Djukić · Janković Matić · Petrović

РВМ

Dušan Djukić Vladimir Janković Ivan Matić Nikola Petrović

The IMO Compendium

The IMO Compendium

A Collection of Problems Suggested for The International Mathematical Olympiads: 1959–2009

Second Edition

2nd Ed.

Contents

1	Intr	roduction				
	1.1	The In	ternational Mathematical Olympiad	1		
	1.2	The IMO Compendium				
2	Basi	ic Conc	epts and Facts	5		
	2.1	Algeb	ra	5		
		2.1.1	Polynomials	5		
		2.1.2	Recurrence Relations	6		
		2.1.3	Inequalities	7		
		2.1.4	Groups and Fields	9		
	2.2	Analy	sis	10		
	2.3	Geom	etry	12		
		2.3.1	Triangle Geometry	12		
		2.3.2	Vectors in Geometry	13		
		2.3.3	Barycenters	14		
		2.3.4	Quadrilaterals	14		
		2.3.5	Circle Geometry	15		
		2.3.6	Inversion	16		
		2.3.7	Geometric Inequalities	17		
		2.3.8	Trigonometry	17		
		2.3.9	Formulas in Geometry	18		
	2.4	4 Number Theory		19		
		2.4.1	Divisibility and Congruences	19		
		2.4.2	Exponential Congruences	20		
		2.4.3	Quadratic Diophantine Equations	21		
		2.4.4	Farey Sequences	22		
	2.5	Comb	inatorics	22		
		2.5.1	Counting of Objects	22		
		2.5.2	Graph Theory	23		

Х	Contents
Λ	Contents

3	Prob	lems	27
	3.1	IMO 1959	27
		3.1.1 Contest Problems	27
	3.2	IMO 1960	29
		3.2.1 Contest Problems	29
	3.3	IMO 1961	30
		3.3.1 Contest Problems	30
	3.4	IMO 1962	31
		3.4.1 Contest Problems	31
	3.5	IMO 1963	32
		3.5.1 Contest Problems	32
	3.6	IMO 1964	33
		3.6.1 Contest Problems	33
	37	IMO 1965	34
	011	371 Contest Problems	34
	38	IMO 1966	35
	5.0	381 Contest Problems	35
		3.8.2 Some Longlisted Problems 1959–1966	35
	30	IMO 1967	41
	5.7	301 Contest Problems	41
		302 Longlisted Problems	41
	3 10	IMO 1068	10
	5.10	3 10.1 Contest Problems	49
		3 10.2 Shortlisted Droblems	49
	3 1 1	IMO 1060	53
	5.11	3 11 1 Contest Problems	53
		3 11 2 Longlisted Problems	53
	3 1 2	IMO 1070	61
	5.12	2 12 1 Contast Drobloms	61
		2.12.2. Longlisted Broblems	62
		2.12.2 Conglisted Problems	602
	2 1 2		70
	5.15	2 12 1 Contast Drobloms	70
		2.12.2 Longlisted Drohlams	70
		2.12.2 Chartlisted Problems	76
	2 1 4	5.15.5 Shortifisted Problems	70
	3.14	1MO 1972	79
		2.14.2 Landlist d Drahland	79
		3.14.2 Longlisted Problems	/9
	2.15	3.14.3 Shortlisted Problems	83
	3.15	IMO 1973	86
		3.15.1 Contest Problems	86
	2.17	3.15.2 Shortlisted Problems	87
	3.16	IMU 19/4	89
		3.16.1 Contest Problems	89
		3.16.2 Longlisted Problems	90

3.16.3 Shortlisted Problems	. 95
3.17 IMO 1975	. 97
3.17.1 Contest Problems	. 97
3.17.2 Shortlisted Problems	. 97
3.18 IMO 1976	100
3.18.1 Contest Problems	100
3.18.2 Longlisted Problems	100
3.18.3 Shortlisted Problems	105
3.19 IMO 1977	107
3.19.1 Contest Problems	107
3.19.2 Longlisted Problems	107
3.19.3 Shortlisted Problems	113
3.20 IMO 1978	116
3.20.1 Contest Problems	116
3.20.2 Longlisted Problems	116
3.20.3 Shortlisted Problems	121
3.21 IMO 1979	124
3.21.1 Contest Problems	124
3.21.2 Longlisted Problems	125
3.21.3 Shortlisted Problems	132
3.22 IMO 1981	135
3.22.1 Contest Problems	135
3.22.2 Shortlisted Problems	135
3 23 IMO 1982	138
3.23.1 Contest Problems	138
3 23 2 Longlisted Problems	139
3 23 3 Shortlisted Problems	144
3 24 IMO 1983	147
3 24 1 Contest Problems	147
3 24 2 Longlisted Problems	147
3 24 3 Shortlisted Problems	154
3 25 IMO 1984	158
3 25 1 Contest Problems	158
3 25 2 Longlisted Problems	158
3 25 3 Shortlisted Problems	165
3 26 IMO 1985	168
3 26 1 Contest Problems	168
3 26.2 Longlisted Problems	168
3 26 3 Shortlisted Problems	177
3 27 IMO 1986	181
3.27 1 Contest Problems	181
3 27 2 Longlisted Problems	187
3 27 3 Shortlisted Problems	182
3 28 IMO 1987	107
3 28 1 Contest Problems	102
	174

	3.28.2 Longlisted Problems	192
	3.28.3 Shortlisted Problems	200
3.29	IMO 1988	203
	3.29.1 Contest Problems	203
	3.29.2 Longlisted Problems	204
	3.29.3 Shortlisted Problems	212
3.30	IMO 1989	217
	3.30.1 Contest Problems	217
	3.30.2 Longlisted Problems	218
	3.30.3 Shortlisted Problems	229
3.31	IMO 1990	234
	3.31.1 Contest Problems	234
	3.31.2 Longlisted Problems	235
	3.31.3 Shortlisted Problems	245
3.32	IMO 1991	249
	3.32.1 Contest Problems	249
	3.32.2 Shortlisted Problems	249
3.33	IMO 1992	253
	3.33.1 Contest Problems	253
	3.33.2 Longlisted Problems	253
	3.33.3 Shortlisted Problems	262
3.34	IMO 1993	266
	3.34.1 Contest Problems	266
	3.34.2 Shortlisted Problems	267
3.35	IMO 1994	271
	3.35.1 Contest Problems	271
	3.35.2 Shortlisted Problems	271
3.36	IMO 1995	275
	3.36.1 Contest Problems	275
	3.36.2 Shortlisted Problems	275
3.37	IMO 1996	280
	3.37.1 Contest Problems	280
	3.37.2 Shortlisted Problems	281
3.38	IMO 1997	286
	3.38.1 Contest Problems	286
	3.38.2 Shortlisted Problems	287
3.39	IMO 1998	291
	3.39.1 Contest Problems	291
	3.39.2 Shortlisted Problems	291
3.40	IMO 1999	295
	3.40.1 Contest Problems	295
	3.40.2 Shortlisted Problems	295
3.41	IMO 2000	300
	3.41.1 Contest Problems	300
	3.41.2 Shortlisted Problems	300

3.42	IMO 2001	304
	3.42.1 Contest Problems	304
	3.42.2 Shortlisted Problems	304
3.43	IMO 2002	308
	3.43.1 Contest Problems	308
	3.43.2 Shortlisted Problems	308
3.44	IMO 2003	312
	3.44.1 Contest Problems	312
	3.44.2 Shortlisted Problems	312
3.45	IMO 2004	317
	3.45.1 Contest Problems	317
	3.45.2 Shortlisted Problems	318
3.46	IMO 2005	322
	3.46.1 Contest Problems	322
	3.46.2 Shortlisted Problems	322
3.47	IMO 2006	326
	3.47.1 Contest Problems	326
	3.47.2 Shortlisted Problems	326
3.48	IMO 2007	331
	3.48.1 Contest Problems	331
	3.48.2 Shortlisted Problems	332
3.49	IMO 2008	336
	3.49.1 Contest Problems	336
	3.49.2 Shortlisted Problems	337
3.50	IMO 2009	341
	3.50.1 Contest Problems	341
	3.50.2 Shortlisted Problems	341
C 1		2.47
Solu	tions	347
4.1	Contest Problems 1959	34/
4.2	Contest Problems 1960	349
4.5	Contest Problems 1961	252
4.4	Contest Problems 1962	252
4.5	Contest Problems 1965	255
4.0	Contest Problems 1964	257
4.7	Contest Problems 1965	250
4.0 1 0	Longlisted Problems 1967	361
4.9	Shortlisted Problems 1968	374
4.10	Contest Problems 1960	380
4.12	Shortlisted Problems 1909	383
4 13	Shortlisted Problems 1970	389
4 14	Shortlisted Problems 1972	396
4 1 5	Shortlisted Problems 1972	401
4 16	Shortlisted Problems 1975	407
1.10		107

4

	4.17 Shortlisted Problems 1975	413	
	4.18 Shortlisted Problems 1976	418	
	4.19 Longlisted Problems 1977	422	
	4.20 Shortlisted Problems 1978	437	
	4.21 Shortlisted Problems 1979	445	
	4.22 Shortlisted Problems 1981	453	
	4.23 Shortlisted Problems 1982	461	
	4.24 Shortlisted Problems 1983	467	
	4.25 Shortlisted Problems 1984	476	
	4.26 Shortlisted Problems 1985	483	
	4.27 Shortlisted Problems 1986	491	
	4.28 Shortlisted Problems 1987	498	
	4.29 Shortlisted Problems 1988	508	
	4.30 Shortlisted Problems 1989	523	
	4.31 Shortlisted Problems 1990	537	
	4.32 Shortlisted Problems 1991	550	
	4.33 Shortlisted Problems 1992	563	
	4.34 Shortlisted Problems 1993	573	
	4.35 Shortlisted Problems 1994	585	
	4.36 Shortlisted Problems 1995	593	
	4.37 Shortlisted Problems 1996	606	
	4.38 Shortlisted Problems 1997	622	
	4.39 Shortlisted Problems 1998	636	
	4.40 Shortlisted Problems 1999	650	
	4.41 Shortlisted Problems 2000	664	
	4.42 Shortlisted Problems 2001	677	
	4.43 Shortlisted Problems 2002	691	
	4.44 Shortlisted Problems 2003	702	
	4.45 Shortlisted Problems 2004	715	
	4.46 Shortlisted Problems 2005	730	
	4.47 Shortlisted Problems 2006	742	
	4.48 Shortlisted Problems 2007	754	
	4.49 Shortlisted Problems 2008	765	
	4.50 Shortlisted Problems 2009	TTT	
Δ	Notation and Abbreviations	791	
1	A.1 Notation	791	
	A.2 Abbreviations	792	
B	Codes of the Countries of Origin	795	
С	Authors of Problems	797	
References			

322 3 Problems

3.46 The Forty-Sixth IMO Mérida, Mexico, July 8–19, 2005

3.46.1 Contest Problems

First Day (July 13)

- 1. Six points are chosen on the sides of an equilateral triangle ABC: A_1, A_2 on BC; B_1, B_2 on CA; C_1, C_2 on AB. These points are vertices of a convex hexagon $A_1A_2B_1B_2C_1C_2$ with equal side lengths. Prove that the lines A_1B_2 , B_1C_2 and C_1A_2 are concurrent.
- 2. Let a_1, a_2, \ldots be a sequence of integers with infinitely many positive terms and infinitely many negative terms. Suppose that for each positive integer *n*, the numbers a_1, a_2, \ldots, a_n leave *n* different remainders on division by *n*. Prove that each integer occurs exactly once in the sequence.
- 3. Let x, y, and z be positive real numbers such that $xyz \ge 1$. Prove that

$$\frac{x^5 - x^2}{x^5 + y^2 + z^2} + \frac{y^5 - y^2}{y^5 + z^2 + x^2} + \frac{z^5 - z^2}{z^5 + x^2 + y^2} \ge 0.$$

Second Day (July 14)

4. Consider the sequence a_1, a_2, \ldots defined by

$$a_n = 2^n + 3^n + 6^n - 1$$
 $(n = 1, 2, ...).$

Determine all positive integers that are relatively prime to every term of the sequence.

- 5. Let *ABCD* be a given convex quadrilateral with sides *BC* and *AD* equal in length and not parallel. Let *E* and *F* be interior points of the sides *BC* and *AD* respectively such that BE = DF. The lines *AC* and *BD* meet at *P*; the lines *BD* and *EF* meet at *Q*; the lines *EF* and *AC* meet at *R*. Consider all the triangles *PQR* as *E* and *F* vary. Show that the circumcircles of these triangles have a common point other than *P*.
- 6. In a mathematical competition, six problems were posed to the contestants. Each pair of problems was solved by more than 2/5 of the contestants. Nobody solved all six problems. Show that there were at least two contestants who each solved exactly five problems.

3.46.2 Shortlisted Problems

1. A1 (ROU) Find all monic polynomials p(x) with integer coefficients of degree two for which there exists a polynomial q(x) with integer coefficients such that p(x)q(x) is a polynomial having all coefficients ± 1 .

A2 (BGR) Let ℝ⁺ denote the set of positive real numbers. Determine all functions f : ℝ⁺ → ℝ⁺ such that

$$f(x)f(y) = 2f(x+yf(x))$$

for all positive real numbers x and y.

3. A3 (CZE) Four real numbers p,q,r,s satisfy

$$p+q+r+s=9$$
 and $p^2+q^2+r^2+s^2=21$.

Prove that $ab - cd \ge 2$ holds for some permutation (a, b, c, d) of (p, q, r, s).

4. A4 (IND) Find all functions $f : \mathbb{R} \to \mathbb{R}$ satisfying the equation

$$f(x+y) + f(x)f(y) = f(xy) + 2xy + 1$$

for all real *x* and *y*.

5. A5 (KOR)^{IMO3} Let x, y and z be positive real numbers such that $xyz \ge 1$. Prove that

$$\frac{x^5 - x^2}{x^5 + y^2 + z^2} + \frac{y^5 - y^2}{y^5 + z^2 + x^2} + \frac{z^5 - z^2}{z^5 + x^2 + y^2} \ge 0.$$

- 6. **C1 (AUS)** A house has an even number of lamps distributed among its rooms in such a way that there are at least three lamps in every room. Each lamp shares a switch with exactly one other lamp, not necessarily from the same room. Each change in the switch shared by two lamps changes their states simultaneously. Prove that for every initial state of the lamps there exists a sequence of changes in some of the switches at the end of which each room contains lamps that are on as well as lamps that are off.
- 7. C2 (IRN) Let k be a fixed positive integer. A company has a special method to sell sombreros. Each customer can convince two persons to buy a sombrero after he/she buys one; convincing someone already convinced does not count. Each of these new customers can convince two others and so on. If each of the two customers convinced by someone makes at least k persons buy sombreros (directly or indirectly), then that someone wins a free instructional video. Prove that if n persons bought sombreros, then at most n/(k+2) of them got videos.
- 8. C3 (IRN) In an $m \times n$ rectangular board of mn unit squares, *adjacent* squares are ones with a common edge, and a *path* is a sequence of squares in which any two consecutive squares are adjacent. Each square of the board can be colored black or white. Let N denote the number of colorings of the board such that there exists at least one black path from the left edge of the board to its right edge, and let M denote the number of colorings in which there exist at least two nonintersecting black paths from the left edge to the right edge. Prove that $N^2 \ge 2^{mn}M$.
- 9. C4 (COL) Let $n \ge 3$ be a given positive integer. We wish to label each side and each diagonal of a regular *n*-gon $P_1 \dots P_n$ with a positive integer less than or equal to *r* so that:

- 324 3 Problems
 - (i) every integer between 1 and *r* occurs as a label;

(ii) in each triangle $P_i P_j P_k$ two of the labels are equal and greater than the third. Given these conditions:

- (a) Determine the largest positive integer r for which this can be done.
- (b) For that value of *r*, how many such labelings are there?
- 10. C5 (SCG) There are *n* markers, each with one side white and the other side black, aligned in a row so that their white sides are up. In each step, if possible, we choose a marker with the white side up (but not one of the outermost markers), remove it, and reverse the closest marker to the left and the closest marker to the right of it. Prove that one can achieve the state with only two markers remaining if and only if n 1 is not divisible by 3.
- 11. **C6** (**ROU**)^{IMO6} In a mathematical competition, six problems were posed to the contestants. Each pair of problems was solved by more than 2/5 of the contestants. Nobody solved all six problems. Show that there were at least two contestants who each solved exactly five problems.
- 12. C7 (USA) Let $n \ge 1$ be a given integer, and let a_1, \ldots, a_n be a sequence of integers such that *n* divides the sum $a_1 + \cdots + a_n$. Show that there exist permutations σ and τ of $1, 2, \ldots, n$ such that $\sigma(i) + \tau(i) \equiv a_i \pmod{n}$ for all $i = 1, \ldots, n$.
- 13. C8 (BGR) Let M be a convex n-gon, $n \ge 4$. Some n-3 of its diagonals are colored green and some other n-3 diagonals are colored red, so that no two diagonals of the same color meet inside M. Find the maximum possible number of intersection points of green and red diagonals inside M.
- 14. **G1 (HEL)** In a triangle *ABC* satisfying AB + BC = 3AC the incircle has center *I* and touches the sides *AB* and *BC* at *D* and *E*, respectively. Let *K* and *L* be the symmetric points of *D* and *E* with respect to *I*. Prove that the quadrilateral *ACKL* is cyclic.
- 15. **G2** (**ROU**)^{IMO1} Six points are chosen on the sides of an equilateral triangle *ABC*: A_1, A_2 on *BC*; B_1, B_2 on *CA*; C_1, C_2 on *AB*. These points are vertices of a convex hexagon $A_1A_2B_1B_2C_1C_2$ with equal side lengths. Prove that the lines A_1B_2, B_1C_2 and C_1A_2 are concurrent.
- 16. **G3 (UKR)** Let *ABCD* be a parallelogram. A variable line *l* passing through the point *A* intersects the rays *BC* and *DC* at points *X* and *Y*, respectively. Let *K* and *L* be the centers of the excircles of triangles *ABX* and *ADY*, touching the sides *BX* and *DY*, respectively. Prove that the size of angle *KCL* does not depend on the choice of the line *l*.
- 17. **G4** (**POL**)^{IMO5} Let *ABCD* be a given convex quadrilateral with sides *BC* and *AD* equal in length and not parallel. Let *E* and *F* be interior points of the sides *BC* and *AD* respectively such that BE = DF. The lines *AC* and *BD* meet at *P*; the lines *BD* and *EF* meet at *Q*; the lines *EF* and *AC* meet at *R*. Consider all the triangles *PQR* as *E* and *F* vary. Show that the circumcircles of these triangles have a common point other than *P*.

- 18. **G5** (**ROU**) Let *ABC* be an acute-angled triangle with $AB \neq AC$; let *H* be its orthocenter and *M* the midpoint of *BC*. Points *D* on *AB* and *E* on *AC* are such that AE = AD and D, H, E are collinear. Prove that *HM* is orthogonal to the common chord of the circumcircles of triangles *ABC* and *ADE*.
- 19. G6 (RUS) The median AM of a triangle ABC intersects its incircle ω at K and L. The lines through K and L parallel to BC intersect ω again at X and Y. The lines AX and AY intersect BC at P and Q. Prove that BP = CQ.
- 20. **G7 (KOR)** In an acute triangle *ABC*, let *D*, *E*, *F*, *P*, *Q*, *R* be the feet of perpendiculars from *A*, *B*, *C*, *A*, *B*, *C* to *BC*, *CA*, *AB*, *EF*, *FD*, *DE*, respectively. Prove that $p(ABC)p(PQR) \ge p(DEF)^2$, where p(T) denotes the perimeter of triangle *T*.
- 21. **N1** (**POL**)^{IMO4} Consider the sequence a_1, a_2, \ldots defined by

$$a_n = 2^n + 3^n + 6^n - 1$$
 $(n = 1, 2, ...)$

Determine all positive integers that are relatively prime to every term of the sequence.

- 22. **N2** (**NLD**)^{IMO2} Let $a_1, a_2, ...$ be a sequence of integers with infinitely many positive terms and infinitely many negative terms. Suppose that for each positive integer *n*, the numbers $a_1, a_2, ..., a_n$ leave *n* different remainders on division by *n*. Prove that each integer occurs exactly once in the sequence.
- 23. N3 (MNG) Let a, b, c, d, e, and f be positive integers. Suppose that the sum S = a+b+c+d+e+f divides both abc+def and ab+bc+ca-de-ef-fd. Prove that S is composite.
- 24. N4 (COL) Find all positive integers n > 1 for which there exists a unique integer a with $0 < a \le n!$ such that $a^n + 1$ is divisible by n!.
- 25. **N5** (**NLD**) Denote by d(n) the number of divisors of the positive integer *n*. A positive integer *n* is called *highly divisible* if d(n) > d(m) for all positive integers m < n. Two highly divisible integers *m* and *n* with m < n are called consecutive if there exists no highly divisible integer *s* satisfying m < s < n.
 - (a) Show that there are only finitely many pairs of consecutive highly divisible integers of the form (*a*, *b*) with *a* | *b*.
 - (b) Show that for every prime number p there exist infinitely many positive highly divisible integers r such that pr is also highly divisible.
- 26. N6 (IRN) Let a and b be positive integers such that $a^n + n$ divides $b^n + n$ for every positive integer n. Show that a = b.
- 27. N7 (RUS) Let $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$, where a_0, \dots, a_n are integers, $a_n > 0, n \ge 2$. Prove that there exists a positive integer *m* such that P(m!) is a composite number.

