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Chapter 3 

 
The Hodgkin-Huxley Model 
 

§ 1. The Neuron in Action I: Channel Gates 
The 1952 papers by Hodgkin and Huxley on the physiology of the giant axon of the squid 

were a major milestone in the science of the nervous system. In the years that followed, one 

researcher after another were able to successfully model other axons and entire neurons based on 

the modeling schema first presented by Hodgkin and Huxley. The Hodgkin-Huxley model is here 

called a "modeling schema" rather than just a "model" because as more details have been learned 

regarding the physiology of the neuron, the basic H-H circuit model has been extended to include 

these details. The fact that the model can be so extended without fundamentally changing the 

general picture presented by Hodgkin and Huxley is why it is a "schema" rather than merely one 

single model.  

The Hodgkin-Huxley model paper [HODG] was the fifth and culminating paper in a series of 

five published the same year [HODG1-4]. It introduces the model in Figure 2.3 of chapter 2 and 

goes on to derive from their experimental data the mathematical formulation of the model. 

 Our experiments suggest that GNa and GK are functions of time and membrane potential, but that 
ENa, EK, Vlk, C, and Glk may be taken as constant. The influence of the membrane potential on 
permeability can be summarized by stating: first, that depolarization causes a transient increase 
in sodium conductance and a slower but maintained increase in potassium conductance; 
secondly, that these changes are graded and that they can be reversed by repolarizing the 
membrane. In order to decide whether these effects are sufficient to account for complicated 
phenomena such as the action potential and refractory period, it is necessary to obtain 
expressions relating the sodium and potassium conductances to time and membrane potential. . . 
The first point which emerges is that the change in permeability appears to depend on membrane 
potential and not on membrane current. At a fixed depolarization the sodium current follows a 
time course whose form is independent of the current through the membrane. . . Further support 
for the view that membrane potential is the variable controlling permeability is provided by the 
observation that restoration of the normal membrane potential causes the sodium or potassium 
conductance to decline to a low value at any stage of the response [HODG]1.  

The membrane at rest is said to be polarized because the resting potential is negative with 

respect to the outer tissue fluid of the extracellular region. Raising the membrane potential toward 

zero volts is called depolarization. Hodgkin and Huxley had discovered the existence of voltage-

gated ion channels whose conductance was a function of Vm. They had further discovered that 

there were two distinct types of VGCs, today known as transient channels (Na+) and persistent 

channels (K+). These are illustrated in Figure 3.1.  

                                                 
1 The symbols appearing in this quote have been altered to conform to the notation used in this book. 
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Figure 3.1: Qualitative model of transient ("inactivating") and persistent ("non-inactivating") ion channels in 
the cell membrane. Also depicted is the Na+-K+ pump. 

This picture is not the same as the mechanism envisioned by Hodgkin and Huxley in 1952. At 

the time, the biophysical mechanism for transient and persistent channels was completely 

unknown and the data available did not implicate the membrane-spanning proteins as the site of 

ion conduction. Hodgkin and Huxley were able to rule out an earlier hypothesis they had made 

about the mechanism [HODG5]. Their 1952 data contradicted this earlier model and forced them 

to come up with another idea. Their new hypothesis turns out to be one which is retained (albeit 

in altered form) in the present day theory:  

 A different form of hypothesis is to suppose that sodium movement depends on the distribution 
of charged particles which do not act as carriers in the usual sense, but which allow sodium to 
pass through the membrane when they occupy particular sites in the membrane. On this view the 
rate of movement of the activating particles determines the rate at which the sodium conductance 
approaches its maximum but has little effect on the magnitude of the conductance. It is therefore 
reasonable to find that the temperature has a large effect on the rate of rise of sodium 
conductance but a relatively small effect on its maximum value. In terms of this hypothesis one 
might explain the transient nature of the rise in sodium conductance by supposing that the 
activating particles undergo a chemical change after moving from the position which they 
occupy when the membrane potential is high. An alternative is to attribute the decline of sodium 
conductance to the relatively slow movement of another particle which blocks the flow of 
sodium ions when it reaches a certain position in the membrane. 

 Much of what has been said about the changes in sodium permeability applies equally to the 
mechanism underlying the change in potassium permeability. In this case one might suppose that 
there is a completely separate system which differs from the sodium system in the following 
respects: (1) the activating molecules have an affinity for potassium but not for sodium; (2) they 
move more slowly; (3) they are not blocked or inactivated [HODG]. 

Today we know that "the distribution of charged particles which do not act as carriers . . . but 

which allow sodium to pass . . . when they occupy particular sites in the membrane" is accounted 

for by membrane-spanning proteins. The same is true for the putative "blocking particle" that was 

proposed to explain the transient nature of the sodium current, and likewise for the potassium 

current. The graded nature of the conductances led Hodgkin and Huxley to propose that there 
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were many independent sites where ion conduction could occur, and that these sites activated 

(and in the case of Na+, inactivated) at different times according to a statistical law and in accord 

with the Boltzmann distribution of statistical mechanics. In 1952 this was all the farther Hodgkin 

and Huxley were willing to go insofar as speculation on a biophysical mechanism was concerned. 

Modern day pore theory of membrane-spanning proteins developed from later studies carried out 

in the 1960s and 1970s [ARMS1-6], [HILL1-3], [BEZA]. Pore theory gives us our current 

understanding of the physiological mechanism underlying the Hodgkin-Huxley dynamics.  

According to the present theory, a channel pore conducts all-or-nothing according to whether 

its ion gates are open or closed. An open channel conducts with a single-pore conductance gp. 

The total membrane conductance G is the sum of the conductances of all the open channels. A 

transient channel has two ion gates, the activation gate and the inactivation gate. Accordingly, 

this channel is seen as having three states: (1) deactivated (activation gate closed, inactivation 

gate open); (2) activated (both gates open); and (3) inactivated (inactivation gate closed). A 

persistent channel has only two states, activated and deactivated, because it has only one gate.  

