Problem Books in Mathematics

0
Dušan Djukić
Vladimir Janković
Ivan Matić
Nikola Petrović

The IMO

 CompendiumA Collection of Problems Suggested for The International Mathematical Olympiads: 1959-2009

Second Edition

Contents

1 Introduction 1
1.1 The International Mathematical Olympiad 1
1.2 The IMO Compendium 2
2 Basic Concepts and Facts 5
2.1 Algebra 5
2.1.1 Polynomials 5
2.1.2 Recurrence Relations 6
2.1.3 Inequalities 7
2.1.4 Groups and Fields 9
2.2 Analysis 10
2.3 Geometry 12
2.3.1 Triangle Geometry 12
2.3.2 Vectors in Geometry 13
2.3.3 Barycenters 14
2.3.4 Quadrilaterals 14
2.3.5 Circle Geometry 15
2.3.6 Inversion 16
2.3.7 Geometric Inequalities 17
2.3.8 Trigonometry 17
2.3.9 Formulas in Geometry 18
2.4 Number Theory 19
2.4.1 Divisibility and Congruences 19
2.4.2 Exponential Congruences 20
2.4.3 Quadratic Diophantine Equations 21
2.4.4 Farey Sequences 22
2.5 Combinatorics 22
2.5.1 Counting of Objects 22
2.5.2 Graph Theory 23
3 Problems 27
3.1 IMO 1959 27
3.1.1 Contest Problems 27
3.2 IMO 1960 29
3.2.1 Contest Problems 29
3.3 IMO 1961 30
3.3.1 Contest Problems 30
3.4 IMO 1962 31
3.4.1 Contest Problems 31
3.5 IMO 1963 32
3.5.1 Contest Problems 32
3.6 IMO 1964 33
3.6.1 Contest Problems 33
3.7 IMO 1965 34
3.7.1 Contest Problems 34
3.8 IMO 1966 35
3.8.1 Contest Problems 35
3.8.2 Some Longlisted Problems 1959-1966 35
3.9 IMO 1967 41
3.9.1 Contest Problems 41
3.9.2 Longlisted Problems 41
3.10 IMO 1968 49
3.10.1 Contest Problems 49
3.10.2 Shortlisted Problems 49
3.11 IMO 1969 53
3.11.1 Contest Problems 53
3.11.2 Longlisted Problems 53
3.12 IMO 1970 61
3.12.1 Contest Problems 61
3.12.2 Longlisted Problems 62
3.12.3 Shortlisted Problems 68
3.13 IMO 1971 70
3.13.1 Contest Problems 70
3.13.2 Longlisted Problems 71
3.13.3 Shortlisted Problems 76
3.14 IMO 1972 79
3.14.1 Contest Problems 79
3.14.2 Longlisted Problems 79
3.14.3 Shortlisted Problems 83
3.15 IMO 1973 86
3.15.1 Contest Problems 86
3.15.2 Shortlisted Problems 87
3.16 IMO 1974 89
3.16.1 Contest Problems 89
3.16.2 Longlisted Problems 90
3.16.3 Shortlisted Problems 95
3.17 IMO 1975 97
3.17.1 Contest Problems 97
3.17.2 Shortlisted Problems 97
3.18 IMO 1976 100
3.18.1 Contest Problems 100
3.18.2 Longlisted Problems 100
3.18.3 Shortlisted Problems 105
3.19 IMO 1977 107
3.19.1 Contest Problems 107
3.19.2 Longlisted Problems 107
3.19.3 Shortlisted Problems 113
3.20 IMO 1978 116
3.20.1 Contest Problems 116
3.20.2 Longlisted Problems 116
3.20.3 Shortlisted Problems 121
3.21 IMO 1979 124
3.21.1 Contest Problems 124
3.21.2 Longlisted Problems 125
3.21.3 Shortlisted Problems 132
3.22 IMO 1981 135
3.22.1 Contest Problems 135
3.22.2 Shortlisted Problems 135
3.23 IMO 1982 138
3.23.1 Contest Problems 138
3.23.2 Longlisted Problems 139
3.23.3 Shortlisted Problems 144
3.24 IMO 1983 147
3.24.1 Contest Problems 147
3.24.2 Longlisted Problems 147
3.24.3 Shortlisted Problems 154
3.25 IMO 1984 158
3.25.1 Contest Problems 158
3.25.2 Longlisted Problems 158
3.25.3 Shortlisted Problems 165
3.26 IMO 1985 168
3.26.1 Contest Problems 168
3.26.2 Longlisted Problems 168
3.26.3 Shortlisted Problems 177
3.27 IMO 1986 181
3.27.1 Contest Problems 181
3.27.2 Longlisted Problems 182
3.27.3 Shortlisted Problems 188
3.28 IMO 1987 192
3.28.1 Contest Problems 192
3.28.2 Longlisted Problems 192
3.28.3 Shortlisted Problems 200
3.29 IMO 1988 203
3.29.1 Contest Problems 203
3.29.2 Longlisted Problems 204
3.29.3 Shortlisted Problems 212
3.30 IMO 1989 217
3.30.1 Contest Problems 217
3.30.2 Longlisted Problems 218
3.30.3 Shortlisted Problems 229
3.31 IMO 1990 234
3.31.1 Contest Problems 234
3.31.2 Longlisted Problems 235
3.31.3 Shortlisted Problems 245
3.32 IMO 1991 249
3.32.1 Contest Problems 249
3.32.2 Shortlisted Problems 249
3.33 IMO 1992 253
3.33.1 Contest Problems 253
3.33.2 Longlisted Problems 253
3.33.3 Shortlisted Problems 262
3.34 IMO 1993 266
3.34.1 Contest Problems 266
3.34.2 Shortlisted Problems 267
3.35 IMO 1994 271
3.35.1 Contest Problems 271
3.35.2 Shortlisted Problems 271
3.36 IMO 1995 275
3.36.1 Contest Problems 275
3.36.2 Shortlisted Problems 275
3.37 IMO 1996 280
3.37.1 Contest Problems 280
3.37.2 Shortlisted Problems 281
3.38 IMO 1997 286
3.38.1 Contest Problems 286
3.38.2 Shortlisted Problems 287
3.39 IMO 1998 291
3.39.1 Contest Problems 291
3.39.2 Shortlisted Problems 291
3.40 IMO 1999 295
3.40.1 Contest Problems 295
3.40.2 Shortlisted Problems 295
3.41 IMO 2000 300
3.41.1 Contest Problems 300
3.41.2 Shortlisted Problems 300
3.42 IMO 2001 304
3.42.1 Contest Problems 304
3.42.2 Shortlisted Problems 304
3.43 IMO 2002 308
3.43.1 Contest Problems 308
3.43.2 Shortlisted Problems 308
3.44 IMO 2003 312
3.44.1 Contest Problems 312
3.44.2 Shortlisted Problems 312
3.45 IMO 2004 317
3.45.1 Contest Problems 317
3.45.2 Shortlisted Problems 318
3.46 IMO 2005 322
3.46.1 Contest Problems 322
3.46.2 Shortlisted Problems 322
3.47 IMO 2006 326
3.47.1 Contest Problems 326
3.47.2 Shortlisted Problems 326
3.48 IMO 2007 331
3.48.1 Contest Problems 331
3.48.2 Shortlisted Problems 332
3.49 IMO 2008 336
3.49.1 Contest Problems 336
3.49.2 Shortlisted Problems 337
3.50 IMO 2009 341
3.50.1 Contest Problems 341
3.50.2 Shortlisted Problems 341
4 Solutions 347
4.1 Contest Problems 1959 347
4.2 Contest Problems 1960 349
4.3 Contest Problems 1961 351
4.4 Contest Problems 1962 353
4.5 Contest Problems 1963 354
4.6 Contest Problems 1964 355
4.7 Contest Problems 1965 357
4.8 Contest Problems 1966 359
4.9 Longlisted Problems 1967 361
4.10 Shortlisted Problems 1968 374
4.11 Contest Problems 1969 380
4.12 Shortlisted Problems 1970 383
4.13 Shortlisted Problems 1971 389
4.14 Shortlisted Problems 1972 396
4.15 Shortlisted Problems 1973 401
4.16 Shortlisted Problems 1974 407
4.17 Shortlisted Problems 1975 413
4.18 Shortlisted Problems 1976 418
4.19 Longlisted Problems 1977 422
4.20 Shortlisted Problems 1978 437
4.21 Shortlisted Problems 1979 445
4.22 Shortlisted Problems 1981 453
4.23 Shortlisted Problems 1982 461
4.24 Shortlisted Problems 1983 467
4.25 Shortlisted Problems 1984 476
4.26 Shortlisted Problems 1985 483
4.27 Shortlisted Problems 1986 491
4.28 Shortlisted Problems 1987 498
4.29 Shortlisted Problems 1988 508
4.30 Shortlisted Problems 1989 523
4.31 Shortlisted Problems 1990 537
4.32 Shortlisted Problems 1991 550
4.33 Shortlisted Problems 1992 563
4.34 Shortlisted Problems 1993 573
4.35 Shortlisted Problems 1994 585
4.36 Shortlisted Problems 1995 593
4.37 Shortlisted Problems 1996 606
4.38 Shortlisted Problems 1997 622
4.39 Shortlisted Problems 1998 636
4.40 Shortlisted Problems 1999 650
4.41 Shortlisted Problems 2000 664
4.42 Shortlisted Problems 2001 677
4.43 Shortlisted Problems 2002 691
4.44 Shortlisted Problems 2003 702
4.45 Shortlisted Problems 2004 715
4.46 Shortlisted Problems 2005 730
4.47 Shortlisted Problems 2006 742
4.48 Shortlisted Problems 2007 754
4.49 Shortlisted Problems 2008 765
4.50 Shortlisted Problems 2009 777
A Notation and Abbreviations 791
A. 1 Notation 791
A. 2 Abbreviations 792
B Codes of the Countries of Origin 795
C Authors of Problems 797
References 805

3.46 The Forty-Sixth IMO
 Mérida, Mexico, July 8-19, 2005

3.46.1 Contest Problems

First Day (July 13)

1. Six points are chosen on the sides of an equilateral triangle $A B C$: A_{1}, A_{2} on $B C$; B_{1}, B_{2} on $C A ; C_{1}, C_{2}$ on $A B$. These points are vertices of a convex hexagon $A_{1} A_{2} B_{1} B_{2} C_{1} C_{2}$ with equal side lengths. Prove that the lines $A_{1} B_{2}, B_{1} C_{2}$ and $C_{1} A_{2}$ are concurrent.
2. Let a_{1}, a_{2}, \ldots be a sequence of integers with infinitely many positive terms and infinitely many negative terms. Suppose that for each positive integer n, the numbers $a_{1}, a_{2}, \ldots, a_{n}$ leave n different remainders on division by n. Prove that each integer occurs exactly once in the sequence.
3. Let x, y, and z be positive real numbers such that $x y z \geq 1$. Prove that

$$
\frac{x^{5}-x^{2}}{x^{5}+y^{2}+z^{2}}+\frac{y^{5}-y^{2}}{y^{5}+z^{2}+x^{2}}+\frac{z^{5}-z^{2}}{z^{5}+x^{2}+y^{2}} \geq 0
$$

Second Day (July 14)

4. Consider the sequence a_{1}, a_{2}, \ldots defined by

$$
a_{n}=2^{n}+3^{n}+6^{n}-1 \quad(n=1,2, \ldots) .
$$

Determine all positive integers that are relatively prime to every term of the sequence.
5. Let $A B C D$ be a given convex quadrilateral with sides $B C$ and $A D$ equal in length and not parallel. Let E and F be interior points of the sides $B C$ and $A D$ respectively such that $B E=D F$. The lines $A C$ and $B D$ meet at P; the lines $B D$ and $E F$ meet at Q; the lines $E F$ and $A C$ meet at R. Consider all the triangles $P Q R$ as E and F vary. Show that the circumcircles of these triangles have a common point other than P.
6. In a mathematical competition, six problems were posed to the contestants. Each pair of problems was solved by more than $2 / 5$ of the contestants. Nobody solved all six problems. Show that there were at least two contestants who each solved exactly five problems.

3.46.2 Shortlisted Problems

1. A1 (ROU) Find all monic polynomials $p(x)$ with integer coefficients of degree two for which there exists a polynomial $q(x)$ with integer coefficients such that $p(x) q(x)$ is a polynomial having all coefficients ± 1.
2. A2 (BGR) Let \mathbb{R}^{+}denote the set of positive real numbers. Determine all functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that

$$
f(x) f(y)=2 f(x+y f(x))
$$

for all positive real numbers x and y.
3. A3 (CZE) Four real numbers p, q, r, s satisfy

$$
p+q+r+s=9 \quad \text { and } \quad p^{2}+q^{2}+r^{2}+s^{2}=21
$$

Prove that $a b-c d \geq 2$ holds for some permutation (a, b, c, d) of (p, q, r, s).
4. A4 (IND) Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying the equation

$$
f(x+y)+f(x) f(y)=f(x y)+2 x y+1
$$

for all real x and y.
5. A5 (KOR) ${ }^{\mathrm{IMO3}}$ Let x, y and z be positive real numbers such that $x y z \geq 1$. Prove that

$$
\frac{x^{5}-x^{2}}{x^{5}+y^{2}+z^{2}}+\frac{y^{5}-y^{2}}{y^{5}+z^{2}+x^{2}}+\frac{z^{5}-z^{2}}{z^{5}+x^{2}+y^{2}} \geq 0
$$

6. C1 (AUS) A house has an even number of lamps distributed among its rooms in such a way that there are at least three lamps in every room. Each lamp shares a switch with exactly one other lamp, not necessarily from the same room. Each change in the switch shared by two lamps changes their states simultaneously. Prove that for every initial state of the lamps there exists a sequence of changes in some of the switches at the end of which each room contains lamps that are on as well as lamps that are off.
7. C2 (IRN) Let k be a fixed positive integer. A company has a special method to sell sombreros. Each customer can convince two persons to buy a sombrero after he/she buys one; convincing someone already convinced does not count. Each of these new customers can convince two others and so on. If each of the two customers convinced by someone makes at least k persons buy sombreros (directly or indirectly), then that someone wins a free instructional video. Prove that if n persons bought sombreros, then at most $n /(k+2)$ of them got videos.
8. C3 (IRN) In an $m \times n$ rectangular board of $m n$ unit squares, adjacent squares are ones with a common edge, and a path is a sequence of squares in which any two consecutive squares are adjacent. Each square of the board can be colored black or white. Let N denote the number of colorings of the board such that there exists at least one black path from the left edge of the board to its right edge, and let M denote the number of colorings in which there exist at least two nonintersecting black paths from the left edge to the right edge. Prove that $N^{2} \geq 2^{m n} M$.
9. C4 (COL) Let $n \geq 3$ be a given positive integer. We wish to label each side and each diagonal of a regular n-gon $P_{1} \ldots P_{n}$ with a positive integer less than or equal to r so that:
(i) every integer between 1 and r occurs as a label;
(ii) in each triangle $P_{i} P_{j} P_{k}$ two of the labels are equal and greater than the third. Given these conditions:
(a) Determine the largest positive integer r for which this can be done.
(b) For that value of r, how many such labelings are there?
10. C5 (SCG) There are n markers, each with one side white and the other side black, aligned in a row so that their white sides are up. In each step, if possible, we choose a marker with the white side up (but not one of the outermost markers), remove it, and reverse the closest marker to the left and the closest marker to the right of it. Prove that one can achieve the state with only two markers remaining if and only if $n-1$ is not divisible by 3 .
11. C6 (ROU) ${ }^{\mathrm{IMO6}}$ In a mathematical competition, six problems were posed to the contestants. Each pair of problems was solved by more than $2 / 5$ of the contestants. Nobody solved all six problems. Show that there were at least two contestants who each solved exactly five problems.
12. C7 (USA) Let $n \geq 1$ be a given integer, and let a_{1}, \ldots, a_{n} be a sequence of integers such that n divides the sum $a_{1}+\cdots+a_{n}$. Show that there exist permutations σ and τ of $1,2, \ldots, n$ such that $\sigma(i)+\tau(i) \equiv a_{i}(\bmod n)$ for all $i=1, \ldots, n$.
13. C8 (BGR) Let M be a convex n-gon, $n \geq 4$. Some $n-3$ of its diagonals are colored green and some other $n-3$ diagonals are colored red, so that no two diagonals of the same color meet inside M. Find the maximum possible number of intersection points of green and red diagonals inside M.
14. G1 (HEL) In a triangle $A B C$ satisfying $A B+B C=3 A C$ the incircle has center I and touches the sides $A B$ and $B C$ at D and E, respectively. Let K and L be the symmetric points of D and E with respect to I. Prove that the quadrilateral $A C K L$ is cyclic.
15. $\mathbf{G} 2(\mathbf{R O U})^{\mathrm{IMO1}}$ Six points are chosen on the sides of an equilateral triangle $A B C$: A_{1}, A_{2} on $B C ; B_{1}, B_{2}$ on $C A ; C_{1}, C_{2}$ on $A B$. These points are vertices of a convex hexagon $A_{1} A_{2} B_{1} B_{2} C_{1} C_{2}$ with equal side lengths. Prove that the lines $A_{1} B_{2}, B_{1} C_{2}$ and $C_{1} A_{2}$ are concurrent.
16. G3 (UKR) Let $A B C D$ be a parallelogram. A variable line l passing through the point A intersects the rays $B C$ and $D C$ at points X and Y, respectively. Let K and L be the centers of the excircles of triangles $A B X$ and $A D Y$, touching the sides $B X$ and $D Y$, respectively. Prove that the size of angle $K C L$ does not depend on the choice of the line l.
17. G4 (POL) $)^{\mathrm{IMO5}}$ Let $A B C D$ be a given convex quadrilateral with sides $B C$ and $A D$ equal in length and not parallel. Let E and F be interior points of the sides $B C$ and $A D$ respectively such that $B E=D F$. The lines $A C$ and $B D$ meet at P; the lines $B D$ and $E F$ meet at Q; the lines $E F$ and $A C$ meet at R. Consider all the triangles $P Q R$ as E and F vary. Show that the circumcircles of these triangles have a common point other than P.
18. G5 (ROU) Let $A B C$ be an acute-angled triangle with $A B \neq A C$; let H be its orthocenter and M the midpoint of $B C$. Points D on $A B$ and E on $A C$ are such that $A E=A D$ and D, H, E are collinear. Prove that $H M$ is orthogonal to the common chord of the circumcircles of triangles $A B C$ and $A D E$.
19. G6 (RUS) The median $A M$ of a triangle $A B C$ intersects its incircle ω at K and L. The lines through K and L parallel to $B C$ intersect ω again at X and Y. The lines $A X$ and $A Y$ intersect $B C$ at P and Q. Prove that $B P=C Q$.
20. G7 (KOR) In an acute triangle $A B C$, let D, E, F, P, Q, R be the feet of perpendiculars from A, B, C, A, B, C to $B C, C A, A B, E F, F D, D E$, respectively. Prove that $p(A B C) p(P Q R) \geq p(D E F)^{2}$, where $p(T)$ denotes the perimeter of triangle T.
21. N1 (POL) ${ }^{\mathrm{IMO4}}$ Consider the sequence a_{1}, a_{2}, \ldots defined by

$$
a_{n}=2^{n}+3^{n}+6^{n}-1 \quad(n=1,2, \ldots) .
$$

Determine all positive integers that are relatively prime to every term of the sequence.
22. $\mathbf{N} 2$ (NLD) ${ }^{\mathrm{IMO} 2}$ Let a_{1}, a_{2}, \ldots be a sequence of integers with infinitely many positive terms and infinitely many negative terms. Suppose that for each positive integer n, the numbers $a_{1}, a_{2}, \ldots, a_{n}$ leave n different remainders on division by n. Prove that each integer occurs exactly once in the sequence.
23. $\mathbf{N} 3$ (MNG) Let a, b, c, d, e, and f be positive integers. Suppose that the sum $S=a+b+c+d+e+f$ divides both $a b c+d e f$ and $a b+b c+c a-d e-e f-f d$. Prove that S is composite.
24. N4 (COL) Find all positive integers $n>1$ for which there exists a unique integer a with $0<a \leq n!$ such that $a^{n}+1$ is divisible by n !.
25. N5 (NLD) Denote by $d(n)$ the number of divisors of the positive integer n. A positive integer n is called highly divisible if $d(n)>d(m)$ for all positive integers $m<n$. Two highly divisible integers m and n with $m<n$ are called consecutive if there exists no highly divisible integer s satisfying $m<s<n$.
(a) Show that there are only finitely many pairs of consecutive highly divisible integers of the form (a, b) with $a \mid b$.
(b) Show that for every prime number p there exist infinitely many positive highly divisible integers r such that $p r$ is also highly divisible.
26. N6 (IRN) Let a and b be positive integers such that $a^{n}+n$ divides $b^{n}+n$ for every positive integer n. Show that $a=b$.
27. N7 (RUS) Let $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$, where a_{0}, \ldots, a_{n} are integers, $a_{n}>0, n \geq 2$. Prove that there exists a positive integer m such that $P(m!)$ is a composite number.

3.47 The Forty-Seventh IMO
 Ljubljana, Slovenia, July 6-18, 2006

3.47.1 Contest Problems

First Day (July 12)

1. Let $A B C$ be a triangle with incenter I. A point P in the interior of the triangle satisfies

$$
\angle P B A+\angle P C A=\angle P B C+\angle P C B .
$$

Show that $A P \geq A I$, and that equality holds if and only if $P=I$.
2. Let \mathscr{P} be a regular 2006-gon. A diagonal of \mathscr{P} is called good if its endpoints divide the boundary of \mathscr{P} into two parts, each composed of an odd number of sides of \mathscr{P}. The sides of \mathscr{P} are also called good.
Suppose \mathscr{P} has been dissected into triangles by 2003 diagonals, no two of which have a common point in the interior of \mathscr{P}. Find the maximum number of isosceles triangles having two good sides that could appear in such a configuration.
3. Determine the least real number M such that the inequality

$$
\left|a b\left(a^{2}-b^{2}\right)+b c\left(b^{2}-c^{2}\right)+c a\left(c^{2}-a^{2}\right)\right| \leq M\left(a^{2}+b^{2}+c^{2}\right)^{2}
$$

holds for all real numbers a, b, and c.
Second Day (July 13)
4. Determine all pairs (x, y) of integers such that

$$
1+2^{x}+2^{2 x+1}=y^{2}
$$

5. Let $P(x)$ be a polynomial of degree $n>1$ with integer coefficients and let k be a positive integer. Consider the polynomial

$$
Q(x)=P(P(\ldots P(P(x)) \ldots)),
$$

where P occurs k times. Prove that there are at most n integers t that satisfy the equality $Q(t)=t$.
6. Assign to each side b of a convex polygon \mathscr{P} the maximum area of a triangle that has b as a side and is contained in \mathscr{P}. Show that the sum of the areas assigned to the sides of \mathscr{P} is at least twice the area of \mathscr{P}.