326 3 Problems

3.47 The Forty-Seventh IMO Ljubljana, Slovenia, July 6–18, 2006

3.47.1 Contest Problems

First Day (July 12)

1. Let ABC be a triangle with incenter *I*. A point *P* in the interior of the triangle satisfies

 $\angle PBA + \angle PCA = \angle PBC + \angle PCB.$

Show that $AP \ge AI$, and that equality holds if and only if P = I.

Let *P* be a regular 2006-gon. A diagonal of *P* is called *good* if its endpoints divide the boundary of *P* into two parts, each composed of an odd number of sides of *P*. The sides of *P* are also called good.

Suppose \mathscr{P} has been dissected into triangles by 2003 diagonals, no two of which have a common point in the interior of \mathscr{P} . Find the maximum number of isosceles triangles having two good sides that could appear in such a configuration.

3. Determine the least real number M such that the inequality

$$|ab(a^{2}-b^{2})+bc(b^{2}-c^{2})+ca(c^{2}-a^{2})| \le M(a^{2}+b^{2}+c^{2})^{2}$$

holds for all real numbers *a*, *b*, and *c*.

Second Day (July 13)

4. Determine all pairs (x, y) of integers such that

 $1 + 2^{x} + 2^{2x+1} = y^{2}$.

5. Let P(x) be a polynomial of degree n > 1 with integer coefficients and let k be a positive integer. Consider the polynomial

$$Q(x) = P(P(\ldots P(P(x))\ldots)),$$

where *P* occurs *k* times. Prove that there are at most *n* integers *t* that satisfy the equality Q(t) = t.

6. Assign to each side b of a convex polygon P the maximum area of a triangle that has b as a side and is contained in P. Show that the sum of the areas assigned to the sides of P is at least twice the area of P.

3.47.2 Shortlisted Problems

1. A1 (EST) A sequence of real numbers a_0, a_1, a_2, \ldots is defined by the formula

$$a_{i+1} = [a_i] \cdot \{a_i\}, \text{ for } i \ge 0;$$

here a_0 is an arbitrary number, $[a_i]$ denotes the greatest integer not exceeding a_i , and $\{a_i\} = a_i - [a_i]$. Prove that $a_i = a_{i+2}$ for *i* sufficiently large.

2. A2 (POL) The sequence of real numbers $a_0, a_1, a_2, ...$ is defined recursively by $a_0 = -1$ and

$$\sum_{k=0}^{n} \frac{a_{n-k}}{k+1} = 0, \text{ for } n \ge 1$$

Show that $a_n > 0$ for $n \ge 1$.

3. A3 (RUS) The sequence $c_0, c_1, \ldots, c_n, \ldots$ is defined by $c_0 = 1, c_1 = 0$, and $c_{n+2} = c_{n+1} + c_n$ for $n \ge 0$. Consider the set *S* of ordered pairs (x, y) for which there is a finite set *J* of positive integers such that $x = \sum_{j \in J} c_j, y = \sum_{j \in J} c_{j-1}$. Prove that there exist real numbers α, β , and *M* with the following property: an ordered pair of nonnegative integers (x, y) satisfies the inequality $m < \alpha x + \beta y < M$ if and only if $(x, y) \in S$.

Remark: A sum over the elements of the empty set is assumed to be 0.

4. A4 (SRB) Prove the inequality

$$\sum_{i < j} \frac{a_i a_j}{a_i + a_j} \le \frac{n}{2(a_1 + a_2 + \dots + a_n)} \sum_{i < j} a_i a_j$$

for positive real numbers a_1, a_2, \ldots, a_n .

5. A5 (KOR) Let a, b, c be the sides of a triangle. Prove that

$$\frac{\sqrt{b+c-a}}{\sqrt{b}+\sqrt{c}-\sqrt{a}} + \frac{\sqrt{c+a-b}}{\sqrt{c}+\sqrt{a}-\sqrt{b}} + \frac{\sqrt{a+b-c}}{\sqrt{a}+\sqrt{b}-\sqrt{c}} \le 3.$$

6. A6 (IRL)^{IMO3} Determine the smallest number M such that the inequality

$$|ab(a^2 - b^2) + bc(b^2 - c^2) + ca(c^2 - a^2)| \le M(a^2 + b^2 + c^2)^2$$

holds for all real numbers a, b, c

7. **C1 (FRA)** We have $n \ge 2$ lamps L_1, \ldots, L_n in a row, each of them being either on or off. Every second we simultaneously modify the state of each lamp as follows: if the lamp L_i and its neighbors (only one neighbor for i = 1 or i = n, two neighbors for other *i*) are in the same state, then L_i is switched off; otherwise, L_i is switched on.

Initially all the lamps are off except the leftmost one which is on.

- (a) Prove that there are infinitely many integers *n* for which all the lamps will eventually be off.
- (b) Prove that there are infinitely many integers n for which the lamps will never be all off.
- 8. C2 (SRB)^{IMO2} A diagonal of a regular 2006-gon is called *odd* if its endpoints divide the boundary into two parts, each composed of an odd number of sides. Sides are also regarded as odd diagonals. Suppose the 2006-gon has been dissected into triangles by 2003 nonintersecting diagonals. Find the maximum possible number of isosceles triangles with two odd sides.

- 328 3 Problems
- 9. C3 (COL) Let S be a finite set of points in the plane such that no three of them are on a line. For each convex polygon P whose vertices are in S, let a(P) be the number of vertices of P, and let b(P) be the number of points of S that are outside P. Prove that for every real number x

$$\sum_{P} x^{a(P)} (1-x)^{b(P)} = 1,$$

where the sum is taken over all convex polygons with vertices in *S*. *Remark*. A line segment, a point, and the empty set are considered convex polygons of 2, 1, and 0 vertices respectively.

10. C4 (TWN) A cake has the form of an $n \times n$ square composed of n^2 unit squares. Strawberries lie on some of the unit squares so that each row and each column contains exactly one strawberry; call this arrangement \mathcal{A} .

Let \mathscr{B} be another such arrangement. Suppose that every grid rectangle with one vertex at the top left corner of the cake contains no fewer strawberries of arrangement \mathscr{B} than of arrangement \mathscr{A} . Prove that arrangement \mathscr{B} can be obtained from \mathscr{A} by performing a number of *switches*, defined as follows:

A *switch* consists in selecting a grid rectangle with only two strawberries, situated at its top right corner and bottom left corner, and moving these two strawberries to the other two corners of that rectangle.

- 11. C5 (ARG) An (n,k)-tournament is a contest with n players held in k rounds such that:
 - (i) Each player plays in each round, and every two players meet at most once.
 - (ii) If player A meets player B in round i, player C meets player D in round i, and player A meets player C in round j, then player B meets player D in round j.

Determine all pairs (n,k) for which there exists an (n,k)-tournament.

- 12. C6 (COL) A *holey triangle* is an upward equilateral triangle of side length n with n upward unit triangular holes cut out. A *diamond* is a 60°–120° unit rhombus. Prove that a holey triangle T can be tiled with diamonds if and only if the following condition holds: every upward equilateral triangle of side length k in T contains at most k holes, for $1 \le k \le n$.
- 13. **C7** (**JPN**) Consider a convex polyhedron without parallel edges and without an edge parallel to any face other than the two faces adjacent to it. Call a pair of points of the polyhedron *antipodal* if there exist two parallel planes passing through these points and such that the polyhedron is contained between these planes.

Let A be the number of antipodal pairs of vertices, and let B be the number of antipodal pairs of midpoint edges. Determine the difference A - B in terms of the numbers of vertices, edges, and faces.

14. **G1** (**KOR**)^{IMO1} Let *ABC* be a triangle with incenter *I*. A point *P* in the interior of the triangle satisfies $\angle PBA + \angle PCA = \angle PBC + \angle PCB$. Show that $AP \ge AI$ and that equality holds if and only if *P* coincides with *I*.

- 15. **G2** (**UKR**) Let *ABC* be a trapezoid with parallel sides AB > CD. Points *K* and *L* lie on the line segments *AB* and *CD*, respectively, so that AK/KB = DL/LC. Suppose that there are points *P* and *Q* on the line segment *KL* satisfying $\angle APB = \angle BCD$ and $\angle CQD = \angle ABC$. Prove that the points *P*, *Q*, *B*, and *C* are concyclic.
- 16. **G3 (USA)** Let *ABCDE* be a convex pentagon such that $\angle BAC = \angle CAD = \angle DAE$ and $\angle ABC = \angle ACD = \angle ADE$. The diagonals *BD* and *CE* meet at *P*. Prove that the line *AP* bisects the side *CD*.
- 17. **G4 (RUS)** A point *D* is chosen on the side *AC* of a triangle *ABC* with $\angle C < \angle A < 90^{\circ}$ in such a way that BD = BA. The incircle of *ABC* is tangent to *AB* and *AC* at points *K* and *L*, respectively. Let *J* be the incenter of triangle *BCD*. Prove that the line *KL* intersects the line segment *AJ* at its midpoint.
- 18. **G5** (**HEL**) In triangle *ABC*, let *J* be the center of the excircle tangent to side *BC* at A_1 and to the extensions of sides *AC* and *AB* at B_1 and C_1 , respectively. Suppose that the lines A_1B_1 and *AB* are perpendicular and intersect at *D*. Let *E* be the foot of the perpendicular from C_1 to line *DJ*. Determine the angles $\angle BEA_1$ and $\angle AEB_1$.
- 19. **G6 (BRA)** Circles ω_1 and ω_2 with centers O_1 and O_2 are externally tangent at point *D* and internally tangent to a circle ω at points *E* and *F*, respectively. Line *t* is the common tangent of ω_1 and ω_2 at *D*. Let *AB* be the diameter of ω perpendicular to *t*, so that *A*, *E*, and O_1 are on the same side of *t*. Prove that the lines AO_1, BO_2, EF , and *t* are concurrent.
- 20. **G7** (**SVK**) In a triangle *ABC*, let M_a , M_b , M_c , be respectively the midpoints of the sides *BC*, *CA*, *AB*, and let T_a , T_b , T_c be the midpoints of the arcs *BC*, *CA*, *AB* of the circumcircle of *ABC*, not counting the opposite vertices. For $i \in \{a, b, c\}$ let ω_i be the circle with M_iT_i as diameter. Let p_i be the common external tangent to ω_j , ω_k ($\{i, j, k\} = \{a, b, c\}$) such that ω_i lies on the opposite side of p_i from ω_j , ω_k . Prove that the lines p_a , p_b , p_c form a triangle similar to *ABC* and find the ratio of similitude.
- 21. **G8** (**POL**) Let *ABCD* be a convex quadrilateral. A circle passing through the points *A* and *D* and a circle passing through the points *B* and *C* are externally tangent at a point *P* inside the quadrilateral. Suppose that $\angle PAB + \angle PDC \leq 90^{\circ}$ and $\angle PBA + \angle PCD \leq 90^{\circ}$. Prove that $AB + CD \geq BC + AD$.
- 22. **G9** (**RUS**) Points A_1, B_1, C_1 are chosen on the sides BC, CA, AB of a triangle *ABC* respectively. The circumcircles of triangles $AB_1C_1, BC_1A_1, CA_1B_1$ intersect the circumcircle of triangle *ABC* again at points A_2, B_2, C_2 respectively ($A_2 \neq A$, $B_2 \neq B, C_2 \neq C$). Points A_3, B_3, C_3 are symmetric to A_1, B_1, C_1 with respect to the midpoints of the sides *BC*, *CA*, *AB*, respectively. Prove that the triangles $A_2B_2C_2$ and $A_3B_3C_3$ are similar.
- 23. **G10** (**SRB**)^{IMO6} Assign to each side *b* of a convex polygon \mathscr{P} the maximum area of a triangle that has *b* as a side and is contained in \mathscr{P} . Show that the sum of the areas assigned to the sides of \mathscr{P} is at least twice the area of \mathscr{P} .

- 330 3 Problems
- 24. **N1** (USA)^{IMO4} Determine all pairs (x, y) of integers satisfying the equation $1 + 2^x + 2^{2x+1} = y^2$.
- 25. N2 (CAN) For $x \in (0,1)$ let $y \in (0,1)$ be the number whose *n*th digit after the decimal point is the 2^{*n*}th digit after the decimal point of *x*. Show that if *x* is rational then so is *y*.
- 26. N3 (SAF) The sequence $f(1), f(2), f(3), \ldots$ is defined by

$$f(n) = \frac{1}{n} \left(\left[\frac{n}{1} \right] + \left[\frac{n}{2} \right] + \dots + \left[\frac{n}{n} \right] \right),$$

where [x] denotes the integral part of x.

- (a) Prove that f(n+1) > f(n) infinitely often.
- (b) Prove that f(n+1) < f(n) infinitely often.
- 27. N4 (ROU)^{IMO5} Let P(x) be a polynomial of degree n > 1 with integer coefficients and let k be a positive integer. Consider the polynomial $Q(x) = P(P(\ldots P(P(x))\ldots))$, where P occurs k times. Prove that there are at most n integers t such that Q(t) = t.
- 28. N5 (RUS) Find all integer solutions of the equation

$$\frac{x^7 - 1}{x - 1} = y^5 - 1.$$

- 29. N6 (USA) Let a > b > 1 be relatively prime positive integers. Define the *weight* of an integer c, denoted by w(c), to be the minimal possible value of |x| + |y| taken over all pairs of integers x and y such that ax + by = c. An integer c is called a *local champion* if $w(c) \ge w(c \pm a)$ and $w(c) \ge w(c \pm b)$. Find all local champions and determine their number.
- 30. N7 (EST) Prove that for every positive integer *n* there exists an integer *m* such that $2^m + m$ is divisible by *n*.

4.46 Solutions to the Shortlisted Problems of IMO 2005

1. Clearly, p(x) has to be of the form $p(x) = x^2 + ax \pm 1$, where *a* is an integer. For $a = \pm 1$ and a = 0, polynomial *p* has the required property: it suffices to take q = 1 and q = x + 1, respectively.

Suppose now that $|a| \ge 2$. Then p(x) has two real roots, say x_1, x_2 , which are also roots of $p(x)q(x) = x^n + a_{n-1}x^{n-1} + \dots + a_0, a_i = \pm 1$. Thus

$$1 = \left| \frac{a_{n-1}}{x_i} + \dots + \frac{a_0}{x_i^n} \right| \le \frac{1}{|x_i|} + \dots + \frac{1}{|x_i|^n} < \frac{1}{|x_i| - 1}$$

which implies $|x_1|, |x_2| < 2$. This immediately rules out the case $|a| \ge 3$ and the polynomials $p(x) = x^2 \pm 2x - 1$. The remaining two polynomials $x^2 \pm 2x + 1$ satisfy the condition for $q(x) = x \mp 1$.

Therefore, the polynomials p(x) with the desired property are $x^2 \pm x \pm 1$, $x^2 \pm 1$, and $x^2 \pm 2x + 1$.

2. Given y > 0, consider the function $\varphi(x) = x + yf(x)$, x > 0. This function is injective: indeed, if $\varphi(x_1) = \varphi(x_2)$, then $f(x_1)f(y) = f(\varphi(x_1)) = f(\varphi(x_2)) = f(x_2)f(y)$, so $f(x_1) = f(x_2)$, so $x_1 = x_2$ by the definition of φ . Now if $x_1 > x_2$ and $f(x_1) < f(x_2)$, we have $\varphi(x_1) = \varphi(x_2)$ for $y = \frac{x_1 - x_2}{f(x_2) - f(x_1)} > 0$, which is impossible; hence f is nondecreasing. The functional equation now yields $f(x)f(y) = 2f(x + yf(x)) \ge 2f(x)$ and consequently $f(y) \ge 2$ for y > 0. Therefore

$$f(x+yf(x)) = f(xy) = f(y+xf(y)) \ge f(2x)$$

holds for arbitrarily small y > 0, implying that f is constant on the interval (x, 2x] for each x > 0. But then f is constant on the union of all intervals (x, 2x] over all x > 0, that is, on all of \mathbb{R}^+ . Now the functional equation gives us f(x) = 2 for all x, which is clearly a solution.

Second Solution. In the same way as above we prove that f is nondecreasing, and hence its discontinuity set is at most countable. We can extend f to $\mathbb{R} \cup \{0\}$ by defining $f(0) = \inf_x f(x) = \lim_{x\to 0} f(x)$, and the new function f is continuous at 0 as well. If x is a point of continuity of f we have $f(x)f(0) = \lim_{y\to 0} f(x)f(y) = \lim_{y\to 0} 2f(x+yf(x)) = 2f(x)$, hence f(0) = 2. Now, if f is continuous at 2y, then $2f(y) = \lim_{x\to 0} f(x)f(y) = \lim_{x\to 0} 2f(x+yf(x)) = 2f(x)$. Thus f(y) = f(2y), for all but countably many values of y. Being nondecreasing f is a constant; hence f(x) = 2.

3. Assume without loss of generality that $p \ge q \ge r \ge s$. We have

$$(pq+rs) + (pr+qs) + (ps+qr) = \frac{(p+q+r+s)^2 - p^2 - q^2 - r^2 - s^2}{2} = 30.$$

It is easy to see that $pq + rs \ge pr + qs \ge ps + qr$, which gives us $pq + rs \ge 10$. Now setting p + q = x, we obtain $x^2 + (9 - x)^2 = (p + q)^2 + (r + s)^2 = 21 + 2(pq + rs) \ge 41$, which is equivalent to $(x-4)(x-5) \ge 0$. Since $x = p+q \ge r+s$, we conclude that $x \ge 5$. Thus

$$25 \le p^2 + q^2 + 2pq = 21 - (r^2 + s^2) + 2pq \le 21 + 2(pq - rs),$$

or $pq - rs \ge 2$, as desired.

Remark. The quadruple (p,q,r,s) = (3,2,2,2) shows that the estimate 2 is the best possible.

4. Setting y = 0 yields (f(0) + 1)(f(x) - 1) = 0, and since f(x) = 1 for all x is impossible, we get f(0) = -1. Now plugging in x = 1 and y = -1 gives us f(1) = 1 or f(-1) = 0. In the first case setting x = 1 in the functional equation yields f(y+1) = 2y+1, i.e., f(x) = 2x - 1, which is one solution. Suppose now that $f(1) = a \neq 1$ and f(-1) = 0. Plugging (x, y) = (z, 1) and

Suppose now that $f(1) = a \neq 1$ and f(-1) = 0. Fugging (x, y) = (z, 1) and (x, y) = (-z, -1) in the functional equation yields

$$f(z+1) = (1-a)f(z) + 2z + 1$$

$$f(-z-1) = f(z) + 2z + 1.$$

It follows that f(z+1) = (1-a)f(-z-1) + a(2z+1), i.e. f(x) = (1-a)f(-x) + a(2x-1). Analogously, f(-x) = (1-a)f(x) + a(-2x-1), which together with the previous equation yields

$$(a^2 - 2a)f(x) = -2a^2x - (a^2 - 2a).$$

Now a = 2 is clearly impossible. For $a \notin \{0,2\}$ we get $f(x) = \frac{-2ax}{a-2} - 1$. This function satisfies the requirements only for a = -2, giving the solution f(x) = -x - 1. In the remaining case, when a = 0, we have f(x) = f(-x). Setting y = z and y = -z in the functional equation and subtracting yields $f(2z) = 4z^2 - 1$, so $f(x) = x^2 - 1$, which satisfies the equation.

Thus the solutions are f(x) = 2x - 1, f(x) = -x - 1, and $f(x) = x^2 - 1$.

5. The desired inequality is equivalent to

$$\frac{x^2 + y^2 + z^2}{x^5 + y^2 + z^2} + \frac{x^2 + y^2 + z^2}{y^5 + z^2 + x^2} + \frac{x^2 + y^2 + z^2}{z^5 + x^2 + y^2} \le 3.$$
 (1)

By the Cauchy inequality we have $(x^5 + y^2 + z^2)(yz + y^2 + z^2) \ge (x^{5/2}(yz)^{1/2} + y^2 + z^2)^2 \ge (x^2 + y^2 + z^2)^2$ and therefore

$$\frac{x^2 + y^2 + z^2}{x^5 + y^2 + z^2} \le \frac{yz + y^2 + z^2}{x^2 + y^2 + z^2}.$$

We get analogous inequalities for the other two summands in (1). Summing these yields

$$\frac{x^2 + y^2 + z^2}{x^5 + y^2 + z^2} + \frac{x^2 + y^2 + z^2}{y^5 + z^2 + x^2} + \frac{x^2 + y^2 + z^2}{z^5 + x^2 + y^2} \le 2 + \frac{xy + yz + zx}{x^2 + y^2 + z^2},$$

which together with the well-known inequality $x^2 + y^2 + z^2 \ge xy + yz + zx$ gives us the result.