The statistical model of channel conductance holds that individual channel gates open or close 

independently of one another (but as a function of membrane voltage) in a probabilistic fashion. 

The mathematical theory of this is called kinetics theory. Hodgkin and Huxley assumed the 

gating function (which they described in terms of the above-mentioned "particles") followed the 

simplest possible process, namely a first order rate process. Let πo denote the probability a gate 

is open. Let πc denote the probability a gate is closed. Since these are the only two possibilities in 

a first order rate process, we have πo + πc = 1 or πc = 1 – πo. The rate at which closed gates 

transition to an open state is governed by a rate constant, α, which has units of 1/time and is a 

function of membrane voltage but not of time. The rate at which open gates transition to the 

closed state is governed by another rate constant, β. The probability of a gate being in the open 

state is then governed by the first-order rate equation  

   ( ) oo
o

dt
d

πβπα
π

⋅−−⋅= 1 .         (3.1) 

The term multiplying α in (3.1) is the probability the gate is closed at time t. When the voltage 

on the membrane is held constant (3.1) is a linear differential equation and has for its solution 

   ( ) ( ) ( )[ ] ( )[ ]( ) 0,exp1exp0 ≥+−−⋅
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αβαππ  (3.2) 
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where πo(0) is the initial condition. The quantity τ  = (α + β)–1 is called the time constant of the 

rate process at constant membrane potential. The dimensionless quantity α/(α + β) = τα is the 

steady-state probability at constant membrane potential. πo(t) is interpreted as the average fraction 

of the total available gates that are open at time t.  

§ 2. The Neuron in Action II: The Channel Conductances 

Hodgkin and Huxley were able to fit expressions for the rate constants for each of the three 

gates shown in Figure 3.1 and were able to use the resulting probabilities to describe the channel 

conductances for the sodium and potassium channels. In order to keep track of the three types of 

gates they gave their πo values identifying symbols. They designated the potassium channel 

probability πo by the letter n and identified its rate constants as αn and βn. τn and n0 denote the 

time constant and the steady-state probability for the potassium gate, respectively. Letting Vr 

denote the resting potential of the membrane and defining u = Vm – Vr, where Vm is the membrane 

potential from chapter 2, they found that the rate constants for the potassium channel in the squid 

giant axon could be fit by the expressions 

   
( )

[ ]
[ ]80exp125.0

11.01exp
1001.0
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u

n

n

−=
−−

−
=

β

α
 .         (3.3) 

The constants in (3.3) are experimental values used to fit the model to their experimental data. 

The rate constants in these expressions have units of reciprocal milliseconds and u is expressed in 

millivolts relative to the resting potential. Later researchers studying different animal axons and 

different neuron cells learned that these constants depend on the type of neuron being studied. To 

this date no general theory has been produced that is capable of deriving the phenomenological 

constants from more fundamental principles.  

The conductance of the potassium channel was empirically expressed as a power function of 

the open probability n. Letting gK denote the maximum potassium channel conductance, Hodgkin 

and Huxley found they could express the K+ channel conductance as 

   .            (3.4) 4ngG KK ⋅=

Investigators studying other types of cells have found that the fourth power expression for n does 

not hold universally, and have sometimes obtained n3 relationships for voltage-gated potassium 

channels. Today it is known that there are many different species of potassium-conducting 

voltage-gated membrane proteins, and this fact is regarded as explaining why different exponents 
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for n have been observed in different types of cells. 

Hodgkin and Huxley designated the open probability for the activation gate of the sodium 

channel by the symbol m and designated its rate constants by αm and βm. Their empirical 

expressions for these rate constants were 

   
( )

[ ]
[ ]18exp4

11.05.2exp
251.0

u
u
u

m

m

−=
−−

−
=

β

α
 .         (3.5) 

Here again, the rate constants are in units of reciprocal milliseconds and u is in millivolts. The 

transient sodium channel also has an inactivation gate. The expression for this gate is denoted by 

h with rate constants αh and βh. The empirical expressions for the rate constants were 
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One can immediately note that the expressions for the rate constants for h differ in form from 

those of the two activation gates. The explanation for this is straightforward. Probability h is the 

open probability for the inactivation gate and therefore denotes the probability that the sodium 

channel is not inactivated. By contrast, the other two expressions for the rate constants denote the 

probability that the channel is not deactivated. For the potassium channel this is equivalent to 

saying the channel is activated.  

The sodium channel conductance is a function of both m and h. Letting gNa denote the 

maximum sodium channel conductivity, Hodgkin and Huxley found the empirical expression for 

the sodium channel conductance to be 

    .           (3.7) hmgG NaNa
3⋅=

In the years that have passed since the publication of the Hodgkin-Huxley model, many 

researchers have found that expressions (3.4) and (3.7) have successfully described a great variety 

of different types of voltage-gate ion channels. Thus, one can generalize these equations for the 

many known cases of VGCs as 

              (3.8) qp
XX hmgG ⋅=

where m follows an expression similar to (3.3) or (3.4), h follows an expression similar to (3.6), p 
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is typically an integer greater than or equal to 1, and q is either 0 or 1. Where q = 0, the channel is 

a persistent (non-inactivating) channel (like the H-H potassium channel). Where q = 1, the 

channel is a transient (inactivating) channel. Thus it has turned out that the Hodgkin-Huxley 

model forms have constituted a model schema for a variety of voltage-gated ion channels. 

The steady-state open probabilities for the three gates are denoted by n∞ , m∞ , and h∞ . It is 

instructive to plot these steady-state values as a function of relative membrane potential, u, as 

shown in Figure 3.2 below. A positive value for u means the membrane is depolarized. A 

negative value means the membrane is hyperpolarized. At the resting potential (u = 0 mV) few of 

the Na+ activation gates, less than 10%, are activated. Approximately 70% of the Na+ gates are 

not inactivated. In contrast, roughly 25% of the K+ gates are activated. This means that the 

sodium conductance at rest is much smaller than the potassium conductance.  