3.47.2 Shortlisted Problems

1. A1 (EST) A sequence of real numbers $a_{0}, a_{1}, a_{2}, \ldots$ is defined by the formula

$$
a_{i+1}=\left[a_{i}\right] \cdot\left\{a_{i}\right\}, \text { for } i \geq 0
$$

here a_{0} is an arbitrary number, $\left[a_{i}\right]$ denotes the greatest integer not exceeding a_{i}, and $\left\{a_{i}\right\}=a_{i}-\left[a_{i}\right]$. Prove that $a_{i}=a_{i+2}$ for i sufficiently large.
2. A2 (POL) The sequence of real numbers $a_{0}, a_{1}, a_{2}, \ldots$ is defined recursively by $a_{0}=-1$ and

$$
\sum_{k=0}^{n} \frac{a_{n-k}}{k+1}=0, \quad \text { for } n \geq 1
$$

Show that $a_{n}>0$ for $n \geq 1$.
3. A3 (RUS) The sequence $c_{0}, c_{1}, \ldots, c_{n}, \ldots$ is defined by $c_{0}=1, c_{1}=0$, and $c_{n+2}=c_{n+1}+c_{n}$ for $n \geq 0$. Consider the set S of ordered pairs (x, y) for which there is a finite set J of positive integers such that $x=\sum_{j \in J} c_{j}, y=\sum_{j \in J} c_{j-1}$. Prove that there exist real numbers α, β, and M with the following property: an ordered pair of nonnegative integers (x, y) satisfies the inequality $m<\alpha x+\beta y<$ M if and only if $(x, y) \in S$.
Remark: A sum over the elements of the empty set is assumed to be 0 .
4. A4 (SRB) Prove the inequality

$$
\sum_{i<j} \frac{a_{i} a_{j}}{a_{i}+a_{j}} \leq \frac{n}{2\left(a_{1}+a_{2}+\cdots+a_{n}\right)} \sum_{i<j} a_{i} a_{j}
$$

for positive real numbers $a_{1}, a_{2}, \ldots, a_{n}$.
5. A5 (KOR) Let a, b, c be the sides of a triangle. Prove that

$$
\frac{\sqrt{b+c-a}}{\sqrt{b}+\sqrt{c}-\sqrt{a}}+\frac{\sqrt{c+a-b}}{\sqrt{c}+\sqrt{a}-\sqrt{b}}+\frac{\sqrt{a+b-c}}{\sqrt{a}+\sqrt{b}-\sqrt{c}} \leq 3 .
$$

6. A6 (IRL) ${ }^{\mathrm{IMO3}}$ Determine the smallest number M such that the inequality

$$
\left|a b\left(a^{2}-b^{2}\right)+b c\left(b^{2}-c^{2}\right)+c a\left(c^{2}-a^{2}\right)\right| \leq M\left(a^{2}+b^{2}+c^{2}\right)^{2}
$$

holds for all real numbers a, b, c
7. C1 (FRA) We have $n \geq 2$ lamps L_{1}, \ldots, L_{n} in a row, each of them being either on or off. Every second we simultaneously modify the state of each lamp as follows: if the lamp L_{i} and its neighbors (only one neighbor for $i=1$ or $i=n$, two neighbors for other i) are in the same state, then L_{i} is switched off; otherwise, L_{i} is switched on.
Initially all the lamps are off except the leftmost one which is on.
(a) Prove that there are infinitely many integers n for which all the lamps will eventually be off.
(b) Prove that there are infinitely many integers n for which the lamps will never be all off.
8. $\mathbf{C 2}$ ($\mathbf{S R B})^{\mathrm{IMO} 2}$ A diagonal of a regular 2006-gon is called odd if its endpoints divide the boundary into two parts, each composed of an odd number of sides. Sides are also regarded as odd diagonals. Suppose the 2006-gon has been dissected into triangles by 2003 nonintersecting diagonals. Find the maximum possible number of isosceles triangles with two odd sides.
9. C3 (COL) Let S be a finite set of points in the plane such that no three of them are on a line. For each convex polygon P whose vertices are in S, let $a(P)$ be the number of vertices of P, and let $b(P)$ be the number of points of S that are outside P. Prove that for every real number x

$$
\sum_{P} x^{a(P)}(1-x)^{b(P)}=1
$$

where the sum is taken over all convex polygons with vertices in S.
Remark. A line segment, a point, and the empty set are considered convex polygons of 2,1 , and 0 vertices respectively.
10. $\mathbf{C 4}$ (TWN) A cake has the form of an $n \times n$ square composed of n^{2} unit squares. Strawberries lie on some of the unit squares so that each row and each column contains exactly one strawberry; call this arrangement \mathscr{A}.
Let \mathscr{B} be another such arrangement. Suppose that every grid rectangle with one vertex at the top left corner of the cake contains no fewer strawberries of arrangement \mathscr{B} than of arrangement \mathscr{A}. Prove that arrangement \mathscr{B} can be obtained from \mathscr{A} by performing a number of switches, defined as follows:
A switch consists in selecting a grid rectangle with only two strawberries, situated at its top right corner and bottom left corner, and moving these two strawberries to the other two corners of that rectangle.
11. C5 (ARG) An (n, k)-tournament is a contest with n players held in k rounds such that:
(i) Each player plays in each round, and every two players meet at most once.
(ii) If player A meets player B in round i, player C meets player D in round i, and player A meets player C in round j, then player B meets player D in round j.
Determine all pairs (n, k) for which there exists an (n, k)-tournament.
12. C6 (COL) A holey triangle is an upward equilateral triangle of side length n with n upward unit triangular holes cut out. A diamond is a $60^{\circ}-120^{\circ}$ unit rhombus. Prove that a holey triangle T can be tiled with diamonds if and only if the following condition holds: every upward equilateral triangle of side length k in T contains at most k holes, for $1 \leq k \leq n$.
13. C7 (JPN) Consider a convex polyhedron without parallel edges and without an edge parallel to any face other than the two faces adjacent to it. Call a pair of points of the polyhedron antipodal if there exist two parallel planes passing through these points and such that the polyhedron is contained between these planes.
Let A be the number of antipodal pairs of vertices, and let B be the number of antipodal pairs of midpoint edges. Determine the difference $A-B$ in terms of the numbers of vertices, edges, and faces.
14. G1 (KOR) ${ }^{\mathrm{IMO1}}$ Let $A B C$ be a triangle with incenter I. A point P in the interior of the triangle satisfies $\angle P B A+\angle P C A=\angle P B C+\angle P C B$. Show that $A P \geq A I$ and that equality holds if and only if P coincides with I.
15. G2 (UKR) Let $A B C$ be a trapezoid with parallel sides $A B>C D$. Points K and L lie on the line segments $A B$ and $C D$, respectively, so that $A K / K B=D L / L C$. Suppose that there are points P and Q on the line segment $K L$ satisfying $\angle A P B=$ $\angle B C D$ and $\angle C Q D=\angle A B C$. Prove that the points P, Q, B, and C are concyclic.
16. G3 (USA) Let $A B C D E$ be a convex pentagon such that $\angle B A C=\angle C A D=$ $\angle D A E$ and $\angle A B C=\angle A C D=\angle A D E$. The diagonals $B D$ and $C E$ meet at P. Prove that the line $A P$ bisects the side $C D$.
17. G4 (RUS) A point D is chosen on the side $A C$ of a triangle $A B C$ with $\angle C<$ $\angle A<90^{\circ}$ in such a way that $B D=B A$. The incircle of $A B C$ is tangent to $A B$ and $A C$ at points K and L, respectively. Let J be the incenter of triangle $B C D$. Prove that the line $K L$ intersects the line segment $A J$ at its midpoint.
18. G5 (HEL) In triangle $A B C$, let J be the center of the excircle tangent to side $B C$ at A_{1} and to the extensions of sides $A C$ and $A B$ at B_{1} and C_{1}, respectively. Suppose that the lines $A_{1} B_{1}$ and $A B$ are perpendicular and intersect at D. Let E be the foot of the perpendicular from C_{1} to line $D J$. Determine the angles $\angle B E A_{1}$ and $\angle A E B_{1}$.
19. G6 (BRA) Circles ω_{1} and ω_{2} with centers O_{1} and O_{2} are externally tangent at point D and internally tangent to a circle ω at points E and F, respectively. Line t is the common tangent of ω_{1} and ω_{2} at D. Let $A B$ be the diameter of ω perpendicular to t, so that A, E, and O_{1} are on the same side of t. Prove that the lines $A O_{1}, B O_{2}, E F$, and t are concurrent.
20. G7 (SVK) In a triangle $A B C$, let M_{a}, M_{b}, M_{c}, be respectively the midpoints of the sides $B C, C A, A B$, and let T_{a}, T_{b}, T_{c} be the midpoints of the arcs $B C, C A, A B$ of the circumcircle of $A B C$, not counting the opposite vertices. For $i \in\{a, b, c\}$ let ω_{i} be the circle with $M_{i} T_{i}$ as diameter. Let p_{i} be the common external tangent to $\omega_{j}, \omega_{k}(\{i, j, k\}=\{a, b, c\})$ such that ω_{i} lies on the opposite side of p_{i} from ω_{j}, ω_{k}. Prove that the lines p_{a}, p_{b}, p_{c} form a triangle similar to $A B C$ and find the ratio of similitude.
21. G8 (POL) Let $A B C D$ be a convex quadrilateral. A circle passing through the points A and D and a circle passing through the points B and C are externally tangent at a point P inside the quadrilateral. Suppose that $\angle P A B+\angle P D C \leq 90^{\circ}$ and $\angle P B A+\angle P C D \leq 90^{\circ}$. Prove that $A B+C D \geq B C+A D$.
22. G9 (RUS) Points A_{1}, B_{1}, C_{1} are chosen on the sides $B C, C A, A B$ of a triangle $A B C$ respectively. The circumcircles of triangles $A B_{1} C_{1}, B C_{1} A_{1}, C A_{1} B_{1}$ intersect the circumcircle of triangle $A B C$ again at points A_{2}, B_{2}, C_{2} respectively $\left(A_{2} \neq A\right.$, $\left.B_{2} \neq B, C_{2} \neq C\right)$. Points A_{3}, B_{3}, C_{3} are symmetric to A_{1}, B_{1}, C_{1} with respect to the midpoints of the sides $B C, C A, A B$, respectively. Prove that the triangles $A_{2} B_{2} C_{2}$ and $A_{3} B_{3} C_{3}$ are similar.
23. G10 (SRB) ${ }^{\text {IMO6 }}$ Assign to each side b of a convex polygon \mathscr{P} the maximum area of a triangle that has b as a side and is contained in \mathscr{P}. Show that the sum of the areas assigned to the sides of \mathscr{P} is at least twice the area of \mathscr{P}.
24. N1 (USA) ${ }^{\text {IMO4 }}$ Determine all pairs (x, y) of integers satisfying the equation $1+$ $2^{x}+2^{2 x+1}=y^{2}$.
25. N2 (CAN) For $x \in(0,1)$ let $y \in(0,1)$ be the number whose nth digit after the decimal point is the 2^{n} th digit after the decimal point of x. Show that if x is rational then so is y.
26. N3 (SAF) The sequence $f(1), f(2), f(3), \ldots$ is defined by

$$
f(n)=\frac{1}{n}\left(\left[\frac{n}{1}\right]+\left[\frac{n}{2}\right]+\cdots+\left[\frac{n}{n}\right]\right),
$$

where $[x]$ denotes the integral part of x.
(a) Prove that $f(n+1)>f(n)$ infinitely often.
(b) Prove that $f(n+1)<f(n)$ infinitely often.
27. N4 (ROU) ${ }^{\text {IMO5 }}$ Let $P(x)$ be a polynomial of degree $n>1$ with integer coefficients and let k be a positive integer. Consider the polynomial $Q(x)=$ $P(P(\ldots P(P(x)) \ldots))$, where P occurs k times. Prove that there are at most n integers t such that $Q(t)=t$.
28. N5 (RUS) Find all integer solutions of the equation

$$
\frac{x^{7}-1}{x-1}=y^{5}-1 .
$$

29. N6 (USA) Let $a>b>1$ be relatively prime positive integers. Define the weight of an integer c, denoted by $w(c)$, to be the minimal possible value of $|x|+|y|$ taken over all pairs of integers x and y such that $a x+b y=c$. An integer c is called a local champion if $w(c) \geq w(c \pm a)$ and $w(c) \geq w(c \pm b)$. Find all local champions and determine their number.
30. N7 (EST) Prove that for every positive integer n there exists an integer m such that $2^{m}+m$ is divisible by n.

4.46 Solutions to the Shortlisted Problems of IMO 2005

1. Clearly, $p(x)$ has to be of the form $p(x)=x^{2}+a x \pm 1$, where a is an integer. For $a= \pm 1$ and $a=0$, polynomial p has the required property: it suffices to take $q=1$ and $q=x+1$, respectively.
Suppose now that $|a| \geq 2$. Then $p(x)$ has two real roots, say x_{1}, x_{2}, which are also roots of $p(x) q(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}, a_{i}= \pm 1$. Thus

$$
1=\left|\frac{a_{n-1}}{x_{i}}+\cdots+\frac{a_{0}}{x_{i}^{n}}\right| \leq \frac{1}{\left|x_{i}\right|}+\cdots+\frac{1}{\left|x_{i}\right|^{n}}<\frac{1}{\left|x_{i}\right|-1},
$$

which implies $\left|x_{1}\right|,\left|x_{2}\right|<2$. This immediately rules out the case $|a| \geq 3$ and the polynomials $p(x)=x^{2} \pm 2 x-1$. The remaining two polynomials $x^{2} \pm 2 x+1$ satisfy the condition for $q(x)=x \mp 1$.
Therefore, the polynomials $p(x)$ with the desired property are $x^{2} \pm x \pm 1, x^{2} \pm 1$, and $x^{2} \pm 2 x+1$.
2. Given $y>0$, consider the function $\varphi(x)=x+y f(x), x>0$. This function is injective: indeed, if $\varphi\left(x_{1}\right)=\varphi\left(x_{2}\right)$, then $f\left(x_{1}\right) f(y)=f\left(\varphi\left(x_{1}\right)\right)=f\left(\varphi\left(x_{2}\right)\right)=$ $f\left(x_{2}\right) f(y)$, so $f\left(x_{1}\right)=f\left(x_{2}\right)$, so $x_{1}=x_{2}$ by the definition of φ. Now if $x_{1}>x_{2}$ and $f\left(x_{1}\right)<f\left(x_{2}\right)$, we have $\varphi\left(x_{1}\right)=\varphi\left(x_{2}\right)$ for $y=\frac{x_{1}-x_{2}}{f\left(x_{2}\right)-f\left(x_{1}\right)}>0$, which is impossible; hence f is nondecreasing. The functional equation now yields $f(x) f(y)=2 f(x+y f(x)) \geq 2 f(x)$ and consequently $f(y) \geq 2$ for $y>0$. Therefore

$$
f(x+y f(x))=f(x y)=f(y+x f(y)) \geq f(2 x)
$$

holds for arbitrarily small $y>0$, implying that f is constant on the interval $(x, 2 x]$ for each $x>0$. But then f is constant on the union of all intervals $(x, 2 x]$ over all $x>0$, that is, on all of \mathbb{R}^{+}. Now the functional equation gives us $f(x)=2$ for all x, which is clearly a solution.
Second Solution. In the same way as above we prove that f is nondecreasing, and hence its discontinuity set is at most countable. We can extend f to $\mathbb{R} \cup\{0\}$ by defining $f(0)=\inf _{x} f(x)=\lim _{x \rightarrow 0} f(x)$, and the new function f is continuous at 0 as well. If x is a point of continuity of f we have $f(x) f(0)=\lim _{y \rightarrow 0} f(x) f(y)=$ $\lim _{y \rightarrow 0} 2 f(x+y f(x))=2 f(x)$, hence $f(0)=2$. Now, if f is continuous at $2 y$, then $2 f(y)=\lim _{x \rightarrow 0} f(x) f(y)=\lim _{x \rightarrow 0} 2 f(x+y f(x))=2 f(2 y)$. Thus $f(y)=$ $f(2 y)$, for all but countably many values of y. Being nondecreasing f is a constant; hence $f(x)=2$.
3. Assume without loss of generality that $p \geq q \geq r \geq s$. We have

$$
(p q+r s)+(p r+q s)+(p s+q r)=\frac{(p+q+r+s)^{2}-p^{2}-q^{2}-r^{2}-s^{2}}{2}=30
$$

It is easy to see that $p q+r s \geq p r+q s \geq p s+q r$, which gives us $p q+r s \geq 10$. Now setting $p+q=x$, we obtain $x^{2}+(9-x)^{2}=(p+q)^{2}+(r+s)^{2}=21+$ $2(p q+r s) \geq 41$, which is equivalent to $(x-4)(x-5) \geq 0$. Since $x=p+q \geq r+s$, we conclude that $x \geq 5$. Thus

$$
25 \leq p^{2}+q^{2}+2 p q=21-\left(r^{2}+s^{2}\right)+2 p q \leq 21+2(p q-r s)
$$

or $p q-r s \geq 2$, as desired.
Remark. The quadruple $(p, q, r, s)=(3,2,2,2)$ shows that the estimate 2 is the best possible.
4. Setting $y=0$ yields $(f(0)+1)(f(x)-1)=0$, and since $f(x)=1$ for all x is impossible, we get $f(0)=-1$. Now plugging in $x=1$ and $y=-1$ gives us $f(1)=1$ or $f(-1)=0$. In the first case setting $x=1$ in the functional equation yields $f(y+1)=2 y+1$, i.e., $f(x)=2 x-1$, which is one solution.
Suppose now that $f(1)=a \neq 1$ and $f(-1)=0$. Plugging $(x, y)=(z, 1)$ and $(x, y)=(-z,-1)$ in the functional equation yields

$$
\begin{aligned}
f(z+1) & =(1-a) f(z)+2 z+1 \\
f(-z-1) & =f(z)+2 z+1
\end{aligned}
$$

It follows that $f(z+1)=(1-a) f(-z-1)+a(2 z+1)$, i.e. $f(x)=(1-a) f(-x)+$ $a(2 x-1)$. Analogously, $f(-x)=(1-a) f(x)+a(-2 x-1)$, which together with the previous equation yields

$$
\left(a^{2}-2 a\right) f(x)=-2 a^{2} x-\left(a^{2}-2 a\right)
$$

Now $a=2$ is clearly impossible. For $a \notin\{0,2\}$ we get $f(x)=\frac{-2 a x}{a-2}-1$. This function satisfies the requirements only for $a=-2$, giving the solution $f(x)=$ $-x-1$. In the remaining case, when $a=0$, we have $f(x)=f(-x)$. Setting $y=z$ and $y=-z$ in the functional equation and subtracting yields $f(2 z)=4 z^{2}-1$, so $f(x)=x^{2}-1$, which satisfies the equation.
Thus the solutions are $f(x)=2 x-1, f(x)=-x-1$, and $f(x)=x^{2}-1$.
5. The desired inequality is equivalent to

$$
\begin{equation*}
\frac{x^{2}+y^{2}+z^{2}}{x^{5}+y^{2}+z^{2}}+\frac{x^{2}+y^{2}+z^{2}}{y^{5}+z^{2}+x^{2}}+\frac{x^{2}+y^{2}+z^{2}}{z^{5}+x^{2}+y^{2}} \leq 3 \tag{1}
\end{equation*}
$$

By the Cauchy inequality we have $\left(x^{5}+y^{2}+z^{2}\right)\left(y z+y^{2}+z^{2}\right) \geq\left(x^{5 / 2}(y z)^{1 / 2}+\right.$ $\left.y^{2}+z^{2}\right)^{2} \geq\left(x^{2}+y^{2}+z^{2}\right)^{2}$ and therefore

$$
\frac{x^{2}+y^{2}+z^{2}}{x^{5}+y^{2}+z^{2}} \leq \frac{y z+y^{2}+z^{2}}{x^{2}+y^{2}+z^{2}}
$$

We get analogous inequalities for the other two summands in (1). Summing these yields

$$
\frac{x^{2}+y^{2}+z^{2}}{x^{5}+y^{2}+z^{2}}+\frac{x^{2}+y^{2}+z^{2}}{y^{5}+z^{2}+x^{2}}+\frac{x^{2}+y^{2}+z^{2}}{z^{5}+x^{2}+y^{2}} \leq 2+\frac{x y+y z+z x}{x^{2}+y^{2}+z^{2}}
$$

which together with the well-known inequality $x^{2}+y^{2}+z^{2} \geq x y+y z+z x$ gives us the result.