Second solution. Multiplying both sides by the common denominator and using notation in Chapter 2 (*Muirhead's inequality*), we get

$$T_{5,5,5} + 4T_{7,5,0} + T_{5,2,2} + T_{9,0,0} \ge T_{5,5,2} + T_{6,0,0} + 2T_{5,4,0} + 2T_{4,2,0} + T_{2,2,2}.$$

By Schur's and Muirhead's inequalities we have that $T_{9,0,0} + T_{5,2,2} \ge 2T_{7,2,0} \ge 2T_{7,1,1}$. Since $xyz \ge 1$ we have that $T_{7,1,1} \ge T_{6,0,0}$. Therefore

$$T_{9,0,0} + T_{5,2,2} \ge 2T_{6,0,0} \ge T_{6,0,0} + T_{4,2,0}.$$
(2)

Moreover, Muirhead's inequality combined with $xyz \ge 1$ gives us $T_{7,5,0} \ge T_{5,5,2}$, $2T_{7,5,0} \ge 2T_{6,5,1} \ge 2T_{5,4,0}$, $T_{7,5,0} \ge T_{6,4,2} \ge T_{4,2,0}$, and $T_{5,5,5} \ge T_{2,2,2}$. Adding these four inequalities to (2) yields the desired result.

6. A room will be called *economic* if some of its lamps are on and some are off. Two lamps sharing a switch will be called *twins*. The twin of a lamp *l* will be denoted by *l*.

Suppose we have arrived at a state with the minimum possible number of uneconomic rooms, and that this number is strictly positive. Let us choose any uneconomic room, say R_0 , and a lamp l_0 in it. Let \bar{l}_0 be in a room R_1 . Switching l_0 , we make R_0 economic; therefore, since the number of uneconomic rooms cannot be decreased, this change must make room R_1 uneconomic. Now choose a lamp l_1 in R_1 having the twin \bar{l}_1 in a room R_2 . Switching l_1 makes R_1 economic, and thus must make R_2 uneconomic. Continuing in this manner we obtain a sequence l_0, l_1, \ldots of lamps with l_i in a room R_i and $\bar{l}_i \neq l_{i+1}$ in R_{i+1} for all *i*. The lamps l_0, l_1, \ldots are switched in this order. This sequence has the property that switching l_i and \bar{l}_i makes room R_i economic and room R_{i+1} uneconomic.

Let $R_m = R_k$ with m > k be the first repetition in the sequence (R_i) . Let us stop switching the lamps at l_{m-1} . The room R_k was uneconomic prior to switching l_k . Thereafter, lamps l_k and \bar{l}_{m-1} have been switched in R_k , but since these two lamps are distinct (indeed, their twins \bar{l}_k and l_{m-1} are distinct), the room R_k is now economic, as well as all the rooms $R_0, R_1, \ldots, R_{m-1}$. This decreases the number of uneconomic rooms, contradicting our assumption.

7. Let v be the number of video winners. One easily finds that for v = 1 and v = 2, the number n of customers is at least 2k + 3 and 3k + 5 respectively. We prove by induction on v that if $n \ge k + 1$, then $n \ge (k + 2)(v + 1) - 1$.

Without loss of generality, we can assume that the total number *n* of customers is minimum possible for given v > 0. Consider a person *P* who was convinced by nobody but himself. Then *P* must have won a video; otherwise, *P* could be removed from the group without decreasing the number of video winners. Let *Q* and *R* be the two persons convinced by *P*. We denote by \mathscr{C} the set of persons influenced by *P* through *Q* to buy a sombrero, including *Q*, and by \mathscr{D} the set of all other customers excluding *P*. Let *x* be the number of video winners in \mathscr{C} . Then there are v - x - 1 video winners in \mathscr{D} . We have $|\mathscr{C}| \ge (k+2)(x+1) - 1$, by the induction hypothesis if x > 0 and because *P* is a winner if x = 0. Similarly, $|\mathscr{D}| \ge (k+2)(v-x) - 1$. Thus $n \ge 1 + (k+2)(x+1) - 1 + (k+2)(v-x) - 1$, i.e., $n \ge (k+2)(v+1) - 1$.

8. Suppose that a two-sided $m \times n$ board T is considered, where exactly k of the squares are transparent. A transparent square is colored only on one side (then it looks the same from the other side), while a nontransparent one needs to be colored on both sides, not necessarily in the same color.

Let C = C(T) be the set of colorings of the board in which there exist two black paths from the left edge to the right edge, one on top and one underneath, not intersecting at any transparent square. If k = 0 then $|C| = N^2$. We prove by induction on k that $2^k |C| \le N^2$. This will imply the statement of the problem, since |C| = M for k = mn.

Let q be a fixed transparent square. Consider any coloring B in C: If q is converted into a nontransparent square, a new board T' with k-1 transparent squares is obtained, so by the induction hypothesis $2^{k-1}|C(T')| \le N^2$. Since B contains two black paths at most one of which passes through q, coloring q in either color on the other side will result in a coloring in C'; hence $|C(T')| \ge 2|C(T)|$, implying $2^k|C(T)| \le N^2$ and finishing the induction.

Second solution. By a *path* we shall mean a black path from the left edge to the right edge. Let \mathscr{A} denote the set of pairs of $m \times n$ boards each of which has a path. Let \mathscr{B} denote the set of pairs of boards such that the first board has two nonintersecting paths. Obviously, $|\mathscr{A}| = N^2$ and $|\mathscr{B}| = 2^{mn}M$. To prove $|\mathscr{A}| \geq |\mathscr{B}|$, we will construct an injection $f : \mathscr{B} \to \mathscr{A}$.

Among paths on a given board we define path x to be *lower* than y if the set of squares "under" x is a subset of the squares under y. This relation is a relation of incomplete order. However, for each board with at least one path there exists a lowest path (comparing two intersecting paths, we can always take the "lower branch" on each nonintersecting segment). Now, for a given element of \mathcal{B} , we "swap" the lowest path and all squares underneath on the first board with the corresponding points on the other board. This swapping operation is the desired injection f. Indeed, since the first board still contains the highest path (which didn't intersect the lowest one), the new configuration belongs to \mathcal{A} . On the other hand, this configuration uniquely determines the lowest path on the original element of \mathcal{B} ; hence no two different elements of \mathcal{B} can go to the same element of \mathcal{A} . This completes the proof.

9. Let [XY] denote the label of segment *XY*, where *X* and *Y* are vertices of the polygon. Consider any segment *MN* with the maximum label [MN] = r. By condition (ii), for any $P_i \neq M, N$, exactly one of P_iM and P_iN is labeled by *r*. Thus the set of all vertices of the *n*-gon splits into two complementary groups: $\mathscr{A} = \{P_i \mid [P_iM] = r\}$ and $\mathscr{B} = \{P_i \mid [P_iN] = r\}$. We claim that a segment *XY* is labeled by *r* if and only if it joins two points from different groups. Assume without loss of generality that $X \in \mathscr{A}$. If $Y \in \mathscr{A}$, then [XM] = [YM] = r, so [XY] < r. If $Y \in \mathscr{B}$, then [XM] = r and [YM] < r, so [XY] = r by (ii), as we claimed.

We conclude that a labeling satisfying (ii) is uniquely determined by groups \mathscr{A} and \mathscr{B} and labelings satisfying (ii) within A and B.

- 734 4 Solutions
 - (a) We prove by induction on n that the greatest possible value of r is n − 1. The degenerate cases n = 1,2 are trivial. If n ≥ 3, the number of different labels of segments joining vertices in A (resp. B) does not exceed |A| − 1 (resp. |B| − 1), while all segments joining a vertex in A and a vertex in B are labeled by r. Therefore r ≤ (|A| − 1) + (|B| − 1) + 1 = n − 1. Equality is achieved if all the mentioned labels are different.
 - (b) Let a_n be the number of labelings with r = n − 1. We prove by induction that a_n = n!(n-1)!/(2ⁿ⁻¹). This is trivial for n = 1, so let n ≥ 2. If |𝔄| = k is fixed, the groups 𝔄 and 𝔅 can be chosen in (ⁿ_k) ways. The set of labels used within 𝔄 can be selected among 1,2,...,n − 2 in (ⁿ⁻²_{k-1}) ways. Now the segments within groups 𝔄 and 𝔅 can be labeled so as to satisfy (ii) in a_k and a_{n-k} ways, respectively. In this way, every labeling has been counted twice, since choosing 𝔅 is equivalent to choosing 𝔅. It follows that

$$a_{n} = \frac{1}{2} \sum_{k=1}^{n-1} \binom{n}{k} \binom{n-2}{k-1} a_{k} a_{n-k}$$

= $\frac{n!(n-1)!}{2(n-1)} \sum_{k=1}^{n-1} \frac{a_{k}}{k!(k-1)!} \cdot \frac{a_{n-k}}{(n-k)!(n-k-1)!}$
= $\frac{n!(n-1)!}{2(n-1)} \sum_{k=1}^{n-1} \frac{1}{2^{k-1}} \cdot \frac{1}{2^{n-k-1}} = \frac{n!(n-1)!}{2^{n-1}}.$

10. Denote by L the leftmost and by R the rightmost marker. To start with, note that the parity of the number of black-side-up markers remains unchanged. Hence, if only two markers remain, these markers must have the same color up.

We shall show by induction on *n* that the game can be successfully finished if and only if $n \equiv 0$ or $n \equiv 2 \pmod{3}$, and that the upper sides of *L* and *R* will be black in the first case and white in the second case.

The statement is clear for n = 2, 3. Assume that we have finished the game for some n, and denote by k the position of the marker X (counting from the left) that was last removed. Having finished the game, we have also finished the subgames with the k markers from L to X and with the n - k + 1 markers from X to R (inclusive). Thereby, before X was removed, the upper side of L had been black if $k \equiv 0$ and white if $k \equiv 2 \pmod{3}$, while the upper side of R had been black if $n - k + 1 \equiv 0$ and white if $n - k + 1 \equiv 2 \pmod{3}$. Markers L and R were reversed upon the removal of X. Therefore, in the final position, L and R are white if and only if $k \equiv n - k + 1 \equiv 0$, which yields $n \equiv 2 \pmod{3}$, and black if and only if $k \equiv n - k + 1 \equiv 2$, which yields $n \equiv 0 \pmod{3}$.

On the other hand, a game with *n* markers can be reduced to a game with n-3 markers by removing the second, fourth, and third markers in this order. This finishes the induction.

Second solution. An invariant can be defined as follows. To each white marker with k black markers to its left we assign the number $(-1)^k$. Let S be the sum of the assigned numbers. Then it is easy to verify that the remainder of S modulo

3 remains unchanged throughout the game: For example, when a white marker with two white neighbors and k black markers to its left is removed, S decreases by $3(-1)^t$.

Initially, S = n. In the final position with two markers remaining, S equals 0 if the two markers are black and 2 if these are white (note that, as before, the two markers must be of the same color). Thus $n \equiv 0$ or 2 (mod 3).

Conversely, a game with *n* markers is reduced to n - 3 markers as in the first solution.

11. Assume that there were *n* contestants, a_i of whom solved exactly *i* problems, where $a_0 + \cdots + a_5 = n$. Let us count the number *N* of pairs (C, P), where contestant *C* solved the pair of problems *P*. Each of the 15 pairs of problems was solved by at least $\frac{2n+1}{5}$ contestants, implying $N \ge 15 \cdot \frac{2n+1}{5} = 6n+3$. On the other hand, a_i students solved $\frac{i(i-1)}{2}$ pairs; hence

$$6n + 3 \le N \le a_2 + 3a_3 + 6a_4 + 10a_5 = 6n + 4a_5 - (3a_3 + 5a_2 + 6a_1 + 6a_0).$$

Consequently $a_5 \ge 1$. Assume that $a_5 = 1$. Then we must have N = 6n + 4, which is possible only if 14 of the pairs of problems were solved by exactly $\frac{2n+1}{5}$ students and the remaining one by $\frac{2n+1}{5} + 1$ students, and all students but the winner solved 4 problems.

The problem t not solved by the winner will be called *tough* and the pair of problems solved by $\frac{2n+1}{5} + 1$ students *special*.

Let us count the number M_p of pairs (C, P) for which P contains a fixed problem p. Let b_p be the number of contestants who solved p. Then $M_t = 3b_t$ (each of the b_t students solved three pairs of problems containing t), and $M_p = 3b_p + 1$ for $p \neq t$ (the winner solved four such pairs). On the other hand, each of the five pairs containing p was solved by $\frac{2n+1}{5}$ or $\frac{2n+1}{5} + 1$ students, so $M_p = 2n + 2$ if the special pair contains p, and $M_p = 2n + 1$ otherwise.

Now since $M_t = 3b_t = 2n + 1$ or 2n + 2, we have $2n + 1 \equiv 0$ or 2 (mod 3). But if $p \neq t$ is a problem not contained in the special pair, we have $M_p = 3b_p + 1 = 2n + 1$; hence $2n + 1 \equiv 1 \pmod{3}$, which is a contradiction.

12. Suppose that there exist desired permutations σ and τ for some sequence a_1, \ldots, a_n . Given a sequence (b_i) with sum divisible by *n* that differs modulo *n* from (a_i) in only two positions, say i_1 and i_2 , we show how to construct desired permutations σ' and τ' for sequence (b_i) . In this way, starting from an arbitrary sequence (a_i) for which σ and τ exist, we can construct desired permutations for any other sequence with sum divisible by *n*. All congruences below are modulo *n*.

We know that $\sigma(i) + \tau(i) \equiv b_i$ for all $i \neq i_1, i_2$. We construct the sequence i_1, i_2, i_3, \ldots as follows: for each $k \ge 2, i_{k+1}$ is the unique index such that

$$\sigma(i_{k-1}) + \tau(i_{k+1}) \equiv b_{i_k}.$$
(1)

Let $i_p = i_q$ be the repetition in the sequence with the smallest q. We claim that p = 1 or p = 2. Assume to the contrary that p > 2. Summing (1) for k = p, p + 1,

..., q-1 and taking the equalities $\sigma(i_k) + \tau(i_k) = b_{i_k}$ for $i_k \neq i_1, i_2$ into account, we obtain $\sigma(i_{p-1}) + \sigma(i_p) + \tau(i_{q-1}) + \tau(i_q) \equiv b_p + b_{q-1}$. Since $i_q = i_p$, it follows that $\sigma(i_{p-1}) + \tau(i_{q-1}) \equiv b_{q-1}$ and therefore $i_{p-1} = i_{q-1}$, a contradiction. Thus p = 1 or p = 2 as claimed.

Now we define the following permutations:

$$\begin{aligned} \sigma'(i_k) &= \sigma(i_{k-1}) \text{ for } k = 2, 3, \dots, q-1 \text{ and } \sigma'(i_1) = \sigma(i_{q-1}), \\ \tau'(i_k) &= \tau(i_{k+1}) \text{ for } k = 2, 3, \dots, q-1 \text{ and } \tau'(i_1) = \begin{cases} \tau(i_2) \text{ if } p = 1, \\ \tau(i_1) \text{ if } p = 2; \end{cases} \\ \sigma'(i) &= \sigma(i) \text{ and } \tau'(i) = \tau(i) \text{ for } i \notin \{i_1, \dots, i_{q-1}\}. \end{aligned}$$

Permutations σ' and τ' have the desired property. Indeed, $\sigma'(i) + \tau'(i) = b_i$ obviously holds for all $i \neq i_1$, but then it must also hold for $i = i_1$.

13. For every green diagonal d, let C_d denote the number of green-red intersection points on d. The task is to find the maximum possible value of the sum $\sum_d C_d$ over all green diagonals.

Let d_i and d_j be two green diagonals and let the part of polygon M lying between d_i and d_j have m vertices. There are at most n - m - 1 red diagonals intersecting both d_i and d_j , while each of the remaining m - 2 diagonals meets at most one of d_i, d_j . It follows that

$$C_{d_i} + C_{d_i} \le 2(n - m - 1) + (m - 2) = 2n - m - 4.$$
(1)

We now arrange the green diagonals in a sequence $d_1, d_2, \ldots, d_{n-3}$ as follows. It is easily seen that there are two green diagonals d_1 and d_2 that divide M into two triangles and an (n-2)-gon; then there are two green diagonals d_3 and d_4 that divide the (n-2)-gon into two triangles and an (n-4)-gon, and so on. We continue this procedure until we end up with a triangle or a quadrilateral. Now, the part of M between d_{2k-1} and d_{2k} has at least n-2k vertices for $1 \le k \le$ r, where n-3 = 2r + e, $e \in \{0,1\}$; hence, by $(1), C_{d_{2k-1}} + C_{d_{2k}} \le n+2k-4$. Moreover, $C_{d_{n-3}} \le n-3$. Summing yields

$$C_{d_1} + C_{d_2} + \dots + C_{d_{n-3}} \le \sum_{k=1}^{r} (n+2k-4) + e(n-3)$$
$$= 3r^2 + e(3r+1) = \left[\frac{3}{4}(n-3)^2\right]$$

This value is attained in the following example. Let $A_1A_2...A_n$ be the *n*-gon *M* and let $l = \lfloor \frac{n}{2} \rfloor + 1$. The diagonals A_1A_i , i = 3,...,l, and A_lA_j , j = l + 2,...,n are colored green, whereas the diagonals A_2A_i , i = l + 1,...,n, and $A_{l+1}A_j$, j = 3,...,l-1 are colored red. Thus the answer is $\lfloor \frac{3}{4}(n-3)^2 \rfloor$.

14. Let *F* be the point of tangency of the incircle with *AC* and let *M* and *N* be the respective points of tangency of *AB* and *BC* with the corresponding excircles. If *I* is the incenter and I_a and *P* respectively the center and the tangency point with ray *AC* of the excircle corresponding to *A*, we have $\frac{AI}{IL} = \frac{AI}{IF} = \frac{AI_a}{I_a P} = \frac{AI_a}{I_a N}$, which

implies that $\triangle AIL \sim \triangle AI_aN$. Thus *L* lies on *AN*, and analogously *K* lies on *CM*. Define x = AF and y = CF. Since BD = BE, AD = BM = x, and CE = BN = y, the condition AB + BC = 3AC gives us DM = y and EN = x. The triangles *CLN* and *MKA* are congruent since their altitudes *KD* and *LE* satisfy DK = EL, DM = CE, and AD = EN. Thus $\angle AKM = \angle CLN$, implying that *ACKL* is cyclic.

- 15. Let *P* be the fourth vertex of the rhombus $C_2A_1A_2P$. Since $\triangle C_2PC_1$ is equilateral, we easily conclude that $B_1B_2C_1P$ is also a rhombus. Thus $\triangle PB_1A_2$ is equilateral and $\angle (C_2A_1, C_1B_2) = \angle A_2PB_1 = 60^\circ$. It easily follows that $\triangle AC_1B_2 \cong \triangle BA_1C_2$ and consequently $AC_1 = BA_1$; similarly, $BA_1 = CB_1$. Therefore triangle $A_1B_1C_1$ is equilateral. Now it follows from $B_1B_2 = B_2C_1$ that A_1B_2 bisects $\angle C_1A_1B_1$. Similarly, B_1C_2 and C_1A_2 bisect $\angle A_1B_1C_1$ and $\angle B_1C_1A_1$; hence A_1B_2, B_1C_2 , C_1A_2 meet at the incenter of $A_1B_1C_1$, i.e. at the center of ABC.
- 16. Since $\angle ADL = \angle KBA = 180^\circ \frac{1}{2} \angle BCD$ and $\angle ALD = \frac{1}{2} \angle AYD = \angle KAB$, triangles *ABK* and *LDA* are similar. Thus $\frac{BK}{BC} = \frac{BK}{AD} = \frac{AB}{DL} = \frac{DC}{DL}$, which together with $\angle LDC = \angle CBK$ gives us $\triangle LDC \sim \triangle CBK$. Therefore $\angle KCL = 360^\circ \angle BCD (\angle LCD + \angle KCB) = 360^\circ \angle BCD (\angle CKB + \angle KCB) = 180^\circ \angle CBK$, which is constant.
- 17. To start with, we note that points B, E, C are the images of D, F, A respectively under the rotation around point O for the angle $\omega = \angle DOB$, where O is the intersection of the perpendicular bisectors of AC and BD. Then OE = OF and $\angle OFE = \angle OAC = 90 \frac{\omega}{2}$; hence the points A, F, R, O are on a circle and $\angle ORP = 180^{\circ} \angle OFA$. Analogously, the points B, E, Q, O are on a circle and $\angle OQP = 180^{\circ} \angle OEB = \angle OEC = \angle OFA$. This shows that $\angle ORP = 180^{\circ} \angle OEB = \angle OEC = \angle OFA$. This shows that $\angle ORP = 180^{\circ} \angle OQP$, i.e. the point O lies on the circumcircle of $\triangle PQR$, thus being the desired point.
- 18. Let *O* and *O*₁ be the circumcenters of triangles *ABC* and *ADE*, respectively. It is enough to show that *HM* || *OO*₁. Let *AA'* be the diameter of the circumcircle of *ABC*. We note that if *B*₁ is the foot of the altitude from *B*, then *HE* bisects $\angle CHB_1$. Since the triangles *COM* and *CHB*₁ are similar (indeed, $\angle CHB = \angle COM = \angle A$), we have $\frac{CE}{EB_1} = \frac{CH}{HB_1} = \frac{CO}{OM} = \frac{2CO}{AH} = \frac{A'A}{AH}$.