Depolarizing the membrane produces a rapid increase in the percentages of open Na+ and K+ 

activation gates, but it also produces a large drop in the number of open Na+ inactivation gates. A 

depolarization of approximately 75 mV results  in  inactivation of virtually all the Na+ channels in 
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Figure 3.2: Steady-state gate probabilities vs. relative membrane voltage u for squid axon. 
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Figure 3.3: Rate process time constants for the K+ activation gate and the Na+ activation and inactivation 
gates. The graph on the right is a scale enlargement of the Na+ activation gate time constant. 
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the steady state. Here, however, is where the rate process time constants τn , τm , and τh become 

important factors. Figure 3.3 shows the steady-state time constants for the three gates. At rest τm 

is much smaller than the other two time constants, approximately 0.2 ms compared to roughly 5.5 

ms for τn and roughly 8.5 ms for τh . This means the Na+ activation gate opens rapidly in response 

to depolarization compared to the other two gates. A depolarizing stimulus – for example, an 

inrush of Na+ from ligand-gate ionotropic channels at a synapse – will rapidly open more voltage-

gated Na+ channels, which will increase the inward flow of Na+ currents, which in turn will 

further depolarize the membrane. If a sufficiently large stimulus – on the order of a few mV – is 

initially applied, the process becomes regenerating and leads to the production of a large 

membrane depolarization, i.e., an action potential. The K+ activation gate and the Na+ inactivation 

gate lag behind this process by a few milliseconds before the former opens in large numbers and 

the latter close in large numbers, thereby repolarizing the membrane and bringing the action 

potential to an end. Here we may note that τh drops below τn for depolarization greater than about 

15 mV. This means it is the closing of the Na+ inactivation gates that is largely responsible for 

determining the peak value of the action potential because these gates now respond more quickly 

to the depolarization than do the K+ activation gates.  

§ 3. The Dynamical System 
Hodgkin and Huxley found maximum conductances per unit area of gNa = 120 mS/cm2, gK = 

36 mS/cm2, and Glk = 0.3 mS/cm2, with Glk found to be not dependent on membrane voltage. 

These values were deduced from their curve-fitting procedure to match the model to experiments. 

The membrane capacitance per unit area was found to be 1.0 µF/cm2. Their reported battery 

potentials were expressed relative to the membrane resting potential Vr . That is, for ion X the 

reported battery potential was VX = EX – Vr . Their squid values were VNa = 115 mV, VK = –12 

mV, and Vlk0 = 10.613 mV. The value for Vlk0 was chosen by forcing the total ionic current at the 

resting potential, i.e. INa + IK + Ilk = 0 at u = 0. It is therefore purely a "curve fit" value. For a 

resting potential of Vr = –60 mV, these would correspond to ENa = 55 mV, EK = –72 mV, and a 

leakage potential of Vlk = –49.387 mV, respectively. Using these values in combination with the 

rate process variables in §2, they were able to numerically produce an action potential model that 

stood in very good agreement with experimentally measured action potentials.  

The complete Hodgkin-Huxley model consists of the differential equation for the circuit of 

Figure 2.3 and the three differential equations describing the rate processes. Summarizing the 

four model equations, we get 
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   ( ) ( ) ( lkmlkKmKNamNa
m VVGEVGEVG

dt
dVC −−−−−−= )    (3.9a) 

   ( ) nnn n
dt
dn αβα ++−=           (3.9b) 

   ( ) mmm m
dt
dm αβα ++−=          (3.9c) 

   ( ) hhh h
dt
dh αβα ++−=           (3.9d) 

with the conductances GX and the voltage-dependent rate constants as given previously. Using the 

parameter units of Hodgkin and Huxley, the ionic currents on the right-hand side of (3.9a) are in 

microamperes per square cm. The kinetic probabilities (3.9b-d) are dimensionless. The three 

channel time "constants" from (3.9a), C/GX , come out in milliseconds. 

Equations (3.9) are coupled through the dependence of the rate "constants" on Vm and the 

dependence of the conductances GX on the probabilities n, m, and h. Thus the system represented 

by equations (3.9) is equivalent to a representation in terms of a fourth-order nonlinear ordinary 

differential equation. There is no known closed form solution for this equation, and so to compute 

the consequences of the model, numerical solution of system (3.9) is required. Hodgkin and 

Huxley described the algorithm they used for this in their 1952 paper. The need to introduce such 

an algorithm is what carries [HODG] beyond pure physiology research and into the arena of 

computational neuroscience.  

Having no computer in 1952 on which to carry out this numerical solution, Hodgkin's and 

Huxley's numerical algorithm was one that was convenient for manual calculation using the tools 

available at the time. For this reason, we will not describe their algorithm here but will instead 

next examine a simple algorithm suitable for implementation on a modern computer. The method 

described here is called Euler's method. Euler's method is not the most efficient algorithm known 

for carrying out the computational task; far more efficient numerical methods are available today 

[SMIT], [MILL]. But it is the easiest method to understand and, at this point in this text, this 

consideration is of higher importance. We consider a general first-order differential equation of 

the form  

   ( ) ( )[ ]tyf
dt

tdy
=  . 

We integrate both sides of this equation with respect to time. For the left-hand side this gives us 

48 



Chapter 3: The Hodgkin-Huxley Model 
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For the right-hand side, if ∆t is small we can approximate the integral using the rectangle rule, 

    . ( )[ ] ( )[ ]tyftdyf
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The error in making this approximation is a function of ∆t and the slope of the function f. An 

analysis of error [CONT: 284-285] shows the approximation error to be 

   ( ) ( )2
2
1 t

dt
tdf

∆=Ε  . 