Second solution. Multiplying both sides by the common denominator and using notation in Chapter 2 (Muirhead's inequality), we get

$$
T_{5,5,5}+4 T_{7,5,0}+T_{5,2,2}+T_{9,0,0} \geq T_{5,5,2}+T_{6,0,0}+2 T_{5,4,0}+2 T_{4,2,0}+T_{2,2,2}
$$

By Schur's and Muirhead's inequalities we have that $T_{9,0,0}+T_{5,2,2} \geq 2 T_{7,2,0} \geq$ $2 T_{7,1,1}$. Since $x y z \geq 1$ we have that $T_{7,1,1} \geq T_{6,0,0}$. Therefore

$$
\begin{equation*}
T_{9,0,0}+T_{5,2,2} \geq 2 T_{6,0,0} \geq T_{6,0,0}+T_{4,2,0} \tag{2}
\end{equation*}
$$

Moreover, Muirhead's inequality combined with $x y z \geq 1$ gives us $T_{7,5,0} \geq T_{5,5,2}$, $2 T_{7,5,0} \geq 2 T_{6,5,1} \geq 2 T_{5,4,0}, T_{7,5,0} \geq T_{6,4,2} \geq T_{4,2,0}$, and $T_{5,5,5} \geq T_{2,2,2}$. Adding these four inequalities to (2) yields the desired result.
6. A room will be called economic if some of its lamps are on and some are off. Two lamps sharing a switch will be called twins. The twin of a lamp l will be denoted by \bar{l}.
Suppose we have arrived at a state with the minimum possible number of uneconomic rooms, and that this number is strictly positive. Let us choose any uneconomic room, say R_{0}, and a lamp l_{0} in it. Let \bar{l}_{0} be in a room R_{1}. Switching l_{0}, we make R_{0} economic; therefore, since the number of uneconomic rooms cannot be decreased, this change must make room R_{1} uneconomic. Now choose a lamp l_{1} in R_{1} having the twin \bar{l}_{1} in a room R_{2}. Switching l_{1} makes R_{1} economic, and thus must make R_{2} uneconomic. Continuing in this manner we obtain a sequence l_{0}, l_{1}, \ldots of lamps with l_{i} in a room R_{i} and $\bar{l}_{i} \neq l_{i+1}$ in R_{i+1} for all i. The lamps l_{0}, l_{1}, \ldots are switched in this order. This sequence has the property that switching l_{i} and \bar{l}_{i} makes room R_{i} economic and room R_{i+1} uneconomic.
Let $R_{m}=R_{k}$ with $m>k$ be the first repetition in the sequence $\left(R_{i}\right)$. Let us stop switching the lamps at l_{m-1}. The room R_{k} was uneconomic prior to switching l_{k}. Thereafter, lamps l_{k} and \bar{l}_{m-1} have been switched in R_{k}, but since these two lamps are distinct (indeed, their twins \bar{l}_{k} and l_{m-1} are distinct), the room R_{k} is now economic, as well as all the rooms $R_{0}, R_{1}, \ldots, R_{m-1}$. This decreases the number of uneconomic rooms, contradicting our assumption.
7. Let v be the number of video winners. One easily finds that for $v=1$ and $v=2$, the number n of customers is at least $2 k+3$ and $3 k+5$ respectively. We prove by induction on v that if $n \geq k+1$, then $n \geq(k+2)(v+1)-1$.
Without loss of generality, we can assume that the total number n of customers is minimum possible for given $v>0$. Consider a person P who was convinced by nobody but himself. Then P must have won a video; otherwise, P could be removed from the group without decreasing the number of video winners. Let Q and R be the two persons convinced by P. We denote by \mathscr{C} the set of persons influenced by P through Q to buy a sombrero, including Q, and by \mathscr{D} the set of all other customers excluding P. Let x be the number of video winners in \mathscr{C}. Then there are $v-x-1$ video winners in \mathscr{D}. We have $|\mathscr{C}| \geq(k+2)(x+1)-1$, by the induction hypothesis if $x>0$ and because P is a winner if $x=0$. Similarly, $|\mathscr{D}| \geq(k+2)(v-x)-1$. Thus $n \geq 1+(k+2)(x+1)-1+(k+2)(v-x)-1$, i.e., $n \geq(k+2)(v+1)-1$.
8. Suppose that a two-sided $m \times n$ board T is considered, where exactly k of the squares are transparent. A transparent square is colored only on one side (then it looks the same from the other side), while a nontransparent one needs to be colored on both sides, not necessarily in the same color.
Let $C=C(T)$ be the set of colorings of the board in which there exist two black paths from the left edge to the right edge, one on top and one underneath, not intersecting at any transparent square. If $k=0$ then $|C|=N^{2}$. We prove by induction on k that $2^{k}|C| \leq N^{2}$. This will imply the statement of the problem, since $|C|=M$ for $k=m n$.
Let q be a fixed transparent square. Consider any coloring B in C : If q is converted into a nontransparent square, a new board T^{\prime} with $k-1$ transparent squares is obtained, so by the induction hypothesis $2^{k-1}\left|C\left(T^{\prime}\right)\right| \leq N^{2}$. Since B contains two black paths at most one of which passes through q, coloring q in either color on the other side will result in a coloring in C^{\prime}; hence $\left|C\left(T^{\prime}\right)\right| \geq 2|C(T)|$, implying $2^{k}|C(T)| \leq N^{2}$ and finishing the induction.

Second solution. By a path we shall mean a black path from the left edge to the right edge. Let \mathscr{A} denote the set of pairs of $m \times n$ boards each of which has a path. Let \mathscr{B} denote the set of pairs of boards such that the first board has two nonintersecting paths. Obviously, $|\mathscr{A}|=N^{2}$ and $|\mathscr{B}|=2^{m n} M$. To prove $|\mathscr{A}| \geq|\mathscr{B}|$, we will construct an injection $f: \mathscr{B} \rightarrow \mathscr{A}$.
Among paths on a given board we define path x to be lower than y if the set of squares "under" x is a subset of the squares under y. This relation is a relation of incomplete order. However, for each board with at least one path there exists a lowest path (comparing two intersecting paths, we can always take the "lower branch" on each nonintersecting segment). Now, for a given element of \mathscr{B}, we "swap" the lowest path and all squares underneath on the first board with the corresponding points on the other board. This swapping operation is the desired injection f. Indeed, since the first board still contains the highest path (which didn't intersect the lowest one), the new configuration belongs to \mathscr{A}. On the other hand, this configuration uniquely determines the lowest path on the original element of \mathscr{B}; hence no two different elements of \mathscr{B} can go to the same element of \mathscr{A}. This completes the proof.
9. Let $[X Y]$ denote the label of segment $X Y$, where X and Y are vertices of the polygon. Consider any segment $M N$ with the maximum label $[M N]=r$. By condition (ii), for any $P_{i} \neq M, N$, exactly one of $P_{i} M$ and $P_{i} N$ is labeled by r. Thus the set of all vertices of the n-gon splits into two complementary groups: $\mathscr{A}=\left\{P_{i} \mid\left[P_{i} M\right]=r\right\}$ and $\mathscr{B}=\left\{P_{i} \mid\left[P_{i} N\right]=r\right\}$. We claim that a segment $X Y$ is labelled by r if and only if it joins two points from different groups. Assume without loss of generality that $X \in \mathscr{A}$. If $Y \in \mathscr{A}$, then $[X M]=[Y M]=r$, so $[X Y]<r$. If $Y \in \mathscr{B}$, then $[X M]=r$ and $[Y M]<r$, so $[X Y]=r$ by (ii), as we claimed.
We conclude that a labeling satisfying (ii) is uniquely determined by groups \mathscr{A} and \mathscr{B} and labelings satisfying (ii) within A and B.
(a) We prove by induction on n that the greatest possible value of r is $n-1$. The degenerate cases $n=1,2$ are trivial. If $n \geq 3$, the number of different labels of segments joining vertices in \mathscr{A} (resp. \mathscr{B}) does not exceed $|\mathscr{A}|-1$ (resp. $|\mathscr{B}|-1$), while all segments joining a vertex in \mathscr{A} and a vertex in \mathscr{B} are labeled by r. Therefore $r \leq(|\mathscr{A}|-1)+(|\mathscr{B}|-1)+1=n-1$. Equality is achieved if all the mentioned labels are different.
(b) Let a_{n} be the number of labelings with $r=n-1$. We prove by induction that $a_{n}=\frac{n!(n-1)!}{2^{n-1}}$. This is trivial for $n=1$, so let $n \geq 2$. If $|\mathscr{A}|=k$ is fixed, the groups \mathscr{A} and \mathscr{B} can be chosen in $\binom{n}{k}$ ways. The set of labels used within \mathscr{A} can be selected among $1,2, \ldots, n-2$ in $\binom{n-2}{k-1}$ ways. Now the segments within groups \mathscr{A} and \mathscr{B} can be labeled so as to satisfy (ii) in a_{k} and a_{n-k} ways, respectively. In this way, every labeling has been counted twice, since choosing \mathscr{A} is equivalent to choosing \mathscr{B}. It follows that

$$
\begin{aligned}
a_{n} & =\frac{1}{2} \sum_{k=1}^{n-1}\binom{n}{k}\binom{n-2}{k-1} a_{k} a_{n-k} \\
& =\frac{n!(n-1)!}{2(n-1)} \sum_{k=1}^{n-1} \frac{a_{k}}{k!(k-1)!} \cdot \frac{a_{n-k}}{(n-k)!(n-k-1)!} \\
& =\frac{n!(n-1)!}{2(n-1)} \sum_{k=1}^{n-1} \frac{1}{2^{k-1}} \cdot \frac{1}{2^{n-k-1}}=\frac{n!(n-1)!}{2^{n-1}} .
\end{aligned}
$$

10. Denote by L the leftmost and by R the rightmost marker. To start with, note that the parity of the number of black-side-up markers remains unchanged. Hence, if only two markers remain, these markers must have the same color up.
We shall show by induction on n that the game can be successfully finished if and only if $n \equiv 0$ or $n \equiv 2(\bmod 3)$, and that the upper sides of L and R will be black in the first case and white in the second case.
The statement is clear for $n=2,3$. Assume that we have finished the game for some n, and denote by k the position of the marker X (counting from the left) that was last removed. Having finished the game, we have also finished the subgames with the k markers from L to X and with the $n-k+1$ markers from X to R (inclusive). Thereby, before X was removed, the upper side of L had been black if $k \equiv 0$ and white if $k \equiv 2(\bmod 3)$, while the upper side of R had been black if $n-k+1 \equiv 0$ and white if $n-k+1 \equiv 2(\bmod 3)$. Markers L and R were reversed upon the removal of X. Therefore, in the final position, L and R are white if and only if $k \equiv n-k+1 \equiv 0$, which yields $n \equiv 2(\bmod 3)$, and black if and only if $k \equiv n-k+1 \equiv 2$, which yields $n \equiv 0(\bmod 3)$.
On the other hand, a game with n markers can be reduced to a game with $n-3$ markers by removing the second, fourth, and third markers in this order. This finishes the induction.
Second solution. An invariant can be defined as follows. To each white marker with k black markers to its left we assign the number $(-1)^{k}$. Let S be the sum of the assigned numbers. Then it is easy to verify that the remainder of S modulo

3 remains unchanged throughout the game: For example, when a white marker with two white neighbors and k black markers to its left is removed, S decreases by $3(-1)^{t}$.
Initially, $S=n$. In the final position with two markers remaining, S equals 0 if the two markers are black and 2 if these are white (note that, as before, the two markers must be of the same color). Thus $n \equiv 0$ or $2(\bmod 3)$.
Conversely, a game with n markers is reduced to $n-3$ markers as in the first solution.
11. Assume that there were n contestants, a_{i} of whom solved exactly i problems, where $a_{0}+\cdots+a_{5}=n$. Let us count the number N of pairs (C, P), where contestant C solved the pair of problems P. Each of the 15 pairs of problems was solved by at least $\frac{2 n+1}{5}$ contestants, implying $N \geq 15 \cdot \frac{2 n+1}{5}=6 n+3$. On the other hand, a_{i} students solved $\frac{i(i-1)}{2}$ pairs; hence

$$
6 n+3 \leq N \leq a_{2}+3 a_{3}+6 a_{4}+10 a_{5}=6 n+4 a_{5}-\left(3 a_{3}+5 a_{2}+6 a_{1}+6 a_{0}\right)
$$

Consequently $a_{5} \geq 1$. Assume that $a_{5}=1$. Then we must have $N=6 n+4$, which is possible only if 14 of the pairs of problems were solved by exactly $\frac{2 n+1}{5}$ students and the remaining one by $\frac{2 n+1}{5}+1$ students, and all students but the winner solved 4 problems.
The problem t not solved by the winner will be called tough and the pair of problems solved by $\frac{2 n+1}{5}+1$ students special.
Let us count the number M_{p} of pairs (C, P) for which P contains a fixed problem p. Let b_{p} be the number of contestants who solved p. Then $M_{t}=3 b_{t}$ (each of the b_{t} students solved three pairs of problems containing t), and $M_{p}=3 b_{p}+1$ for $p \neq t$ (the winner solved four such pairs). On the other hand, each of the five pairs containing p was solved by $\frac{2 n+1}{5}$ or $\frac{2 n+1}{5}+1$ students, so $M_{p}=2 n+2$ if the special pair contains p, and $M_{p}=2 n+1$ otherwise.
Now since $M_{t}=3 b_{t}=2 n+1$ or $2 n+2$, we have $2 n+1 \equiv 0$ or $2(\bmod 3)$. But if $p \neq t$ is a problem not contained in the special pair, we have $M_{p}=3 b_{p}+1=$ $2 n+1$; hence $2 n+1 \equiv 1(\bmod 3)$, which is a contradiction.
12. Suppose that there exist desired permutations σ and τ for some sequence a_{1}, \ldots, a_{n}. Given a sequence $\left(b_{i}\right)$ with sum divisible by n that differs modulo n from $\left(a_{i}\right)$ in only two positions, say i_{1} and i_{2}, we show how to construct desired permutations σ^{\prime} and τ^{\prime} for sequence $\left(b_{i}\right)$. In this way, starting from an arbitrary sequence $\left(a_{i}\right)$ for which σ and τ exist, we can construct desired permutations for any other sequence with sum divisible by n. All congruences below are modulo n.
We know that $\sigma(i)+\tau(i) \equiv b_{i}$ for all $i \neq i_{1}, i_{2}$. We construct the sequence $i_{1}, i_{2}, i_{3}, \ldots$ as follows: for each $k \geq 2, i_{k+1}$ is the unique index such that

$$
\begin{equation*}
\sigma\left(i_{k-1}\right)+\boldsymbol{\tau}\left(i_{k+1}\right) \equiv b_{i_{k}} \tag{1}
\end{equation*}
$$

Let $i_{p}=i_{q}$ be the repetition in the sequence with the smallest q. We claim that $p=1$ or $p=2$. Assume to the contrary that $p>2$. Summing (1) for $k=p, p+1$,
$\ldots, q-1$ and taking the equalities $\sigma\left(i_{k}\right)+\tau\left(i_{k}\right)=b_{i_{k}}$ for $i_{k} \neq i_{1}, i_{2}$ into account, we obtain $\sigma\left(i_{p-1}\right)+\sigma\left(i_{p}\right)+\tau\left(i_{q-1}\right)+\tau\left(i_{q}\right) \equiv b_{p}+b_{q-1}$. Since $i_{q}=i_{p}$, it follows that $\sigma\left(i_{p-1}\right)+\tau\left(i_{q-1}\right) \equiv b_{q-1}$ and therefore $i_{p-1}=i_{q-1}$, a contradiction. Thus $p=1$ or $p=2$ as claimed.
Now we define the following permutations:

$$
\begin{aligned}
& \sigma^{\prime}\left(i_{k}\right)=\sigma\left(i_{k-1}\right) \text { for } k=2,3, \ldots, q-1 \text { and } \sigma^{\prime}\left(i_{1}\right)=\sigma\left(i_{q-1}\right), \\
& \tau^{\prime}\left(i_{k}\right)=\tau\left(i_{k+1}\right) \text { for } k=2,3, \ldots, q-1 \text { and } \tau^{\prime}\left(i_{1}\right)=\left\{\begin{array}{l}
\tau\left(i_{2}\right) \text { if } p=1, \\
\tau\left(i_{1}\right) \text { if } p=2
\end{array}\right. \\
& \sigma^{\prime}(i)=\sigma(i) \text { and } \tau^{\prime}(i)=\tau(i) \text { for } i \notin\left\{i_{1}, \ldots, i_{q-1}\right\} .
\end{aligned}
$$

Permutations σ^{\prime} and τ^{\prime} have the desired property. Indeed, $\sigma^{\prime}(i)+\tau^{\prime}(i)=b_{i}$ obviously holds for all $i \neq i_{1}$, but then it must also hold for $i=i_{1}$.
13. For every green diagonal d, let C_{d} denote the number of green-red intersection points on d. The task is to find the maximum possible value of the sum $\sum_{d} C_{d}$ over all green diagonals.
Let d_{i} and d_{j} be two green diagonals and let the part of polygon M lying between d_{i} and d_{j} have m vertices. There are at most $n-m-1$ red diagonals intersecting both d_{i} and d_{j}, while each of the remaining $m-2$ diagonals meets at most one of d_{i}, d_{j}. It follows that

$$
\begin{equation*}
C_{d_{i}}+C_{d_{j}} \leq 2(n-m-1)+(m-2)=2 n-m-4 \tag{1}
\end{equation*}
$$

We now arrange the green diagonals in a sequence $d_{1}, d_{2}, \ldots, d_{n-3}$ as follows. It is easily seen that there are two green diagonals d_{1} and d_{2} that divide M into two triangles and an $(n-2)$-gon; then there are two green diagonals d_{3} and d_{4} that divide the $(n-2)$-gon into two triangles and an $(n-4)$-gon, and so on. We continue this procedure until we end up with a triangle or a quadrilateral. Now, the part of M between $d_{2 k-1}$ and $d_{2 k}$ has at least $n-2 k$ vertices for $1 \leq k \leq$ r, where $n-3=2 r+e, e \in\{0,1\}$; hence, by (1), $C_{d_{2 k-1}}+C_{d_{2 k}} \leq n+2 k-4$. Moreover, $C_{d_{n-3}} \leq n-3$. Summing yields

$$
\begin{aligned}
C_{d_{1}}+C_{d_{2}}+\cdots+C_{d_{n-3}} & \leq \sum_{k=1}^{r}(n+2 k-4)+e(n-3) \\
& =3 r^{2}+e(3 r+1)=\left\lceil\frac{3}{4}(n-3)^{2}\right\rceil .
\end{aligned}
$$

This value is attained in the following example. Let $A_{1} A_{2} \ldots A_{n}$ be the n-gon M and let $l=\left[\frac{n}{2}\right]+1$. The diagonals $A_{1} A_{i}, i=3, \ldots, l$, and $A_{l} A_{j}, j=l+2, \ldots, n$ are colored green, whereas the diagonals $A_{2} A_{i}, i=l+1, \ldots, n$, and $A_{l+1} A_{j}, j=$ $3, \ldots, l-1$ are colored red.
Thus the answer is $\left\lceil\frac{3}{4}(n-3)^{2}\right\rceil$.
14. Let F be the point of tangency of the incircle with $A C$ and let M and N be the respective points of tangency of $A B$ and $B C$ with the corresponding excircles. If I is the incenter and I_{a} and P respectively the center and the tangency point with ray $A C$ of the excircle corresponding to A, we have $\frac{A I}{I L}=\frac{A I}{I F}=\frac{A I_{a}}{I_{a} P}=\frac{A I_{a}}{I_{a} N}$, which
implies that $\triangle A I L \sim \triangle A I_{a} N$. Thus L lies on $A N$, and analogously K lies on $C M$. Define $x=A F$ and $y=C F$. Since $B D=B E, A D=B M=x$, and $C E=B N=$ y, the condition $A B+B C=3 A C$ gives us $D M=y$ and $E N=x$. The triangles $C L N$ and $M K A$ are congruent since their altitudes $K D$ and $L E$ satisfy $D K=E L$, $D M=C E$, and $A D=E N$. Thus $\angle A K M=\angle C L N$, implying that $A C K L$ is cyclic.
15. Let P be the fourth vertex of the rhombus $C_{2} A_{1} A_{2} P$. Since $\triangle C_{2} P C_{1}$ is equilateral, we easily conclude that $B_{1} B_{2} C_{1} P$ is also a rhombus. Thus $\triangle P B_{1} A_{2}$ is equilateral and $\angle\left(C_{2} A_{1}, C_{1} B_{2}\right)=\angle A_{2} P B_{1}=60^{\circ}$. It easily follows that $\triangle A C_{1} B_{2} \cong \triangle B A_{1} C_{2}$ and consequently $A C_{1}=B A_{1}$; similarly, $B A_{1}=C B_{1}$. Therefore triangle $A_{1} B_{1} C_{1}$ is equilateral. Now it follows from $B_{1} B_{2}=B_{2} C_{1}$ that $A_{1} B_{2}$ bisects $\angle C_{1} A_{1} B_{1}$. Similarly, $B_{1} C_{2}$ and $C_{1} A_{2}$ bisect $\angle A_{1} B_{1} C_{1}$ and $\angle B_{1} C_{1} A_{1}$; hence $A_{1} B_{2}, B_{1} C_{2}$, $C_{1} A_{2}$ meet at the incenter of $A_{1} B_{1} C_{1}$, i.e. at the center of $A B C$.
16. Since $\angle A D L=\angle K B A=180^{\circ}-\frac{1}{2} \angle B C D$ and $\angle A L D=\frac{1}{2} \angle A Y D=\angle K A B$, triangles $A B K$ and $L D A$ are similar. Thus $\frac{B K}{B C}=\frac{B K}{A D}=\frac{A B}{D L}=\frac{D C}{D L}$, which together with $\angle L D C=\angle C B K$ gives us $\triangle L D C \sim \triangle C B K$. Therefore $\angle K C L=360^{\circ}-\angle B C D-$ $(\angle L C D+\angle K C B)=360^{\circ}-\angle B C D-(\angle C K B+\angle K C B)=180^{\circ}-\angle C B K$, which is constant.
17. To start with, we note that points B, E, C are the images of D, F, A respectively under the rotation around point O for the angle $\omega=\angle D O B$, where O is the intersection of the perpendicular bisectors of $A C$ and $B D$. Then $O E=O F$ and $\angle O F E=\angle O A C=90-\frac{\omega}{2}$; hence the points A, F, R, O are on a circle and $\angle O R P=180^{\circ}-\angle O F A$. Analogously, the points B, E, Q, O are on a circle and $\angle O Q P=180^{\circ}-\angle O E B=\angle O E C=\angle O F A$. This shows that $\angle O R P=$ $180^{\circ}-\angle O Q P$, i.e. the point O lies on the circumcircle of $\triangle P Q R$, thus being the desired point.
18. Let O and O_{1} be the circumcenters of triangles $A B C$ and $A D E$, respectively. It is enough to show that $H M \| O O_{1}$. Let $A A^{\prime}$ be the diameter of the circumcircle of $A B C$. We note that if B_{1} is the foot of the altitude from B, then $H E$ bisects $\angle C H B_{1}$. Since the triangles $C O M$ and $C H B_{1}$ are similar (indeed, $\angle C H B=\angle C O M=\angle A$), we have $\frac{C E}{E B_{1}}=\frac{C H}{H B_{1}}=\frac{C O}{O M}=\frac{2 C O}{A H}=\frac{A^{\prime} A}{A H}$.
Thus, if Q is the intersection point of the bisector of $\angle A^{\prime} A H$ with $H A^{\prime}$, we obtain $\frac{C E}{E B_{1}}=\frac{A^{\prime} Q}{Q H}$, which together with $A^{\prime} C \perp A C$ and $H B_{1} \perp A C$ gives us $Q E \perp A C$. Analogously, $Q D \perp A B$. Therefore $A Q$ is a diameter of the circumcircle of $\triangle A D E$ and O_{1} is the midpoint of $A Q$. It follows that $O O_{1}$ is the line passing through the midpoints of $A Q$ and $A A^{\prime}$; hence $O O_{1} \| H M$.