Thus, if Q is the intersection point of the bisector of $\angle A'AH$ with HA', we obtain $\frac{CE}{EB_1} = \frac{A'Q}{QH}$, which together with $A'C \perp AC$ and $HB_1 \perp AC$ gives us $QE \perp AC$. Analogously, $QD \perp AB$. Therefore AQ is a diameter of the circumcircle of $\triangle ADE$ and O_1 is the midpoint of AQ. It follows that OO_1 is the line passing through the midpoints of AQ and AA'; hence $OO_1 ||HM$.

Second solution. We again prove that $OO_1 \parallel HM$. Since AA' = 2AO, it suffices to prove $AQ = 2AO_1$.

1

Elementary calculations of angles give us $\angle ADE = \angle AED = 90^{\circ} - \frac{\alpha}{2}$. Applying the law of sines to $\triangle DAH$ and $\triangle EAH$ we now have $DE = DH + EH = \frac{AH\cos\beta}{\cos\frac{\alpha}{2}} + \frac{AH\cos\gamma}{\cos\frac{\alpha}{2}}$. Since $AH = 2OM = 2R\cos\alpha$, we obtain

$$AO_1 = \frac{DE}{2\sin\alpha} = \frac{AH(\cos\beta + \cos\gamma)}{2\sin\alpha\cos\frac{\alpha}{2}} = \frac{2R\cos\alpha\sin\frac{\alpha}{2}\cos(\frac{\beta-\gamma}{2})}{\sin\alpha\cos\frac{\alpha}{2}}.$$

We now calculate AQ. Let N be the intersection of AQ with the circumcircle. Since $\angle NAO = \frac{\beta - \gamma}{2}$, we have $AN = 2R\cos(\frac{\beta - \gamma}{2})$. Noting that $\triangle QAH \sim \triangle QNM$ (and that MN = R - OM), we have

$$AQ = \frac{AN \cdot AH}{MN + AH} = \frac{2R\cos(\frac{\beta - \gamma}{2}) \cdot 2\cos\alpha}{1 + \cos\alpha} = \frac{2R\cos(\frac{\beta - \gamma}{2})\cos\alpha}{\cos^2\frac{\alpha}{2}} = 2AO_1.$$

19. We denote by D, E, F the points of tangency of the incircle with BC, CA, AB, respectively, by *I* the incenter, and by *Y'* the intersection of *AX* and *LY*. Since *EF* is the polar line to the point *A* with respect to the incircle, it meets *AL* at point *R* such that A, R; K, L are conjugate, i.e., $\frac{KR}{RL} = \frac{KA}{AL}$. Then $\frac{KX}{LY'} = \frac{KA}{AL} = \frac{KR}{RL} = \frac{KX}{LY}$ and therefore $LY = L\overline{Y}$, where \overline{Y} is the intersection of *XR* and *LY*. Thus showing that LY = LY'

(which is the same as showing that PM = MQ, i.e., CP = QB) is equivalent to showing that XY contains R. Since XKYL is an inscribed trapezoid, it is enough to show that R lies on its axis of symmetry, that is, DI.

Since *AM* is the median, the triangles *ARB* and *ARC* have equal areas, and since $\angle(RF,AB) = \angle(RE,AC)$ we have that $1 = \frac{S_{\triangle ABR}}{S_{\triangle ACR}} = \frac{(AB \cdot FR)}{(AC \cdot ER)}$. Hence $\frac{AB}{AC} = \frac{ER}{FR}$. Let *I'* be the point of intersection of the line through *F* parallel to *IE* with the line *IR*. Then $\frac{FI'}{EI} = \frac{FR}{RE} = \frac{AC}{AB}$ and $\angle I'FI = \angle BAC$ (angles with orthogonal rays). Thus the triangles *ABC* and *FII'* are similar, implying that $\angle FII' = \angle ABC$. Since $\angle FID = 180^\circ - \angle ABC$, it follows that *R*, *I*, and *D* are collinear.

20. We shall prove the inequalities $p(ABC) \ge 2p(DEF)$ and $p(PQR) \ge \frac{1}{2}p(DEF)$. The statement of the problem will immediately follow.

Let D_b and D_c be the reflections of D in AB and AC, and let A_1, B_1, C_1 be the midpoints of BC, CA, AB, respectively. It is easy to see that D_b, F, E, D_c are collinear. Hence $p(DEF) = D_bF + FE + ED_c = D_bD_c \le D_bC_1 + C_1B_1 + B_1D_c = \frac{1}{2}(AB + BC + CA) = \frac{1}{2}p(ABC)$.

To prove the second inequality we observe that *P*, *Q*, and *R* are the points of tangency of the excircles with the sides of $\triangle DEF$. Let FQ = ER = x, DR = FP = y, and DQ = EP = z, and let $\delta, \varepsilon, \varphi$ be the angles of $\triangle DEF$ at D, E, F,

respectively. Let Q' and R' be the projections of Q and R onto EF, respectively. Then $QR \ge Q'R' = EF - FQ' - R'E = EF - x(\cos\varphi + \cos\varepsilon)$. Summing this with the analogous inequalities for FD and DE, we obtain

$$p(PQR) \ge p(DEF) - x(\cos\varphi + \cos\varepsilon) - y(\cos\delta + \cos\varphi) - z(\cos\delta + \cos\varepsilon)$$

Assuming without loss of generality that $x \le y \le z$, we also have $DE \le FD \le FE$ and consequently $\cos \varphi + \cos \varepsilon \ge \cos \delta + \cos \varphi \ge \cos \delta + \cos \varepsilon$. Now Chebyshev's inequality gives us $p(PQR) \ge p(DEF) - \frac{2}{3}(x+y+z)(\cos \varepsilon + \cos \varphi + \cos \delta) \ge p(DEF) - (x+y+z) = \frac{1}{2}p(DEF)$, where we used $x+y+z = \frac{1}{2}p(DEF)$ and the fact that the sum of the cosines of the angles in a triangle does not exceed $\frac{3}{2}$. This finishes the proof.

21. We will show that 1 is the only such number. It is sufficient to prove that for every prime number p there exists some a_m such that $p \mid a_m$. For p = 2, 3 we have $p \mid a_2 = 48$. Assume now that p > 3. Applying Fermat's theorem, we have

$$6a_{p-2} = 3 \cdot 2^{p-1} + 2 \cdot 3^{p-1} + 6^{p-1} - 6 \equiv 3 + 2 + 1 - 6 \equiv 0 \pmod{p}.$$

Hence $p \mid a_{p-2}$, i.e. $gcd(p, a_{p-2}) = p > 1$. This completes the proof.

- 22. It immediately follows from the condition of the problem that all the terms of the sequence are distinct. We also note that $|a_i a_n| \le n 1$ for all integers i, n where i < n, because if $d = |a_i a_n| \ge n$ then $\{a_1, \ldots, a_d\}$ contains two elements congruent to each other modulo d, which is a contradiction. It easily follows by induction that for every $n \in \mathbb{N}$ the set $\{a_1, \ldots, a_n\}$ consists of consecutive integers. Thus, if we assumed that some integer k did not appear in the sequence a_1, a_2, \ldots , the same would have to hold for all integers either larger or smaller than k, which contradicts the condition that infinitely many positive and negative integers appear in the sequence. Thus, the sequence contains all integers.
- 23. Let us consider the polynomial

$$P(x) = (x+a)(x+b)(x+c) - (x-d)(x-e)(x-f) = Sx^2 + Qx + R,$$

where Q = ab + bc + ca - de - ef - fd and R = abc + def. Since $S \mid Q, R$, it follows that $S \mid P(x)$ for every $x \in \mathbb{Z}$. Hence, $S \mid P(d) = (d + a)(d + b)(d + c)$. Since S > d + a, d + b, d + c and thus cannot divide any of them, it follows that *S* must be composite.

24. We will show that *n* has the desired property if and only if it is prime.

For n = 2 we can take only a = 1. For n > 2 and even, $4 \mid n!$, but $a^n + 1 \equiv 1, 2 \pmod{4}$, which is impossible. Now we assume that n is odd. Obviously $(n!-1)^n + 1 \equiv (-1)^n + 1 = 0 \pmod{n!}$. If n is composite and d its prime divisor, then $\left(\frac{n!}{d} - 1\right)^n + 1 = \sum_{k=1}^n {n \choose k} \frac{n!^k}{d^k}$, where each summand is divisible by n! because $d^2 \mid n!$; therefore n! divides $\left(\frac{n!}{d} - 1\right)^n + 1$. Thus, all composite numbers are ruled out.

It remains to show that if *n* is an odd prime and $n! | a^n + 1$, then n! | a + 1, and therefore a = n! - 1 is the only relevant value for which $n! | a^n + 1$. Consider any

prime number $p \le n$. If $p \mid \frac{a^{n}+1}{a+1}$, we have $p \mid (-a)^n - 1$ and by Fermat's theorem $p \mid (-a)^{p-1} - 1$. Therefore $p \mid (-a)^{(n,p-1)} - 1 = -a - 1$, i.e. $a \equiv -1 \pmod{p}$. But then $\frac{a^n+1}{a+1} = a^{n-1} - a^{n-2} + \cdots - a + 1 \equiv n \pmod{p}$, implying that p = n. It follows that $\frac{a^n+1}{a+1}$ is coprime to (n-1)! and consequently (n-1)! divides a + 1. Moreover, the above consideration shows that n must divide a + 1. Thus $n! \mid a + 1$ as claimed. This finishes our proof.

25. We will use the abbreviation HD to denote a "highly divisible integer." Let $n = 2^{\alpha_2(n)} 3^{\alpha_3(n)} \cdots p^{\alpha_p(n)}$ be the factorization of *n* into primes. We have $d(n) = (\alpha_2(n) + 1) \cdots (\alpha_p(n) + 1)$. We start with the following two lemmas.

Lemma 1. If n is an HD and p,q primes with $p^k < q^l$ $(k, l \in \mathbb{N})$, then

$$k\alpha_q(n) \le l\alpha_p(n) + (k+1)(l-1).$$

- *Proof.* The inequality is trivial if $\alpha_q(n) < l$. Suppose that $\alpha_q(n) \ge l$. Then np^k/q^l is an integer less than q, and $d(np^k/q^l) < d(n)$, which is equivalent to $(\alpha_q(n) + 1)(\alpha_p(n) + 1) > (\alpha_q(n) l + 1)(\alpha_p(n) + k + 1)$ implying the desired inequality.
- Lemma 2. For each p and k there exist only finitely many HD's n such that $\alpha_p(n) \leq k$.
- *Proof.* It follows from Lemma 1 that if *n* is an HD with $\alpha_p(n) \le k$, then $\alpha_q(n)$ is bounded for each prime *q* and $\alpha_q(n) = 0$ for $q > p^{k+1}$. Therefore there are only finitely many possibilities for *n*.

We are now ready to prove both parts of the problem.

(a) Suppose that there are infinitely many pairs (a, b) of consecutive HD's with a | b. Since d(2a) > d(a), we must have b = 2a. In particular, d(s) ≤ d(a) for all s < 2a. All but finitely many HD's a are divisible by 2 and by 3⁷. Then d(8a/9) < d(a) and d(3a/2) < d(a) yield

$$\begin{aligned} (\alpha_2(a)+4)(\alpha_3(a)-1) < (\alpha_2(a)+1)(\alpha_3(a)+1) \Rightarrow 3\alpha_3(a)-5 < 2\alpha_2(a), \\ \alpha_2(a)(\alpha_3(a)+2) \le (\alpha_2(a)+1)(\alpha_3(a)+1) \Rightarrow \alpha_2(a) \le \alpha_3(a)+1. \end{aligned}$$

We now have $3\alpha_3(a) - 5 < 2\alpha_2(a) \le 2\alpha_3(a) + 2 \Rightarrow \alpha_3(a) < 7$, which is a contradiction.

(b) Assume for a given prime *p* and positive integer *k* that *n* is the smallest HD with $\alpha_p \ge k$. We show that $\frac{n}{p}$ is also an HD. Assume the opposite, i.e., that there exists an HD $m < \frac{n}{p}$ such that $d(m) \ge d(\frac{n}{p})$. By assumption, *m* must also satisfy $\alpha_p(m) + 1 \le \alpha_p(n)$. Then

$$d(mp) = d(m)\frac{\alpha_p(m) + 2}{\alpha_p(m) + 1} \ge d\left(\frac{n}{p}\right)\frac{\alpha_p(n) + 1}{\alpha_p(n)} = d(n),$$

contradicting the initial assumption that *n* is an HD (since mp < n). This proves that $\frac{n}{p}$ is an HD. Since this is true for every positive integer *k*, the proof is complete.

- 26. Assuming $b \neq a$, it trivially follows that b > a. Let p > b be a prime number and let n = (a+1)(p-1)+1. We note that $n \equiv 1 \pmod{p-1}$ and $n \equiv -a \pmod{p}$. It follows that $r^n = r \cdot (r^{p-1})^{a+1} \equiv r \pmod{p}$ for every integer r. We now have $a^n + n \equiv a a \equiv 0 \pmod{p}$. Thus, $a^n + n$ is divisible by p, and hence by the condition of the problem $b^n + n$ is also divisible by p. However, we also have $b^n + n \equiv b a \pmod{p}$, i.e., $p \mid b a$, which contradicts p > b. Hence, it must follow that b = a. We note that b = a trivially fulfills the conditions of the problem for all $a \in \mathbb{N}$.
- 27. Let p be a prime and k < p an even number. We note that $(p-k)!(k-1)! \equiv (-1)^{k-1}(p-k)!(p-k+1)\cdots(p-1) = (-1)^{k-1}(p-1)! \equiv 1 \pmod{p}$ by Wilson's theorem. Therefore

$$\begin{aligned} (k-1)!^n P((p-k)!) &= \sum_{i=0}^n a_i [(k-1)!]^{n-i} [(p-k)!(k-1)!]^i \\ &\equiv \sum_{i=0}^n a_i [(k-1)!]^{n-i} = S((k-1)!) \; (\text{mod } p), \end{aligned}$$

where $S(x) = a_n + a_{n-1}x + \dots + a_0x^n$. Hence $p \mid P((p-k)!)$ if and only if $p \mid S((k-1)!)$. Note that S((k-1)!) depends only on k. Let $k > 2a_n + 1$. Then, $s = (k-1)!/a_n$ is an integer that is divisible by all primes smaller than k. Hence $S((k-1)!) = a_nb_k$ for some $b_k \equiv 1 \pmod{s}$. It follows that b_k is divisible only by primes larger than k. For large enough k we have $|b_k| > 1$. Thus for every prime divisor p of b_k we have $p \mid P((p-k)!)$.

It remains to select a large enough k for which |P((p-k)!)| > p. We take k = (q-1)!, where q is a large prime. All the numbers k+i for i = 1, 2, ..., q-1 are composite (by Wilson's theorem, $q \mid k+1$). Thus p = k+q+r, for some $r \ge 0$. We now have |P((p-k)!)| = |P((q+r)!)| > (q+r)! > (q-1)! + q+r = p, for large enough q, since $n = \deg P \ge 2$. This completes the proof.

Remark. The above solution actually also works for all linear polynomials P other than $P(x) = x + a_0$. Nevertheless, these particular cases are easily handled. If $|a_0| > 1$, then P(m!) is composite for $m > |a_0|$, whereas P(x) = x + 1 and P(x) = x - 1 are both composite for, say, x = 5!. Thus the condition $n \ge 2$ was redundant.

4.47 Solutions to the Shortlisted Problems of IMO 2006

- 1. If $a_0 \ge 0$ then $a_i \ge 0$ for each i and $[a_{i+1}] \le a_{i+1} = [a_i]\{a_i\} < [a_i]$ unless $[a_i] = 0$. Eventually 0 appears in the sequence $[a_i]$ and all subsequent a_k 's are 0. Now suppose that $a_0 < 0$; then all $a_i \le 0$. Suppose that the sequence never reaches 0. Then $[a_i] \le -1$ and so $1 + [a_{i+1}] > a_{i+1} = [a_i]\{a_i\} > [a_i]$, so the sequence $[a_i]$ is nondecreasing and hence must be constant from some term on: $[a_i] = c < 0$ for $i \ge n$. The defining formula becomes $a_{i+1} = c\{a_i\} = c(a_i - c)$, which is equivalent to $b_{i+1} = cb_i$, where $b_i = a_i - \frac{c^2}{c-1}$. Since (b_i) is bounded, we must have either c = -1, in which case $a_{i+1} = -a_i - 1$ and hence $a_{i+2} = a_i$, or $b_i = 0$ and thus $a_i = \frac{c^2}{c-1}$ for all $i \ge n$.
- 2. We use induction on *n*. We have $a_1 = 1/2$; assume that $n \ge 1$ and $a_1, \ldots, a_n > 0$. The formula gives us $(n+1)\sum_{k=1}^{m} \frac{a_k}{m-k+1} = 1$. Writing this equation for *n* and n+1 and subtracting yields

$$(n+2)a_{n+1} = \sum_{k=1}^{n} \left(\frac{n+1}{n-k+1} - \frac{n+2}{n-k+2}\right)a_k,$$

which is positive, as is the coefficient at each a_k .

Remark. Using techniques from complex analysis such as contour integrals, one can obtain the following formula for $n \ge 1$:

$$a_n = \int_1^\infty \frac{dx}{x^n(\pi^2 + \ln^2(x-1))} > 0.$$

3. We know that $c_n = \frac{\phi^{n-1} - \psi^{n-1}}{\phi - \psi}$, where $\phi = \frac{1 + \sqrt{5}}{2}$ and $\psi = \frac{1 - \sqrt{5}}{2}$ are the roots of $t^2 - t - 1$. Since $c_{n-1}/c_n \to -\psi$, taking $\alpha = \psi$ and $\beta = 1$ is a natural choice. For every finite set $J \subseteq \mathbb{N}$ we have

$$-1 = \sum_{n=0}^{\infty} \psi^{2n+1} < \psi x + y = \sum_{j \in J} \psi^{j-1} < \sum_{n=0}^{\infty} \psi^{2n} = \phi.$$

Thus m = -1 and $M = \phi$ is an appropriate choice. We now prove that this choice has the desired properties by showing that for any $x, y \in \mathbb{N}$ with $-1 < K = x\psi + y < \phi$, there is a finite set $J \subset \mathbb{N}$ such that $K = \sum_{j \in J} \psi^j$.

Given such *K*, there are sequences $i_1 \leq \cdots \leq i_k$ with $\psi^{i_1} + \cdots + \psi^{i_k} = K$ (one such sequence consists of *y* zeros and *x* ones). Consider all such sequences of minimum length *n*. Since $\psi^m + \psi^{m+1} = \psi^{m+2}$, these sequences contain no two consecutive integers. Order such sequences as follows: If $i_k = j_k$ for $1 \leq k \leq t$ and $i_t < j_t$, then $(i_r) \prec (j_r)$. Consider the smallest sequence $(i_r)_{r=1}^n$ in this ordering. We claim that its terms are distinct. Since $2\psi^2 = 1 + \psi^3$, replacing two equal terms *m*, *m* by m - 2, m + 1 for $m \geq 2$ would yield a smaller sequence, so only 0 or 1 can repeat among the i_r . But $i_t = i_{t+1} = 0$ implies $\sum_r \psi^{i_r} > 2 + \sum_{k=0}^{\infty} \psi^{2k+3} = \phi$, while $i_t = i_{t+1} = 1$ similarly implies $\sum_r \psi^{i_r} < -1$, so both cases are impossible, proving our claim. Thus $J = \{i_1, \ldots, i_n\}$ is a required set. 4. Since $\frac{ab}{a+b} = \frac{1}{4} \left(a + b - \frac{(a-b)^2}{a+b} \right)$, the left hand side of the desired inequality equals

$$A = \sum_{i < j} \frac{a_i a_j}{a_i + a_j} = \frac{n - 1}{4} \sum_k a_k - \frac{1}{4} \sum_{i < j} \frac{(a_i - a_j)^2}{a_i + a_j}.$$

The righthand side of the inequality is equal to

$$B = \frac{n}{2} \frac{\sum a_i a_j}{\sum a_k} = \frac{n-1}{4} \sum_k a_k - \frac{1}{4} \sum_{i < j} \frac{(a_i - a_j)^2}{\sum a_k}.$$

Now $A \leq B$ follows from the trivial inequality $\sum \frac{(a_i - a_j)^2}{a_i + a_j} \geq \sum \frac{(a_i - a_j)^2}{\sum a_k}$.

5. Let $x = \sqrt{b} + \sqrt{c} - \sqrt{a}$, $y = \sqrt{c} + \sqrt{a} - \sqrt{b}$, and $z = \sqrt{a} + \sqrt{b} - \sqrt{c}$. All of these numbers are positive because a, b, c are sides of a triangle. Then $b + c - a = x^2 - \frac{1}{2}(x-y)(x-z)$ and

$$\frac{\sqrt{b+c-a}}{\sqrt{b}+\sqrt{c}-\sqrt{a}} = \sqrt{1-\frac{(x-y)(y-z)}{2x^2}} \le 1-\frac{(x-y)(x-z)}{4x^2}.$$

Now it is enough to prove that

$$x^{-2}(x-y)(x-z) + y^{-2}(y-z)(y-x) + z^{-2}(z-x)(z-y) \ge 0,$$

which directly follows from Schur's inequality.