Thus, in computer analysis of the Hodgkin-Huxley equations one needs to be careful in selection 

of the discrete time step size. A sensible precaution is to try small variations in the selected value 

for ∆t. If the percentage change in the computed result is less than the percentage change made in 

∆t, then the computation is insensitive to step size for this range of ∆t. Otherwise the computation 

is sensitive to ∆t and the interval should be reduced. 

Applying this method to the gating probabilities in (3.9) and letting x denote any of n, m, or h, 

we have 
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Here it is to be noted that the rate constants are functions of Vm(t). From (3.10a) we see that the 

solution is given in terms of the ratio of ∆t to the time constants τx . For good numerical accuracy 

one should select ∆t to be much smaller than the smallest τx . From Figure 3.3, this would place 

∆t in the range of about 0.01 ms or less.  

Applying Euler's method to the membrane voltage equation, we obtain  
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where 
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Equations (3.10a) and (3.11a) are called difference equations. Computer solution of the 

Hodgkin-Huxley equations calls for us to first convert the differential equations of (3.9) to the 

form of difference equations. The accuracy of the solution depends on how well these difference 

equations approximate their continuous-variable counterparts. Since a digital computer cannot 

actually solve differential equations – it can only solve difference equations – the technique used 

to obtain these difference equations is part of one's model representation in the system.  

The widespread availability of programming languages capable of dealing with matrices and 

vectors makes it useful to re-express the difference equation calculation of the gate probabilities 

in vector-matrix form. The calculations called for by equation (3.10a) are expressed 
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By introducing matrix and vector notation we can write (3.12a) more compactly as 

    .         (3.12b) ( ) ( ) ππ BΠAΠ +=∆+ ttt

The terms in (3.12b) correspond in order to the vectors and the matrix in (3.12a).  

§ 4. The Dynamical System with Stimulus 

In the absence of an external stimulus, the Hodgkin-Huxley dynamics just described settle into 

a steady-state at the resting potential Vm = Vr. In order to produce an action potential we must add 

to the basic model some sort of stimulus current, Is(t) . This is depicted schematically in Figure 

3.4. In the most general case current source Is will itself be another model depicting the 

mechanism by which current is injected into the cytoplasm (positive numerical value of Is) or is 

extracted from the cytoplasm (negative numerical value of Is). The most common case found in 

the physiology literature uses an ideal current source that models the injection of a test current 

into the neuron. In this case Is(t) is merely some specified function (often a constant current 

turned on at some specified time ton and turned off at some specified time toff). For modeling a 

neuron in vivo Is is often a model of an ionotropic synapse.  
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Figure 3.4: General Hodgkin-Huxley model with external stimulus. 

The addition of current source Is modifies equation (3.9a) by incorporating the Is function. 

Applying Kirchhoff's current law to Figure 3.4 and re-arranging terms gives us 

   ( ) ( ) ( ) ( )tI
C

VVEVEV
dt

dV
slkm

lk
Km

K
Nam

Na

m 1111
+−−−−−−=

τττ
  (3.13) 

where τNa , τK, and τlk are as defined in equation (3.11b). Converting this to a difference equation 

using Euler's method and expressing this result in vector notation gives us 
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The addition of Is does not alter equations (3.12).  

The order in which calculations are performed is crucial for proper simulation of the Hodgkin-

Huxley model. The following general algorithm illustrates the proper computation using Euler's 

method. 

Algorithm 3.1: Hodgkin-Huxley Simulation Using Euler's Method      

1. Initialize all parameters and initial conditions for the dynamical variables. 

2. for t = 0 to t = tfinal in steps of ∆t do the following steps 

3. compute Is(t) {the details of this step depend on the model for Is} 

4. compute the six rate constants according to equations (3.3), (3.5), and (3.6) using Vm(t) 
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5. compute the three τx and x∞ values according to equation (3.10b) 

6. compute the three gate probabilities according to equation (3.12) 

7. compute the new values for GNa and GK according to equations (3.7) and (3.4) 

8. compute new values for τNa and τK according to equations (3.11b) 

9. compute Vm(t + ∆t) according to equation (3.14); if t < tfinal increment t and repeat 3-9 

10. Display and save desired results from the simulation; end simulation. 

                    

Figures 3.5 illustrate the generation of an action potential and the time course of the sodium 

and potassium conductances using Hodgkin's and Huxley's squid parameters. The resting values 

for GNa and GK are 0.0106 mS/cm2 and 0.3666 mS/cm2, respectively. The stimulus was a brief 

pulse of injected current with a current density of 2.5 µA/cm2 applied at t = 10 ms and lasting for 

5 ms. The ∆t used in the simulation was 0.01 ms.  

The effect of the stimulus on the membrane potential is clearly visible in the membrane 

voltage plot (note the change in Vm at t = 10 ms in Figure 3.5). The stimulus had sufficient 

amplitude and duration to trigger a self-generating rise in sodium channel conductance due to the 

positive feedback mechanism of voltage-gated sodium inrush current. This is clearly visible in the 

plot of GNa vs. t at t = 15 ms. The steep rising edge of GNa(t) is called the depolarizing phase of 

the action potential dynamics. The peak of the action potential corresponds to the peak in GNa. At 

this point (approximately 16 ms into the simulation) the effect of the sodium inactivation gate 

begins to be manifested in the sodium channel response. The Na+ channel becoming inactivated, 

the buildup of Vm is brought to a halt. Concurrently, the rise of the potassium conductance GK and 

its associated outflow of K+ ions begins the process of repolarizing the cell. As the Na+ channels 

inactivate, the  K+ current brings Vm back to the resting level and even causes it to undershoot this 

 

Figure 3.5: Membrane voltage (relative to resting potential) and voltage-dependent conductances for the 
Hodgkin-Huxley model of the squid. 
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level. This undershoot is called hyperpolarization of the membrane potential.  

