbf{V}_{1}+\mathbf{V}_{2}\right)$

Where \mathbf{V}_{0} output voltage, $\mathbf{V}_{\mathrm{in}}, \mathbf{V}_{\mathbf{1}}$ and $\mathbf{V}_{\mathbf{2}}$ are the input voltages, \mathbf{R}_{f} and \mathbf{R}_{s} are the external resistances

CIRCUIT DIAGRAM : 1. non-inverting amplifier

CIRCUIT DIAGRAM:2.Summing amplifier

PROCEDURE:

1. NON-

INVERTING

1. Connections are made as shown in the circuit diagram.
2. R_{S} is kept at $10 \mathrm{~K} \Omega, R_{F}$ is kept at $10 \mathrm{~K} \Omega$.
3. For various input voltages V_{in}, the corresponding output voltages V_{0} is measured and the readings are tabulated.
4. Second Set of readings is taken by keeping $\mathrm{V}_{\text {in }}=1 \mathrm{~V}$ and $\mathrm{Rs}=10 \mathrm{~K} \Omega$ and changing R_{F} as $10 \mathrm{~K} \Omega, 22 \mathrm{~K} \Omega, 33 \mathrm{~K} \Omega$ \& $47 \mathrm{~K} \Omega$.
5. The voltage gain calculated as: Experimental gain $A_{V}=\left(\frac{V_{o}}{V_{i n}}\right)$ and the theoretical gain $\boldsymbol{A}_{V}=\left(\frac{R_{f}}{R_{s}}\right)$
6. The experimental value is compared with the theoretical value and the non-inverting action is verified.

2. SUMMING AMPLIFIER:-

1. The circuit is wired as shown in the diagram using OP AMP IC 741, The values of R_{1}, R_{2} and R_{F} are kept as $10 \mathrm{~K} \Omega$.
2. The input voltages are kept as $\mathrm{V}_{1}=1 \mathrm{~V}$ and $\mathrm{V}_{2}=0.5 \mathrm{~V}$ and the output voltage Vo is measured using the digital voltmeter
3. Then the experiment is repeated for different sets of values for V_{1} and V_{2}.
4. Theoretical output voltage is found from $\mathbf{V}_{\mathbf{0}}=-\left(\mathbf{V}_{\mathbf{1}}+\mathbf{V}_{\mathbf{2}}\right)$. Since this is equal to experimental output voltage the summing action of the amplifier is verified.

OBSERVATION: 1 . Non-Inverting amplifier

SET	S.NO	$\mathrm{R}_{\mathrm{s}}(\Omega)$	$\mathbf{R}_{\mathrm{f}}(\boldsymbol{\Omega})$	$\mathrm{V}_{\text {in }}(\mathbf{V})$	$\mathrm{V}_{\text {out }}(\mathrm{V})$	Experimental Gain $A_{V}=\left(\frac{V_{o}}{V_{i n}}\right)$	Theoretical Gain $A_{V}=1+\left(\frac{R_{f}}{R_{s}}\right)$
I	1	10K	10K	1.0	2.3	2.3	3.2
	2	10K	10K	1.5	2.96	1.97	3.2
	3	10K	10K	2.0	4.2	2.1	3.2
	4	10K	10K	2.5	5.0	2	3.2
II	1	10K	10K	1.0	1.97	1.97	2.0
	2	10K	22K	1.0	3.2	3.2	3.2
	3	10K	33K	1.0	4.25	4.25	4.3
	4	10K	47K	1.0	5.67	5.67	5.7