Second solution. We again prove that $O O_{1} \| H M$. Since $A A^{\prime}=2 A O$, it suffices to prove $A Q=2 A O_{1}$.

Elementary calculations of angles give us $\angle A D E=\angle A E D=90^{\circ}-\frac{\alpha}{2}$. Applying the law of sines to $\triangle D A H$ and $\triangle E A H$ we now have $D E=D H+E H=\frac{A H \cos \beta}{\cos \frac{\alpha}{2}}+$ $\frac{A H \cos \gamma}{\cos \frac{\alpha}{2}}$. Since $A H=2 O M=2 R \cos \alpha$, we obtain

$$
A O_{1}=\frac{D E}{2 \sin \alpha}=\frac{A H(\cos \beta+\cos \gamma)}{2 \sin \alpha \cos \frac{\alpha}{2}}=\frac{2 R \cos \alpha \sin \frac{\alpha}{2} \cos \left(\frac{\beta-\gamma}{2}\right)}{\sin \alpha \cos \frac{\alpha}{2}}
$$

We now calculate $A Q$. Let N be the intersection of $A Q$ with the circumcircle. Since $\angle N A O=\frac{\beta-\gamma}{2}$, we have $A N=2 R \cos \left(\frac{\beta-\gamma}{2}\right)$. Noting that $\triangle Q A H \sim \triangle Q N M$ (and that $M N=R-O M$), we have

$$
A Q=\frac{A N \cdot A H}{M N+A H}=\frac{2 R \cos \left(\frac{\beta-\gamma}{2}\right) \cdot 2 \cos \alpha}{1+\cos \alpha}=\frac{2 R \cos \left(\frac{\beta-\gamma}{2}\right) \cos \alpha}{\cos ^{2} \frac{\alpha}{2}}=2 A O_{1}
$$

19. We denote by D, E, F the points of tangency of the incircle with $B C, C A, A B$, respectively, by I the incenter, and by Y^{\prime} the intersection of $A X$ and $L Y$. Since $E F$ is the polar line to the point A with respect to the incircle, it meets $A L$ at point R such that $A, R ; K, L$ are conjugate, i.e., $\frac{K R}{R L}=\frac{K A}{A L}$. Then $\frac{K X}{L Y^{\prime}}=$ $\frac{K A}{A L}=\frac{K R}{R L}=\frac{K X}{\bar{Y} \bar{Y}}$ and therefore $L Y=$ $L \bar{Y}$, where \bar{Y} is the intersection of $X R$ and $L Y$. Thus showing that $L Y=L Y^{\prime}$

(which is the same as showing that $P M=M Q$, i.e., $C P=Q B$) is equivalent to showing that $X Y$ contains R. Since $X K Y L$ is an inscribed trapezoid, it is enough to show that R lies on its axis of symmetry, that is, $D I$.
Since $A M$ is the median, the triangles $A R B$ and $A R C$ have equal areas, and since $\angle(R F, A B)=\angle(R E, A C)$ we have that $1=\frac{S_{\triangle A B R}}{S_{\triangle A C R}}=\frac{(A B \cdot F R)}{(A C \cdot E R)}$. Hence $\frac{A B}{A C}=\frac{E R}{F R}$. Let I^{\prime} be the point of intersection of the line through F parallel to $I E$ with the line $I R$. Then $\frac{F I^{\prime}}{E I}=\frac{F R}{R E}=\frac{A C}{A B}$ and $\angle I^{\prime} F I=\angle B A C$ (angles with orthogonal rays). Thus the triangles $A B C$ and $F I I^{\prime}$ are similar, implying that $\angle F I I^{\prime}=\angle A B C$. Since $\angle F I D=180^{\circ}-\angle A B C$, it follows that R, I, and D are collinear.
20. We shall prove the inequalities $p(A B C) \geq 2 p(D E F)$ and $p(P Q R) \geq \frac{1}{2} p(D E F)$. The statement of the problem will immediately follow.
Let D_{b} and D_{c} be the reflections of D in $A B$ and $A C$, and let A_{1}, B_{1}, C_{1} be the midpoints of $B C, C A, A B$, respectively. It is easy to see that D_{b}, F, E, D_{c} are collinear. Hence $p(D E F)=D_{b} F+F E+E D_{c}=D_{b} D_{c} \leq D_{b} C_{1}+C_{1} B_{1}+B_{1} D_{c}=$ $\frac{1}{2}(A B+B C+C A)=\frac{1}{2} p(A B C)$.
To prove the second inequality we observe that P, Q, and R are the points of tangency of the excircles with the sides of $\triangle D E F$. Let $F Q=E R=x, D R=$ $F P=y$, and $D Q=E P=z$, and let $\delta, \varepsilon, \varphi$ be the angles of $\triangle D E F$ at D, E, F,
respectively. Let Q^{\prime} and R^{\prime} be the projections of Q and R onto $E F$, respectively. Then $Q R \geq Q^{\prime} R^{\prime}=E F-F Q^{\prime}-R^{\prime} E=E F-x(\cos \varphi+\cos \varepsilon)$. Summing this with the analogous inequalities for $F D$ and $D E$, we obtain

$$
p(P Q R) \geq p(D E F)-x(\cos \varphi+\cos \varepsilon)-y(\cos \delta+\cos \varphi)-z(\cos \delta+\cos \varepsilon)
$$

Assuming without loss of generality that $x \leq y \leq z$, we also have $D E \leq F D \leq F E$ and consequently $\cos \varphi+\cos \varepsilon \geq \cos \delta+\cos \varphi \geq \cos \delta+\cos \varepsilon$. Now Chebyshev's inequality gives us $p(P Q R) \geq p(D E F)-\frac{2}{3}(x+y+z)(\cos \varepsilon+\cos \varphi+$ $\cos \delta) \geq p(D E F)-(x+y+z)=\frac{1}{2} p(D E F)$, where we used $x+y+z=\frac{1}{2} p(D E F)$ and the fact that the sum of the cosines of the angles in a triangle does not exceed $\frac{3}{2}$. This finishes the proof.
21. We will show that 1 is the only such number. It is sufficient to prove that for every prime number p there exists some a_{m} such that $p \mid a_{m}$. For $p=2,3$ we have $p \mid a_{2}=48$. Assume now that $p>3$. Applying Fermat's theorem, we have

$$
6 a_{p-2}=3 \cdot 2^{p-1}+2 \cdot 3^{p-1}+6^{p-1}-6 \equiv 3+2+1-6=0(\bmod p)
$$

Hence $p \mid a_{p-2}$, i.e. $\operatorname{gcd}\left(p, a_{p-2}\right)=p>1$. This completes the proof.
22. It immediately follows from the condition of the problem that all the terms of the sequence are distinct. We also note that $\left|a_{i}-a_{n}\right| \leq n-1$ for all integers i, n where $i<n$, because if $d=\left|a_{i}-a_{n}\right| \geq n$ then $\left\{a_{1}, \ldots, a_{d}\right\}$ contains two elements congruent to each other modulo d, which is a contradiction. It easily follows by induction that for every $n \in \mathbb{N}$ the set $\left\{a_{1}, \ldots, a_{n}\right\}$ consists of consecutive integers. Thus, if we assumed that some integer k did not appear in the sequence a_{1}, a_{2}, \ldots, the same would have to hold for all integers either larger or smaller than k, which contradicts the condition that infinitely many positive and negative integers appear in the sequence. Thus, the sequence contains all integers.
23. Let us consider the polynomial

$$
P(x)=(x+a)(x+b)(x+c)-(x-d)(x-e)(x-f)=S x^{2}+Q x+R
$$

where $Q=a b+b c+c a-d e-e f-f d$ and $R=a b c+d e f$.
Since $S \mid Q, R$, it follows that $S \mid P(x)$ for every $x \in \mathbb{Z}$. Hence, $S \mid P(d)=(d+$ $a)(d+b)(d+c)$. Since $S>d+a, d+b, d+c$ and thus cannot divide any of them, it follows that S must be composite.
24. We will show that n has the desired property if and only if it is prime.

For $n=2$ we can take only $a=1$. For $n>2$ and even, $4 \mid n!$, but $a^{n}+1 \equiv$ $1,2(\bmod 4)$, which is impossible. Now we assume that n is odd. Obviously $(n!-1)^{n}+1 \equiv(-1)^{n}+1=0(\bmod n!)$. If n is composite and d its prime divisor, then $\left(\frac{n!}{d}-1\right)^{n}+1=\sum_{k=1}^{n}\binom{n}{k} \frac{n n^{k}}{d^{k}}$, where each summand is divisible by n ! because $d^{2} \mid n!$; therefore $n!$ divides $\left(\frac{n!}{d}-1\right)^{n}+1$. Thus, all composite numbers are ruled out.
It remains to show that if n is an odd prime and $n!\mid a^{n}+1$, then $n!\mid a+1$, and therefore $a=n!-1$ is the only relevant value for which $n!\mid a^{n}+1$. Consider any
prime number $p \leq n$. If $p \left\lvert\, \frac{a^{n}+1}{a+1}\right.$, we have $p \mid(-a)^{n}-1$ and by Fermat's theorem $p \mid(-a)^{p-1}-1$. Therefore $p \mid(-a)^{(n, p-1)}-1=-a-1$, i.e. $a \equiv-1(\bmod p)$. But then $\frac{a^{n}+1}{a+1}=a^{n-1}-a^{n-2}+\cdots-a+1 \equiv n(\bmod p)$, implying that $p=n$. It follows that $\frac{a^{n}+1}{a+1}$ is coprime to $(n-1)$! and consequently $(n-1)$! divides $a+1$. Moreover, the above consideration shows that n must divide $a+1$. Thus $n!\mid a+1$ as claimed. This finishes our proof.
25. We will use the abbreviation HD to denote a "highly divisible integer." Let $n=2^{\alpha_{2}(n)} 3^{\alpha_{3}(n)} \cdots p^{\alpha_{p}(n)}$ be the factorization of n into primes. We have $d(n)=$ $\left(\alpha_{2}(n)+1\right) \cdots\left(\alpha_{p}(n)+1\right)$. We start with the following two lemmas.
Lemma 1. If n is an HD and p, q primes with $p^{k}<q^{l}(k, l \in \mathbb{N})$, then

$$
k \alpha_{q}(n) \leq l \alpha_{p}(n)+(k+1)(l-1)
$$

Proof. The inequality is trivial if $\alpha_{q}(n)<l$. Suppose that $\alpha_{q}(n) \geq l$. Then $n p^{k} / q^{l}$ is an integer less than q, and $d\left(n p^{k} / q^{l}\right)<d(n)$, which is equivalent to $\left(\alpha_{q}(n)+1\right)\left(\alpha_{p}(n)+1\right)>\left(\alpha_{q}(n)-l+1\right)\left(\alpha_{p}(n)+k+1\right)$ implying the desired inequality.
Lemma 2. For each p and k there exist only finitely many HD's n such that $\alpha_{p}(n) \leq k$.
Proof. It follows from Lemma 1 that if n is an HD with $\alpha_{p}(n) \leq k$, then $\alpha_{q}(n)$ is bounded for each prime q and $\alpha_{q}(n)=0$ for $q>p^{k+1}$. Therefore there are only finitely many possibilities for n.
We are now ready to prove both parts of the problem.
(a) Suppose that there are infinitely many pairs (a, b) of consecutive HD's with $a \mid b$. Since $d(2 a)>d(a)$, we must have $b=2 a$. In particular, $d(s) \leq d(a)$ for all $s<2 a$. All but finitely many HD's a are divisible by 2 and by 3^{7}. Then $d(8 a / 9)<d(a)$ and $d(3 a / 2)<d(a)$ yield

$$
\begin{aligned}
\left(\alpha_{2}(a)+4\right)\left(\alpha_{3}(a)-1\right) & <\left(\alpha_{2}(a)+1\right)\left(\alpha_{3}(a)+1\right)
\end{aligned} \Rightarrow 3 \alpha_{3}(a)-5<2 \alpha_{2}(a), ~=\left(\alpha_{2}(a)+1\right)\left(\alpha_{3}(a)+1\right) \Rightarrow \alpha_{2}(a) \leq \alpha_{3}(a)+1 .
$$

We now have $3 \alpha_{3}(a)-5<2 \alpha_{2}(a) \leq 2 \alpha_{3}(a)+2 \Rightarrow \alpha_{3}(a)<7$, which is a contradiction.
(b) Assume for a given prime p and positive integer k that n is the smallest HD with $\alpha_{p} \geq k$. We show that $\frac{n}{p}$ is also an HD. Assume the opposite, i.e., that there exists an HD $m<\frac{n}{p}$ such that $d(m) \geq d\left(\frac{n}{p}\right)$. By assumption, m must also satisfy $\alpha_{p}(m)+1 \leq \alpha_{p}(n)$. Then

$$
d(m p)=d(m) \frac{\alpha_{p}(m)+2}{\alpha_{p}(m)+1} \geq d\left(\frac{n}{p}\right) \frac{\alpha_{p}(n)+1}{\alpha_{p}(n)}=d(n),
$$

contradicting the initial assumption that n is an HD (since $m p<n$). This proves that $\frac{n}{p}$ is an HD. Since this is true for every positive integer k, the proof is complete.
26. Assuming $b \neq a$, it trivially follows that $b>a$. Let $p>b$ be a prime number and let $n=(a+1)(p-1)+1$. We note that $n \equiv 1(\bmod p-1)$ and $n \equiv-a(\bmod p)$. It follows that $r^{n}=r \cdot\left(r^{p-1}\right)^{a+1} \equiv r(\bmod p)$ for every integer r. We now have $a^{n}+$ $n \equiv a-a=0(\bmod p)$. Thus, $a^{n}+n$ is divisible by p, and hence by the condition of the problem $b^{n}+n$ is also divisible by p. However, we also have $b^{n}+n \equiv$ $b-a(\bmod p)$, i.e., $p \mid b-a$, which contradicts $p>b$. Hence, it must follow that $b=a$. We note that $b=a$ trivially fulfills the conditions of the problem for all $a \in \mathbb{N}$.
27. Let p be a prime and $k<p$ an even number. We note that $(p-k)!(k-1)!\equiv$ $(-1)^{k-1}(p-k)!(p-k+1) \cdots(p-1)=(-1)^{k-1}(p-1)!\equiv 1(\bmod p)$ by Wilson's theorem. Therefore

$$
\begin{aligned}
(k-1)!^{n} P((p-k)!) & =\sum_{i=0}^{n} a_{i}[(k-1)!]^{n-i}[(p-k)!(k-1)!]^{i} \\
& \equiv \sum_{i=0}^{n} a_{i}[(k-1)!]^{n-i}=S((k-1)!)(\bmod p),
\end{aligned}
$$

where $S(x)=a_{n}+a_{n-1} x+\cdots+a_{0} x^{n}$. Hence $p \mid P((p-k)!)$ if and only if $p \mid$ $S((k-1)!)$. Note that $S((k-1)!)$ depends only on k. Let $k>2 a_{n}+1$. Then, $s=(k-1)!/ a_{n}$ is an integer that is divisible by all primes smaller than k. Hence $S((k-1)!)=a_{n} b_{k}$ for some $b_{k} \equiv 1(\bmod s)$. It follows that b_{k} is divisible only by primes larger than k. For large enough k we have $\left|b_{k}\right|>1$. Thus for every prime divisor p of b_{k} we have $p \mid P((p-k)!)$.
It remains to select a large enough k for which $|P((p-k)!)|>p$. We take $k=$ $(q-1)$!, where q is a large prime. All the numbers $k+i$ for $i=1,2, \ldots, q-1$ are composite (by Wilson's theorem, $q \mid k+1$). Thus $p=k+q+r$, for some $r \geq 0$. We now have $|P((p-k)!)|=|P((q+r)!)|>(q+r)!>(q-1)!+q+r=p$, for large enough q, since $n=\operatorname{deg} P \geq 2$. This completes the proof.
Remark. The above solution actually also works for all linear polynomials P other than $P(x)=x+a_{0}$. Nevertheless, these particular cases are easily handled. If $\left|a_{0}\right|>1$, then $P(m!)$ is composite for $m>\left|a_{0}\right|$, whereas $P(x)=x+1$ and $P(x)=x-1$ are both composite for, say, $x=5$!. Thus the condition $n \geq 2$ was redundant.

4.47 Solutions to the Shortlisted Problems of IMO 2006

1. If $a_{0} \geq 0$ then $a_{i} \geq 0$ for each i and $\left[a_{i+1}\right] \leq a_{i+1}=\left[a_{i}\right]\left\{a_{i}\right\}<\left[a_{i}\right]$ unless $\left[a_{i}\right]=0$. Eventually 0 appears in the sequence $\left[a_{i}\right]$ and all subsequent a_{k} 's are 0 .
Now suppose that $a_{0}<0$; then all $a_{i} \leq 0$. Suppose that the sequence never reaches 0 . Then $\left[a_{i}\right] \leq-1$ and so $1+\left[a_{i+1}\right]>a_{i+1}=\left[a_{i}\right]\left\{a_{i}\right\}>\left[a_{i}\right]$, so the sequence $\left[a_{i}\right]$ is nondecreasing and hence must be constant from some term on: $\left[a_{i}\right]=c<0$ for $i \geq n$. The defining formula becomes $a_{i+1}=c\left\{a_{i}\right\}=c\left(a_{i}-c\right)$, which is equivalent to $b_{i+1}=c b_{i}$, where $b_{i}=a_{i}-\frac{c^{2}}{c-1}$. Since $\left(b_{i}\right)$ is bounded, we must have either $c=-1$, in which case $a_{i+1}=-a_{i}-1$ and hence $a_{i+2}=a_{i}$, or $b_{i}=0$ and thus $a_{i}=\frac{c^{2}}{c-1}$ for all $i \geq n$.
2. We use induction on n. We have $a_{1}=1 / 2$; assume that $n \geq 1$ and $a_{1}, \ldots, a_{n}>0$. The formula gives us $(n+1) \sum_{k=1}^{m} \frac{a_{k}}{m-k+1}=1$. Writing this equation for n and $n+1$ and subtracting yields

$$
(n+2) a_{n+1}=\sum_{k=1}^{n}\left(\frac{n+1}{n-k+1}-\frac{n+2}{n-k+2}\right) a_{k}
$$

which is positive, as is the coefficient at each a_{k}.
Remark. Using techniques from complex analysis such as contour integrals, one can obtain the following formula for $n \geq 1$:

$$
a_{n}=\int_{1}^{\infty} \frac{d x}{x^{n}\left(\pi^{2}+\ln ^{2}(x-1)\right)}>0
$$

3. We know that $c_{n}=\frac{\phi^{n-1}-\psi^{n-1}}{\phi-\psi}$, where $\phi=\frac{1+\sqrt{5}}{2}$ and $\psi=\frac{1-\sqrt{5}}{2}$ are the roots of $t^{2}-t-1$. Since $c_{n-1} / c_{n} \rightarrow-\psi$, taking $\alpha=\psi$ and $\beta=1$ is a natural choice. For every finite set $J \subseteq \mathbb{N}$ we have

$$
-1=\sum_{n=0}^{\infty} \psi^{2 n+1}<\psi x+y=\sum_{j \in J} \psi^{j-1}<\sum_{n=0}^{\infty} \psi^{2 n}=\phi
$$

Thus $m=-1$ and $M=\phi$ is an appropriate choice. We now prove that this choice has the desired properties by showing that for any $x, y \in \mathbb{N}$ with $-1<K=x \psi+$ $y<\phi$, there is a finite set $J \subset \mathbb{N}$ such that $K=\sum_{j \in J} \psi^{j}$.
Given such K, there are sequences $i_{1} \leq \cdots \leq i_{k}$ with $\psi^{i_{1}}+\cdots+\psi^{i_{k}}=K$ (one such sequence consists of y zeros and x ones). Consider all such sequences of minimum length n. Since $\psi^{m}+\psi^{m+1}=\psi^{m+2}$, these sequences contain no two consecutive integers. Order such sequences as follows: If $i_{k}=j_{k}$ for $1 \leq k \leq t$ and $i_{t}<j_{t}$, then $\left(i_{r}\right) \prec\left(j_{r}\right)$. Consider the smallest sequence $\left(i_{r}\right)_{r=1}^{n}$ in this ordering. We claim that its terms are distinct. Since $2 \psi^{2}=1+\psi^{3}$, replacing two equal terms m, m by $m-2, m+1$ for $m \geq 2$ would yield a smaller sequence, so only 0 or 1 can repeat among the i_{r}. But $i_{t}=i_{t+1}=0$ implies $\sum_{r} \psi^{i_{r}}>2+\sum_{k=0}^{\infty} \psi^{2 k+3}=\phi$, while $i_{t}=i_{t+1}=1$ similarly implies $\sum_{r} \psi^{i_{r}}<-1$, so both cases are impossible, proving our claim. Thus $J=\left\{i_{1}, \ldots, i_{n}\right\}$ is a required set.
4. Since $\frac{a b}{a+b}=\frac{1}{4}\left(a+b-\frac{(a-b)^{2}}{a+b}\right)$, the left hand side of the desired inequality equals

$$
A=\sum_{i<j} \frac{a_{i} a_{j}}{a_{i}+a_{j}}=\frac{n-1}{4} \sum_{k} a_{k}-\frac{1}{4} \sum_{i<j} \frac{\left(a_{i}-a_{j}\right)^{2}}{a_{i}+a_{j}} .
$$

The righthand side of the inequality is equal to

$$
B=\frac{n}{2} \frac{\sum a_{i} a_{j}}{\sum a_{k}}=\frac{n-1}{4} \sum_{k} a_{k}-\frac{1}{4} \sum_{i<j} \frac{\left(a_{i}-a_{j}\right)^{2}}{\sum a_{k}} .
$$