A smaller-amplitude stimulus or one of shorter duration would have produced a response in 

the membrane potential, but the change in Vm would not have been sufficient to induce self-

generating activation of the sodium gates. Without this self-generating action, no action potential 

(AP) would result. This is called a threshold effect, and the critical value of Vm associated with 

the effect is called the threshold. However, the threshold is not a constant but, rather, depends on 

past activity. We can understand this from the following consideration. 

The slower K+ time constant, relative to the Na+ channel, is clearly evident from the time 

courses of the two conductances. Although h(t) for the inactivation gate is not shown in Figure 

3.5, inspection of Figure 3.3 tells us the time constant for h is going to be even slower than that of 

the potassium activation gate variable n during the repolarizing phase. This means that the 

deactivation of the h gate proceeds more slowly than the recovery (deactivation) of the n gate. 

During this time when a large fraction of the sodium inactivation gates are closed, an additional 

stimulus cannot succeed in evoking more Na+ current inrush into the cell. As more time passes 

and more h gates open, it becomes possible to re-stimulate another action potential, but the 

threshold required for doing so is increased above the normal resting level. This phenomenon is 

called the refractory period of the cell. It is divisible into two phases. The period during which no 

AP can be re-stimulated is called the absolute refractory period. The phase during which it is 

possible to re-stimulate an AP (but at a higher threshold level) is called the relative refractory 

period. During the relative refractory period, the threshold value for membrane potential 

undergoes an approximately exponential decay as a function of time, the time constant of this 

decay being a function of the time constants of both the h and n gates.2  

The absolute value of Vr for the squid presents an interesting consideration. Hodgkin's and 

Huxley's squid parameters do not allow us to compute the absolute (relative to the extracellular 

region) numerical value of the resting potential. Later models of neurons often provide this 

information as part of their phenomenological expressions. But for Hodgkin's and Huxley's squid, 

we must have additional information if we are to estimate the actual resting potential of the cell 

membrane. For this we can turn to another Nobel laureate, Bernard Katz. Katz tells us the ion 

concentrations for the squid axon are [Na+]o = 460 mM, [Na+]i = 50 mM, [K+]o = 10 mM, and 

[K+]i = 400 mM [KATZ]. Plugging these values into the Nernst potential equation from chapter 2, 
                                                 
2 In a simulation one can, of course, apply as arbitrarily large a stimulus as one desires. The simulation will 
dutifully show the effect of such a stimulus on Vm. However, a degree of common sense is required here. 
One thing not represented in the Hodgkin-Huxley model is the effect such a large stimulus current will 
have on the living cell. To put it bluntly, "the model does not know" that the living cell can be electrocuted. 
If the modeler also does not realize this, some ridiculous conclusions might be drawn. This is another 
example of why we say a system is both the object and its representation (the model).  
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from which we obtain an estimate of Vr = –67.4 mV.  This value is close to the ballpark figure of 

–65 mV many biology textbooks use as their typical example value of membrane potential. 

However, there is an interesting problem that crops up with using the Katz values in conjunction 

with the Hodgkin-Huxley battery parameters. We will explore this in one of the exercises at the 

end of this chapter.  

In an earlier paper published in 1949 [HODG6], Hodgkin and Katz reported an experimental 

value of –47.5 mV for the resting potential of the squid axon. However, they commented, "The 

true values of the membrane potential are likely to be 5 – 15 mV higher than those recorded 

experimentally" because of certain sources of measurement error in the test method. Many 

present day biology textbooks are happy to take them at their word for this and use a "standard" 

Vr of –60 mV for the squid axon. This would place ENa at an absolute value of 115 – 60 = 55 mV 

assuming Katz's [Na+] numbers above at a temperature of 15 °C (the temperature at which the 

1949 data was taken). However, it is easily shown that this temperature used with the [K+] values 

given above predicts EK = –91.4 mV, which is inconsistent with both Vr and the Hodgkin-Huxley 

parameter for the potassium battery. A more "up to date" value for K+ concentrations in squid is 

given by Koester and Siegelbaum as [K+]o = 20 mM, [K+]i = 440 mM [KOES]. This gives us EK = 

–74.2 mV at this temperature and implicates a H-H potassium battery parameter of –14.2 mV 

(rather than –12 mV)3. We can see from all this that model reconciliation with a broader context 

of facts can be an interesting exercise, and that even the most successful models do not always 

show an immediate fit to "other facts." Indeed, even in [HODG] Hodgkin and Huxley noted 

certain problems with getting their model to agree with the equation for the Nernst potential. 

They commented, 

 The results presented here show that the equations derived in Part II of this paper predict with fair 
accuracy many of the electrical properties of the squid giant axon: the form, duration and amplitude of 

                                                 
3 Actually, there is even less discrepancy because the temperature for the data used in deriving the 
parameters in [HODG] was only 6 to 7 °C, and this places both battery potentials in the H-H model well 
within the experimental accuracy of the measuring equipment they used.  
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spike, both 'membrane' and propagated; the conduction velocity; the impedance changes during the 
spike; the refractory period; ionic exchanges; subthreshold responses; and oscillations. . . This is a 
satisfactory degree of agreement, since the equations and constants were derived entirely from 
'voltage clamp' records, without any adjustment to make them fit the phenomena to which they were 
subsequently applied. . .  

 The agreement must not be taken as evidence that our equations are anything more than an empirical 
description of the time-course of the changes in permeability to sodium and potassium. An equally 
satisfactory description of the voltage clamp data could no doubt have been achieved with equations 
of a very different form, which would probably have been equally successful in predicting the 
electrical behavior of the membrane. It was pointed out in Part II of this paper that certain features of 
our equations were capable of a physical interpretation, but the success of the equations is no evidence 
in favor of the mechanism of permeability change that we tentatively had in mind when formulating 
them.  