6. Assume, without loss of generality, that $a \ge b \ge c$. The lefthand side of the inequality equals L = (a-b)(b-c)(a-c)(a+b+c). From $(a-b)(b-c) \le \frac{1}{4}(a-c)^2$ we get $L \le \frac{1}{4}(a-c)^3|a+b+c|$. The inequality $(a-c)^2 \le 2(a-b)^2 + 2(b-c)$ implies $(a-c)^2 \le \frac{2}{3}[(a-b)^2 + (b-c)^2 + (a-c)^2]$. Therefore

$$L \le \frac{\sqrt{2}}{2} \left(\frac{(a-b)^2 + (b-c)^2 + (a-c)^2}{3} \right)^{3/2} (a+b+c).$$

Finally, the mean inequality gives us

$$L \le \frac{\sqrt{2}}{2} \left(\frac{(a-b)^2 + (b-c)^2 + (a-c)^2 + (a+b+c)^2}{4} \right)^2$$
$$= \frac{9\sqrt{2}}{32} (a^2 + b^2 + c^2)^2.$$

Equality is attained if and only if a - b = b - c and $(a - b)^2 + (b - c)^2 + (a - c)^2 = 3(a + b + c)^2$, which leads to $a = \left(1 + \frac{3}{\sqrt{2}}\right)b$ and $c = \left(1 - \frac{3}{\sqrt{2}}\right)b$. Thus $M = \frac{9\sqrt{2}}{32}$.

Second solution. We have L = |(a-b)(b-c)(c-a)(a+b+c)|. Without loss of generality, assume that a+b+c = 1 (the case a+b+c = 0 is trivial). The monic cubic polynomial with roots a-b, b-c, and c-a is of the form

$$P(x) = x^{3} + qx + r, \quad q = \frac{1}{2} - \frac{3}{2}(a^{2} + b^{2} + c^{2}), \ r = -(a - b)(b - c)(c - a).$$

Then $M^2 = \max r^2 / \left(\frac{1-2q}{3}\right)^4$. Since P(x) has three real roots, its discriminant $(q/3)^3 + (r/2)^2$ must be positive, so $r^2 \ge -\frac{4}{27}q^3$. Thus $M^2 \le f(q) = -\frac{4}{27}q^3 / \left(\frac{1-2q}{3}\right)^4$. The function f attains its maximum $3^4/2^9$ at q = -3/2, so $M \le \frac{9\sqrt{2}}{32}$. The case of equality is easily computed.

Third solution. Assume that $a^2 + b^2 + c^2 = 1$ and write $u = (a+b+c)/\sqrt{3}$, $v = (a+\varepsilon b+\varepsilon^2 c)/\sqrt{3}$, $w = (a+\varepsilon^2 b+\varepsilon c)/\sqrt{3}$, where $\varepsilon = e^{2\pi i/3}$. Then analogous formulas hold for a, b, c in terms of u, v, w, from which one directly obtains $|u|^2 + |v|^2 + |w|^2 = a^2 + b^2 + c^2 = 1$ and

$$a+b+c = \sqrt{3}u$$
, $|a-b| = |v-\varepsilon w|$, $|a-c| = |v-\varepsilon^2 w|$, $|b-c| = |v-w|$.

Thus $L = \sqrt{3}|u||v^3 - w^3| \le \sqrt{3}|u|(|v|^3 + |w|^3) \le \sqrt{\frac{3}{2}|u|^2(1 - |u|^2)^3} \le \frac{9\sqrt{2}}{32}$. It is easy to trace back a, b, c to the equality case.

- 7. (a) We show that for n = 2^k all lamps will be switched on in n 1 steps and off in n steps. For k = 1 the statement is true. Suppose it holds for some k and let n = 2^{k+1}; define L = {L₁,...,L_{2^k}} and R = {L<sub>2<sup>k+1</sub></sub>,...,L_{2^{k+1}}}. The first 2^k 1 steps are performed without any influence on or from the lamps from R; thus after 2^k 1 steps the lamps in L are on and those from R are off. After the 2^kth step, L_{2^k} and R_{2^{k+1}} are on and the other lamps are off. Notice that from now on, L and R will be symmetric (i.e., L_i and L<sub>2<sup>k+1-i</sub> will have the same state) and will never influence each other. Since R starts with only the leftmost lamp on, in 2^k steps all its lamps will be off. The same will happen to L. There are 2^k + 2^k = 2^{k+1} steps in total.
 </sub></sup></sub></sup>
 - (b) We claim that for $n = 2^k + 1$ the lamps cannot be switched off. After the first step, only L_1 and L_2 are on. According to (a), after $2^k 1$ steps all lamps but L_n will be on, so after the 2^k th step all lamps will be off except for L_{n-1} and L_n . Since this position is symmetric to the one after the first step, the procedure will never end.
- 8. We call a triangle *odd* if it has two odd sides. To any odd isosceles triangle $A_iA_jA_k$ we assign a pair of sides of the 2006-gon. We may assume that k j = j i > 0 is odd. A side of the 2006-gon is said to *belong* to triangle $A_iA_jA_k$ if it lies on the polygonal line $A_iA_{i+1}...A_k$. At least one of the odd number of sides $A_iA_{i+1},...,A_{j-1}A_j$ and at least one of the sides $A_jA_{j+1},...,A_{k-1}A_k$ do not belong to any other odd isosceles triangle; assign those two sides to $\triangle A_iA_jA_k$. This ensures that every two assigned pairs are disjoint; therefore there are at most 1003 odd isosceles triangles.

An example with 1003 odd isosceles triangles can be attained when the diagonals $A_{2k}A_{2k+2}$ are drawn for k = 0, ..., 1002, where $A_0 = A_{2006}$.

9. The number c(P) of points inside *P* is equal to n - a(P) - b(P), where n = |S|. Writing y = 1 - x, the considered sum becomes

$$\sum_{P} x^{a(P)} y^{b(P)} (x+y)^{c(P)} = \sum_{P} \sum_{i=0}^{c(P)} {c(P) \choose i} x^{a(P)+i} y^{b(P)+c(P)-i}$$
$$= \sum_{P} \sum_{k=a(P)}^{a(P)+c(P)} {c(P) \choose k-a(P)} x^{k} y^{n-k}.$$

Here the coefficient at $x^k y^{n-k}$ is the sum $\sum_P \binom{c(P)}{k-a(P)}$, which equals the number of pairs (P,Z) of a convex polygon P and a k-element subset Z of S whose convex hull is P, and is thus equal to $\binom{n}{k}$. Now the required statement immediately follows.

10. Denote by S_𝔅(R) the number of strawberries of arrangement 𝔅 inside rectangle R. We write 𝔅 ≤ 𝔅 if for every rectangle Q containing the top left corner O we have S_𝔅(Q) ≥ S_𝔅(Q). In this ordering, every switch transforms an arrangement to a larger one. Since the number of arrangements is finite, it is enough to prove that whenever 𝔅 < 𝔅 there is a switch taking 𝔅 to 𝔅 with 𝔅 ≤ 𝔅. Consider the highest row t of the cake that differs in 𝔅 and 𝔅; let X and Y be the positions of the strawberries in t in 𝔅 and 𝔅 respectively. Clearly Y is to the left from X and the strawberry of 𝔅 in the column of Y is below Y. Now consider the highest strawberry X' of 𝔅 below t whose column is between X and Y (including Y). Let s be the row of X'. Now switch X, X' to the other two vertices Z, Z' of</p>

the corresponding rectangle, obtaining an arrangement \mathscr{C} . We claim that $\mathscr{C} \leq \mathscr{B}$. It is enough to verify that $S_{\mathscr{C}}(Q) \leq S_{\mathscr{B}}(Q)$ for those rectangles Q = OMNP with N lying inside XZX'Z'. Let $Q' = OMN_1P_1$ be the smallest rectangle containing X. Our choice of s ensures that $S_{\mathscr{C}}(Q) = S_{\mathscr{A}}(Q') \geq S_{\mathscr{B}}(Q') \geq S_{\mathscr{B}}(Q)$, as claimed.

11. Let q be the largest integer such that $2^q \mid n$. We prove that an (n,k)-tournament exists if and only if $k < 2^q$.

The first *l* rounds of an (n,k)-tournament form an (n,l)-tournament. Thus it is enough to show that an $(n, 2^q - 1)$ -tournament exists and an $(n, 2^q)$ -tournament does not.

If $n = 2^q$, we can label the contestants and rounds by elements of the additive group \mathbb{Z}_2^q . If contestants *x* and x + j meet in the round labeled *j*, it is easy to verify the conditions. If $n = 2^q p$, we can divide the contestants into *p* disjoint groups of 2^q and perform a $(2^q, 2^q - 1)$ -tournament in each, thus obtaining an $(n, 2^q - 1)$ -tournament.

For the other direction let \mathscr{G}_i be the graph of players with edges between any two players who met in the first *i* rounds. We claim that the size of each connected component of \mathscr{G}_i is a power of 2. For i = 1 this is obvious; assume that it holds for *i*. Suppose that the components *C* and *D* merge in the (i + 1)th round. Then

some $c \in C$ and $d \in D$ meet in this round. Moreover, each player in C meets a player in D. Indeed, for every $c' \in C$ there is a path $c = c_0, c_1, \ldots, c_k = c'$ with $c_jc_{j+1} \in \mathscr{G}_i$; then if d_j is the opponent of c_j in the (i+1)th round, condition (ii) shows that each d_jd_{j+1} belongs to \mathscr{G}_i , so $d_k \in D$. Analogously, all players in D meet players in C, so |C| = |D|, proving our claim. Now if there are 2^q rounds, every component has size at least $2^q + 1$ and is thus divisible by 2^{q+1} , which is impossible if $2^{q+1} \nmid n$.

12. Let *U* and *D* be the sets of upward and downward unit triangles, respectively. Two triangles are *neighbors* if they form a diamond. For $A \subseteq D$, denote by F(A) the set of neighbors of the elements of *A*.

If a holey triangle can be tiled with diamonds, in every upward triangle of side l there are l^2 elements of D, so there must be at least as many elements of U and at most l holes.

Now we pass to the other direction. It is enough to show the condition (ii) of the marriage theorem: For every set $X \subset D$ we have $|F(X)| \ge |X|$. Assume the contrary, that |F(X)| < |X| for some set X. Note that any two elements of D with a common neighbor must share a vertex; this means that we can focus on connected sets X. Consider an upward triangle of side 3. It contains three elements of D; if two of them are in X, adding the third one to X increases F(X) by at most 1, so |F(X)| < |X| still holds. Continuing this procedure, we will end up with a set X forming an upward subtriangle of T and satisfying |F(X)| < |X|, which contradicts the conditions of the problem. This contradiction proves that $|F(X)| \ge |X|$ for every set X, and an application of the Hall's marriage theorem establishes the result.

13. Consider a polyhedron P with v vertices, e edges, and f faces. Consider the map σ to the unit sphere S taking each vertex, edge, or face x of P to the set of outward unit normal vectors (i.e., points on S) to the support planes of P containing x. Thus σ maps faces to points on S, edges to shorter arcs of big circles connecting some pairs of these points, and vertices to spherical regions formed by these arcs. These points, arcs, and regions on S form a "spherical polyhedron" G.

We now translate the conditions of the problem into the language of \mathscr{G} . Denote by \overline{x} the image of x through reflection with the center in the center of S. No edge of \mathscr{P} being parallel to another edge or face means that the big circle of any edge e of \mathscr{G} does not contain any vertex V nonincident to e. Also note that vertices A and B of \mathscr{P} are antipodal if and only if $\sigma(A)$ and $\overline{\sigma(B)}$ intersect, and that the midpoints of edges a and b are antipodal if and only if $\sigma(a)$ and $\overline{\sigma(b)}$ intersect. Consider the union \mathscr{F} of \mathscr{G} and $\overline{\mathscr{G}}$. The faces of \mathscr{F} are the intersections of faces of \mathscr{G} and $\overline{\mathscr{G}}$, so their number equals 2A. Similarly, the edges of \mathscr{G} and $\overline{\mathscr{G}}$ have 2B intersections, so \mathscr{F} has 2e + 4B edges and 2f + 2B vertices. Now Euler's theorem for \mathscr{F} gives us 2e + 4B + 2 = 2A + 2f + 2B, and therefore A - B = e - f + 1.

14. The condition of the problem implies that $\angle PBC + \angle PCB = 90^{\circ} - \alpha/2$, i.e., $\angle BPC = 90^{\circ} + \alpha/2 = \angle BIC$. Thus *P* lies on the circumcircle ω of $\triangle BCI$. It is

well known that the center M of ω is the second intersection of AI with the circumcircle of $\triangle ABC$. Therefore $AP \ge AM - MP = AM - MI = AI$, with equality if and only if $P \equiv I$.

- 15. The relation AK/KB = DL/LC implies that AD, BC, and KL have a common point O. Moreover, since $\angle APB = 180^\circ \angle ABC$ and $\angle DQC = 180^\circ \angle BCD$, line BC is tangent to the circles APB and CQD. These two circles are homothetic with respect to O, so if OP meets circle APB again at P', we have $\angle PQC = \angle PP'B = \angle PBC$, showing that P, Q, B, C lie on a circle.
- 16. Let the diagonals AC and BD meet at Q and AD and CE meet at R. The quadrilaterals ABCD and ACDE are similar, so AQ/QC = AR/RD. Now if AP meets CD at M, Ceva's theorem gives us $\frac{CM}{MD} = \frac{CQ}{QA} \cdot \frac{AR}{RD} = 1$.
- 17. Let *M* be the point on *AC* such that $JM \parallel KL$. It is enough to prove that AM = 2AL.

From $\angle BDA = \alpha$ we obtain that $\angle JDM = 90^{\circ} - \frac{\alpha}{2} = \angle KLA = \angle JMD$; hence JM = JD, and the tangency point of the incircle of $\triangle BCD$ with CD is the midpoint T of segment MD. Therefore, DM = 2DT = BD + CD - BC = AB - BC + CD, which gives us

$$AM = AD + DM = AC + AB - BC = 2AL.$$

18. Assume that A_1B_1 and CJ intersect at K. Then JK is parallel and equal to C_1D and $DC_1/C_1J = JK/JB_1 =$ $JB_1/JC = C_1J/JC$, so the right triangles DC_1J and C_1JC are similar; hence $C_1C \perp DJ$. Thus E belongs to CC_1 . The points A_1 , B_1 , and E lie on the circle with diameter CJ. Therefore $\angle DBA_1 = \angle A_1CJ = \angle A_1ED$, implying

that BEA_1D is cyclic; hence $\angle A_1EB = 90^\circ$. Likewise, $ADEB_1$ is cyclic because $\angle EB_1A = \angle EJC = \angle EDC_1$, so $\angle AEB_1 = 90^\circ$.

Second solution. The segments JA_1 , JB_1 , JC_1 are tangent to the circles with diameters A_1B , AB_1 , C_1D . Since $JA_1^2 = JB_1^2 = JC_1^2 = JD \cdot JE$, E lies on the first two circles (with diameters A_1B and AB_1), so $\angle AEB_1 = \angle A_1EB = 90^\circ$.

19. The homothety with center *E* mapping ω_1 to ω maps *D* to *B*, so *D* lies on *BE*; analogously, *D* lies on *AF*. Let *AE* and *BF* meet at point *C*. The lines *BE* and *AF* are altitudes of triangle *ABC*, so *D* is the orthocenter and *C* lies on *t*. Let the line through *D* parallel to *AB* meet *AC* at *M*. The centers O_1 and O_2 are the midpoints of *DM* and *DN* respectively.

We have thus reduced the problem to a classical triangle geometry problem: If *CD* and *EF* intersect at *P*, we should prove that points *A*, *O*₁ and *P* are collinear (analogously, so are *B*, *O*₂, *P*). By Menelaus's theorem for triangle *CDM*, this is equivalent to $\frac{CA}{AM} = \frac{CP}{PD}$, which is again equivalent to $\frac{CK}{KD} = \frac{CP}{PD}$ (because $DM \parallel AB$), where *K* is the foot of the altitude from *C* to *AB*. The last equality immediately follows from the fact that the pairs *C*, *D*; *P*, *K* are harmonically adjoint.

20. Let *I* be the incenter of $\triangle ABC$. It is well known that T_aT_c and T_aT_b are the perpendicular bisectors of the segments *BI* and *CI* respectively. Let T_aT_b meet *AC* at *P* and ω_b at *U*, and let T_aT_c meet *AB* at *Q* and ω_c at *V*. We have $\angle BIQ = \angle IBQ = \angle IBC$, so $IQ \parallel BC$; similarly $IP \parallel BC$. Hence *PQ* is the line through *I* parallel to *BC*.

The homothety from T_b mapping ω_b to the circumcircle ω of *ABC* maps the tangent *t* to ω_b at *U* to the tangent to ω at T_a that is parallel to *BC*. It follows that $t \parallel BC$. Let *t* meet *AC* at *X*. Since $XU = XM_b$ and $\angle PUM_b = 90^\circ$, *X* is the midpoint of *PM_b*. Similarly, the tangent to ω_c at *V* meets QM_c at its midpoint *Y*. But since $XY \parallel PQ \parallel M_bM_c$, points U, X, Y, V are collinear, so *t* coincides with the common tangent p_a . Thus p_a runs midway between *I* and M_bM_c . Analogous conclusions hold for p_b and p_c , so these three lines form a triangle homothetic to the triangle $M_aM_bM_c$ from center *I* in ratio $\frac{1}{2}$, which is therefore similar to the triangle *ABC* in ratio $\frac{1}{4}$.

21. The following proposition is easy to prove:

Lemma. For an arbitrary point X inside a convex quadrilateral ABCD, the circumcircles of triangles ADX and BCX are tangent at X if and only if $\angle ADX + \angle BCX = \angle AXB$.

Let Q be the second intersection point of the circles ABP and CDP (we assume $Q \neq P$; the opposite case is similarly handled). It follows from the conditions of the problem that Q lies inside quadrilateral ABCD (since $\angle BCP + \angle BAP < 180^{\circ}$, C is outside the circumcircle of APB; the same holds for D). If Q is inside $\triangle APD$ (the other case is similar), we have $\angle BQC = \angle BQP + \angle PQC = \angle BAP + \angle CDP \leq 90^{\circ}$. Similarly, $\angle AQD \leq 90^{\circ}$. Moreover, $\angle ADQ + \angle BCQ = \angle ADP + \angle BCP = \angle APB = \angle AQB$ implies that circles ADQ and BCQ are tangent at Q. Therefore the interiors of the semicircles with diameters AD and BC are disjoint, and if M, N are the midpoints of AD and BC respectively, we have $2MN \geq AD + BC$. On the other hand, $2MN \leq AB + CD$ because $\overrightarrow{BA} + \overrightarrow{CD} = 2\overrightarrow{MN}$, and the statement of the problem immediately follows.

22. We work with oriented angles modulo 180° . For two lines a, b we denote by $\angle(l,m)$ the angle of counterclockwise rotation transforming a to b; also, by $\angle ABC$ we mean $\angle(BA, BC)$.

It is well known that the circles AB_1C_1 , BC_1A_1 , and CA_1B_1 have a common point, say *P*. Let *O* be the circumcenter of *ABC*. Set $\angle PB_1C = \angle PC_1A = \angle PA_1B = \varphi$. Let A_2P, B_2P, C_2P meet the circle *ABC* again at A_4, B_4, C_4 , respectively. Since $\angle A_4A_2A = \angle PA_2A = \angle PC_1A = \varphi$ and thus $\angle A_4OA = 2\varphi$ etc., $\triangle ABC$ is the image of $\triangle A_4B_4C_4$ under rotation \mathscr{R} about *O* by 2φ .

Therefore $\angle (AB_4, PC_1) = \angle B_4AB + \angle AC_1P = \varphi - \varphi = 0$, so $AB_4 \parallel PC_1$. Let PC_1 intersect A_4B_4 at C_5 ; define A_5, B_5 analogously. Then $\angle B_4C_5P = \angle A_4B_4A = \varphi$, so $AB_4C_5C_1$ is an isosceles trapezoid with $BC_3 = AC_1 = B_4C_5$. Similarly, $AC_3 = A_4C_5$, so C_3 is the image of C_5 under \mathscr{R} ; similar statements hold for A_5, B_5 . Thus $\triangle A_3B_3C_3 \cong \triangle A_5B_5C_5$. It remains to show that $\triangle A_5B_5C_5 \sim \triangle A_2B_2C_2$.

We have seen that $\angle A_4B_5P = \angle B_4C_5P$,

which implies that *P* lies on the circle $A_4B_5C_5$. Analogously, *P* lies on the circle $C_4A_5B_5$. Therefore

$$\angle A_2 B_2 C_2 = \angle A_2 B_2 B_4 + \angle B_4 B_2 C_2 = \angle A_2 A_4 B_4 + \angle B_4 C_4 C_2$$

= $\angle P A_4 C_5 + \angle A_5 C_4 P = \angle P B_5 C_5 + \angle A_5 B_5 P = \angle A_5 B_5 C_5,$

and similarly for the other angles, which is what we wanted.

23. Let S_i be the area assigned to side A_iA_{i+1} of polygon $\mathscr{P} = A_1 \dots A_n$ of area S. We start with the following auxiliary statement.

Lemma. At least one of the areas S_1, \ldots, S_n is not smaller than 2S/n.

Proof. It suffices to prove the statement for even *n*. The case of odd *n* will then follow immediately from this case applied to the degenerate 2n-gon $A_1A'_1 \dots A_nA'_n$, where A'_i is the midpoint of A_iA_{i+1} .