Now $A \leq B$ follows from the trivial inequality $\sum \frac{\left(a_{i}-a_{j}\right)^{2}}{a_{i}+a_{j}} \geq \sum \frac{\left(a_{i}-a_{j}\right)^{2}}{\sum a_{k}}$.
5. Let $x=\sqrt{b}+\sqrt{c}-\sqrt{a}, y=\sqrt{c}+\sqrt{a}-\sqrt{b}$, and $z=\sqrt{a}+\sqrt{b}-\sqrt{c}$. All of these numbers are positive because a, b, c are sides of a triangle. Then $b+c-a=$ $x^{2}-\frac{1}{2}(x-y)(x-z)$ and

$$
\frac{\sqrt{b+c-a}}{\sqrt{b}+\sqrt{c}-\sqrt{a}}=\sqrt{1-\frac{(x-y)(y-z)}{2 x^{2}}} \leq 1-\frac{(x-y)(x-z)}{4 x^{2}} .
$$

Now it is enough to prove that

$$
x^{-2}(x-y)(x-z)+y^{-2}(y-z)(y-x)+z^{-2}(z-x)(z-y) \geq 0
$$

which directly follows from Schur's inequality.
6. Assume, without loss of generality, that $a \geq b \geq c$. The lefthand side of the inequality equals $L=(a-b)(b-c)(a-c)(a+b+c)$. From $(a-b)(b-c) \leq$ $\frac{1}{4}(a-c)^{2}$ we get $L \leq \frac{1}{4}(a-c)^{3}|a+b+c|$. The inequality $(a-c)^{2} \leq 2(a-b)^{2}+$ $2(b-c)$ implies $(a-c)^{2} \leq \frac{2}{3}\left[(a-b)^{2}+(b-c)^{2}+(a-c)^{2}\right]$. Therefore

$$
L \leq \frac{\sqrt{2}}{2}\left(\frac{(a-b)^{2}+(b-c)^{2}+(a-c)^{2}}{3}\right)^{3 / 2}(a+b+c)
$$

Finally, the mean inequality gives us

$$
\begin{aligned}
L & \leq \frac{\sqrt{2}}{2}\left(\frac{(a-b)^{2}+(b-c)^{2}+(a-c)^{2}+(a+b+c)^{2}}{4}\right)^{2} \\
& =\frac{9 \sqrt{2}}{32}\left(a^{2}+b^{2}+c^{2}\right)^{2}
\end{aligned}
$$

Equality is attained if and only if $a-b=b-c$ and $(a-b)^{2}+(b-c)^{2}+(a-$ $c)^{2}=3(a+b+c)^{2}$, which leads to $a=\left(1+\frac{3}{\sqrt{2}}\right) b$ and $c=\left(1-\frac{3}{\sqrt{2}}\right) b$. Thus $M=\frac{9 \sqrt{2}}{32}$.
Second solution. We have $L=|(a-b)(b-c)(c-a)(a+b+c)|$. Without loss of generality, assume that $a+b+c=1$ (the case $a+b+c=0$ is trivial). The monic cubic polynomial with roots $a-b, b-c$, and $c-a$ is of the form

$$
P(x)=x^{3}+q x+r, \quad q=\frac{1}{2}-\frac{3}{2}\left(a^{2}+b^{2}+c^{2}\right), r=-(a-b)(b-c)(c-a)
$$

Then $M^{2}=\max r^{2} /\left(\frac{1-2 q}{3}\right)^{4}$. Since $P(x)$ has three real roots, its discriminant $(q / 3)^{3}+(r / 2)^{2}$ must be positive, so $r^{2} \geq-\frac{4}{27} q^{3}$. Thus $M^{2} \leq f(q)=$ $-\frac{4}{27} q^{3} /\left(\frac{1-2 q}{3}\right)^{4}$. The function f attains its maximum $3^{4} / 2^{9}$ at $q=-3 / 2$, so $M \leq \frac{9 \sqrt{2}}{32}$. The case of equality is easily computed.
Third solution. Assume that $a^{2}+b^{2}+c^{2}=1$ and write $u=(a+b+c) / \sqrt{3}, v=$ $\left(a+\varepsilon b+\varepsilon^{2} c\right) / \sqrt{3}, w=\left(a+\varepsilon^{2} b+\varepsilon c\right) / \sqrt{3}$, where $\varepsilon=e^{2 \pi i / 3}$. Then analogous formulas hold for a, b, c in terms of u, v, w, from which one directly obtains $|u|^{2}+$ $|v|^{2}+|w|^{2}=a^{2}+b^{2}+c^{2}=1$ and $a+b+c=\sqrt{3} u, \quad|a-b|=|v-\varepsilon w|, \quad|a-c|=\left|v-\varepsilon^{2} w\right|, \quad|b-c|=|v-w|$.
Thus $L=\sqrt{3}|u|\left|v^{3}-w^{3}\right| \leq \sqrt{3}|u|\left(|v|^{3}+|w|^{3}\right) \leq \sqrt{\frac{3}{2}|u|^{2}\left(1-|u|^{2}\right)^{3}} \leq \frac{9 \sqrt{2}}{32}$. It is easy to trace back a, b, c to the equality case.
7. (a) We show that for $n=2^{k}$ all lamps will be switched on in $n-1$ steps and off in n steps. For $k=1$ the statement is true. Suppose it holds for some k and let $n=2^{k+1}$; define $L=\left\{L_{1}, \ldots, L_{2^{k}}\right\}$ and $R=\left\{L_{2^{k+1}}, \ldots, L_{2^{k+1}}\right\}$. The first $2^{k}-1$ steps are performed without any influence on or from the lamps from R; thus after $2^{k}-1$ steps the lamps in L are on and those from R are off. After the 2^{k} th step, $L_{2^{k}}$ and $L_{2^{k}+1}$ are on and the other lamps are off. Notice that from now on, L and R will be symmetric (i.e., L_{i} and $L_{2^{k+1}-i}$ will have the same state) and will never influence each other. Since R starts with only the leftmost lamp on, in 2^{k} steps all its lamps will be off. The same will happen to L. There are $2^{k}+2^{k}=2^{k+1}$ steps in total.
(b) We claim that for $n=2^{k}+1$ the lamps cannot be switched off. After the first step, only L_{1} and L_{2} are on. According to (a), after $2^{k}-1$ steps all lamps but L_{n} will be on, so after the 2^{k} th step all lamps will be off except for L_{n-1} and L_{n}. Since this position is symmetric to the one after the first step, the procedure will never end.
8. We call a triangle odd if it has two odd sides. To any odd isosceles triangle $A_{i} A_{j} A_{k}$ we assign a pair of sides of the 2006-gon. We may assume that $k-j=$ $j-i>0$ is odd. A side of the 2006-gon is said to belong to triangle $A_{i} A_{j} A_{k}$ if it lies on the polygonal line $A_{i} A_{i+1} \ldots A_{k}$. At least one of the odd number of sides $A_{i} A_{i+1}, \ldots, A_{j-1} A_{j}$ and at least one of the sides $A_{j} A_{j+1}, \ldots, A_{k-1} A_{k}$ do not belong to any other odd isosceles triangle; assign those two sides to $\triangle A_{i} A_{j} A_{k}$. This ensures that every two assigned pairs are disjoint; therefore there are at most 1003 odd isosceles triangles.
An example with 1003 odd isosceles triangles can be attained when the diagonals $A_{2 k} A_{2 k+2}$ are drawn for $k=0, \ldots, 1002$, where $A_{0}=A_{2006}$.
9. The number $c(P)$ of points inside P is equal to $n-a(P)-b(P)$, where $n=|S|$. Writing $y=1-x$, the considered sum becomes

$$
\begin{aligned}
\sum_{P} x^{a(P)} y^{b(P)}(x+y)^{c(P)} & =\sum_{P} \sum_{i=0}^{c(P)}\binom{c(P)}{i} x^{a(P)+i} y^{b(P)+c(P)-i} \\
& =\sum_{P} \sum_{k=a(P)}^{a(P)+c(P)}\binom{c(P)}{k-a(P)} x^{k} y^{n-k} .
\end{aligned}
$$

Here the coefficient at $x^{k} y^{n-k}$ is the sum $\sum_{P}\binom{c(P)}{k-a(P)}$, which equals the number of pairs (P, Z) of a convex polygon P and a k-element subset Z of S whose convex hull is P, and is thus equal to $\binom{n}{k}$. Now the required statement immediately follows.
10. Denote by $S_{\mathscr{A}}(R)$ the number of strawberries of arrangement \mathscr{A} inside rectangle R. We write $\mathscr{A} \leq \mathscr{B}$ if for every rectangle Q containing the top left corner O we have $S_{\mathscr{B}}(Q) \geq S_{\mathscr{A}}(Q)$. In this ordering, every switch transforms an arrangement to a larger one. Since the number of arrangements is finite, it is enough to prove that whenever $\mathscr{A}<\mathscr{B}$ there is a switch taking \mathscr{A} to \mathscr{C} with $\mathscr{C} \leq \mathscr{B}$. Consider the highest row t of the cake that differs in \mathscr{A} and \mathscr{B}; let X and Y be the positions of the strawberries in t in \mathscr{A} and \mathscr{B} respectively. Clearly Y is to the left from X and the strawberry of \mathscr{A} in the column of Y is below Y. Now consider the highest strawberry X^{\prime} of \mathscr{A} below t whose column is between X and Y (including Y). Let s be the row of X^{\prime}. Now switch X, X^{\prime} to the other two vertices Z, Z^{\prime} of the corresponding rectangle, obtaining an arrangement \mathscr{C}. We claim that $\mathscr{C} \leq \mathscr{B}$. It is enough to verify that $S_{\mathscr{C}}(Q) \leq S_{\mathscr{B}}(Q)$ for those rectangles $Q=O M N P$ with N lying inside $X Z X^{\prime} Z^{\prime}$. Let $Q^{\prime}=O M N_{1} P_{1}$ be the smallest rectangle containing X. Our choice of s ensures that $S_{\mathscr{C}}(Q)=S_{\mathscr{A}}\left(Q^{\prime}\right) \geq S_{\mathscr{B}}\left(Q^{\prime}\right) \geq S_{\mathscr{B}}(Q)$,
 as claimed.
11. Let q be the largest integer such that $2^{q} \mid n$. We prove that an (n, k)-tournament exists if and only if $k<2^{q}$.
The first l rounds of an (n, k)-tournament form an (n, l)-tournament. Thus it is enough to show that an $\left(n, 2^{q}-1\right)$-tournament exists and an $\left(n, 2^{q}\right)$-tournament does not.
If $n=2^{q}$, we can label the contestants and rounds by elements of the additive group \mathbb{Z}_{2}^{q}. If contestants x and $x+j$ meet in the round labeled j, it is easy to verify the conditions. If $n=2^{q} p$, we can divide the contestants into p disjoint groups of 2^{q} and perform a $\left(2^{q}, 2^{q}-1\right)$-tournament in each, thus obtaining an ($n, 2^{q}-1$)-tournament.
For the other direction let \mathscr{G}_{i} be the graph of players with edges between any two players who met in the first i rounds. We claim that the size of each connected component of \mathscr{G}_{i} is a power of 2 . For $i=1$ this is obvious; assume that it holds for i. Suppose that the components C and D merge in the $(i+1)$ th round. Then
some $c \in C$ and $d \in D$ meet in this round. Moreover, each player in C meets a player in D. Indeed, for every $c^{\prime} \in C$ there is a path $c=c_{0}, c_{1}, \ldots, c_{k}=c^{\prime}$ with $c_{j} c_{j+1} \in \mathscr{G}_{i}$; then if d_{j} is the opponent of c_{j} in the $(i+1)$ th round, condition (ii) shows that each $d_{j} d_{j+1}$ belongs to \mathscr{G}_{i}, so $d_{k} \in D$. Analogously, all players in D meet players in C, so $|C|=|D|$, proving our claim. Now if there are 2^{q} rounds, every component has size at least $2^{q}+1$ and is thus divisible by 2^{q+1}, which is impossible if $2^{q+1} \nmid n$.
12. Let U and D be the sets of upward and downward unit triangles, respectively. Two triangles are neighbors if they form a diamond. For $A \subseteq D$, denote by $F(A)$ the set of neighbors of the elements of A.
If a holey triangle can be tiled with diamonds, in every upward triangle of side l there are l^{2} elements of D, so there must be at least as many elements of U and at most l holes.
Now we pass to the other direction. It is enough to show the condition (ii) of the marriage theorem: For every set $X \subset D$ we have $|F(X)| \geq|X|$. Assume the contrary, that $|F(X)|<|X|$ for some set X. Note that any two elements of D with a common neighbor must share a vertex; this means that we can focus on connected sets X. Consider an upward triangle of side 3 . It contains three elements of D; if two of them are in X, adding the third one to X increases $F(X)$ by at most 1, so $|F(X)|<|X|$ still holds. Continuing this procedure, we will end up with a set X forming an upward subtriangle of T and satisfying $|F(X)|<|X|$, which contradicts the conditions of the problem. This contradiction proves that $|F(X)| \geq|X|$ for every set X, and an application of the Hall's marriage theorem establishes the result.
13. Consider a polyhedron \mathscr{P} with v vertices, e edges, and f faces. Consider the map σ to the unit sphere S taking each vertex, edge, or face x of \mathscr{P} to the set of outward unit normal vectors (i.e., points on S) to the support planes of \mathscr{P} containing x. Thus σ maps faces to points on S, edges to shorter arcs of big circles connecting some pairs of these points, and vertices to spherical regions formed by these arcs. These points, arcs, and regions on S form a "spherical polyhedron" \mathscr{G}.
We now translate the conditions of the problem into the language of \mathscr{G}. Denote by \bar{x} the image of x through reflection with the center in the center of S. No edge of \mathscr{P} being parallel to another edge or face means that the big circle of any edge e of \mathscr{G} does not contain any vertex V nonincident to e. Also note that vertices A and B of \mathscr{P} are antipodal if and only if $\sigma(A)$ and $\overline{\sigma(B)}$ intersect, and that the midpoints of edges a and b are antipodal if and only if $\sigma(a)$ and $\overline{\sigma(b)}$ intersect. Consider the union \mathscr{F} of \mathscr{G} and $\overline{\mathscr{G}}$. The faces of \mathscr{F} are the intersections of faces of \mathscr{G} and $\overline{\mathscr{G}}$, so their number equals $2 A$. Similarly, the edges of \mathscr{G} and $\overline{\mathscr{G}}$ have $2 B$ intersections, so \mathscr{F} has $2 e+4 B$ edges and $2 f+2 B$ vertices. Now Euler's theorem for \mathscr{F} gives us $2 e+4 B+2=2 A+2 f+2 B$, and therefore $A-B=e-f+1$.
14. The condition of the problem implies that $\angle P B C+\angle P C B=90^{\circ}-\alpha / 2$, i.e., $\angle B P C=90^{\circ}+\alpha / 2=\angle B I C$. Thus P lies on the circumcircle ω of $\triangle B C I$. It is
well known that the center M of ω is the second intersection of $A I$ with the circumcircle of $\triangle A B C$. Therefore $A P \geq A M-M P=A M-M I=A I$, with equality if and only if $P \equiv I$.
15. The relation $A K / K B=D L / L C$ implies that $A D, B C$, and $K L$ have a common point O. Moreover, since $\angle A P B=180^{\circ}-\angle A B C$ and $\angle D Q C=180^{\circ}-\angle B C D$, line $B C$ is tangent to the circles $A P B$ and $C Q D$. These two circles are homothetic with respect to O, so if $O P$ meets circle $A P B$ again at P^{\prime}, we have $\angle P Q C=$ $\angle P P^{\prime} B=\angle P B C$, showing that P, Q, B, C lie on a circle.
16. Let the diagonals $A C$ and $B D$ meet at Q and $A D$ and $C E$ meet at R. The quadrilaterals $A B C D$ and $A C D E$ are similar, so $A Q / Q C=A R / R D$. Now if $A P$ meets $C D$ at M, Ceva's theorem gives us $\frac{C M}{M D}=\frac{C Q}{Q A} \cdot \frac{A R}{R D}=1$.
17. Let M be the point on $A C$ such that $J M \| K L$. It is enough to prove that $A M=$ $2 A L$.
From $\angle B D A=\alpha$ we obtain that $\angle J D M=90^{\circ}-\frac{\alpha}{2}=\angle K L A=\angle J M D$; hence $J M=J D$, and the tangency point of the incircle of $\triangle B C D$ with $C D$ is the midpoint T of segment $M D$. Therefore, $D M=2 D T=B D+C D-B C=A B-B C+$ $C D$, which gives us

$$
A M=A D+D M=A C+A B-B C=2 A L
$$

18. Assume that $A_{1} B_{1}$ and $C J$ intersect at K. Then $J K$ is parallel and equal to $C_{1} D$ and $D C_{1} / C_{1} J=J K / J B_{1}=$ $J B_{1} / J C=C_{1} J / J C$, so the right triangles $D C_{1} J$ and $C_{1} J C$ are similar; hence $C_{1} C \perp D J$. Thus E belongs to $C C_{1}$. The points A_{1}, B_{1}, and E lie on the circle with diameter $C J$. Therefore
 $\angle D B A_{1}=\angle A_{1} C J=\angle A_{1} E D$, implying that $B E A_{1} D$ is cyclic; hence $\angle A_{1} E B=90^{\circ}$. Likewise, $A D E B_{1}$ is cyclic because $\angle E B_{1} A=\angle E J C=\angle E D C_{1}$, so $\angle A E B_{1}=90^{\circ}$.
Second solution. The segments $J A_{1}, J B_{1}, J C_{1}$ are tangent to the circles with diameters $A_{1} B, A B_{1}, C_{1} D$. Since $J A_{1}^{2}=J B_{1}^{2}=J C_{1}^{2}=J D \cdot J E, E$ lies on the first two circles (with diameters $A_{1} B$ and $A B_{1}$), so $\angle A E B_{1}=\angle A_{1} E B=90^{\circ}$.
19. The homothety with center E mapping ω_{1} to ω maps D to B, so D lies on $B E$; analogously, D lies on $A F$. Let $A E$ and $B F$ meet at point C. The lines $B E$ and $A F$ are altitudes of triangle $A B C$, so D is the orthocenter and C lies on t. Let the line through D parallel to $A B$ meet $A C$ at M. The centers O_{1} and O_{2} are the midpoints of $D M$ and $D N$ respectively.

We have thus reduced the problem to a classical triangle geometry problem: If $C D$ and $E F$ intersect at P, we should prove that points A, O_{1} and P are collinear (analogously, so are $\left.B, O_{2}, P\right)$. By Menelaus's theorem for triangle $C D M$, this is equivalent to $\frac{C A}{A M}=\frac{C P}{P D}$, which is again equivalent to $\frac{C K}{K D}=\frac{C P}{P D}$ (because $D M \| A B$), where K is the foot of the altitude from C to $A B$. The last equality immediately follows from the fact that the pairs $C, D ; P, K$ are harmonically adjoint.
20. Let I be the incenter of $\triangle A B C$. It is well known that $T_{a} T_{c}$ and $T_{a} T_{b}$ are the perpendicular bisectors of the segments $B I$ and $C I$ respectively. Let $T_{a} T_{b}$ meet $A C$ at P and ω_{b} at U, and let $T_{a} T_{c}$ meet $A B$ at Q and ω_{c} at V. We have $\angle B I Q=$ $\angle I B Q=\angle I B C$, so $I Q \| B C$; similarly $I P \| B C$. Hence $P Q$ is the line through I parallel to $B C$.
The homothety from T_{b} mapping ω_{b} to the circumcircle ω of $A B C$ maps the tangent t to ω_{b} at U to the tangent to ω at T_{a} that is parallel to $B C$. It follows that $t \| B C$. Let t meet $A C$ at X. Since $X U=X M_{b}$ and $\angle P U M_{b}=90^{\circ}, X$ is the midpoint of $P M_{b}$. Similarly, the tangent to ω_{c} at V meets $Q M_{c}$ at its midpoint Y. But since $X Y\|P Q\| M_{b} M_{c}$, points U, X, Y, V are collinear, so t coincides with the common tangent p_{a}. Thus p_{a} runs midway between I and $M_{b} M_{c}$. Analogous conclusions hold for p_{b} and p_{c}, so these three lines form a triangle homothetic to the triangle $M_{a} M_{b} M_{c}$ from center I in ratio $\frac{1}{2}$, which is therefore similar to the triangle $A B C$ in ratio $\frac{1}{4}$.
21. The following proposition is easy to prove:

Lemma. For an arbitrary point X inside a convex quadrilateral $A B C D$, the circumcircles of triangles $A D X$ and $B C X$ are tangent at X if and only if $\angle A D X+\angle B C X=\angle A X B$.
Let Q be the second intersection point of the circles $A B P$ and $C D P$ (we assume $Q \not \equiv P$; the opposite case is similarly handled). It follows from the conditions of the problem that Q lies inside quadrilateral $A B C D$ (since $\angle B C P+\angle B A P<$ $180^{\circ}, C$ is outside the circumcircle of $A P B$; the same holds for D). If Q is inside $\triangle A P D$ (the other case is similar), we have $\angle B Q C=\angle B Q P+\angle P Q C=\angle B A P+$ $\angle C D P \leq 90^{\circ}$. Similarly, $\angle A Q D \leq 90^{\circ}$. Moreover, $\angle A D Q+\angle B C Q=\angle A D P+$ $\angle B C P=\angle A P B=\angle A Q B$ implies that circles $A D Q$ and $B C Q$ are tangent at Q. Therefore the interiors of the semicircles with diameters $A D$ and $B C$ are disjoint, and if M, N are the midpoints of $A D$ and $B C$ respectively, we have $2 M N \geq$ $A D+B C$. On the other hand, $2 M N \leq A B+C D$ because $\overrightarrow{B A}+\overrightarrow{C D}=2 \overrightarrow{M N}$, and the statement of the problem immediately follows.
22. We work with oriented angles modulo 180°. For two lines a, b we denote by $\angle(l, m)$ the angle of counterclockwise rotation transforming a to b; also, by $\angle A B C$ we mean $\angle(B A, B C)$.
It is well known that the circles $A B_{1} C_{1}, B C_{1} A_{1}$, and $C A_{1} B_{1}$ have a common point, say P. Let O be the circumcenter of $A B C$. Set $\angle P B_{1} C=\angle P C_{1} A=\angle P A_{1} B=\varphi$. Let $A_{2} P, B_{2} P, C_{2} P$ meet the circle $A B C$ again at A_{4}, B_{4}, C_{4}, respectively. Since
$\angle A_{4} A_{2} A=\angle P A_{2} A=\angle P C_{1} A=\varphi$ and thus $\angle A_{4} O A=2 \varphi$ etc., $\triangle A B C$ is the image of $\triangle A_{4} B_{4} C_{4}$ under rotation \mathscr{R} about O by 2φ.
Therefore $\angle\left(A B_{4}, P C_{1}\right)=\angle B_{4} A B+$ $\angle A C_{1} P=\varphi-\varphi=0$, so $A B_{4} \| P C_{1}$. Let $P C_{1}$ intersect $A_{4} B_{4}$ at C_{5}; define A_{5}, B_{5} analogously. Then $\angle B_{4} C_{5} P=$ $\angle A_{4} B_{4} A=\varphi$, so $A B_{4} C_{5} C_{1}$ is an isosceles trapezoid with $B C_{3}=A C_{1}=B_{4} C_{5}$. Similarly, $A C_{3}=A_{4} C_{5}$, so C_{3} is the image of C_{5} under \mathscr{R}; similar statements hold for A_{5}, B_{5}. Thus $\triangle A_{3} B_{3} C_{3} \cong$ $\triangle A_{5} B_{5} C_{5}$. It remains to show that $\triangle A_{5} B_{5} C_{5} \sim \triangle A_{2} B_{2} C_{2}$.
We have seen that $\angle A_{4} B_{5} P=\angle B_{4} C_{5} P$,

which implies that P lies on the circle $A_{4} B_{5} C_{5}$. Analogously, P lies on the circle $C_{4} A_{5} B_{5}$. Therefore

$$
\begin{aligned}
\angle A_{2} B_{2} C_{2} & =\angle A_{2} B_{2} B_{4}+\angle B_{4} B_{2} C_{2}=\angle A_{2} A_{4} B_{4}+\angle B_{4} C_{4} C_{2} \\
& =\angle P A_{4} C_{5}+\angle A_{5} C_{4} P=\angle P B_{5} C_{5}+\angle A_{5} B_{5} P=\angle A_{5} B_{5} C_{5},
\end{aligned}
$$

and similarly for the other angles, which is what we wanted.
23. Let S_{i} be the area assigned to side $A_{i} A_{i+1}$ of polygon $\mathscr{P}=A_{1} \ldots A_{n}$ of area S. We start with the following auxiliary statement.
Lemma. At least one of the areas S_{1}, \ldots, S_{n} is not smaller than $2 S / n$.
Proof. It suffices to prove the statement for even n. The case of odd n will then follow immediately from this case applied to the degenerate $2 n$-gon $A_{1} A_{1}^{\prime} \ldots A_{n} A_{n}^{\prime}$, where A_{i}^{\prime} is the midpoint of $A_{i} A_{i+1}$.
Let $n=2 m$. For $i=1,2, \ldots, m$, denote by T_{i} the area of the region \mathscr{P}_{i} inside the polygon bounded by the diagonals $A_{i} A_{m+i}, A_{i+1} A_{m+i+1}$ and the sides $A_{i} A_{i+1}, A_{m+i} A_{m+i+1}$. We observe that the regions \mathscr{P}_{i} cover the entire polygon. Indeed, let X be an arbitrary point inside the polygon, to the left (without loss of generality) of the ray $A_{1} A_{m+1}$.
Then X is to the right of the ray $A_{m+1} A_{1}$, so there is a k such that X is to the left of ray $A_{k} A_{k+m}$ and to the right of ray $A_{k+1} A_{k+m+1}$, i.e., $X \in$ \mathscr{P}_{k}. It follows that $T_{1}+\cdots+T_{m} \geq S$; hence at least one T_{i} is not smaller than $2 S / n$, say $T_{1} \geq 2 S / n$.
Let O be the intersection point of $A_{1} A_{m+1}$ and $A_{2} A_{m+2}$, and let us assume without loss of generality
 that $S_{A_{1} A_{2} O} \geq S_{A_{m+1} A_{m+2} O}$ and $A_{1} O \geq O A_{m+1}$. Then required result now follows from

$$
S_{1} \geq S_{A_{1} A_{2} A_{m+2}}=S_{A_{1} A_{2} O}+S_{A_{1} A_{m+2} O} \geq S_{A_{1} A_{2} O}+S_{A_{m+1} A_{m+2} O}=T_{1} \geq \frac{2 S}{n}
$$

If, contrary to the assertion, $\sum \frac{S_{i}}{S}<2$, we can choose rational numbers $q_{i}=$ $2 m_{i} / N$ with $N=m_{1}+\cdots+m_{n}$ such that $q_{i}>S_{i} / S$. However, considering the given polygon as a degenerate N-gon obtained by division of side $A_{i} A_{i+1}$ into m_{i} equal parts for each i and applying the lemma, we obtain $S_{i} / m_{i} \geq 2 S / N$, i.e., $S_{i} / S \geq q_{i}$ for some i, a contradiction.
Equality holds if and only if \mathscr{P} is centrally symmetric.
Second solution. We say that vertex V is assigned to side a of a convex (possibly degenerate) polygon \mathscr{P} if the triangle determined by a and V has the maximum area S_{a} among the triangles with side a contained in \mathscr{P}. Define $\sigma(\mathscr{P})=\sum_{a} S_{a}$ and $\delta(\mathscr{P})=\sigma(\mathscr{P})-2[\mathscr{P}]$. We use induction on the number n of pairwise nonparallel sides of \mathscr{P} to show that $\delta(\mathscr{P}) \geq 0$ for every polygon \mathscr{P}. This is obviously true for $n=2$, so let $n \geq 3$.
There exist two adjacent sides $A B$ and $B C$ whose respective assigned vertices U and V are distinct. Let the lines through U and V parallel to $A B$ and $B C$ respectively intersect at point X. Assume, without loss of generality, that there are no sides of \mathscr{P} lying on $U X$ and $V X$. Call the sides and vertices of \mathscr{P} lying within the triangle $U V X$ passive (excluding vertices U and V). It is easy to see that no passive vertex is assigned to any side of \mathscr{P} and that vertex B is assigned to every passive side. Now replace all passive vertices of \mathscr{P} by X, obtaining a polygon \mathscr{P}^{\prime}. Vertex B is assigned to sides $U X$ and $V X$ of \mathscr{P}^{\prime}. Therefore the sum of areas assigned to passive sides increases by the area S of the part of quadrilateral $B U X V$ lying outside \mathscr{P}; the other assigned areas do not change. Thus σ increases by S. On the other hand, the area of the polygon also increases by S, so δ must decrease by S.
Note that the change from \mathscr{P} to \mathscr{P}^{\prime} decreases the number of nonparallel sides. Thus by the inductive hypothesis we have $\delta(\mathscr{P}) \geq \delta\left(\mathscr{P}^{\prime}\right) \geq 0$.
Third solution. To each convex n-gon $\mathscr{P}=A_{1} A_{2} \ldots A_{n}$ we assign a centrally symmetric $2 n$-gon \mathscr{Q}, called the associate of \mathscr{P}, as follows. Attach the $2 n$ vectors $\pm \overrightarrow{A_{i} A_{i+1}}$ at a common origin and label them $b_{1}, \ldots, b_{2 n}$ counterclockwise so that $b_{n+i}=-b_{i}$ for $1 \leq i \leq n$. Then take \mathscr{Q} to be the polygon $B_{1} B_{2} \ldots B_{2 n}$ with $\overrightarrow{B_{i} B_{i+1}}=b_{i}$. Denote by a_{i} the side of \mathscr{P} corresponding to $b_{i}(i=1, \ldots, n)$. The distance between the parallel sides $B_{i} B_{i+1}$ and $B_{n+i} B_{n+i+1}$ of \mathscr{Q} equals twice the maximum height of \mathscr{P} to the side a_{i}. Thus, if O is the center of \mathscr{Q}, the area of $\triangle B_{i} B_{i+1} O(i=1, \ldots, n)$ is exactly the area S_{i} assigned to side a_{i} of \mathscr{P}; therefore $[\mathscr{Q}]=2 \sum S_{i}$. It remains to show that $d(\mathscr{P})=[\mathscr{Q}]-4[\mathscr{P}] \geq 0$.
(i) Suppose that \mathscr{P} has two parallel sides a_{i} and a_{j}, where $a_{j} \geq a_{i}$, and remove from it the parallelogram D determined by a_{i} and a part of side a_{j}. We obtain a polygon \mathscr{P}^{\prime} with a smaller number of nonparallel sides. Then the associate of \mathscr{P}^{\prime} is obtained from \mathscr{Q} by removing a parallelogram similar to D in ratio 2 (and with area four times that of D); thus $d\left(\mathscr{P}^{\prime}\right)=d(\mathscr{P})$.
(ii) Suppose that there is a side $b_{i}(i \leq n)$ of \mathscr{Q} such that the sum of the angles at its endpoints is greater than 180°. Extend the pairs of sides adjacent to b_{i} and b_{n+i} to their intersections U and V, thus enlarging \mathscr{Q} by two congruent triangles to a polygon \mathscr{Q}^{\prime}. Then \mathscr{Q}^{\prime} is the associate of the polygon \mathscr{P}^{\prime}
obtained from \mathscr{P} by attaching a triangle congruent to $B_{i} B_{i+1} U$ to the side a_{i}. Therefore $d\left(\mathscr{P}^{\prime}\right)$ equals $d(\mathscr{P})$ minus twice the area of the attached triangle.
By repeatedly performing the operations (i) and (ii) to polygon \mathscr{P} we will eventually reduce it to a parallelogram E, thereby decreasing the value of d. Since $d(E)=0$, it follows that $d(\mathscr{P}) \geq 0$.
Remark. Polygon \mathscr{Q} is the Minkowski sum of \mathscr{P} and a polygon centrally symmetric to \mathscr{P}. Thus the inequality $[\mathscr{Q}] \geq 4[\mathscr{P}]$ is a direct consequence of the Brunn-Minkowski inequality.
24. Obviously $x \geq 0$. For $x=0$ the only solutions are $(0, \pm 2)$. Now let (x, y) be a solution with $x>0$. Without loss of generality, assume that $y>0$. The equation rewritten as $2^{x}\left(1+2^{x+1}\right)=(y-1)(y+1)$ shows that one of the factors $y \pm 1$ is divisible by 2 but not by 4 and the other by 2^{x-1} but not by 2^{x}, hence $x \geq 3$. Thus $y=2^{x-1} m+\varepsilon$, where m is odd and $\varepsilon= \pm 1$. Plugging this in the original equation and simplifying yields

$$
\begin{equation*}
2^{x-2}\left(m^{2}-8\right)=1-\varepsilon m \tag{1}
\end{equation*}
$$

Since $m=1$ is obviously impossible, we have $m \geq 3$ and hence $\varepsilon=-1$. Now (1) gives us $2\left(m^{2}-8\right) \leq 1+m$, implying $m=3$, which leads to $x=4$ and $y=23$. Thus all solutions are $(0, \pm 2)$ and $(4, \pm 23)$.
25. If x is rational, its digits repeat periodically starting at some point. If n is the length of the period of x, the sequence $2,2^{2}, 2^{3}, \ldots$ is eventually periodic modulo n, so the corresponding digits of x (i.e., the digits of y) also make an eventually periodic sequence, implying that y is rational.
26. Consider $g(n)=\left[\frac{n}{1}\right]+\left[\frac{n}{2}\right]+\cdots+\left[\frac{n}{n}\right]=n f(n)$ and define $g(0)=0$. Since for any k the difference $\left[\frac{n}{k}\right]-\left[\frac{n-1}{k}\right]$ equals 1 if k divides n and 0 otherwise, we obtain that $g(n)=g(n-1)+d(n)$, where $d(n)$ is the number of positive divisors of n. Thus $g(n)=d(1)+d(2)+\cdots+d(n)$ and $f(n)$ is the arithmetic mean of the numbers $d(1), \ldots, d(n)$. Therefore, (a) and (b) will follow if we show that each of $d(n+1)>f(n)$ and $d(n+1)<f(n)$ holds infinitely often. But $d(n+1)<f(n)$ holds whenever $n+1$ is prime, and $d(n+1)>f(n)$ holds whenever $d(n+1)>$ $d(1), \ldots, d(n)$ (which clearly holds for infinitely many n).
27. We first show that every fixed point x of Q is in fact a fixed point of $P \circ P$. Consider the sequence given by $x_{0}=x$ and $x_{i+1}=P\left(x_{i}\right)$ for $i \geq 0$. Assume $x_{k}=$ x_{0}. We know that $u-v$ divides $P(u)-P(v)$ for every two distinct integers u and v. In particular,

$$
d_{i}=x_{i+1}-x_{i} \mid P\left(x_{i+1}\right)-P\left(x_{i}\right)=x_{i+2}-x_{i+1}=d_{i+1}
$$

for all i, which together with $d_{k}=d_{0}$ implies $\left|d_{0}\right|=\left|d_{1}\right|=\cdots=\left|d_{k}\right|$. Suppose that $d_{1}=d_{0}=d \neq 0$. Then $d_{2}=d$ (otherwise $x_{3}=x_{1}$ and x_{0} will never occur in the sequence again). Similarly, $d_{3}=d$ etc., and hence $x_{i}=x_{0}+i d \neq x_{0}$ for all i, a contradiction. It follows that $d_{1}=-d_{0}$, so $x_{2}=x_{0}$ as claimed. Thus we can assume that $Q=P \circ P$.

If every integer t with $P(P(t))=t$ also satisfies $P(t)=t$, the number of solutions is clearly at most $\operatorname{deg} P=n$. Suppose that $P\left(t_{1}\right)=t_{2}, P\left(t_{2}\right)=t_{1}, P\left(t_{3}\right)=t_{4}$, and $P\left(t_{4}\right)=t_{3}$, where $t_{1} \neq t_{2,3,4}$ (but not necessarily $t_{3} \neq t_{4}$). Since $t_{1}-t_{3}$ divides $t_{2}-t_{4}$ and vice versa, we conclude that $t_{1}-t_{3}= \pm\left(t_{2}-t_{4}\right)$. Assume that $t_{1}-t_{3}=$ $t_{2}-t_{4}$, i.e. $t_{1}-t_{2}=t_{3}-t_{4}=u \neq 0$. Since the relation $t_{1}-t_{4}= \pm\left(t_{2}-t_{3}\right)$ similarly holds, we obtain $t_{1}-t_{3}+u= \pm\left(t_{1}-t_{3}-u\right)$ which is impossible. Therefore, we must have $t_{1}-t_{3}=t_{4}-t_{2}$, which gives us $P\left(t_{1}\right)+t_{1}=P\left(t_{3}\right)+t_{3}=c$ for some c. It follows that all integral solutions t of the equation $P(P(t))=t$ satisfy $P(t)+t=c$, and hence their number does not exceed n.
28. Every prime divisor p of $\frac{x^{7}-1}{x-1}=x^{6}+\cdots+x+1$ is congruent to 0 or 1 modulo 7. Indeed, if $p \mid x-1$, then $\frac{x^{7}-1}{x-1} \equiv 1+\cdots+1 \equiv 7(\bmod p)$, so $p=7$; otherwise the order of x modulo p is 7 and hence $p \equiv 1(\bmod 7)$. Therefore every positive divisor d of $\frac{x^{7}-1}{x-1}$ satisfies $d \equiv 0$ or $1(\bmod 7)$.
Now suppose (x, y) is a solution of the given equation. Since $y-1$ and $y^{4}+y^{3}+$ $y^{2}+y+1$ divide $\frac{x^{7}-1}{x-1}=y^{5}-1$, we have $y \equiv 1$ or 2 and $y^{4}+y^{3}+y^{2}+y+1 \equiv 0$ or $1(\bmod 7)$. However, $y \equiv 1$ or 2 implies that $y^{4}+y^{3}+y^{2}+y+1 \equiv 5$ or $3(\bmod$ 7), which is impossible.
29. All representations of n in the form $a x+b y(x, y \in \mathbb{Z})$ are given by $(x, y)=$ $\left(x_{0}+b t, y_{0}-a t\right)$, where x_{0}, y_{0} are fixed and $t \in \mathbb{Z}$ is arbitrary. The following lemma enables us to determine $w(n)$.
Lemma. The equality $w(a x+b y)=|x|+|y|$ holds if and only if one of the following conditions holds:
(i) $\frac{a-b}{2}<y \leq \frac{a+b}{2}$ and $x \geq y-\frac{a+b}{2}$;
(ii) $-\frac{a-b}{2} \leq y \leq \frac{a-b}{2}$ and $x \in \mathbb{Z}$;
(iii) $-\frac{a+b}{2} \leq y<-\frac{a-b}{2}$ and $x \leq y+\frac{a+b}{2}$.

Proof. Without loss of generality, assume that $y \geq 0$. We have $w(a x+b y)=$ $|x|+y$ if and only if $|x+b|+|y-a| \geq|x|+y$ and $|x-b|+(y+a) \geq|x|+y$, where the latter is obviously true and the former clearly implies $y<a$. Then the former inequality becomes $|x+b|-|x| \geq 2 y-a$. We distinguish three cases: if $y \leq \frac{a-b}{2}$, then $2 y-a \leq b$ and the previous inequality always holds; for $\frac{a-b}{2}<y \leq \frac{a+b}{2}$, it holds if and only if $x \geq y-\frac{a+b}{2}$; and for $y>\frac{a+b}{2}$, it never holds.
Now let $n=a x+b y$ be a local champion with $w(n)=|x|+|y|$. As in the lemma, we distinguish three cases:
(i) $\frac{a-b}{2}<y \leq \frac{a+b}{2}$. Then $x+1 \geq y-\frac{a+b}{2}$ by the lemma, so $w(n+a)=|x+1|+y$ (because $n+a=a(x+1)+b y$). Since $w(n+a) \leq w(n)$, we must have $x<0$. Likewise, $w(n-a)$ equals either $|x-1|+y=w(n)+1$ or $|x+b-1|+a-y$. The condition $w(n-a) \leq w(n)$ leads to $x \leq y-\frac{a+b-1}{2}$; hence $x=y-\left[\frac{a+b}{2}\right]$ and $w(n)=\left[\frac{a+b}{2}\right]$. Now $w(n-b)=-x+y-1=w(n)-1$ and $w(n+b)=$ $(x+b)+(a-1-y)=a+b-1-\left[\frac{a+b}{2}\right] \leq w(n)$, so n is a local champion. Conversely, every $n=a x+b y$ with $\frac{a-b}{2}<y \leq \frac{a+b}{2}$ and $x=y-\left[\frac{a+b}{2}\right]$ is
a local champion. Thus we obtain $b-1$ local champions, which are all distinct.
(ii) $|y| \leq \frac{a-b}{2}$. Now we conclude from the lemma that $w(n-a)=|x-1|+|y|$ and $w(n+a)=|x+1|+|y|$, and at least one of these two values exceeds $w(n)=|x|+|y|$. Thus n is not a local champion.
(iii) $-\frac{a+b}{2} \leq y<-\frac{a-b}{2}$. By taking x, y to $-x,-y$ this case is reduced to case (i), so we again have $b-1$ local champions $n=a x+b y$ with $x=y+\left[\frac{a+b}{2}\right]$.
It is easy to check that the sets of local champions from cases (i) and (iii) coincide if a and b are both odd (so we have $b-1$ local champions in total), and are otherwise disjoint (then we have $2(b-1)$ local champions).
30. We shall show by induction on n that there exists an arbitrarily large m satisfying $2^{m} \equiv-m(\bmod n)$. The case $n=1$ is trivial; assume that $n>1$.
Recall that the sequence of powers of 2 modulo n is eventually periodic with the period dividing $\varphi(n)$; thus $2^{x} \equiv 2^{y}$ whenever $x \equiv y(\bmod \varphi(n))$ and x and y are large enough. Let us consider m of the form $m \equiv-2^{k}(\bmod n \varphi(n))$. Then the congruence $2^{m} \equiv-m(\bmod n)$ is equivalent to $2^{m} \equiv 2^{k}(\bmod n)$, and this holds whenever $-2^{k} \equiv m \equiv k(\bmod \varphi(n))$ and m, k are large enough. But the existence of m and k is guartanteed by the inductive hypothesis for $\varphi(n)$, so the induction is complete.

Notation and Abbreviations

A. 1 Notation

We assume familiarity with standard elementary notation of set theory, algebra, logic, geometry (including vectors), analysis, number theory (including divisibility and congruences), and combinatorics. We use this notation liberally.
We assume familiarity with the basic elements of the game of chess (the movement of pieces and the coloring of the board).
The following is notation that deserves additional clarification.

- $\mathscr{B}(A, B, C), A-B-C$: indicates the relation of betweenness, i.e., that B is between A and C (this automatically means that A, B, C are different collinear points).
- $A=l_{1} \cap l_{2}$: indicates that A is the intersection point of the lines l_{1} and l_{2}.
- $A B$: line through A and B, segment $A B$, length of segment $A B$ (depending on context).
- $[A B$: ray starting in A and containing B.
- ($A B$: ray starting in A and containing B, but without the point A.
- $(A B)$: open interval $A B$, set of points between A and B.
- $[A B]$: closed interval $A B$, segment $A B,(A B) \cup\{A, B\}$.
- $(A B]$: semiopen interval $A B$, closed at B and open at $A,(A B) \cup\{B\}$.

The same bracket notation is applied to real numbers, e.g., $[a, b)=\{x \mid a \leq x<$ $b\}$.

- $A B C$: plane determined by points A, B, C, triangle $A B C(\triangle A B C)$ (depending on context).
- $[A B, C$: half-plane consisting of line $A B$ and all points in the plane on the same side of $A B$ as C.
- $(A B, C:[A B, C$ without the line $A B$.
- $\langle\vec{a}, \vec{b}\rangle, \vec{a} \cdot \vec{b}$: scalar product of \vec{a} and \vec{b}.
- $a, b, c, \alpha, \beta, \gamma$: the respective sides and angles of triangle $A B C$ (unless otherwise indicated).
- $k(O, r)$: circle k with center O and radius r.
- $d(A, p)$: distance from point A to line p.
- $S_{A_{1} A_{2} \ldots A_{n}},\left[A_{1} A_{2} \ldots A_{n}\right]$: area of n-gon $A_{1} A_{2} \ldots A_{n}$ (special case for $n=3, S_{A B C}$: area of $\triangle A B C$).
$\circ \mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$: the sets of natural, integer, rational, real, complex numbers (respectively).
- \mathbb{Z}_{n} : the ring of residues modulo $n, n \in \mathbb{N}$.
- \mathbb{Z}_{p} : the field of residues modulo p, p being prime.
- $\mathbb{Z}[x], \mathbb{R}[x]$: the rings of polynomials in x with integer and real coefficients respectively.
- R^{*} : the set of nonzero elements of a ring R.
- $R[\alpha], R(\alpha)$, where α is a root of a quadratic polynomial in $R[x]:\{a+b \alpha \mid a, b \in$ $R\}$.
- $X_{0}: X \cup\{0\}$ for X such that $0 \notin X$.