 The point that we do consider to be established is that fairly simple permeability changes in response 
to alterations in membrane potential, of the kind deduced from the voltage clamp results, are a 
sufficient explanation of the wide range of phenomena that have been fitted by solutions of the 
equations [HODG].  

This is a good example of how Nobel laureates become Nobel laureates.  

§ 5. Repetitive Firing 

If a constant stimulus test current is injected into many types of neurons, some form of 

repetitive firing pattern often develops. For the H-H model, the parameters of which model an 

axon, a steady frequency of repetitive firing is produced. This is shown in Figure 3.6. Below 

some threshold of stimulation a repetitive pattern is not produced. Rather, either no AP or one or 

two APs result. But above the threshold (approximately 6.5 µA/cm2 for the H-H parameters), the 

cell fires with increasing frequency as the stimulus current Is is increased. Furthermore, the onset 

of firing jumps from no repetitive firing to a relatively high rate abruptly for a small increase in Is. 
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Figure 3.6: Firing rate of the H-H model vs. constant stimulus current 
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Of course, in a whole neuron the firing rate vs. stimulus tends to be set much more by the 

neuron's cell body and dendrites rather than by its axon. The function of the axon, after all, is to 

transmit APs rather than generate them. From this point of view it does not seem odd that the 

axon of a cell would have a more "hair-trigger" firing response than does the cell body.  

A firing rate curve like Figure 3.6 where we find a discontinuity in the curve is called a type II 

model in the theoretical literature. There are some species of neurons where this discontinuity is 

not observed. Rather, the onset of firing rates rises from zero without a large jump from no-firing 

to high frequency firing. Neurons of this type are called type I model neurons. This variety in 

responses to test stimuli is caused by the existence of a great variety of voltage-gated channel 

proteins, a topic we will discuss later. The axon typically has only the Na+ and K+ channels 

described by the Hodgkin-Huxley model. However, in addition to the inactivating Na+ channel of 

the original H-H model, it is now known that persistent (non-inactivating) Na+-conducting 

proteins also exist, as do transient (inactivating) K+ channels. Completing the picture, neurons 

also express voltage-gated Ca2+ channels of various types. The constant-stimulus-current test 

method is a key tool used by physiologists in studying different kinds of neurons and modeling 

them by extensions of the basic Hodgkin-Huxley schema. The great variety of VGCs expressed in 

nature leads to a great variety of different kinds of repetitive firing patterns, including those of 

some neurons that spontaneously fire, either repetitively or in bursts with long interludes in 

between (so-called "pacemaker" neurons). Most theoretical neuron models are parameterized to 

fit the firing patterns seen in response to the constant-current test stimulus.  

Below the threshold for the on-set of repetitive firing, the membrane response exhibits an 

increase in the firing threshold. This is illustrated in Figure 3.7. We can note the decaying ringing 

following the second AP in the voltage response. The increase in threshold is caused by residual 

K+ conductance, which the input stimulus causes to increase due to the increase in  Vm this current 

 

Figure 3.7: Constant-stimulus response for Is = 6.0 µA/cm2 for H-H squid model. 
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produces from the charges it injects into the cell. We can also note the dramatic decrease in the 

peak Na+ conductance observed during the second AP. This is caused by the fact that the 

inactivation gates have not had time to return to equilibrium plus the fact that the stimulus current 

causes more inactivation gates to close through the mechanism of the small rise in Vm the 

stimulus produces (refer to the steady-state h curve in Figure 3.2). For Is = 6 µA/cm2 the squid 

axon model produces two APs spaced about 20 ms apart, by which we can tell that its minimum 

repetitive firing rate will be greater than 50 Hz (which ranks as a "high" firing rate in biological 

signal processing; some neurons are rarely capable or flatly incapable of firing at this fast).  

§ 6. Synaptic Signals 

With the exception of sensory neurons and those neurons that received graded inputs via gap 

junction synapses, the majority of neurons in the central nervous system receive their inputs from 

chemical synapses in pulsed form. The synapse is in itself a very interesting system-within-the-

system in models of biological signal processing. We will be discussing more details of the 

synapse model later in this text. But at this point it is appropriate to discuss empirical modeling of 

the signal seen by the postsynaptic cell in response to an AP from one of its sourcing presynaptic 

neurons. Specifically, we discuss those synaptic receptors that constitute ionotropic channels 

responding to ligand neurotransmitters (LGCs). 

An ionotropic channel is added to the basic voltage-gated Hodgkin-Huxley-like compartment 

model as shown in Figure 3.8. The synapse is represented by a ligand-gated conductance Gsyn and 

a synaptic potential  Esyn that plays the same modeling role as the other batteries in the model. The 

 

Figure 3.8: Hodgkin-Huxley compartment augmented by an ionotropic synapse channel. 
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ionotropic channels are broadly divisible into excitatory synapses (those where Is is positive for 

the direction shown in Figure 3.8) and inhibitory synapses (those where Is is negative for the 

direction shown). Whether the synapse is excitatory or inhibitory is incorporated into the model 

by the numerical value assigned to Esyn. If Esyn > Vr then the synapse is excitatory. If Esyn < Vr then 

the synapse is inhibitory. A typical value for an excitatory channel is Esyn = 0 mV. A typical value 

for an inhibitory channel is Esyn = –70 mV to –75 mV. Note that these are absolute values with 

respect to the extracellular fluid. If, as in Hodgkin's and Huxley's original model, the battery 

potentials for ENa, etc. are normalized to Vr , then this same scaling must be applied to Esyn. 

Gsyn models the time-dependent response of the channel to the release of neurotransmitter 

from the presynaptic terminal of the source neuron. In general form, we may write Gsyn = gmax⋅g(t) 

where gmax is the maximum conductance of the channel and g(t) describes the time course of the 

channel conductance. By convention the maximum value of g(t) is unity. In the absence of action 

potential stimulation of the presynaptic terminal, the steady-state value for g(t) is zero. Empirical 

characterizations of synaptic conductance usually result in one or the other of two functions for 

g(t), which we will denote as the alpha function, g(α)(t), and the beta function, g(β)(t).  