Dist. Sec. TNHSPGTA Kanchipuram Dist. A.Murugiah PGT, GBHSS - Chromepet, CHENNAI- 44 amuru1964@gmail.com Cell: $9444220504 \quad$ Page 23 of 26
XII PHYSICS PRACTICAL MATERIAL (with sample reading \& calculations)
OBSERVATION: 2 . Summing amplifier

$$
R_{1}=R_{2}=R_{f}=10 K \Omega
$$

S.NO	$\mathbf{V}_{\mathbf{1}}$ (Volt)	$\mathbf{V}_{\mathbf{2}}$ (Volt)	Experimental Output voltage $\mathbf{V}_{\mathbf{0}}$ (Volt)	Theoretical output voltage $\mathbf{V}_{\mathbf{0}}=\mathbf{-}\left(\mathbf{V}_{\mathbf{1}}+\mathbf{V}_{\mathbf{2}}\right)$ (Volt)
$\mathbf{1}$	1.0	0.5	1.6	-1.5
$\mathbf{2}$	1.0	1.0	2.1	-2.0
$\mathbf{3}$	1.0	1.5	2.6	-2.5
$\mathbf{4}$	1.0	2.0	3.1	-3.0

CALCULATIONS: 1. NON-INVERTING AMPLIFIER

Experimental gain	Theoretical gain
1) $A_{V}=\left(\frac{V_{O}}{V_{i n}}\right)=\frac{2.30}{1}=2.30$	$A_{V}=1+\left(\frac{R_{f}}{R_{s}}\right)=1+\frac{10}{10}=2$
2) $A_{V}=\left(\frac{V_{0}}{V_{i n}}\right)=\frac{2.96}{1.5}=1.97$	$A_{V}=1+\left(\frac{R_{f}}{R_{s}}\right)=1+\frac{10}{10}=2$
3) $A_{V}=\left(\frac{V_{o}}{V_{i n}}\right)=\frac{4.2}{2}=2.1$	$A_{V}=1+\left(\frac{R_{f}}{R_{s}}\right)=1+\frac{10}{10}=2$
4) $A_{V}=\left(\frac{V_{o}}{V_{\text {in }}}\right)=\frac{5.0}{2.5}=2$	$A_{V}=1+\left(\frac{R_{f}}{R_{s}}\right)=1+\frac{10}{10}=2$
5) $A_{V}=\left(\frac{V_{0}}{V_{i n}}\right)=\frac{1.97}{1}=1.97$	$A_{V}=1+\left(\frac{R_{f}}{R_{s}}\right)=1+\frac{10}{10}=1+1=2$
6) $A_{V}=\left(\frac{V_{0}}{V_{i n}}\right)=\frac{3.2}{1}=3.2$	$A_{V}=1+\left(\frac{R_{f}}{R_{s}}\right)=1+\frac{22}{10}=1+2.2=3.2$
7) $A_{V}=\left(\frac{V_{O}}{V_{i n}}\right)=\frac{4.25}{1}=4.25$	$A_{V}=1+\left(\frac{R_{f}}{R_{s}}\right)=1+\frac{33}{10}=1+3.3=4.3$
8) $A_{V}=\left(\frac{V_{O}}{V_{i n}}\right)=\frac{5.65}{1}=5.65$	$A_{V}=1+\left(\frac{R_{f}}{R_{s}}\right)=1+\frac{47}{10}=1+4.7=5.7$

2. SUMMING AMPLIFIER

1) $V_{0}=-\left(V_{1}+V_{2}\right)=-(1+0.5)=-1.5$ volt
2) $\mathrm{V}_{0}=-\left(\mathrm{V}_{1}+\mathrm{V}_{2}\right)=-(1+1)=-2$ volt
3) $\mathrm{V}_{0}=-\left(\mathrm{V}_{1}+\mathrm{V}_{2}\right)=-(1+1.5)=-2.5$
4) $\mathrm{V}_{\mathrm{o}}=-\left(\mathrm{V}_{1}+\mathrm{V}_{2}\right)=-(1+2.5)=-3$ volt

RESULT:

1. The non-inverting amplifier is constructed using OP-AMP and gain is determined.
2. The summing amplifier is constructed and the output voltage is found to be the sum of the applied input voltages

Dist. Sec. TNHSPGTA Kanchipuram Dist. A.Murugiah PGT, GBHSS - Chromepet, CHENNAI- 44 amuru1964@gmail.com Cell: $9444220504 \quad$ Page 24 of 26
XII PHYSICS PRACTICAL MATERIAL (with sample reading \& calculations)
Q 12. Using appropriate ICs study the truth table of logic circuits OR, AND, NOT, NOR, NAND, and EX-OR.