○ $X^{+}, X^{-}, a X+b, a X+b Y:\{x \mid x \in X, x>0\},\{x \mid x \in X, x<0\},\{a x+b \mid x \in X\}$, $\{a x+b y \mid x \in X, y \in Y\}$ (respectively) for $X, Y \subseteq \mathbb{R}, a, b \in \mathbb{R}$.

- $[x],\lfloor x\rfloor$: the greatest integer smaller than or equal to x.
- $\lceil x\rceil$: the smallest integer greater than or equal to x.

The following is notation simultaneously used in different concepts (depending on context).

- $|A B|,|x|,|S|$: the distance between two points $A B$, the absolute value of the number x, the number of elements of the set S (respectively).
- $(x, y),(m, n),(a, b)$: (ordered) pair x and y, the greatest common divisor of integers m and n, the open interval between real numbers a and b (respectively).

A. 2 Abbreviations

We tried to avoid using nonstandard notation and abbreviations as much as possible. However, one nonstandard abbreviation stood out as particularly convenient:

- w.l.o.g.: without loss of generality.

Other abbreviations include:

- RHS: right-hand side (of a given equation).
- LHS: left-hand side (of a given equation).
- QM, AM, GM, HM: the quadratic mean, the arithmetic mean, the geometric mean, the harmonic mean (respectively).
- gcd, lcm: greatest common divisor, least common multiple (respectively).
- i.e.: in other words.
- e.g.: for example.

Codes of the Countries of Origin

ARG	Argentina	HRV	Croatia	POL	Poland
ARM	Armenia	HUN	Hungary	POR	Portugal
AUS	Australia	IDN	Indonesia	PRI	Puerto Rico
AUT	Austria	IND	India	PRK	Korea, North
BEL	Belgium	IRL	Ireland	ROU	Romania
BGR	Bulgaria	IRN	Iran	RUS	Russia
BLR	Belarus	ISL	Iceland	SAF	South Africa
BRA	Brazil	ISR	Israel	SCG	Serbia and
CAN	Canada	ITA	Italy		Montenegro
CHN	China	JPN	Japan	SGP	Singapore
COL	Colombia	KAZ	Kazakhstan	SRB	Serbia
CUB	Cuba	KOR	Korea, South	SVK	Slovakia
CYP	Cyprus	KWT	Kuwait	SVN	Slovenia
CZE	Czech Republic	LTU	Lithuania	SWE	Sweden
CZS	Czechoslovakia	LUX	Luxembourg	THA	Thailand
ESP	Spain	LVA	Latvia	TUN	Tunisia
EST	Estonia	MAR	Morocco	TUR	Turkey
FIN	Finland	MEX	Mexico	TWN	Taiwan
FRA	France	MKD	Macedonia	UKR	Ukraine
FRG	Germany, FR	MNG	Mongolia	UNK	United Kingdom
GDR	Germany,DR	NLD	Netherlands	USA	United States
GEO	Georgia	NOR	Norway	USS	Soviet Union
GER	Germany	NZL	New Zealand	UZB	Uzbekistan
HEL	Greece	PER	Peru	VNM	Vietnam
HKG	Hong Kong	PHI	Philippines	YUG	Yugoslavia

Authors of Problems

1959-02 C. Ionescu-Tiu, ROU - IMO2
1959-06 Cezar Cosnita, ROU - IMO6
1960-03 G.D. Simionescu, ROU - IMO3
1961-06 G.D. Simionescu, ROU - IMO6
1962-04 Cezar Cosnita, ROU - IMO4
1963-05 Wolfgang Engel, GDR - IMO5
1964-05 G.D. Simionescu, ROU - IMO5
1965-05 G.D. Simionescu, ROU - IMO5
1967-04 Tullio Viola, ITA - IMO4
1968-06 David Monk, UNK - IMO6
1969-01 Wolfgang Engel, GDR - IMO1
1969-05 Abish Mekei, MNG - IMO5
1970-02 D. Batinetzu, ROU - IMO2
1970-06 D. Gerll, A. Warusfel, FRA
1970-10 Åke Samuelsson, SWE - IMO6
1973-05 Georges Glaeser, FRA
1973-10 Åke Samuelsson, SWE - IMO6
1973-11 Åke Samuelsson, SWE - IMO3
1973-13 Đorđe Dugošija, YUG
1973-14 Đorđe Dugošija, YUG - IMO4
1974-01 Murray Klamkin, USA - IMO1
1974-06 Ciprian Borcea, ROU - IMO3
1974-08 Jan van de Craats, NLD - IMO5
1974-10 Matti Lehtinen, FIN - IMO2

1975-08 Jan van de Craats, NLD - IMO3
1975-10 David Monk, UNK - IMO6
1975-14 Vladimir Janković, YUG
1975-10 R. Lyness,
D. Monk, UNK - IMO6

1976-05 Jan van de Craats, NLD - IMO5
1976-06 Jan van de Craats, NLD - IMO3
1976-09 Matti Lehtinen, FIN - IMO2
1976-10 Murray Klamkin, USA - IMO4
1977-01 Ivan Prodanov, BGR - IMO6
1977-03 Hermann Frasch, FRG - IMO5
1977-04 Arthur Engel, FRG
1977-05 Arthur Engel, FRG
1977-06 Helmut Bausch, GDR
1977-07 David Monk, UNK - IMO4
1977-10 Jan van de Craats, NLD - IMO3
1977-12 Jan van de Craats, NLD - IMO1
1977-15 P. Đức Chính, VNM - IMO2
1978-10 Jan van de Craats, NLD - IMO6
1978-12 Murray Klamkin, USA - IMO4
1978-13 Murray Klamkin, USA - IMO2
1978-15 Dragoslav Ljubić, YUG
1978-16 Dragoslav Ljubić, YUG
1979-04 N. Hadzhiivanov,
N. Nenov, BGR - IMO2

1979-07 Arthur Engel, FRG - IMO1
1979-08 Arthur Engel, FRG
1979-09 Arthur Engel, FRG - IMO6
1979-12 Hans-Dietrich Gronau, GDR

1979-15 Joe Gillis, ISR - IMO5
1979-22 N. Vasilyev, I.F. Sharygin, USS - IMO3

1979-25 Murray Klamkin, USA - IMO4 1979-26 Milan Božić, YUG

1981-05 Rafael Marino, COL
1981-07 Juha Oikkonen, FIN - IMO6
1981-08 Arthur Engel, FRG - IMO2
1981-09 Arthur Engel, FRG
1981-12 Jan van de Craats, NLD - IMO3
1981-15 David Monk, UNK - IMO1
1981-19 Vladimir Janković, YUG
1981-01 David Monk, UNK - IMO1
1982-03 A.N. Grishkov, USS - IMO3
1982-05 Jan van de Craats, NLD - IMO5
1982-06 V. Như Cương, VNM - IMO6
1982-13 Jan van de Craats, NLD - IMO2
1982-16 David Monk, UNK - IMO4
1983-08 Juan Ochoa, ESP
1983-09 Murray Klamkin, USA - IMO6
1983-12 David Monk, UNK - IMO1
1983-13 Lucien Kieffer, LUX
1983-14 Marcin Kuczma, POL - IMO5
1983-16 Konrad Engel, GDR
1983-17 Hans-Dietrich Gronau, GDR
1983-18 Arthur Engel, FRG - IMO3
1983-19 Titu Andreescu, ROU
1983-23 Igor F. Sharygin, USS - IMO2
1984-04 T. Dashdorj, MNG - IMO5
1984-05 M. Stoll, B. Haible, FRG - IMO1

1984-07 Horst Sewerin, FRG
1984-08 Ioan Tomescu, ROU - IMO3
1984-12 Aiko Tiggelaar, NLD - IMO2
1984-14 L. Panaitopol, ROU - IMO4
1984-15 Lucien Kieffer, LUX
1984-17 Arthur Engel, FRG
1985-01 R. Gonchigdorj, MNG - IMO4
1985-03 Jan van de Craats, NLD - IMO3
1985-04 George Szekeres, AUS - IMO2
1985-17 Åke Samuelsson, SWE - IMO6

1985-20 Frank Budden, UNK - IMO1
1985-22 Igor F. Sharygin, USS - IMO5
1986-01 David Monk, UNK - IMO5
1986-05 Arthur Engel, FRG - IMO1
1986-06 Johannes Notenboom, NLD
1986-08 Cecil Rousseau, USA
1986-09 Konrad Engel, GDR - IMO6
1986-12 Elias Wegert, GDR - IMO3
1986-13 Arthur Engel, FRG
1986-15 Johannes Notenboom, NLD
1986-16 Sven Sigurðsson, ISL - IMO4
1986-17 G. Chang, D. Qi, CHN - IMO2
1987-06 Dimitris Kontogiannis, HEL 1987-13 H.-D. Gronau, GDR - IMO5
1987-14 Arthur Engel, FRG
1987-15 Arthur Engel, FRG - IMO3
1987-16 Horst Sewerin, FRG - IMO1
1987-20 Vsevolod F. Lev, USS - IMO6
1987-21 I.A. Kushnir, USS - IMO2
1987-22 N. Minh Đức, VNM - IMO4
1988-09 Stephan Beck, FRG - IMO6 1988-12 Dimitris Kontogiannis, HEL 1988-13 D. Kontogiannis, HEL - IMO5 1988-16 Finbarr Holland, IRL - IMO4 1988-18 Lucien Kieffer, LUX - IMO1 1988-26 David Monk, UNK - IMO3

1989-01 Geoffrey Bailey, AUS - IMO2
1989-05 Joaquín Valderrama, COL
1989-10 Theodoros Bolis, HEL
1989-13 Eggert Briem, ISL - IMO4
1989-14 S.A. Shirali, IND
1989-15 Fergus Gaines, IRL
1989-20 Harm Derksen, NLD - IMO3
1989-21 Johannes Notenboom, NLD
1989-22 Jose Marasigan, PHI - IMO1
1989-23 Marcin Kuczma, POL - IMO6
1989-25 Myung-Hwan Kim, KOR
1989-30 Bernt Lindström, SWE - IMO5
1990-03 Pavol Černek, CZS - IMO2
1990-06 Hagen von Eitzen, FRG - IMO5
1990-07 Theodoros Bolis, HEL
1990-11 C.R. Pranesachar, IND - IMO1

1990-12 Fergus Gaines, IRL
1990-14 Toshio Seimiya, JPN
1990-16 Harm Derksen, NLD - IMO6
1990-17 Johannes Notenboom, NLD 1990-18 Istvan Beck, NOR
1990-23 L. Panaitopol, ROU - IMO3
1990-25 Albert Erkip, TUR - IMO4
1991-02 Toshio Seimiya, JPN
1991-04 Johan Yebbou, FRA - IMO5
1991-06 A. Skopenkov, USS - IMO1
1991-08 Harm Derksen, NLD
1991-10 Cecil Rousseau, USA - IMO4
1991-12 Chengzhang Li, CHN - IMO3
1991-16 L. Panaitopol, ROU - IMO2
1991-19 Tom Laffey, IRL
1991-20 Tom Laffey, IRL
1991-23 C.R. Pranesachar, IND
1991-24 C.R. Pranesachar, IND
1991-28 Harm Derksen, NLD - IMO6
1992-04 Chengzhang Li, CHN - IMO3
1992-05 Germán Rincón, COL
1992-06 B.J. Venkatachala, IND - IMO2
1992-07 S.A. Shirali, IND
1992-08 C.R. Pranesachar, IND
1992-10 Stefano Mortola, ITA - IMO5
1992-13 Achim Zulauf, NZL - IMO1
1992-14 Marcin Kuczma, POL
1992-18 Robin Pemantle, USA
1992-19 Tom Laffey, IRL
1992-20 Johan Yebbou, FRA - IMO4
1992-21 Tony Gardiner, UNK - IMO6
1993-03 Francisco Bellot Rosado, ESP
1993-04 Francisco Bellot Rosado, ESP
1993-05 Kerkko Luosto, FIN - IMO3
1993-06 Elias Wegert, GER - IMO5
1993-08 S.A. Shirali, IND
1993-09 V.S. Joshi, IND
1993-10 C.S. Yogananda, IND
1993-11 Tom Laffey, IRL - IMO1
1993-12 Fergus Gaines, IRL
1993-13 Tom Laffey, IRL
1993-15 D. Dimovski, MKD - IMO4
1993-17 N.G. de Bruijn, NLD - IMO6

1993-21 Chirstopher Bradley, UNK
1993-22 David Monk, UNK - IMO2
1993-23 David Monk, UNK
1993-24 Titu Andreescu, USA
1994-01 Titu Andreescu, USA
1994-02 V. Lafforgue, FRA - IMO1
1994-03 David Monk, UNK - IMO5
1994-05 Marcin Kuczma, POL
1994-06 Vadym Radchenko, UKR
1994-07 David Berenstein, COL
1994-09 H. Nestra, R. Palm, EST
1994-14 Vyacheslav Yasinskiy, UKR
1994-16 H. Lausch,
G. Tonoyan, AUS/ARM - IMO2

1994-19 Hans Lausch, AUS - IMO4
1994-20 Kerkko Luosto, FIN - IMO6
1994-22 Gabriel Istrate, ROU - IMO3
1994-24 David Monk, UNK
1995-01 Nazar Agakhanov, RUS - IMO2
1995-03 Vadym Radchenko, UKR
1995-04 Titu Andreescu, USA
1995-05 Vadym Radchenko, UKR
1995-06 Toru Yasuda, JPN
1995-07 B. Mihailov, BGR - IMO1
1995-08 Arthur Engel, GER
1995-10 Vyacheslav Yasinskiy, UKR
1995-11 A. McNaughton, NZL - IMO5
1995-12 Titu Andreescu, USA
1995-14 Germán Rincón, COL
1995-16 Alexander S. Golovanov, RUS
1995-17 Jaromír Šimša, CZE - IMO3
1995-19 Tom Laffey, IRL
1995-20 Marcin Kuczma, POL - IMO6
1995-22 Stephan Beck, GER
1995-23 Igor Mitelman, UKR
1995-24 Marcin Kuczma, POL - IMO4
1995-25 Marcin Kuczma, POL
1995-28 B.J. Venkatachala, IND
1996-01 Peter Anastasov, SVN
1996-02 F. Gaines, T. Laffey, IRL
1996-03 Michalis Lambrou, HEL
1996-06 Tom Laffey, IRL
1996-08 M. Becheanu, ROU - IMO3

1996-09 Marcin Kuczma, POL
1996-10 David Monk, UNK
1996-11 J.P. Grossman, CAN - IMO2
1996-12 David Monk, UNK
1996-13 Titu Andreescu, USA
1996-14 N.M. Sedrakyan, ARM - IMO5
1996-16 Christopher Bradley, UNK
1996-18 Vyacheslav Yasinskiy, UKR
1996-19 Igor Mitelman, UKR
1996-20 A.S. Golovanov, RUS - IMO4
1996-21 Emil Kolev, BGR
1996-24 Kerkko Luosto, FIN - IMO1
1996-25 Vadym Radchenko, UKR
1996-26 T. Andreescu, K. Kedlaya, USA
1996-28 Laurent Rosaz, FRA - IMO6
1996-30 F. Gaines, T. Laffey, IRL
1997-01 Igor Voronovich, BLR - IMO1
1997-03 Arthur Engel, GER
1997-04 E.S. Mahmoodian, M. Mahdian, IRN - IMO4

1997-05 Mircea Becheanu, ROU
1997-06 F. Gaines, T. Laffey, IRL
1997-07 Valentina Kirichenko, RUS
1997-08 David Monk, UNK - IMO2
1997-09 T. Andreescu, K. Kedlaya, USA
1997-11 N.G. de Bruijn, NLD
1997-12 Roberto Dvornicich, ITA
1997-13 C.R. Pranesachar, IND
1997-14 B .J. Venkatachala, IND
1997-15 Alexander S. Golovanov, RUS
1997-16 Igor Voronovich, BLR
1997-17 Petr Kaňovský, CZE - IMO5
1997-18 David Monk, UNK
1997-19 Finbarr Holland, IRL
1997-20 Kevin Hutchinson, IRL
1997-21 A. Kachurovskiy, O.Bogopolskiy, RUS - IMO3

1997-22 Vadym Radchenko, UKR
1997-23 Christopher Bradley, UNK
1997-24 G. Alkauskas, LTU - IMO6
1997-25 Marcin Kuczma, POL
1997-26 Stefano Mortola, ITA
1998-01 Charles Leytem, LUX - IMO1
1998-02 Waldemar Pompe, POL

1998-03 V. Yasinskiy, UKR - IMO5
1998-06 Waldemar Pompe, POL
1998-07 David Monk, UNK
1998-08 Sambuddha Roy, IND
1998-12 Marcin Kuczma, POL
1998-13 O. Mushkarov, N. Nikolov, BGR - IMO6

1998-14 David Monk, UNK - IMO4
1998-16 Vadym Radchenko, UKR
1998-17 David Monk, UNK
1998-19 Igor Voronovich, BLR - IMO3
1998-21 Murray Klamkin, CAN
1998-22 Vadym Radchenko, UKR
1998-25 Arkadii Slinko, NZL
1998-26 Ravi B. Bapat, IND - IMO2
1999-01 Liang-Ju Chu, TWN - IMO4
1999-02 Nairi M. Sedrakyan, ARM
1999-07 Nairi M. Sedrakyan, ARM
1999-08 Shin Hitotsumatsu, JPN
1999-09 Jan Villemson, EST - IMO1
1999-10 David Monk, UNK
1999-12 P. Kozhevnikov, RUS - IMO5
1999-15 Marcin Kuczma, POL - IMO2
1999-19 Tetsuya Ando, JPN - IMO6
1999-21 C.R. Pranesachar, IND
1999-22 Andy Liu, jury, CAN
1999-23 David Monk, UNK
1999-24 Ben Green, UNK
1999-25 Ye. Barabanov, I.Voronovich, BLR - IMO3

1999-26 Mansur Boase, UNK
2000-01 Sándor Dobos, HUN - IMO4
2000-02 Roberto Dvornicich, ITA
2000-03 Federico Ardila, COL
2000-07 Titu Andreescu, USA - IMO2
2000-08 I. Leader, P. Shiu, UNK
2000-10 David Monk, UNK
2000-12 Gordon Lessells, IRL
2000-16 Valeriy Senderov, RUS - IMO5
2000-21 Sergey Berlov, RUS - IMO1
2000-22 C.R. Pranesachar, IND
2000-24 David Monk, UNK
2000-27 L. Emelyanov,
T. Emelyanova, RUS - IMO6

2001-01 B. Rajarama Bhat, IND	2003-05 Hojoo Lee, KOR
2001-02 Marcin Kuczma, POL	2003-06 Reid Barton, USA
2001-04 Juozas Juvencijus Mačys, LTU	2003-07 C.G. Moreira, BRA - IMO1
2001-05 O. Mushkarov, N. Nikolov, BGR	2003-09 Juozas Juvencijus Mačys, LTU 2003-12 Dirk Laurie, SAF
2001-06 Hojoo Lee, KOR - IMO2	2003-13 Matti Lehtinen, FIN - IMO4
2001-07 Federico Ardila, COL	2003-15 C.R. Pranesachar, IND
2001-08 Bill Sands, CAN - IMO4	2003-17 Hojoo Lee, KOR
2001-10 Michael Albert, NZL	2003-18 Waldemar Pompe, POL - IMO3
2001-12 Bill Sands, CAN	2003-19 Dirk Laurie, SAF
2001-14 Christian Bey, GER - IMO3	2003-20 Marcin Kuczma, POL
2001-15 Vyacheslav Yasinskiy, UKR	2003-21 Zoran Šunić, USA
2001-16 Hojoo Lee, KOR - IMO1	2003-22 A. Ivanov, BGR - IMO2
2001-17 Christopher Bradley, UNK	2003-23 Laurențiu Panaitopol, ROU
2001-19 Sotiris Louridas, HEL	2003-24 Hojoo Lee, KOR
2001-20 C.R. Pranesachar, IND	2003-25 Johan Yebbou, FRA - IMO6
2001-22 Shay Gueron, ISR - IMO5	
2001-23 Australian PSC, AUS	2004-02 Mihai Bălună, ROU
2001-24 Sandor Ortegón, COL	
2001-25 Kevin Buzzard, UNK	2004-03 Dan Brown, CAN
2001-27 A. Ivanov, BGR - IMO6	2004-04 Hojoo Lee, KOR - IMO2
2001-28 F. Petrov, D. Đukić, RUS	2004-07 Finbarr Holland, IRL 2004-08 Guihua Gong, PRI
2002-02 Mihai Manea, ROU - IMO4	2004-09 Horst Sewerin, GER
2002-03 G. Bayarmagnai, MNG	2004-10 Norman Do, AUS
2002-04 Stephan Beck, GER	2004-11 Marcin Kuczma, POL
2002-06 L. Panaitopol, ROU - IMO3	2004-12 A. Slinko, S. Marshall, NZL
2002-08 Hojoo Lee, KOR	2004-14 J. Villemson,
2002-09 Hojoo Lee, KOR - IMO2	M. Pettai, EST - IMO3
2002-11 Angelo Di Pasquale, AUS	2004-15 Marcin Kuczma, POL
2002-12 V. Yasinskiy, UKR - IMO6	2004-16 D. Şerbănescu,
2002-16 Dušan Đukić, SCG	V. Vornicu, ROU - IMO1
2002-17 Marcin Kuczma, POL	2004-18 Hojoo Lee, KOR
2002-18 B.J. Venkatachala, IND - IMO5	2004-19 Waldemar Pompe, POL - IMO5
2002-19 C.R. Pranesachar, IND	2004-20 Dušan Đukić, SCG
2002-20 Omid Naghshineh, IRN	2004-21 B. Green, E. Crane, UNK
2002-21 Federico Ardila, COL - IMO1	2004-23 Dušan Đukić, SCG
2002-23 Federico Ardila, COL	2004-26 Mohsen Jamali, IRN
2002-24 Emil Kolev, BGR	2004-27 Jarosław Wróblewski, POL
2002-26 Marcin Kuczma, POL	2004-28 M. Jamali,
2002-27 Michael Albert, NZL	A. Morabi, IRN - IMO6
2003-01 Kiran Kedlaya, USA	2004-29 John Murray, IRL
2003-02 A. Di Pasquale,	2004-30 Alexander Ivanov, BGR
D. Mathews, AUS	2005-02 Nikolai Nikolov, BGR
2003-04 Finbarr Holland, IRL - IMO5	2005-04 B .J. Venkatachala, IND