If the neurotransmitter release from the presynaptic terminal occurs at t = 0, the alpha function 

is described by the equation 

   ( ) ( ) ( ) [ τ ]
τ

α tttg −⋅⋅= exp1exp         (3.15) 

where the exp(1) term is merely a scaling factor to make g(α)(t) have a maximum value of one. 

The peak value of g(α)(t) occurs at t = τ  and g(α)(t) = 0 for t < 0. 

Equation (3.15) describes the channel response to a single presynaptic action potential event. 

In order to obtain a more generally applicable model we must treat the alpha function in a 

somewhat more general way capable of incorporating multiple action potential events occurring 

at different moments in time. Preferably what we would like is a differential equation description 

for g(α)(t) so that we can incorporate the calculation of g(α)(t) into the rest of the simulation 

computation. The standard technique for accomplishing this in system theory is called the state 

variable representation. Let Vpre(t) denote the membrane potential of the presynaptic cell, as 

measured at its presynaptic terminal, at time t. We define two quantities, x1(t) and x2(t), called the 

state variables of the channel. These are defined in such a way that we can write g(α)(t) in terms 

of them using the vector-matrix notation of linear algebra, 
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In state-variable terminology, equation (3.16) is called an output equation.  

The two state variables are purely mathematical quantities for modeling the kinetics of the 

ionotropic channel. In this, their role is similar to that of the rate constants in the H-H voltage-

gated channel models. They are described by a pair of differential equations, called the state 

equation, which, in matrix form, is given as  
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 .    (3.17) 

Here η (t) = η [Vpre(t)] is an input function that describes the stimulation of the postsynaptic cell 

as a function of the presynaptic membrane potential. Physiologically, this function describes the 

action of neurotransmitter (NTX) release in the synapse. It is a thresholding function in that 

Vpre(t) must exceed some threshold value Ω before the source cell will release its 

neurotransmitter. Biologically realistic values for Ω typically lie in the range of –20 to –30 mV. It 

is also an impulsive function in that neurotransmitter exocytosis tends to occur as a brief burst of 

NTX release that starts and ends over a very brief interval of time (well under 1 ms).  

We obtain the difference equations required for simulation in the same manner as before by 

integrating both sides of equation (3.17). Here the only special consideration comes with 

integrating the input function η (t) over the interval from t to t + ∆t. Because of its impulsive 

nature, it is convenient to introduce a special function, H(z), known as Heaviside's unit step 

function, named after the interesting and somewhat eccentric 19th-20th century British engineer 

Oliver Heaviside4. H(z) = 1 for argument z > 0 and H(z) = 0 for z < 0. As a practical matter, we 

will make H(0) = 0. Using this function, we may make the reasonable approximation  

    ( ) ( )[ ]Ω−⋅≈∫
∆+

tVd pre

tt

t
Hνττη

where ν is a parameter characterizing the amount of neurotransmitter released by the presynaptic 

neuron. We will typically use ν = 1, but other values can be used to model a number of short-term 

 
4 Heaviside (1850-1925) was one of the few members of the Royal Society to have his papers regularly 
turned down for publication. He was the despair of the mathematicians of his day because of his non-
rigorous use of special functions in his "operational calculus." His proposed names for electrical units – 
pere, mac, tom, bob, and dick – somehow never caught on. He developed the theory of cable loading, 
which made the transatlantic cable possible, wrote Maxwell's equations in the form used today, pioneered 
the use of "phasors" (which every electrical engineering student comes to know well), and was the first to 
propose that an electrical charge would increase in mass as its velocity increases (which anticipated 
Einstein's later discovery). Heaviside was known for a sometimes caustic interpersonal style, which made 
him many enemies. When criticized by mathematicians for his vague meanings and definitions in his 
"operational calculus," he merely retorted, "Shall I refuse my dinner because I do not fully understand the 
process of digestion?" 
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modulation effects that occur in biological signaling. With this approximation we obtain the 

dynamical difference equations for g(α)(t) as 
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The beta function is defined as 

   ( ) ( ) ( ) ( )[ 12 expexp ττγβ tttg −−−= ] , t ≥ 0      (3.20) 

with g(β)(t) = 0 for t < 0. γ  is a normalizing factor making the peak value equal to one. For the 

time constants we have τ1 < τ2. The maximum value of the function occurs at t = Tpk where 
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and so 
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The state variable equations for g(β)(t) are 
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Integrating both sides of (3.23) to obtain the difference equations gives us 
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with the output equation still given by (3.24). 

Figure 3.9 illustrates the comparison of g(α)(t) and g(β)(t) scaled to equivalent times for the 

peak response. We may note that generally, for equal peaking times, g(β)(t) has a slower decay 

and a slightly faster rising edge in its response compared to g(α)(t). Therefore, the response of the 

Hodgkin-Huxley compartment to these two functions will be different.  
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Figure 3.9: Comparison of the alpha- and beta- functions scaled to equivalent peak times 

One of the major challenges in modeling ligand-gated channels (LGCs) is the determination of 

the maximum conductance parameter gmax. This parameter must depend on the single-channel 

conductance of an individual channel pore, gp, and also on the number of such membrane-

spanning channel pores present in the synapse. It must also depend on the availability of these 

proteins to bind with the neurotransmitter ligand, which is something that might depend on 

factors going on metabotropically within the cell such as phosphorylation/dephosphorylation 

activity. The empirical Gsyn(t) = gmax g(t) expression describes the average synaptic conductance 

resulting from the parallel combination of individual pore conductances.  