Let n = 2m. For i = 1, 2, ..., m, denote by T_i the area of the region \mathcal{P}_i inside the polygon bounded by the diagonals A_iA_{m+i} , $A_{i+1}A_{m+i+1}$ and the sides A_iA_{i+1} , $A_{m+i}A_{m+i+1}$. We observe that the regions \mathcal{P}_i cover the entire polygon. Indeed, let X be an arbitrary point inside the polygon, to the left (without loss of generality) of the ray A_1A_{m+1} .

Then X is to the right of the ray $A_{m+1}A_1$, so there is a k such that X is to the left of ray A_kA_{k+m} and to the right of ray $A_{k+1}A_{k+m+1}$, i.e., $X \in \mathscr{P}_k$. It follows that $T_1 + \cdots + T_m \ge S$; hence at least one T_i is not smaller than 2S/n, say $T_1 \ge 2S/n$.

Let *O* be the intersection point of A_1A_{m+1} and A_2A_{m+2} , and let us assume without loss of generality

that $S_{A_1A_2O} \ge S_{A_{m+1}A_{m+2}O}$ and $A_1O \ge OA_{m+1}$. Then required result now follows from

$$S_1 \ge S_{A_1A_2A_{m+2}} = S_{A_1A_2O} + S_{A_1A_{m+2}O} \ge S_{A_1A_2O} + S_{A_{m+1}A_{m+2}O} = T_1 \ge \frac{2S}{n}$$

If, contrary to the assertion, $\sum \frac{S_i}{S} < 2$, we can choose rational numbers $q_i = 2m_i/N$ with $N = m_1 + \cdots + m_n$ such that $q_i > S_i/S$. However, considering the given polygon as a degenerate *N*-gon obtained by division of side A_iA_{i+1} into m_i equal parts for each *i* and applying the lemma, we obtain $S_i/m_i \ge 2S/N$, i.e., $S_i/S \ge q_i$ for some *i*, a contradiction.

Equality holds if and only if \mathcal{P} is centrally symmetric.

Second solution. We say that vertex *V* is assigned to side *a* of a convex (possibly degenerate) polygon \mathscr{P} if the triangle determined by *a* and *V* has the maximum area S_a among the triangles with side *a* contained in \mathscr{P} . Define $\sigma(\mathscr{P}) = \sum_a S_a$ and $\delta(\mathscr{P}) = \sigma(\mathscr{P}) - 2[\mathscr{P}]$. We use induction on the number *n* of pairwise non-parallel sides of \mathscr{P} to show that $\delta(\mathscr{P}) \ge 0$ for every polygon \mathscr{P} . This is obviously true for n = 2, so let $n \ge 3$.

There exist two adjacent sides AB and BC whose respective assigned vertices U and V are distinct. Let the lines through U and V parallel to AB and BC respectively intersect at point X. Assume, without loss of generality, that there are no sides of \mathcal{P} lying on UX and VX. Call the sides and vertices of \mathcal{P} lying within the triangle UVX passive (excluding vertices U and V). It is easy to see that no passive vertex is assigned to any side of \mathcal{P} and that vertex B is assigned to every passive side. Now replace all passive vertices of \mathcal{P} by X, obtaining a polygon \mathcal{P}' . Vertex B is assigned to sides UX and VX of \mathcal{P}' . Therefore the sum of areas assigned to passive sides increases by the area S of the part of quadrilateral BUXV lying outside \mathcal{P} ; the other assigned areas do not change. Thus σ increases by S. On the other hand, the area of the polygon also increases by S, so δ must decrease by S.

Note that the change from \mathscr{P} to \mathscr{P}' decreases the number of nonparallel sides. Thus by the inductive hypothesis we have $\delta(\mathscr{P}) \ge \delta(\mathscr{P}') \ge 0$.

Third solution. To each convex *n*-gon $\mathscr{P} = A_1A_2...A_n$ we assign a centrally symmetric 2n-gon \mathscr{Q} , called the *associate* of \mathscr{P} , as follows. Attach the 2n vectors $\pm \overrightarrow{A_iA_{i+1}}$ at a common origin and label them $b_1, ..., b_{2n}$ counterclockwise so that $\overrightarrow{b_{n+i}} = -b_i$ for $1 \le i \le n$. Then take \mathscr{Q} to be the polygon $B_1B_2...B_{2n}$ with $\overrightarrow{B_iB_{i+1}} = b_i$. Denote by a_i the side of \mathscr{P} corresponding to b_i (i = 1, ..., n). The distance between the parallel sides B_iB_{i+1} and $B_{n+i}B_{n+i+1}$ of \mathscr{Q} equals twice the maximum height of \mathscr{P} to the side a_i . Thus, if O is the center of \mathscr{Q} , the area of $\bigtriangleup B_iB_{i+1}O(i=1,...,n)$ is exactly the area S_i assigned to side a_i of \mathscr{P} ; therefore $[\mathscr{Q}] = 2\sum S_i$. It remains to show that $d(\mathscr{P}) = [\mathscr{Q}] - 4[\mathscr{P}] \ge 0$.

- (i) Suppose that 𝒫 has two parallel sides a_i and a_j, where a_j ≥ a_i, and remove from it the parallelogram D determined by a_i and a part of side a_j. We obtain a polygon 𝒫' with a smaller number of nonparallel sides. Then the associate of 𝒫' is obtained from 𝒫 by removing a parallelogram similar to D in ratio 2 (and with area four times that of D); thus d(𝒫') = d(𝒫).
- (ii) Suppose that there is a side b_i (i ≤ n) of 2 such that the sum of the angles at its endpoints is greater than 180°. Extend the pairs of sides adjacent to b_i and b_{n+i} to their intersections U and V, thus enlarging 2 by two congruent triangles to a polygon 2'. Then 2' is the associate of the polygon P'

obtained from \mathscr{P} by attaching a triangle congruent to $B_i B_{i+1} U$ to the side a_i . Therefore $d(\mathscr{P}')$ equals $d(\mathscr{P})$ minus twice the area of the attached triangle.

By repeatedly performing the operations (i) and (ii) to polygon \mathscr{P} we will eventually reduce it to a parallelogram *E*, thereby decreasing the value of *d*. Since d(E) = 0, it follows that $d(\mathscr{P}) \ge 0$.

Remark. Polygon \mathscr{Q} is the Minkowski sum of \mathscr{P} and a polygon centrally symmetric to \mathscr{P} . Thus the inequality $[\mathscr{Q}] \ge 4[\mathscr{P}]$ is a direct consequence of the Brunn–Minkowski inequality.

24. Obviously $x \ge 0$. For x = 0 the only solutions are $(0, \pm 2)$. Now let (x, y) be a solution with x > 0. Without loss of generality, assume that y > 0. The equation rewritten as $2^{x}(1+2^{x+1}) = (y-1)(y+1)$ shows that one of the factors $y \pm 1$ is divisible by 2 but not by 4 and the other by 2^{x-1} but not by 2^{x} ; hence $x \ge 3$. Thus $y = 2^{x-1}m + \varepsilon$, where *m* is odd and $\varepsilon = \pm 1$. Plugging this in the original equation and simplifying yields

$$2^{x-2}(m^2 - 8) = 1 - \varepsilon m.$$
(1)

Since m = 1 is obviously impossible, we have $m \ge 3$ and hence $\varepsilon = -1$. Now (1) gives us $2(m^2 - 8) \le 1 + m$, implying m = 3, which leads to x = 4 and y = 23. Thus all solutions are $(0, \pm 2)$ and $(4, \pm 23)$.

- 25. If x is rational, its digits repeat periodically starting at some point. If n is the length of the period of x, the sequence $2, 2^2, 2^3, \ldots$ is eventually periodic modulo n, so the corresponding digits of x (i.e., the digits of y) also make an eventually periodic sequence, implying that y is rational.
- 26. Consider $g(n) = [\frac{n}{1}] + [\frac{n}{2}] + \dots + [\frac{n}{n}] = nf(n)$ and define g(0) = 0. Since for any k the difference $[\frac{n}{k}] [\frac{n-1}{k}]$ equals 1 if k divides n and 0 otherwise, we obtain that g(n) = g(n-1) + d(n), where d(n) is the number of positive divisors of n. Thus $g(n) = d(1) + d(2) + \dots + d(n)$ and f(n) is the arithmetic mean of the numbers $d(1), \dots, d(n)$. Therefore, (a) and (b) will follow if we show that each of d(n+1) > f(n) and d(n+1) < f(n) holds infinitely often. But d(n+1) < f(n) holds whenever n+1 is prime, and d(n+1) > f(n) holds whenever $d(n+1) > d(1), \dots, d(n)$ (which clearly holds for infinitely many n).
- 27. We first show that every fixed point x of Q is in fact a fixed point of $P \circ P$. Consider the sequence given by $x_0 = x$ and $x_{i+1} = P(x_i)$ for $i \ge 0$. Assume $x_k = x_0$. We know that u - v divides P(u) - P(v) for every two distinct integers u and v. In particular,

$$d_i = x_{i+1} - x_i \mid P(x_{i+1}) - P(x_i) = x_{i+2} - x_{i+1} = d_{i+1}$$

for all *i*, which together with $d_k = d_0$ implies $|d_0| = |d_1| = \cdots = |d_k|$. Suppose that $d_1 = d_0 = d \neq 0$. Then $d_2 = d$ (otherwise $x_3 = x_1$ and x_0 will never occur in the sequence again). Similarly, $d_3 = d$ etc., and hence $x_i = x_0 + id \neq x_0$ for all *i*, a contradiction. It follows that $d_1 = -d_0$, so $x_2 = x_0$ as claimed. Thus we can assume that $Q = P \circ P$.

752 4 Solutions

If every integer t with P(P(t)) = t also satisfies P(t) = t, the number of solutions is clearly at most deg P = n. Suppose that $P(t_1) = t_2$, $P(t_2) = t_1$, $P(t_3) = t_4$, and $P(t_4) = t_3$, where $t_1 \neq t_{2,3,4}$ (but not necessarily $t_3 \neq t_4$). Since $t_1 - t_3$ divides $t_2 - t_4$ and vice versa, we conclude that $t_1 - t_3 = \pm (t_2 - t_4)$. Assume that $t_1 - t_3 = \pm (t_2 - t_4)$. $t_2 - t_4$, i.e. $t_1 - t_2 = t_3 - t_4 = u \neq 0$. Since the relation $t_1 - t_4 = \pm (t_2 - t_3)$ similarly holds, we obtain $t_1 - t_3 + u = \pm (t_1 - t_3 - u)$ which is impossible. Therefore, we must have $t_1 - t_3 = t_4 - t_2$, which gives us $P(t_1) + t_1 = P(t_3) + t_3 = c$ for some c. It follows that all integral solutions t of the equation P(P(t)) = t satisfy P(t) + t = c, and hence their number does not exceed *n*.

28. Every prime divisor p of $\frac{x^7-1}{x-1} = x^6 + \cdots + x + 1$ is congruent to 0 or 1 modulo 7. Indeed, if $p \mid x-1$, then $\frac{x^7-1}{x-1} \equiv 1 + \dots + 1 \equiv 7 \pmod{p}$, so p = 7; otherwise the order of x modulo p is 7 and hence $p \equiv 1 \pmod{7}$. Therefore every positive divisor d of $\frac{x^7-1}{x-1}$ satisfies $d \equiv 0$ or 1 (mod 7).

Now suppose (x, y) is a solution of the given equation. Since y - 1 and $y^4 + y^3 + y^3$ $y^{2} + y + 1$ divide $\frac{x^{7}-1}{x-1} = y^{5} - 1$, we have $y \equiv 1$ or 2 and $y^{4} + y^{3} + y^{2} + y + 1 \equiv 0$ or 1 (mod 7). However, $y \equiv 1$ or 2 implies that $y^4 + y^3 + y^2 + y + 1 \equiv 5$ or 3 (mod 7), which is impossible.

29. All representations of n in the form ax + by $(x, y \in \mathbb{Z})$ are given by (x, y) = $(x_0 + bt, y_0 - at)$, where x_0, y_0 are fixed and $t \in \mathbb{Z}$ is arbitrary. The following lemma enables us to determine w(n).

Lemma. The equality w(ax + by) = |x| + |y| holds if and only if one of the following conditions holds:

(i) $\frac{a-b}{2} < y \le \frac{a+b}{2}$ and $x \ge y - \frac{a+b}{2}$; (ii) $-\frac{a-b}{2} \le y \le \frac{a-b}{2}$ and $x \in \mathbb{Z}$; (iii) $-\frac{a+b}{2} \le y < -\frac{a-b}{2}$ and $x \le y + \frac{a+b}{2}$.

Proof. Without loss of generality, assume that $y \ge 0$. We have w(ax + by) =|x| + y if and only if $|x+b| + |y-a| \ge |x| + y$ and $|x-b| + (y+a) \ge |x| + y$, where the latter is obviously true and the former clearly implies y < a. Then the former inequality becomes $|x+b| - |x| \ge 2y - a$. We distinguish three cases: if $y \le \frac{a-b}{2}$, then $2y - a \le b$ and the previous inequality always holds; for $\frac{a-b}{2} < y \le \frac{a+b}{2}$, it holds if and only if $x \ge y - \frac{a+b}{2}$; and for $y > \frac{a+b}{2}$, it never holds.

Now let n = ax + by be a local champion with w(n) = |x| + |y|. As in the lemma,

we distinguish three cases: (i) $\frac{a-b}{2} < y \le \frac{a+b}{2}$. Then $x + 1 \ge y - \frac{a+b}{2}$ by the lemma, so w(n+a) = |x+1| + y(because n + a = a(x+1) + by). Since $w(n+a) \le w(n)$, we must have x < 0. Likewise, w(n-a) equals either |x-1| + y = w(n) + 1 or |x+b-1| + a - y. The condition $w(n-a) \le w(n)$ leads to $x \le y - \frac{a+b-1}{2}$; hence $x = y - [\frac{a+b}{2}]$ and $w(n) = [\frac{a+b}{2}]$. Now w(n-b) = -x + y - 1 = w(n) - 1 and w(n+b) = -x + y - 1 = w(n) - 1 $(x+b) + (a-1-y) = a+b-1 - [\frac{a+b}{2}] \le w(n)$, so *n* is a local champion. Conversely, every n = ax + by with $\frac{a-b}{2} < y \le \frac{a+b}{2}$ and $x = y - [\frac{a+b}{2}]$ is

a local champion. Thus we obtain b - 1 local champions, which are all distinct.

- (ii) $|y| \le \frac{a-b}{2}$. Now we conclude from the lemma that w(n-a) = |x-1| + |y| and w(n+a) = |x+1| + |y|, and at least one of these two values exceeds w(n) = |x| + |y|. Thus *n* is not a local champion.
- (iii) $-\frac{a+b}{2} \le y < -\frac{a-b}{2}$. By taking x, y to -x, -y this case is reduced to case (i), so we again have b-1 local champions n = ax + by with $x = y + \lfloor \frac{a+b}{2} \rfloor$.

It is easy to check that the sets of local champions from cases (i) and (iii) coincide if a and b are both odd (so we have b-1 local champions in total), and are otherwise disjoint (then we have 2(b-1) local champions).

30. We shall show by induction on *n* that there exists an arbitrarily large *m* satisfying $2^m \equiv -m \pmod{n}$. The case n = 1 is trivial; assume that n > 1. Recall that the sequence of powers of 2 modulo *n* is eventually periodic with the period dividing $\varphi(n)$; thus $2^x \equiv 2^y$ whenever $x \equiv y \pmod{\varphi(n)}$ and *x* and *y* are large enough. Let us consider *m* of the form $m \equiv -2^k \pmod{n\varphi(n)}$. Then the congruence $2^m \equiv -m \pmod{n}$ is equivalent to $2^m \equiv 2^k \pmod{n}$, and this holds whenever $-2^k \equiv m \equiv k \pmod{\varphi(n)}$ and *m*, *k* are large enough. But the existence of *m* and *k* is guartanteed by the inductive hypothesis for $\varphi(n)$, so the induction is complete.

Notation and Abbreviations

A.1 Notation

We assume familiarity with standard elementary notation of set theory, algebra, logic, geometry (including vectors), analysis, number theory (including divisibility and congruences), and combinatorics. We use this notation liberally.

We assume familiarity with the basic elements of the game of chess (the movement of pieces and the coloring of the board).

The following is notation that deserves additional clarification.

- $\mathscr{B}(A,B,C)$, A-B-C: indicates the relation of *betweenness*, i.e., that B is between A and C (this automatically means that A,B,C are different collinear points).
- $A = l_1 \cap l_2$: indicates that A is the intersection point of the lines l_1 and l_2 .
- AB: line through A and B, segment AB, length of segment AB (depending on context).
- [*AB*: ray starting in *A* and containing *B*.
- (AB: ray starting in A and containing B, but without the point A.
- (AB): open interval AB, set of points between A and B.
- [AB]: closed interval AB, segment AB, $(AB) \cup \{A, B\}$.
- (*AB*]: semiopen interval *AB*, closed at *B* and open at *A*, (*AB*) \cup {*B*}. The same bracket notation is applied to real numbers, e.g., $[a,b) = \{x \mid a \le x < b\}$.
- *ABC*: plane determined by points *A*,*B*,*C*, triangle *ABC* ($\triangle ABC$) (depending on context).
- [AB,C: half-plane consisting of line AB and all points in the plane on the same side of AB as C.
- (AB,C: [AB,C] without the line AB.

- 792 A Notation and Abbreviations
- $\circ \ \langle \overrightarrow{a}, \overrightarrow{b} \rangle, \overrightarrow{a} \cdot \overrightarrow{b} : \text{ scalar product of } \overrightarrow{a} \text{ and } \overrightarrow{b}.$
- $a, b, c, \alpha, \beta, \gamma$: the respective sides and angles of triangle *ABC* (unless otherwise indicated).
- k(O,r): circle k with center O and radius r.
- d(A, p): distance from point A to line p.
- $S_{A_1A_2...A_n}$, $[A_1A_2...A_n]$: area of *n*-gon $A_1A_2...A_n$ (special case for n = 3, S_{ABC} : area of $\triangle ABC$).
- N, Z, Q, R, C: the sets of natural, integer, rational, real, complex numbers (respectively).
- \mathbb{Z}_n : the ring of residues modulo $n, n \in \mathbb{N}$.
- \mathbb{Z}_p : the field of residues modulo p, p being prime.
- $\mathbb{Z}[x]$, $\mathbb{R}[x]$: the rings of polynomials in x with integer and real coefficients respectively.
- R^* : the set of nonzero elements of a ring R.
- $R[\alpha], R(\alpha)$, where α is a root of a quadratic polynomial in R[x]: $\{a + b\alpha \mid a, b \in R\}$.
- $X_0: X \cup \{0\}$ for X such that $0 \notin X$.
- ∘ $X^+, X^-, aX + b, aX + bY$: { $x | x \in X, x > 0$ }, { $x | x \in X, x < 0$ }, { $ax + b | x \in X$ }, { $ax + by | x \in X, y \in Y$ } (respectively) for $X, Y \subseteq \mathbb{R}, a, b \in \mathbb{R}$.
- \circ [x], |x|: the greatest integer smaller than or equal to x.
- [x]: the smallest integer greater than or equal to x.

The following is notation simultaneously used in different concepts (depending on context).

- |AB|, |x|, |S|: the distance between two points AB, the absolute value of the number x, the number of elements of the set S (respectively).
- (x, y), (m, n), (a, b): (ordered) pair x and y, the greatest common divisor of integers m and n, the open interval between real numbers a and b (respectively).

A.2 Abbreviations

We tried to avoid using nonstandard notation and abbreviations as much as possible. However, one nonstandard abbreviation stood out as particularly convenient:

• w.l.o.g.: without loss of generality.

Other abbreviations include:

• RHS: right-hand side (of a given equation).

- $\circ~$ LHS: left-hand side (of a given equation).
- QM, AM, GM, HM: the quadratic mean, the arithmetic mean, the geometric mean, the harmonic mean (respectively).
- gcd, lcm: greatest common divisor, least common multiple (respectively).
- \circ i.e.: in other words.
- $\circ~$ e.g.: for example.