2005-05 Hojoo Lee, KOR - IMO3
2005-06 Australian PSC, AUS
2005-09 Federico Ardila, COL
2005-10 Dušan Đukić, SCG
2005-11 R. Gologan, D. Schwarz, ROU - IMO6

2005-12 R. Liu, Z. Feng, USA
2005-13 Alexander Ivanov, BGR
2005-14 Dimitris Kontogiannis, HEL
2005-15 Bogdan Enescu, ROU - IMO1
2005-16 Vyacheslav Yasinskiy, UKR
2005-17 Waldemar Pompe, POL - IMO5
2005-20 Hojoo Lee, KOR
2005-21 Mariusz Skałba, POL - IMO4
2005-22 N.G. de Bruijn, NLD - IMO2
2005-24 Carlos Caicedo, COL
2005-26 Mohsen Jamali, IRN
2006-01 Härmel Nestra, EST
2006-02 Mariusz Skałba, POL
2006-04 Dušan Đukić, SRB
2006-05 Hojoo Lee, KOR
2006-06 Finbarr Holland, IRL - IMO3
2006-08 Dušan Đukić, SRB - IMO2
2006-09 Federico Ardila, COL
2006-12 Federico Ardila, COL
2006-13 Kei Irie, JPN
2006-14 Hojoo Lee, KOR - IMO1
2006-15 Vyacheslav Yasinskiy, UKR
2006-16 Zuming Feng, USA
2006-18 Dimitris Kontogiannis, HEL
2006-20 Tomáš Jurík, SVK
2006-21 Waldemar Pompe, POL
2006-23 Dušan Đukić, SRB - IMO6
2006-24 Zuming Feng, USA - IMO4
2006-25 J.P. Grossman, CAN
2006-26 Johan Meyer, SAF
2006-27 Dan Schwarz, ROU - IMO5
2006-29 Zoran Šunić, USA
2006-30 Juhan Aru, EST
2007-01 Michael Albert, NZL - IMO1
2007-02 Nikolai Nikolov, BGR
2007-03 Juhan Aru, EST
2007-05 Vjekoslav Kovač, HRV
2007-06 Waldemar Pompe, POL

2007-07 G. Woeginger, NLD - IMO6
2007-08 Dušan Đukić, SRB
2007-09 Kei Irie, JPN
2007-10 Gerhard Woeginger, NLD
2007-11 Omid Hatami, IRN
2007-12 R. Gologan, D. Schwarz, ROU
2007-13 Vasiliy Astakhov, RUS - IMO3
2007-14 Gerhard Woeginger, AUT
2007-15 Vyacheslav Yasinskiy, UKR
2007-16 Marek Pechal, CZE - IMO4
2007-17 Farzin Barekat, CAN
2007-18 Vyacheslav Yasinskiy, UKR
2007-19 Charles Leytem, LUX - IMO2
2007-20 Christopher Bradley, UNK
2007-21 Z. Feng, O. Golberg, USA
2007-22 Davoud Vakili, IRN
2007-23 Waldemar Pompe, POL
2007-24 Stephan Wagner, AUT
2007-25 Dan Brown, CAN
2007-26 Gerhard Woeginger, NLD
2007-27 Jerzy Browkin, POL
2007-28 M. Jamali,
N. Ahmadi Pour Anari, IRN

2007-29 K. Buzzard,
E. Crane, UNK - IMO5

2007-30 N.V. Tejaswi, IND
2008-01 Hojoo Lee, KOR - IMO4
2008-02 Walther Janous, AUT - IMO2
2008-05 Pavel Novotný, SVK
2008-06 Žymantas Darbėnas, LTU
2008-09 Vidan Govedarica, SRB
2008-10 Jorge Tipe, PER
2008-11 B. Le Floch,
I. Smilga, FRA - IMO5

2008-14 A. Gavrilyuk, RUS - IMO1
2008-15 Charles Leytem, LUX
2008-16 John Cuya, PER
2008-19 Dušan Đukić, SRB
2008-20 V. Shmarov, RUS - IMO6
2008-21 Angelo Di Pasquale, AUS
2008-24 Dušan Đukić, SRB
2008-26 K. Česnavičius, LTU - IMO3
2009-01 Michal Rolínek, CZE
2009-03 Bruno Le Floch, FRA - IMO5

2009-06 Gabriel Carroll, USA - IMO3 2009-07 Japanese PSC, JPN 2009-08 Michael Albert, NZL 2009-14 D. Khramtsov, RUS - IMO6 2009-15 Gerhard Woeginger, AUT 2009-16 H. Lee, P. Vandendriessche, J. Vonk, BEL - IMO4

2009-17 Sergei Berlov, RUS - IMO2
2009-19 David Monk, UNK
2009-21 Eugene Bilopitov, UKR
2009-24 Ross Atkins, AUS - IMO1
2009-25 Jorge Tipe, PER
2009-28 József Pelikán, HUN
2009-29 Okan Tekman, TUR

References

1. M. Aassila, 300 Défis Mathématiques, Ellipses, 2001.
2. M. Aigner, G.M. Ziegler, Proofs from THE BOOK, Springer; 4th edition, 2009.
3. G.L. Alexanderson, L.F.Klosinski, L.C. Larson, The William Lowell Putnam Mathematical Competition, Problems and Solutions: 1965-1984, The Mathematical Association of America, 1985.
4. N. Altshiller-Court, College Geometry: An Introduction to the Modern Geometry of the Triangle and the Circle, Dover Publications, 2007.
5. T. Andreescu, D. Andrica, 360 Problems for Mathematical Contests, GIL Publishing House, Zalău, 2003.
6. T. Andreescu, D. Andrica, An Introduction to Diophantine Equations, GIL Publishing House, 2002.
7. T. Andreescu, D. Andrica, Complex Numbers from A to ... Z, Birkhäuser, Boston, 2005.
8. T. Andreescu, D. Andrica, Z. Feng, 104 Number Theory Problems, Birkhauser, Boston, 2006.
9. T. Andreescu, V. Cartoaje, G. Dospinescu, M. Lascu, Old and New Inequalities, GIL Publishing House, 2004.
10. T. Adnreescu, G. Dospinescu, Problems from the Book, XYZ Press, 2008.
11. T. Andreescu, B. Enescu, Mathematical Treasures, Birkhäuser, Boston, 2003.
12. T. Andreescu, Z. Feng, 102 Combinatorial Problems, Birkhäuser Boston, 2002.
13. T. Andreescu, Z. Feng, 103 Trigonometry Problems: From the Training of the USA IMO Team, Birkhäuser Boston, 2004.
14. T. Andreescu, Z. Feng, Mathematical Olympiads 1998-1999, Problems and Solutions from Around the World, The Mathematical Association of America, 2000.
15. T. Andreescu, Z. Feng, Mathematical Olympiads 1999-2000, Problems and Solutions from Around the World, The Mathematical Association of America, 2002.
16. T. Andreescu, Z. Feng, Mathematical Olympiads 2000-2001, Problems and Solutions from Around the World, The Mathematical Association of America, 2003.
17. T. Andreescu, Z. Feng, A Path to Combinatorics for Undergraduates: Counting Strategies, Birkhauser, Boston, 2003.
18. T. Andreescu, R. Gelca, Mathematical Olympiad Challenges, Birkhäuser, Boston, 2000.
19. T. Andreescu, K. Kedlaya, P.Zeitz,Mathematical Contests 1995-1996, Olympiads Problems and Solutions from Around the World, American Mathematics Competitions, 1997.
20. T. Andreescu, K. Kedlaya, Mathematical Contests 1996-1997, Olympiads Problems and Solutions from Around the World, American Mathematics Competitions, 1998.
21. T. Andreescu, K. Kedlaya, Mathematical Contests 1997-1998, Olympiads Problems and Solutions from Around the World, American Mathematics Competitions, 1999.
22. T. Andreescu, O. Mushkarov, L. Stoyanov, Geometric Problems on Maxima and Minima, Birkhauser Boston, 2005.
23. M. Arsenović, V. Dragović, Functional Equations (in Serbian), Mathematical Society of Serbia, Beograd, 1999.
24. M. Ašić et al., International Mathematical Olympiads (in Serbian), Mathematical Society of Serbia, Beograd, 1986.
25. M. Ašić et al., 60 Problems for XIX IMO (in Serbian), Society of Mathematicians, Physicists, and Astronomers, Beograd, 1979.
26. A. Baker, A Concise Introduction to the Theory of Numbers, Cambridge University Press, Cambridge, 1984.
27. E.J. Barbeau, Polynomials, Springer, 2003.
28. E.J. Barbeau, M.S. Klamkin, W.O.J. Moser, Five Hundred Mathematical Challenges, The Mathematical Association of America, 1995.
29. E.J. Barbeau, Pell's Equation, Springer-Verlag, 2003.
30. M. Becheanu, International Mathematical Olympiads 1959-2000. Problems. Solutions. Results, Academic Distribution Center, Freeland, USA, 2001.
31. E.L. Berlekamp, J.H. Conway, R.K. Guy, Winning Ways for Your Mathematical Plays, Volumes 1-4, AK Peters, Ltd., 2nd edition, 2001 - 2004.
32. G. Berzsenyi, S.B. Maurer, The Contest Problem Book V, The Mathematical Association of America, 1997.
33. R. Brualdi, Introductory Combinatorics, 4th edition, Prentice-Hall, 2004.
34. C.J. Bradley, Challenges in Geometry : for Mathematical Olympians Past and Present, Oxford University Press, 2005.
35. P.S. Bullen, D.S. Mitrinović , M. Vasić, Means and Their Inequalities, Springer, 1989.
36. C. Chuan-Chong, K. Khee-Meng, Principles and Techniques in Combinatorics, World Scientific Publishing Company, 1992.
37. H.S.M. Coxeter, Introduction to Geometry, John Willey \& Sons, New York, 1969
38. H.S.M. Coxeter, S.L. Greitzer, Geometry Revisited, Random House, New York, 1967.
39. I. Cuculescu, International Mathematical Olympiads for Students (in Romanian), Editura Tehnica, Bucharest, 1984.
40. A. Engel, Problem Solving Strategies, Springer, 1999.
41. D. Fomin, A. Kirichenko, Leningrad Mathematical Olympiads 1987-1991, MathPro Press, 1994.
42. A.A. Fomin, G.M. Kuznetsova, International Mathematical Olympiads (in Russian), Drofa, Moskva, 1998.
43. A. Gardiner, The Mathematical Olympiad Handook, Oxford, 1997.
44. R. Gelca, T. Andreescu, Putnam and Beyond, Springer 2007.
45. A.M. Gleason, R.E. Greenwood, L.M. Kelly, The William Lowell Putnam Mathematical Competition, Problems and Solutions: 1938-1964, The Mathematical Association of America, 1980.
46. R.K. Guy, Unsolved Problems in Number Theory, Springer, 3rd edition, 2004.
47. S.L. Greitzer, International Mathematical Olympiads 1959-1977, M.A.A., Washington, D. C., 1978.
48. R.L. Graham, D.E. Knuth, O. Patashnik, Concrete Mathematics, 2nd Edition, AddisonWesley, 1989.
49. L-S. Hahn, Complex Numbers \& Geometry, New York, 1960.
50. L. Hahn, New Mexico Mathematics Contest Problem Book, University of New Mexico Press, 2005.
51. G.H. Hardy, J.E. Littlewood, G. Pólya, Inequalities, Cambridge University Press; 2nd edition, 1998.
52. G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers, Oxford University Press; 5th edition, 1980.
53. R. Honsberger, From Erdos to Kiev: Problems of Olympiad Caliber, MAA, 1996.
54. R. Honsberger, In Polya's Footsteps: Miscelaneous Problems and Essays, MAA, 1997.
55. D. Hu, X. Tao, Mathematical Olympiad - the Problems Proposed to the 31st IMO (in Chinese), Peking University Press, 1991.
56. V. Janković, Z. Kadelburg, P. Mladenović, International and Balkan Mathematical Olympiads 1984-1995 (in Serbian), Mathematical Society of Serbia, Beograd, 1996.
57. V. Janković, V. Mićić, IX \& XIX International Mathematical Olympiads, Mathematical Society of Serbia, Beograd, 1997.
58. R.A. Johnson, Advanced Euclidean Geometry, Dover Publications, 1960.
59. Z. Kadelburg, D. Djukić, M. Lukić, I. Matić, Inequalities (in Serbian), Mathematical Society of Serbia, Beograd, 2003.
60. N.D. Kazarinoff, Geometric Inequalities, Mathematical Association of America (MAA), 1975.
61. K.S. Kedlaya, B. Poonen, R. Vakil, The William Lowell Putnam Mathematical Competition 1985-2000 Problems, Solutions and Commentary, The Mathematical Association of America, 2002.
62. A.P. Kiselev (author), A. Givental (editor), Kiselev's Geometry / Book I Planimetry, Sumizdat, 2006.
63. A.P. Kiselev (author), A. Givental (editor), Kiselev's Geometry / Book II Stereometry, Sumizdat, 2008.
64. M.S. Klamkin, International Mathematical Olympiads 1979-1985 and Forty Supplementary Problems, M.A.A., Washington, D.C., 1986.
65. M.S. Klamkin, International Mathematical Olympiads 1979-1986, M.A.A., Washington, D.C., 1988.
66. M.S. Klamkin, USA Mathematical Olympiads 1972-1986, M.A.A., Washington, D.C., 1988.
67. M.E. Kuczma, 144 Problems of the Austrian-Polish Mathematics Competition 19781993, The Academic Distribution Center, Freeland, Maryland, 1994.
68. J. Kurshak, lHungarian Problem Book I, MAA, 1967.
69. J. Kurshak, 1Hungarian Problem Book II, MAA, 1967.
70. A. Kupetov, A. Rubanov, Problems in Geometry, MIR, Moscow, 1975.
71. S. Lando, Lectures on Generating Functions, AMS, 2003.
72. H.-H. Langmann, 30th International Mathematical Olympiad, Braunschweig 1989, Bildung und Begabung e.V., Bonn 2, 1990.
73. L.C. Larson, Problem Solving Through Problems, Springer, 1983.
74. H. Lausch, C. Bosch-Giral Asian Pacific Mathematics Olympiads 1989-2000, AMT, Canberra, 2000.
75. H. Lausch, P. Taylor, Australian Mathematical Olympiads 1979-1995, AMT, Canberra 1997.
76. P.K. Hung, Secrets in Inequalities, GIL Publishing House, 2007.
77. A. Liu, Chinese Mathematical Competitions and Olympiads 1981-1993, AMT, Canberra 1998.
78. A. Liu, Hungarian Problem Book III, MAA, 2001.
79. E. Lozansky, C. Rousseau, Winning Solutions, Springer-Verlag, New York, 1996.
80. V. Mićić, Z. Kadelburg, D. Djukić, Introduction to Number Theory (in Serbian), 4th edition, Mathematical Society of Serbia, Beograd, 2004.
81. D.S. Mitrinović , J. Pečarić, A.M. Fink, Classical and New Inequalities in Analysis, Springer, 1992.
82. D.S. Mitrinović, J.E. Pečarić, V. Volenec, Recent Advances in Geometric Inequalities, Kluwer Academic Publishers, 1989.
83. P. Mladenović, Combinatorics, 3rd edition, Mathematical Society of Serbia, Beograd, 2001.
84. P.S. Modenov, Problems in Geometry, MIR, Moscow, 1981.
85. P.S. Modenov, A.S. Parhomenko, Geometric Transformations, Academic Press, New York, 1965.
86. L. Moisotte, 1850 exercices de mathémathique, Bordas, Paris, 1978.
87. L.J. Mordell, Diophantine Equations, Academic Press, London and New York, 1969.
88. E.A. Morozova, I.S. Petrakov, V.A. Skvortsov, International Mathematical Olympiads (in Russian), Prosveshchenie, Moscow, 1976.
89. I. Nagell, Introduction to Number Theoury, John Wiley \& Sons, Inc., New York, Stockholm, 1951.
90. I. Niven, H.S. Zuckerman, H.L. Montgomery, An Introduction to the Theory of Numbers, John Wiley and Sons, Inc., 1991.
91. G. Polya, How to Solve It: A New Aspect of Mathematical Method, Princeton University Press, 2004.
92. C.R.Pranesachar, Shailesh A. Shirali, B J. Venkatachala, C.S. Yogananda, Mathematical Challenges from Olympiads, Interline Publishing Pvt. Ltd., Bangalore, 1995.
93. V.V. Prasolov, Problems of Plane Geometry, Volumes 1 and 2, Nauka, Moscow, 1986.
94. V.V. Prasolov, V.M. Tikhomirov Geometry, Volumes 1 and 2, American Mathematical Society, 2001.
95. A.S. Posamentier, C.T. Salking, Challenging Problems in Algebra, Dover Books in Mathematics, 1996.
96. A.S. Posamentier, C.T. Salking, Challenging Problems in Geometry, Dover Books in Mathematics, 1996.
97. I. Reiman, J. Pataki, A. Stipsitz, International Mathematical Olympiad: 1959-1999, Anthem Press, London, 2002.
98. I.F. Sharygin, Problems in Plane Geometry, Imported Pubn, 1988.
99. W. Sierpinski, Elementary Theory of Numbers, Polski Academic Nauk, Warsaw, 1964.
100. W. Sierpinski, 250 Problems in Elementary Number Theory, American Elsevier Publishing Company, Inc., New York, PWN, Warsaw, 1970.
101. A.M. Slinko, USSR Mathematical Olympiads 1989-1992, AMT, Canberra, 1998.
102. C.G. Small, Functional Equations and How to Solve Them, Springer 2006.
103. Z. Stankova, T. Rike, A Decade of the Berkeley Math Circle, American Mathematical Society, 2008.
104. R.P. Stanley, Enumerative Combinatorics, Volumes 1 and 2, Cambridge University Press; New Ed edition, 2001.
105. D. Stevanović, M. Milošević, V. Baltić, Discrete Mathematics: Problem Book in Elementary Combinatorics and Graph Theory (in Serbian), Mathematical Society of Serbia, Beograd, 2004.
106. A.M. Storozhev, International Mathematical Tournament of the Towns, Book 5: 19972002, AMT Publishing, 2006.
107. P.J. Taylor, International Mathematical Tournament of the Towns, Book 1: 1980-1984, AMT Publishing, 1993.
108. P.J. Taylor, International Mathematical Tournament of the Towns, Book 2: 1984-1989, AMT Publishing, 2003.
109. P.J. Taylor, International Mathematical Tournament of the Towns, Book 3: 1989-1993, AMT Publishing, 1994.
110. P.J. Taylor, A.M. Storozhev, International Mathematical Tournament of the Towns, Book 4: 1993-1997, AMT Publishing, 1998.
111. J. Tattersall, Elementary Number Theory in Nine Chapters, 2nd edition, Cambridge University Press, 2005.
112. I. Tomescu, R.A. Melter, Problems in Combinatorics and Graph Theory, John Wiley \& Sons, 1985.
113. I. Tomescu et al., Balkan Mathematical Olympiads 1984-1994 (in Romanian), Gil, Zalău, 1996.
114. R. Vakil, A Mathematical Mosaic: Patterns and Problem Solving, 2nd edition, MAA, 2007.
115. J.H. van Lint, R.M. Wilson, A Course in Combinatorics, second edition, Cambridge University Press, 2001.
116. I.M. Vinogradov, Elements of Number Theory, Dover Publications, 2003.
117. I.M. Vinogradov, The Method of Trigonometrical Sums in the Theory of Numbers, Dover Books in Mathematics, 2004.
118. H.S. Wilf, Generatingfunctionology, Academic Press, Inc.; 3rd edition, 2006.
119. A.M. Yaglom, I.M. Yaglom, Challenging Mathematical Problems with Elementary Solutions, Dover Publications, 1987.
120. I.M. Yaglom, Geometric Transformations, Vols. I, II, III, The Mathematical Association of America (MAA), 1962, 1968, 1973.
121. P. Zeitz, The Art and Craft of Problem Solving, Wiley; International Student edition, 2006.

Problem Books in Mathematics
Dušan Djukić • Vladimir Janković • Ivan Matić • Nikola Petrović
The IMO Compendium

A Collection of Problems Suggested for The International

Mathematical Olympiads: 1959-2009, Second Edition

The IMO Compendium is the ultimate collection of challenging high school level mathematics problems. It is an invaluable resource, not only for students preparing for competitions, but for anyone who loves and appreciates math. Training for mathematical olympiads is enjoyed by talented students throughout the world. Olympiads have become one of the primary ways to recognize and develop talented youth with a potential to excel in areas that require abstract thinking. Although the problems appearing at IMO do not involve advanced mathematics, they must be difficult and their solutions must arise from creative and clever insights rather than tedious calculations.

In preparation for the distinguished International Mathematical Olympiad (IMO) competition, each participating country selects the top six high school students every year through a series of national olympiads. These students are invited to participate in the IMO, usually held in July. The IMO is a two-day contest where each day competitors are given three problems which they work on independently. The IMO host country appoints a special committee to which each country submits up to six problems. From this composite "longlist" of problems, a "shortlist" of 25-30 problems is created. The jury, consisting of one professor from each country, makes the final selection from the shortlist a few days before the IMO begins.

The IMO has sparked a burst of creativity among enthusiasts to create new and interesting mathematics problems. It can be safely said that the IMO and shortlisted problems are among the well-crafted problems created in a given year. This book attempts to gather all of these problems with their solutions. In addition, the book contains all the available longlist problems, for a total of more than 2000 problems.

From the reviews of the first edition:
"The International Mathematical Olympiad, or IMO is the premier international competition for talented high school mathematics students. ... This book collects statements and solutions of all of the problems ever set in the IMO, together with many problems proposed for the contest. ... serves as a vast repository of problems at the Olympiad level, useful both to students ... and to faculty looking for hard elementary problems. No library will want to be without a copy, nor will anyone involved in mathematics competitions ..."

- (Fernando Q. Gouvêa, MathDL, March, 2006)

Mathematics

ISBN 978-1-4419-9853-8