12. INTEGRATED LOGIC GATE CIRCUITS

FORMULA:

1. OR function $\mathbf{Y}=\mathbf{A}+\mathbf{B}$

When any one input or all inputs are true, output-is-true
2. AND function $\mathbf{Y}=\mathbf{A} . \mathbf{B}$
3. NOT function $\mathbf{Y}=\overline{\mathbf{A}}$
4. NOR function $\mathbf{Y}=\overline{\mathbf{A}+\mathbf{B}}$

Only when all inputs are true, output is true
Output is the complement of input
Only when all inputs are false, output is true
5. NAND function $\mathbf{Y}=\overline{\mathbf{A} \cdot \mathbf{B}} \quad$ When any one of the inputs is false, output is true
6. EXOR function $\mathbf{Y}=\mathbf{A} \oplus \mathbf{B}=\mathbf{A} \overline{\mathbf{B}}+\overline{\mathbf{A}} \mathbf{B} \quad$ Only when the inputs are different, output is true Where \mathbf{A} and B are inputs and \mathbf{Y} is the output.

1. PIN DIAGRAMS:
1) For IC's 7400 (NAND), 7408(AND), 7432(OR) \& 7486(EX-OR)

2) For IC 7402(NOR) - Quad 2 input

CIRCUIT DIAGRAMS:

$\mathrm{A}-\mathrm{O}-\mathrm{Y}=\overline{\mathrm{A}}$	$\begin{aligned} & \text { 6.EX-OR GATE } \\ & \mathbf{B} \neq-\mathbf{Y}=\mathbf{A} \oplus \mathbf{B} \end{aligned}$

Dist. Sec. TNHSPGTA Kanchipuram Dist. A.Murugiah PGT, GBHSS - Chromepet, CHENNAI- 44 amuru1964@gmail.com Cell: 9444220504 Page 25 of 26
XII PHYSICS PRACTICAL MATERIAL (with sample reading \& calculations)

PROCEDURE TABLE:

S.No	Gate	Boolean	IC Number	IC pin configuration			
		Expression		Input	Output	+5V	Ground
1	OR	$\mathbf{Y}=\mathbf{A + B}$	IC 7432	1,2	3	14	7
2	AND	$\mathbf{Y}=\mathbf{A B}$	IC 7408	1,2	3	14	7
3	NOT	$\mathbf{Y}=\overline{\mathbf{A}}$	IC 7404	1	2	14	7
4	NOR	$\mathbf{Y}=\overline{\mathbf{A + B}}$	IC 7402	2,3	1	14	7
5	NAND	$\mathbf{Y}=\overline{\mathbf{A} \cdot \mathbf{B}}$	IC 7400	1,2	3	14	7
6	EX-OR	$\mathbf{Y}=\mathbf{A} \oplus \mathbf{B}$	IC 7486	1,2	3	14	7

Where \mathbf{A} and \mathbf{B} are inputs and \mathbf{Y} is the output.

PROCEDURE:

1. IC 7400 is placed on the board.
2. The two logic select input switches are connected to the input pins.
3. The output pin is connected to the logic level indicator LED.
4. For various input combinations, the output LED is checked.
5. If the LED is OFF, the output is logic ' 0 '
6. If the LED is ON, the output is logic ' 1 '
7. The output is verified for all possible combinations of the inputs as in the truth table.
8. The above steps are verified for all remaining ICs.
9. Thus the logic function of the logic gates are verified using ICs.