Codes of the Countries of Origin

ARG	Argentina	HRV	Croatia	POL	Poland
ARM	Armenia	HUN	Hungary	POR	Portugal
AUS	Australia	IDN	Indonesia	PRI	Puerto Rico
AUT	Austria	IND	India	PRK	Korea, North
BEL	Belgium	IRL	Ireland	ROU	Romania
BGR	Bulgaria	IRN	Iran	RUS	Russia
BLR	Belarus	ISL	Iceland	SAF	South Africa
BRA	Brazil	ISR	Israel	SCG	Serbia and
CAN	Canada	ITA	Italy		Montenegro
CHN	China	JPN	Japan	SGP	Singapore
COL	Colombia	KAZ	Kazakhstan	SRB	Serbia
CUB	Cuba	KOR	Korea, South	SVK	Slovakia
CYP	Cyprus	KWT	Kuwait	SVN	Slovenia
CZE	Czech Republic	LTU	Lithuania	SWE	Sweden
CZS	Czechoslovakia	LUX	Luxembourg	THA	Thailand
ESP	Spain	LVA	Latvia	TUN	Tunisia
EST	Estonia	MAR	Morocco	TUR	Turkey
FIN	Finland	MEX	Mexico	TWN	Taiwan
FRA	France	MKD	Macedonia	UKR	Ukraine
FRG	Germany, FR	MNG	Mongolia	UNK	United Kingdom
GDR	Germany, DR	NLD	Netherlands	USA	United States
GEO	Georgia	NOR	Norway	USS	Soviet Union
GER	Germany	NZL	New Zealand	UZB	Uzbekistan
HEL	Greece	PER	Peru	VNM	Vietnam
HKG	Hong Kong	PHI	Philippines	YUG	Yugoslavia

Authors of Problems

1959-02 C. Ionescu-Tiu, ROU – IMO2 1959-06 Cezar Cosnita, ROU – IMO6 1960-03 G.D. Simionescu, ROU – IMO3

1961-06 G.D. Simionescu, ROU – IMO6

1962-04 Cezar Cosnita, ROU - IMO4

1963-05 Wolfgang Engel, GDR - IMO5

1964-05 G.D. Simionescu, ROU - IMO5

1965-05 G.D. Simionescu, ROU - IMO5

1967-04 Tullio Viola, ITA – IMO4

1968-06 David Monk, UNK - IMO6

1969-01 Wolfgang Engel, GDR – IMO1 1969-05 Abish Mekei, MNG – IMO5

1970-02 D. Batinetzu, ROU – IMO2 1970-06 D. Gerll, A. Warusfel, FRA 1970-10 Åke Samuelsson, SWE – IMO6

1973-05 Georges Glaeser, FRA 1973-10 Åke Samuelsson, SWE – IMO6 1973-11 Åke Samuelsson, SWE – IMO3

1973-13 Đorđe Dugošija, YUG

1973-14 Đorđe Dugošija, YUG – IMO4

1974-01 Murray Klamkin, USA – IMO1 1974-06 Ciprian Borcea, ROU – IMO3 1974-08 Jan van de Craats, NLD – IMO5 1974-10 Matti Lehtinen, FIN – IMO2 1975-08 Jan van de Craats, NLD – IMO3 1975-10 David Monk, UNK - IMO6 1975-14 Vladimir Janković, YUG 1975-10 R. Lyness, D. Monk, UNK - IMO6 1976-05 Jan van de Craats, NLD - IMO5 1976-06 Jan van de Craats, NLD - IMO3 1976-09 Matti Lehtinen, FIN - IMO2 1976-10 Murray Klamkin, USA - IMO4 1977-01 Ivan Prodanov, BGR - IMO6 1977-03 Hermann Frasch, FRG - IMO5 1977-04 Arthur Engel, FRG 1977-05 Arthur Engel, FRG 1977-06 Helmut Bausch, GDR 1977-07 David Monk, UNK - IMO4 1977-10 Jan van de Craats, NLD - IMO3 1977-12 Jan van de Craats, NLD – IMO1 1977-15 P. Đức Chính, VNM - IMO2 1978-10 Jan van de Craats, NLD - IMO6 1978-12 Murray Klamkin, USA - IMO4 1978-13 Murray Klamkin, USA - IMO2 1978-15 Dragoslav Ljubić, YUG 1978-16 Dragoslav Ljubić, YUG 1979-04 N. Hadzhiivanov, N. Nenov, BGR - IMO2 1979-07 Arthur Engel, FRG - IMO1

1979-08 Arthur Engel, FRG

1979-09 Arthur Engel, FRG – IMO6

1979-12 Hans-Dietrich Gronau, GDR

1979-15 Joe Gillis, ISR – IMO5 1979-22 N. Vasilyev, I.F. Sharygin, USS – IMO3 1979-25 Murray Klamkin, USA – IMO4 1979-26 Milan Božić, YUG

1981-05 Rafael Marino, COL 1981-07 Juha Oikkonen, FIN – IMO6 1981-08 Arthur Engel, FRG – IMO2 1981-09 Arthur Engel, FRG 1981-12 Jan van de Craats, NLD – IMO3 1981-15 David Monk, UNK – IMO1 1981-19 Vladimir Janković, YUG

1981-01 David Monk, UNK – IMO1 1982-03 A.N. Grishkov, USS – IMO3 1982-05 Jan van de Craats, NLD – IMO5 1982-06 V. Như Cương, VNM – IMO6 1982-13 Jan van de Craats, NLD – IMO2 1982-16 David Monk, UNK – IMO4

1983-08 Juan Ochoa, ESP 1983-09 Murray Klamkin, USA – IMO6 1983-12 David Monk, UNK – IMO1 1983-13 Lucien Kieffer, LUX 1983-14 Marcin Kuczma, POL – IMO5 1983-16 Konrad Engel, GDR 1983-17 Hans-Dietrich Gronau, GDR 1983-18 Arthur Engel, FRG – IMO3 1983-19 Titu Andreescu, ROU 1983-23 Igor F. Sharygin, USS – IMO2

1984-04 T. Dashdorj, MNG – IMO5 1984-05 M. Stoll, B. Haible, FRG – IMO1 1984-07 Horst Sewerin, FRG 1984-08 Ioan Tomescu, ROU – IMO3 1984-12 Aiko Tiggelaar, NLD – IMO2 1984-14 L. Panaitopol, ROU – IMO4 1984-15 Lucien Kieffer, LUX 1984-17 Arthur Engel, FRG

1985-01 R. Gonchigdorj, MNG – IMO4 1985-03 Jan van de Craats, NLD – IMO3 1985-04 George Szekeres, AUS – IMO2 1985-17 Åke Samuelsson, SWE – IMO6

1985-20 Frank Budden, UNK – IMO1 1985-22 Igor F. Sharygin, USS - IMO5 1986-01 David Monk, UNK – IMO5 1986-05 Arthur Engel, FRG - IMO1 1986-06 Johannes Notenboom, NLD 1986-08 Cecil Rousseau, USA 1986-09 Konrad Engel, GDR - IMO6 1986-12 Elias Wegert, GDR - IMO3 1986-13 Arthur Engel, FRG 1986-15 Johannes Notenboom, NLD 1986-16 Sven Sigurðsson, ISL - IMO4 1986-17 G. Chang, D. Qi, CHN - IMO2 1987-06 Dimitris Kontogiannis, HEL 1987-13 H.-D. Gronau, GDR - IMO5 1987-14 Arthur Engel, FRG 1987-15 Arthur Engel, FRG - IMO3 1987-16 Horst Sewerin, FRG - IMO1 1987-20 Vsevolod F. Lev, USS - IMO6 1987-21 I.A. Kushnir, USS - IMO2 1987-22 N. Minh Đức, VNM - IMO4

1988-09 Stephan Beck, FRG – IMO6 1988-12 Dimitris Kontogiannis, HEL 1988-13 D. Kontogiannis, HEL – IMO5 1988-16 Finbarr Holland, IRL – IMO4 1988-18 Lucien Kieffer, LUX – IMO1 1988-26 David Monk, UNK – IMO3

1989-01 Geoffrey Bailey, AUS – IMO2 1989-05 Joaquín Valderrama, COL 1989-10 Theodoros Bolis, HEL 1989-13 Eggert Briem, ISL – IMO4 1989-14 S.A. Shirali, IND 1989-15 Fergus Gaines, IRL 1989-20 Harm Derksen, NLD – IMO3 1989-21 Johannes Notenboom, NLD 1989-22 Jose Marasigan, PHI – IMO1 1989-23 Marcin Kuczma, POL – IMO6 1989-25 Myung-Hwan Kim, KOR 1989-30 Bernt Lindström, SWE – IMO5

1990-03 Pavol Černek, CZS – IMO2 1990-06 Hagen von Eitzen, FRG – IMO5 1990-07 Theodoros Bolis, HEL 1990-11 C.R. Pranesachar, IND – IMO1

1993-21 Chirstopher Bradley, UNK

1990-12 Fergus Gaines, IRL 1990-14 Toshio Seimiya, JPN 1990-16 Harm Derksen, NLD - IMO6 1990-17 Johannes Notenboom, NLD 1990-18 Istvan Beck, NOR 1990-23 L. Panaitopol, ROU - IMO3 1990-25 Albert Erkip, TUR - IMO4 1991-02 Toshio Seimiya, JPN 1991-04 Johan Yebbou, FRA - IMO5 1991-06 A. Skopenkov, USS - IMO1 1991-08 Harm Derksen, NLD 1991-10 Cecil Rousseau, USA - IMO4 1991-12 Chengzhang Li, CHN - IMO3 1991-16 L. Panaitopol, ROU – IMO2 1991-19 Tom Laffey, IRL 1991-20 Tom Laffey, IRL 1991-23 C.R. Pranesachar, IND 1991-24 C.R. Pranesachar, IND 1991-28 Harm Derksen, NLD - IMO6 1992-04 Chengzhang Li, CHN – IMO3 1992-05 Germán Rincón, COL 1992-06 B.J. Venkatachala, IND - IMO2 1992-07 S.A. Shirali, IND 1992-08 C.R. Pranesachar, IND 1992-10 Stefano Mortola, ITA - IMO5 1992-13 Achim Zulauf, NZL - IMO1 1992-14 Marcin Kuczma, POL 1992-18 Robin Pemantle, USA 1992-19 Tom Laffey, IRL 1992-20 Johan Yebbou, FRA - IMO4 1992-21 Tony Gardiner, UNK - IMO6 1993-03 Francisco Bellot Rosado, ESP 1993-04 Francisco Bellot Rosado, ESP 1993-05 Kerkko Luosto, FIN - IMO3 1993-06 Elias Wegert, GER – IMO5 1993-08 S.A. Shirali, IND 1993-09 V.S. Joshi, IND 1993-10 C.S. Yogananda, IND 1993-11 Tom Laffey, IRL - IMO1 1993-12 Fergus Gaines, IRL 1993-13 Tom Laffey, IRL 1993-15 D. Dimovski, MKD - IMO4 1993-17 N.G. de Bruijn, NLD - IMO6

1993-22 David Monk, UNK - IMO2 1993-23 David Monk, UNK 1993-24 Titu Andreescu, USA 1994-01 Titu Andreescu, USA 1994-02 V. Lafforgue, FRA - IMO1 1994-03 David Monk, UNK - IMO5 1994-05 Marcin Kuczma, POL 1994-06 Vadym Radchenko, UKR 1994-07 David Berenstein, COL 1994-09 H. Nestra, R. Palm, EST 1994-14 Vyacheslav Yasinskiy, UKR 1994-16 H. Lausch. G. Tonoyan, AUS/ARM – IMO2 1994-19 Hans Lausch, AUS - IMO4 1994-20 Kerkko Luosto, FIN - IMO6 1994-22 Gabriel Istrate, ROU - IMO3 1994-24 David Monk, UNK 1995-01 Nazar Agakhanov, RUS - IMO2 1995-03 Vadym Radchenko, UKR 1995-04 Titu Andreescu, USA 1995-05 Vadym Radchenko, UKR 1995-06 Toru Yasuda, JPN 1995-07 B. Mihailov, BGR - IMO1 1995-08 Arthur Engel, GER 1995-10 Vyacheslav Yasinskiy, UKR 1995-11 A. McNaughton, NZL - IMO5 1995-12 Titu Andreescu, USA 1995-14 Germán Rincón, COL 1995-16 Alexander S. Golovanov, RUS 1995-17 Jaromír Šimša, CZE – IMO3 1995-19 Tom Laffey, IRL 1995-20 Marcin Kuczma, POL - IMO6 1995-22 Stephan Beck, GER 1995-23 Igor Mitelman, UKR 1995-24 Marcin Kuczma, POL - IMO4 1995-25 Marcin Kuczma, POL 1995-28 B.J. Venkatachala, IND 1996-01 Peter Anastasov, SVN

1996-02 F. Gaines, T. Laffey, IRL 1996-03 Michalis Lambrou, HEL 1996-06 Tom Laffey, IRL 1996-08 M. Becheanu, ROU – IMO3 1996-09 Marcin Kuczma, POL 1996-10 David Monk, UNK 1996-11 J.P. Grossman, CAN – IMO2 1996-12 David Monk, UNK 1996-13 Titu Andreescu, USA 1996-14 N.M. Sedrakyan, ARM - IMO5 1996-16 Christopher Bradley, UNK 1996-18 Vyacheslav Yasinskiy, UKR 1996-19 Igor Mitelman, UKR 1996-20 A.S. Golovanov, RUS - IMO4 1996-21 Emil Kolev, BGR 1996-24 Kerkko Luosto, FIN – IMO1 1996-25 Vadym Radchenko, UKR 1996-26 T. Andreescu, K. Kedlaya, USA 1996-28 Laurent Rosaz, FRA - IMO6 1996-30 F. Gaines, T. Laffey, IRL 1997-01 Igor Voronovich, BLR - IMO1 1997-03 Arthur Engel, GER 1997-04 E.S. Mahmoodian, M. Mahdian, IRN - IMO4 1997-05 Mircea Becheanu, ROU 1997-06 F. Gaines, T. Laffey, IRL 1997-07 Valentina Kirichenko, RUS 1997-08 David Monk, UNK - IMO2 1997-09 T. Andreescu, K. Kedlaya, USA 1997-11 N.G. de Bruijn, NLD 1997-12 Roberto Dvornicich, ITA 1997-13 C.R. Pranesachar, IND 1997-14 B.J. Venkatachala, IND 1997-15 Alexander S. Golovanov, RUS 1997-16 Igor Voronovich, BLR 1997-17 Petr Kaňovský, CZE – IMO5 1997-18 David Monk, UNK 1997-19 Finbarr Holland, IRL 1997-20 Kevin Hutchinson, IRL 1997-21 A. Kachurovskiy, O.Bogopolskiy, RUS - IMO3 1997-22 Vadym Radchenko, UKR 1997-23 Christopher Bradley, UNK 1997-24 G. Alkauskas, LTU - IMO6 1997-25 Marcin Kuczma, POL 1997-26 Stefano Mortola, ITA

1998-06 Waldemar Pompe, POL 1998-07 David Monk, UNK 1998-08 Sambuddha Roy, IND 1998-12 Marcin Kuczma, POL 1998-13 O. Mushkarov, N. Nikolov, BGR - IMO6 1998-14 David Monk, UNK - IMO4 1998-16 Vadym Radchenko, UKR 1998-17 David Monk, UNK 1998-19 Igor Voronovich, BLR - IMO3 1998-21 Murray Klamkin, CAN 1998-22 Vadym Radchenko, UKR 1998-25 Arkadii Slinko, NZL 1998-26 Ravi B. Bapat, IND - IMO2 1999-01 Liang-Ju Chu, TWN - IMO4 1999-02 Nairi M. Sedrakyan, ARM 1999-07 Nairi M. Sedrakyan, ARM 1999-08 Shin Hitotsumatsu, JPN 1999-09 Jan Villemson, EST - IMO1 1999-10 David Monk, UNK 1999-12 P. Kozhevnikov, RUS – IMO5 1999-15 Marcin Kuczma, POL - IMO2 1999-19 Tetsuya Ando, JPN - IMO6 1999-21 C.R. Pranesachar, IND 1999-22 Andy Liu, jury, CAN 1999-23 David Monk, UNK 1999-24 Ben Green, UNK 1999-25 Ye. Barabanov, I.Voronovich, BLR - IMO3 1999-26 Mansur Boase, UNK 2000-01 Sándor Dobos, HUN - IMO4 2000-02 Roberto Dvornicich, ITA 2000-03 Federico Ardila, COL 2000-07 Titu Andreescu, USA - IMO2 2000-08 I. Leader, P. Shiu, UNK 2000-10 David Monk, UNK 2000-12 Gordon Lessells, IRL 2000-16 Valeriy Senderov, RUS - IMO5 2000-21 Sergey Berlov, RUS - IMO1 2000-22 C.R. Pranesachar, IND

1998-03 V. Yasinskiy, UKR – IMO5

1998-01 Charles Leytem, LUX – IMO1 1998-02 Waldemar Pompe, POL

T. Emelyanova, RUS – IMO6

2000-24 David Monk, UNK

2000-27 L. Emelyanov,

2001-01 B. Rajarama Bhat, IND 2001-02 Marcin Kuczma, POL 2001-04 Juozas Juvencijus Mačys, LTU 2001-05 O. Mushkarov, N. Nikolov, BGR 2001-06 Hojoo Lee, KOR - IMO2 2001-07 Federico Ardila, COL 2001-08 Bill Sands, CAN - IMO4 2001-10 Michael Albert, NZL 2001-12 Bill Sands, CAN 2001-14 Christian Bey, GER - IMO3 2001-15 Vyacheslav Yasinskiy, UKR 2001-16 Hojoo Lee, KOR - IMO1 2001-17 Christopher Bradley, UNK 2001-19 Sotiris Louridas, HEL 2001-20 C.R. Pranesachar, IND 2001-22 Shay Gueron, ISR - IMO5 2001-23 Australian PSC, AUS 2001-24 Sandor Ortegón, COL 2001-25 Kevin Buzzard, UNK 2001-27 A. Ivanov, BGR - IMO6 2001-28 F. Petrov, D. Đukić, RUS 2002-02 Mihai Manea, ROU - IMO4 2002-03 G. Bayarmagnai, MNG 2002-04 Stephan Beck, GER 2002-06 L. Panaitopol, ROU - IMO3 2002-08 Hojoo Lee, KOR 2002-09 Hojoo Lee, KOR - IMO2 2002-11 Angelo Di Pasquale, AUS 2002-12 V. Yasinskiy, UKR - IMO6 2002-16 Dušan Đukić, SCG 2002-17 Marcin Kuczma, POL 2002-18 B.J. Venkatachala, IND - IMO5 2002-19 C.R. Pranesachar, IND 2002-20 Omid Naghshineh, IRN 2002-21 Federico Ardila, COL - IMO1 2002-23 Federico Ardila, COL 2002-24 Emil Kolev, BGR

2002-26 Marcin Kuczma, POL 2002-27 Michael Albert, NZL

2003-01 Kiran Kedlaya, USA

D. Mathews, AUS

2003-04 Finbarr Holland, IRL - IMO5

2003-02 A. Di Pasquale,

C Authors of Problems 801

2003-05 Hojoo Lee, KOR 2003-06 Reid Barton, USA 2003-07 C.G. Moreira, BRA - IMO1 2003-09 Juozas Juvencijus Mačys, LTU 2003-12 Dirk Laurie, SAF 2003-13 Matti Lehtinen, FIN - IMO4 2003-15 C.R. Pranesachar, IND 2003-17 Hojoo Lee, KOR 2003-18 Waldemar Pompe, POL - IMO3 2003-19 Dirk Laurie, SAF 2003-20 Marcin Kuczma, POL 2003-21 Zoran Šunić, USA 2003-22 A. Ivanov, BGR - IMO2 2003-23 Laurențiu Panaitopol, ROU 2003-24 Hojoo Lee, KOR 2003-25 Johan Yebbou, FRA - IMO6 2004-01 Hojoo Lee, KOR - IMO4 2004-02 Mihai Bălună, ROU 2004-03 Dan Brown, CAN 2004-04 Hojoo Lee, KOR - IMO2 2004-07 Finbarr Holland, IRL 2004-08 Guihua Gong, PRI 2004-09 Horst Sewerin, GER 2004-10 Norman Do, AUS 2004-11 Marcin Kuczma, POL 2004-12 A. Slinko, S. Marshall, NZL 2004-14 J. Villemson. M. Pettai, EST - IMO3 2004-15 Marcin Kuczma, POL 2004-16 D. Serbănescu, V. Vornicu, ROU - IMO1 2004-18 Hojoo Lee, KOR 2004-19 Waldemar Pompe, POL - IMO5 2004-20 Dušan Đukić, SCG 2004-21 B. Green, E. Crane, UNK 2004-23 Dušan Đukić, SCG 2004-26 Mohsen Jamali, IRN 2004-27 Jarosław Wróblewski, POL 2004-28 M. Jamali, A. Morabi, IRN - IMO6 2004-29 John Murray, IRL 2004-30 Alexander Ivanov, BGR 2005-02 Nikolai Nikolov, BGR

2005-04 B.J. Venkatachala, IND

2005-05 Hojoo Lee, KOR – IMO3 2005-06 Australian PSC, AUS 2005-09 Federico Ardila, COL 2005-10 Dušan Đukić, SCG 2005-11 R. Gologan, D. Schwarz, ROU - IMO6 2005-12 R. Liu, Z. Feng, USA 2005-13 Alexander Ivanov, BGR 2005-14 Dimitris Kontogiannis, HEL 2005-15 Bogdan Enescu, ROU - IMO1 2005-16 Vyacheslav Yasinskiy, UKR 2005-17 Waldemar Pompe, POL – IMO5 2005-20 Hojoo Lee, KOR 2005-21 Mariusz Skałba, POL - IMO4 2005-22 N.G. de Bruijn, NLD - IMO2 2005-24 Carlos Caicedo, COL 2005-26 Mohsen Jamali, IRN 2006-01 Härmel Nestra, EST 2006-02 Mariusz Skałba, POL 2006-04 Dušan Đukić, SRB 2006-05 Hojoo Lee, KOR 2006-06 Finbarr Holland, IRL - IMO3 2006-08 Dušan Đukić, SRB - IMO2 2006-09 Federico Ardila, COL 2006-12 Federico Ardila, COL 2006-13 Kei Irie, JPN 2006-14 Hojoo Lee, KOR - IMO1 2006-15 Vyacheslav Yasinskiy, UKR 2006-16 Zuming Feng, USA 2006-18 Dimitris Kontogiannis, HEL 2006-20 Tomáš Jurík, SVK 2006-21 Waldemar Pompe, POL 2006-23 Dušan Đukić, SRB - IMO6 2006-24 Zuming Feng, USA – IMO4 2006-25 J.P. Grossman, CAN 2006-26 Johan Meyer, SAF 2006-27 Dan Schwarz, ROU - IMO5 2006-29 Zoran Šunić, USA 2006-30 Juhan Aru, EST 2007-01 Michael Albert, NZL - IMO1