OBSERVATIONS: Truth tables

1. OR gate

S.No	Input A	Input B	Output $\mathbf{y}=\mathbf{A + B}$
$\mathbf{1}$	0	0	0
$\mathbf{2}$	0	1	1
$\mathbf{3}$	1	0	1
$\mathbf{4}$	1	1	1

2. AND gate

S.No	Input A	Input B	Output y = A.B
$\mathbf{1}$	0	0	0
$\mathbf{2}$	0	1	0
$\mathbf{3}$	1	0	0
$\mathbf{4}$	1	1	1

3. NOT gate

S.No	Input A	Output $\mathbf{y}=\overline{\boldsymbol{A}}$
$\mathbf{1}$	0	1
2	0	0

4. NOR gate

S. No	Input A	Input B	Output $\mathbf{y}=\overline{\boldsymbol{A}+\boldsymbol{B}}$
$\mathbf{1}$	0	0	1
$\mathbf{2}$	0	1	0
$\mathbf{3}$	1	0	0
$\mathbf{4}$	1	1	0

5. NAND gate

S. No	Input \mathbf{A}	Input B	Output $\mathbf{y}=\overline{\boldsymbol{A} . \boldsymbol{B}}$
$\mathbf{1}$	0	0	1
$\mathbf{2}$	0	1	1
$\mathbf{3}$	1	0	1
$\mathbf{4}$	1	1	0

6. EX-OR gate

S.No	Input \mathbf{A}	Input \mathbf{B}	Output $\mathbf{y}=\mathbf{A} \oplus \mathbf{B}$ $=\mathbf{A} \overline{\mathbf{B}}+\overline{\mathbf{A}} \mathbf{B}$
$\mathbf{1}$	0	0	0
$\mathbf{2}$	0	1	1
$\mathbf{3}$	1	0	1
$\mathbf{4}$	1	1	0

CALCULATIONS

1. OR gate

Input \mathbf{A}	Input \mathbf{B}	Output $\mathbf{y}=\mathbf{A}+\mathbf{B}$
0	0	$0+0=0$
0	1	$0+1=1$
1	0	$1+0=1$
1	1	$1+1=1$

2. AND gate

Input A	Input B	Output $\mathbf{y}=\mathbf{A . B}$
0	0	$0.0=0$
0	1	$0.1=1$
1	0	$1.0=1$
1	1	$1.1=1$

3. NOT gate

Input A	Output $\mathbf{y}=\overline{\boldsymbol{A}}$
0	1
0	0

4. NOR gate

Input A	Input B	Output $\mathbf{y}=\overline{\boldsymbol{A + B}}$
0	0	$0+0=1$
0	1	$0+1=0$
1	0	$1+0=0$
1	1	$1+1=0$

5. NAND gate

Input A	Input B	Output $\mathbf{y}=\overline{\boldsymbol{A} . \boldsymbol{B}}$
0	0	$0.0=1$
0	1	$0.1=1$
1	0	$1.0=1$
1	1	$1.1=0$

6. EX-OR gate

Input \mathbf{A}	Input \mathbf{B}	Output $\mathbf{y}=\mathbf{A} \oplus \mathbf{B}$ $=\mathbf{A} \overline{\mathbf{B}}+\overline{\mathbf{A}} \mathbf{B}$
0	0	$0 \overline{0}+\overline{0} 0=0$
0	1	$0 \overline{1}+\overline{1} 0=1$
1	0	$1 \overline{0}+\overline{1} 0=1$
1	1	$1 \overline{1}+\overline{1} 1=0$

RESULT:

The performance of digital gates OR, AND, NOT, NOR, NAND and EX-OR are verified using IC chips.

External Practical Examination weightage of marks:

1. Formula 2 mark, explanation of terms in the formula 2 mark = $\mathbf{4}$ mark
2. Simplified procedure = 6 marks. If involved with circuit diagram for procedure 3 mark and for circuit diagram 3 mark $=6$ mark
3. For observations (Tabular columns) = $\mathbf{1 0}$ mark
4. Calculations = 8 mark
5. For correct result with unit 2 mark

$$
\Rightarrow 4+6+10+8+2=30 \text { marks. }
$$