2007-02 Nikolai Nikolov, BGR 2007-03 Juhan Aru, EST 2007-05 Vjekoslav Kovač, HRV 2007-06 Waldemar Pompe, POL 2007-07 G. Woeginger, NLD – IMO6 2007-08 Dušan Đukić, SRB 2007-09 Kei Irie, JPN 2007-10 Gerhard Woeginger, NLD 2007-11 Omid Hatami, IRN 2007-12 R. Gologan, D. Schwarz, ROU 2007-13 Vasiliy Astakhov, RUS - IMO3 2007-14 Gerhard Woeginger, AUT 2007-15 Vyacheslav Yasinskiy, UKR 2007-16 Marek Pechal, CZE - IMO4 2007-17 Farzin Barekat, CAN 2007-18 Vyacheslav Yasinskiy, UKR 2007-19 Charles Leytem, LUX - IMO2 2007-20 Christopher Bradley, UNK 2007-21 Z. Feng, O. Golberg, USA 2007-22 Davoud Vakili, IRN 2007-23 Waldemar Pompe, POL 2007-24 Stephan Wagner, AUT 2007-25 Dan Brown, CAN 2007-26 Gerhard Woeginger, NLD 2007-27 Jerzy Browkin, POL 2007-28 M. Jamali, N. Ahmadi Pour Anari, IRN 2007-29 K. Buzzard. E. Crane, UNK - IMO5 2007-30 N.V. Tejaswi, IND 2008-01 Hojoo Lee, KOR - IMO4 2008-02 Walther Janous, AUT - IMO2 2008-05 Pavel Novotný, SVK 2008-06 Žymantas Darbėnas, LTU 2008-09 Vidan Govedarica, SRB 2008-10 Jorge Tipe, PER 2008-11 B. Le Floch, I. Smilga, FRA – IMO5

2008-14 A. Gavrilyuk, RUS – IMO1 2008-15 Charles Leytem, LUX 2008-16 John Cuya, PER 2008-19 Dušan Đukić, SRB 2008-20 V. Shmarov, RUS – IMO6

2008-21 Angelo Di Pasquale, AUS

2008-24 Dušan Đukić, SRB

2008-26 K. Česnavičius, LTU – IMO3

2009-01 Michal Rolínek, CZE 2009-03 Bruno Le Floch, FRA – IMO5 2009-06 Gabriel Carroll, USA – IMO3 2009-07 Japanese PSC, JPN 2009-08 Michael Albert, NZL 2009-14 D. Khramtsov, RUS – IMO6 2009-15 Gerhard Woeginger, AUT 2009-16 H. Lee, P. Vandendriessche,

J. Vonk, BEL – IMO4

2009-17 Sergei Berlov, RUS – IMO2 2009-19 David Monk, UNK 2009-21 Eugene Bilopitov, UKR 2009-24 Ross Atkins, AUS – IMO1 2009-25 Jorge Tipe, PER 2009-28 József Pelikán, HUN 2009-29 Okan Tekman, TUR

References

- 1. M. Aassila, 300 Défis Mathématiques, Ellipses, 2001.
- 2. M. Aigner, G.M. Ziegler, Proofs from THE BOOK, Springer; 4th edition, 2009.
- G.L. Alexanderson, L.F. Klosinski, L.C. Larson, *The William Lowell Putnam Mathematical Competition, Problems and Solutions: 1965–1984*, The Mathematical Association of America, 1985.
- N. Altshiller-Court, College Geometry: An Introduction to the Modern Geometry of the Triangle and the Circle, Dover Publications, 2007.
- T. Andreescu, D. Andrica, 360 Problems for Mathematical Contests, GIL Publishing House, Zaläu, 2003.
- 6. T. Andreescu, D. Andrica, *An Introduction to Diophantine Equations*, GIL Publishing House, 2002.
- 7. T. Andreescu, D. Andrica, Complex Numbers from A to ... Z, Birkhäuser, Boston, 2005.
- T. Andreescu, D. Andrica, Z. Feng, 104 Number Theory Problems, Birkhauser, Boston, 2006.
- T. Andreescu, V. Cartoaje, G. Dospinescu, M. Lascu, Old and New Inequalities, GIL Publishing House, 2004.
- 10. T. Adnreescu, G. Dospinescu, Problems from the Book, XYZ Press, 2008.
- 11. T. Andreescu, B. Enescu, Mathematical Treasures, Birkhäuser, Boston, 2003.
- 12. T. Andreescu, Z. Feng, 102 Combinatorial Problems, Birkhäuser Boston, 2002.
- T. Andreescu, Z. Feng, 103 Trigonometry Problems: From the Training of the USA IMO Team, Birkhäuser Boston, 2004.
- 14. T. Andreescu, Z. Feng, *Mathematical Olympiads 1998–1999*, *Problems and Solutions from Around the World*, The Mathematical Association of America, 2000.
- 15. T. Andreescu, Z. Feng, *Mathematical Olympiads 1999–2000, Problems and Solutions from Around the World*, The Mathematical Association of America, 2002.
- T. Andreescu, Z. Feng, Mathematical Olympiads 2000–2001, Problems and Solutions from Around the World, The Mathematical Association of America, 2003.
- 17. T. Andreescu, Z. Feng, A Path to Combinatorics for Undergraduates: Counting Strategies, Birkhauser, Boston, 2003.
- T. Andreescu, R. Gelca, *Mathematical Olympiad Challenges*, Birkhäuser, Boston, 2000.
 T. Andreescu, K. Kedlaya, P. Zeitz, *Mathematical Contests 1995-1996*, *Olympiads Prob-*
- lems and Solutions from Around the World, American Mathematics Competitions, 1997. 20. T. Andreescu, K. Kedlaya, Mathematical Contests 1996-1997, Olympiads Problems and
- Solutions from Around the World, American Mathematics Competitions, 1998.

- 806 References
- T. Andreescu, K. Kedlaya, Mathematical Contests 1997-1998, Olympiads Problems and Solutions from Around the World, American Mathematics Competitions, 1999.
- T. Andreescu, O. Mushkarov, L. Stoyanov, *Geometric Problems on Maxima and Min-ima*, Birkhauser Boston, 2005.
- 23. M. Arsenović, V. Dragović, *Functional Equations (in Serbian)*, Mathematical Society of Serbia, Beograd, 1999.
- M. Ašić et al., International Mathematical Olympiads (in Serbian), Mathematical Society of Serbia, Beograd, 1986.
- M. Ašić et al., 60 Problems for XIX IMO (in Serbian), Society of Mathematicians, Physicists, and Astronomers, Beograd, 1979.
- 26. A. Baker, A Concise Introduction to the Theory of Numbers, Cambridge University Press, Cambridge, 1984.
- 27. E.J. Barbeau, Polynomials, Springer, 2003.
- 28. E.J. Barbeau, M.S. Klamkin, W.O.J. Moser, *Five Hundred Mathematical Challenges*, The Mathematical Association of America, 1995.
- 29. E.J. Barbeau, Pell's Equation, Springer-Verlag, 2003.
- 30. M. Becheanu, International Mathematical Olympiads 1959–2000. Problems. Solutions. Results, Academic Distribution Center, Freeland, USA, 2001.
- E.L. Berlekamp, J.H. Conway, R.K. Guy, *Winning Ways for Your Mathematical Plays*, Volumes 1-4, AK Peters, Ltd., 2nd edition, 2001 – 2004.
- 32. G. Berzsenyi, S.B. Maurer, *The Contest Problem Book V*, The Mathematical Association of America, 1997.
- 33. R. Brualdi, Introductory Combinatorics, 4th edition, Prentice-Hall, 2004.
- 34. C.J. Bradley, *Challenges in Geometry : for Mathematical Olympians Past and Present*, Oxford University Press, 2005.
- 35. P.S. Bullen, D.S. Mitrinović, M. Vasić, Means and Their Inequalities, Springer, 1989.
- C. Chuan-Chong, K. Khee-Meng, *Principles and Techniques in Combinatorics*, World Scientific Publishing Company, 1992.
- 37. H.S.M. Coxeter, Introduction to Geometry, John Willey & Sons, New York, 1969
- 38. H.S.M. Coxeter, S.L. Greitzer, Geometry Revisited, Random House, New York, 1967.
- I. Cuculescu, International Mathematical Olympiads for Students (in Romanian), Editura Tehnica, Bucharest, 1984.
- 40. A. Engel, Problem Solving Strategies, Springer, 1999.
- D. Fomin, A. Kirichenko, *Leningrad Mathematical Olympiads* 1987–1991, MathPro Press, 1994.
- 42. A.A. Fomin, G.M. Kuznetsova, International Mathematical Olympiads (in Russian), Drofa, Moskva, 1998.
- 43. A. Gardiner, The Mathematical Olympiad Handook, Oxford, 1997.
- 44. R. Gelca, T. Andreescu, Putnam and Beyond, Springer 2007.
- A.M. Gleason, R.E. Greenwood, L.M. Kelly, *The William Lowell Putnam Mathematical Competition, Problems and Solutions: 1938–1964*, The Mathematical Association of America, 1980.
- 46. R.K. Guy, Unsolved Problems in Number Theory, Springer, 3rd edition, 2004.
- S.L. Greitzer, International Mathematical Olympiads 1959–1977, M.A.A., Washington, D. C., 1978.
- R.L. Graham, D.E. Knuth, O. Patashnik, *Concrete Mathematics*, 2nd Edition, Addison-Wesley, 1989.
- 49. L-S. Hahn, Complex Numbers & Geometry, New York, 1960.
- L. Hahn, New Mexico Mathematics Contest Problem Book, University of New Mexico Press, 2005.

- 51. G.H. Hardy, J.E. Littlewood, G. Pólya, *Inequalities*, Cambridge University Press; 2nd edition, 1998.
- G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers, Oxford University Press; 5th edition, 1980.
- 53. R. Honsberger, From Erdos to Kiev: Problems of Olympiad Caliber, MAA, 1996.
- 54. R. Honsberger, In Polya's Footsteps: Miscelaneous Problems and Essays, MAA, 1997.
- 55. D. Hu, X. Tao, Mathematical Olympiad the Problems Proposed to the 31st IMO (in Chinese), Peking University Press, 1991.
- 56. V. Janković, Z. Kadelburg, P. Mladenović, *International and Balkan Mathematical Olympiads 1984–1995 (in Serbian)*, Mathematical Society of Serbia, Beograd, 1996.
- 57. V. Janković, V. Mićić, *IX & XIX International Mathematical Olympiads*, Mathematical Society of Serbia, Beograd, 1997.
- 58. R.A. Johnson, Advanced Euclidean Geometry, Dover Publications, 1960.
- 59. Z. Kadelburg, D. Djukić, M. Lukić, I. Matić, *Inequalities (in Serbian)*, Mathematical Society of Serbia, Beograd, 2003.
- 60. N.D. Kazarinoff, *Geometric Inequalities*, Mathematical Association of America (MAA), 1975.
- K.S. Kedlaya, B. Poonen, R. Vakil, *The William Lowell Putnam Mathematical Compe*tition 1985–2000 Problems, Solutions and Commentary, The Mathematical Association of America, 2002.
- 62. A.P. Kiselev (author), A. Givental (editor), *Kiselev's Geometry / Book I Planimetry*, Sumizdat, 2006.
- A.P. Kiselev (author), A. Givental (editor), Kiselev's Geometry / Book II Stereometry, Sumizdat, 2008.
- 64. M.S. Klamkin, International Mathematical Olympiads 1979–1985 and Forty Supplementary Problems, M.A.A., Washington, D.C., 1986.
- M.S. Klamkin, International Mathematical Olympiads 1979–1986, M.A.A., Washington, D.C., 1988.
- M.S. Klamkin, USA Mathematical Olympiads 1972–1986, M.A.A., Washington, D.C., 1988.
- M.E. Kuczma, 144 Problems of the Austrian-Polish Mathematics Competition 1978– 1993, The Academic Distribution Center, Freeland, Maryland, 1994.
- 68. J. Kurshak, 1Hungarian Problem Book I, MAA, 1967.
- 69. J. Kurshak, 1Hungarian Problem Book II, MAA, 1967.
- 70. A. Kupetov, A. Rubanov, Problems in Geometry, MIR, Moscow, 1975.
- 71. S. Lando, Lectures on Generating Functions, AMS, 2003.
- H.-H. Langmann, 30th International Mathematical Olympiad, Braunschweig 1989, Bildung und Begabung e.V., Bonn 2, 1990.
- 73. L.C. Larson, Problem Solving Through Problems, Springer, 1983.
- 74. H. Lausch, C. Bosch-Giral Asian Pacific Mathematics Olympiads 1989–2000, AMT, Canberra, 2000.
- H. Lausch, P. Taylor, Australian Mathematical Olympiads 1979–1995, AMT, Canberra 1997.
- 76. P.K. Hung, Secrets in Inequalities, GIL Publishing House, 2007.
- 77. A. Liu, Chinese Mathematical Competitions and Olympiads 1981–1993, AMT, Canberra 1998.
- 78. A. Liu, Hungarian Problem Book III, MAA, 2001.
- 79. E. Lozansky, C. Rousseau, Winning Solutions, Springer-Verlag, New York, 1996.
- V. Mićić, Z. Kadelburg, D. Djukić, *Introduction to Number Theory (in Serbian)*, 4th edition, Mathematical Society of Serbia, Beograd, 2004.

- 808 References
- D.S. Mitrinović, J. Pečarić, A.M. Fink, *Classical and New Inequalities in Analysis*, Springer, 1992.
- D.S. Mitrinović, J.E. Pečarić, V. Volenec, *Recent Advances in Geometric Inequalities*, Kluwer Academic Publishers, 1989.
- 83. P. Mladenović, *Combinatorics*, 3rd edition, Mathematical Society of Serbia, Beograd, 2001.
- 84. P.S. Modenov, Problems in Geometry, MIR, Moscow, 1981.
- 85. P.S. Modenov, A.S. Parhomenko, *Geometric Transformations*, Academic Press, New York, 1965.
- 86. L. Moisotte, 1850 exercices de mathémathique, Bordas, Paris, 1978.
- 87. L.J. Mordell, Diophantine Equations, Academic Press, London and New York, 1969.
- E.A. Morozova, I.S. Petrakov, V.A. Skvortsov, *International Mathematical Olympiads* (*in Russian*), Prosveshchenie, Moscow, 1976.
- I. Nagell, Introduction to Number Theoury, John Wiley & Sons, Inc., New York, Stockholm, 1951.
- I. Niven, H.S. Zuckerman, H.L. Montgomery, An Introduction to the Theory of Numbers, John Wiley and Sons, Inc., 1991.
- 91. G. Polya, *How to Solve It: A New Aspect of Mathematical Method*, Princeton University Press, 2004.
- C.R. Pranesachar, Shailesh A. Shirali, B.J. Venkatachala, C.S. Yogananda, *Mathematical Challenges from Olympiads*, Interline Publishing Pvt. Ltd., Bangalore, 1995.
- 93. V.V. Prasolov, Problems of Plane Geometry, Volumes 1 and 2, Nauka, Moscow, 1986.
- V.V. Prasolov, V.M. Tikhomirov *Geometry*, Volumes 1 and 2, American Mathematical Society, 2001.
- 95. A.S. Posamentier, C.T. Salking, *Challenging Problems in Algebra*, Dover Books in Mathematics, 1996.
- A.S. Posamentier, C.T. Salking, *Challenging Problems in Geometry*, Dover Books in Mathematics, 1996.
- I. Reiman, J. Pataki, A. Stipsitz, *International Mathematical Olympiad: 1959–1999*, Anthem Press, London, 2002.
- 98. I.F. Sharygin, Problems in Plane Geometry, Imported Pubn, 1988.
- 99. W. Sierpinski, *Elementary Theory of Numbers*, Polski Academic Nauk, Warsaw, 1964.
- W. Sierpinski, 250 Problems in Elementary Number Theory, American Elsevier Publishing Company, Inc., New York, PWN, Warsaw, 1970.
- 101. A.M. Slinko, USSR Mathematical Olympiads 1989–1992, AMT, Canberra, 1998.
- 102. C.G. Small, Functional Equations and How to Solve Them, Springer 2006.
- 103. Z. Stankova, T. Rike, A Decade of the Berkeley Math Circle, American Mathematical Society, 2008.
- 104. R.P. Stanley, *Enumerative Combinatorics*, Volumes 1 and 2, Cambridge University Press; New Ed edition, 2001.
- 105. D. Stevanović, M. Milošević, V. Baltić, Discrete Mathematics: Problem Book in Elementary Combinatorics and Graph Theory (in Serbian), Mathematical Society of Serbia, Beograd, 2004.
- A.M. Storozhev, International Mathematical Tournament of the Towns, Book 5: 1997– 2002, AMT Publishing, 2006.
- P.J. Taylor, International Mathematical Tournament of the Towns, Book 1: 1980–1984, AMT Publishing, 1993.
- P.J. Taylor, International Mathematical Tournament of the Towns, Book 2: 1984–1989, AMT Publishing, 2003.

- P.J. Taylor, International Mathematical Tournament of the Towns, Book 3: 1989–1993, AMT Publishing, 1994.
- 110. P.J. Taylor, A.M. Storozhev, International Mathematical Tournament of the Towns, Book 4: 1993–1997, AMT Publishing, 1998.
- 111. J. Tattersall, *Elementary Number Theory in Nine Chapters*, 2nd edition, Cambridge University Press, 2005.
- 112. I. Tomescu, R.A. Melter, *Problems in Combinatorics and Graph Theory*, John Wiley & Sons, 1985.
- 113. I. Tomescu et al., Balkan Mathematical Olympiads 1984-1994 (in Romanian), Gil, Zalău, 1996.
- 114. R. Vakil, A Mathematical Mosaic: Patterns and Problem Solving, 2nd edition, MAA, 2007.
- 115. J.H. van Lint, R.M. Wilson, A Course in Combinatorics, second edition, Cambridge University Press, 2001.
- 116. I.M. Vinogradov, Elements of Number Theory, Dover Publications, 2003.
- 117. I.M. Vinogradov, *The Method of Trigonometrical Sums in the Theory of Numbers*, Dover Books in Mathematics, 2004.
- 118. H.S. Wilf, Generatingfunctionology, Academic Press, Inc.; 3rd edition, 2006.
- 119. A.M. Yaglom, I.M. Yaglom, *Challenging Mathematical Problems with Elementary Solutions*, Dover Publications, 1987.
- 120. I.M. Yaglom, *Geometric Transformations*, Vols. I, II, III, The Mathematical Association of America (MAA), 1962, 1968, 1973.
- 121. P. Zeitz, *The Art and Craft of Problem Solving*, Wiley; International Student edition, 2006.

Problem Books in Mathematics

Dušan Djukić · Vladimir Janković · Ivan Matić · Nikola Petrović **The IMO Compendium** A Collection of Problems Suggested for The International Mathematical Olympiads: 1959-2009, *Second Edition*

The IMO Compendium is the ultimate collection of challenging high school level mathematics problems. It is an invaluable resource, not only for students preparing for competitions, but for anyone who loves and appreciates math. Training for mathematical olympiads is enjoyed by talented students throughout the world. Olympiads have become one of the primary ways to recognize and develop talented youth with a potential to excel in areas that require abstract thinking. Although the problems appearing at IMO do not involve advanced mathematics, they must be difficult and their solutions must arise from creative and clever insights rather than tedious calculations.

In preparation for the distinguished International Mathematical Olympiad (IMO) competition, each participating country selects the top six high school students every year through a series of national olympiads. These students are invited to participate in the IMO, usually held in July. The IMO is a two-day contest where each day competitors are given three problems which they work on independently. The IMO host country appoints a special committee to which each country submits up to six problems. From this composite "longlist" of problems, a "shortlist" of 25-30 problems is created. The jury, consisting of one professor from each country, makes the final selection from the shortlist a few days before the IMO begins.

The IMO has sparked a burst of creativity among enthusiasts to create new and interesting mathematics problems. It can be safely said that the IMO and shortlisted problems are among the well-crafted problems created in a given year. This book attempts to gather all of these problems with their solutions. In addition, the book contains all the available longlist problems, for a total of more than 2000 problems.

From the reviews of the first edition:

"The International Mathematical Olympiad, or IMO is the premier international competition for talented high school mathematics students. ... This book collects statements and solutions of all of the problems ever set in the IMO, together with many problems proposed for the contest. ... serves as a vast repository of problems at the Olympiad level, useful both to students ... and to faculty looking for hard elementary problems. No library will want to be without a copy, nor will anyone involved in mathematics competitions ..."

— (Fernando Q. Gouvêa, MathDL, March, 2006)

Mathematics

▶ springer.com

2 0

PBM

Djukić · Janković Matić · Petrović

2nd Ed.