Not surprisingly, experimental data for gmax is, to say the least, challenging to come by. We 

are dealing here with tiny amounts of current (on the order of about 2 pA per pore) in tiny patches 

of membrane. Furthermore, the gp in which we are interested reside in synapses, which makes 

them very difficult to access with test and measuring equipment. Most of the experimental data 

reported in the literature is taken from channels outside synapses ("extra-synaptic" channels), and 

there is reason to suspect that receptors located outside the synapse may differ from those in 

synapses [SILV: 120].  

The data we do have tells us that gp values for the most part range from 10 pS to 50 pS across 

a wide variety of receptor types (both VGCs and LGCs), although there are also some in the 3 pS 

to 10 pS range [HILL4: 401]. The amount of surface area in a typical synapse is on the order of 

about 0.1 µm2 (as a geometric-mean reference value; there is a great deal of variance in this 

parameter) [FIAL: 21]. At a reference density on the order of 100 channel proteins/µm2 [HILL4: 

377-404], this would place the number of channel pores in a typical synapse at about 10 single-

channels per synapse, and a reference value of 20 pS/pore would place the value of gmax on the 
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order of about 200 pS per synapse. This value is more or less in agreement with experimental 

values reported in the literature [SEGE], but it should be viewed as a "ballpark figure" only and 

not at all as a precise determination. (Indeed, whether or not the phrase "typical synapse" has any 

real meaning – and if so, what? – can be debated). What we do know with confidence is that we 

can expect the numerical value of gmax to vary over a wide range, and that it is probably not really 

a constant even for one specific synapse (due to various physical-chemical processes that can 

modulate its value). For example, Gabbiani et al. reported gmax values of 720 pS and 1200 pS for 

two types of ionotropic synapses found in cerebellar granule cells [GABB]. (The two channels 

are known as AMPA and NMDA5 channels, respectively). Segev and London cite ranges from 

100 to 300 pS (AMPA) and 50 to 500 pS (NMDA) for synapses in neocortical neurons [SEGE].  

As for the time constants in Gsyn(t), these are easier to determine experimentally. Different 

types of LGCs show different values for these time constants, and we will discuss them when we 

discuss specific LGCs. Here let it be enough to say they vary over a range from a few ms to 

several tens of ms. The values τ 1 = 3 ms and τ 2 = 40 ms used in Figure 3.9 were the values 

Gabbiani et al. found for the NMDA channel in the cerebellar granule cell. For the AMPA 

channel their reported time constants were τ 1 = 0.09 ms and τ 2 = 1.5 ms.  

Finally, it is worth noting that more physiological models that take into account factors such 

as the concentration of neurotransmitter in the synaptic cleft have also been developed. These 

kinetics models describe the synaptic channel conductance using an approach similar to that used 

by Hodgkin and Huxley for the gating probabilities of the voltage-gated channels [MAGL1-2].  

§ 7. The Subthreshold Response 

As noted earlier, action potential generation is a thresholding phenomenon. If the stimulus is 

insufficient to produce an action potential, the cell's response is called a subthreshold response. 

Figure 3.10 illustrates the response of Hodgkin's and Huxley's squid axon model to a stimulus 

pulse of 2.5 µA/cm2 applied at t = 10 ms for a duration of 2.5 ms. This is a subthreshold 

stimulation, and we can see that Vm rises less than 5 mV (relative to the resting potential) before 

the opening of the K+ channels acts to repolarize Vm.  

In chapter 1 it was said that the "leaky integrator" model is a popular phenomenological model 

for neuron responses.  Figure 3.11 illustrates the response of the squid axon model excited by two 

                                                 
5 AMPA stands for α-amino-3-hydroxy-5-methyl-4-isoxazole-proprionic acid. NMDA stands for N-
methyl-D-aspartic acid. These are pharmacological compounds used to identify synaptic receptors. Both 
receptors respond to the neurotransmitter glutamate, and both are widely found in the central nervous 
system. Note, however, that AMPA and NMDA are names for species of synaptic receptors and within 
these classifications there are numerous different values for gmax found for different neurons. 
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Figure 3.10: Subthreshold stimulation of the H-H squid axon model. The stimulus Is from figure 3.4 was 2.5 
µA/cm2 with a duration of 2.5 ms. 

 

Figure 3.11: Subthreshold dipulse stimulation. The first pulse is the same as for figure 3.10. The second 
pulse is also 2.5 µA/cm2 with a duration of 2.5 ms and is applied at t = 13.5 ms (1 ms after the end of the first 

pulse). We can observe a nonlinear "leaky integrator" action in this response. However, this "integrator" 
action is swiftly overcome by the onset of K+ conductance. 

stimulus pulses, each the same as in Figure 3.10 but separated in time by a 1 ms interval between 

the end of the first pulse and the beginning of the second. Something that can generously be 

called an "integration" is visible in the membrane voltage response and in the Na+ channel 

conductance. However, it is a nonlinear "integration" and is quite different from what would be 

obtained from a linear "leaky integrator" model of the membrane response. Moving the 

application of the second pulse closer to the end of the first pulse does not result in "better 

integrator" action; it results in an action potential.  

In point of fact, axons do not make good "integrators." Their "hair trigger" response works 

against this form of signal processing. H-H-like models of neurons, on the other hand, often 

exhibit subthreshold responses that come much closer to the linear integrate-and-fire model so 

often used in neural network modeling. Even here, though, the integrator action is nonlinear, and 
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this reveals the approximate nature of the I&F model of the "mathematical neuron." The source of 

the nonlinearity is readily apparent from the conductance responses shown in the figures.  

 

Exercises 
Some of the following exercises require computation of the Hodgkin-Huxley model. You may 
either write your own computer program to implement Algorithm 3.1 or use and modify the 
MATLAB® version of this algorithm given in the appendix to this chapter. 
 
1.  It was shown in the text that the Katz concentrations for Na+ and K+ in squid implied the not 

unreasonable value of Vr = –67.4 mV for the resting potential of the membrane. According to 
the Nernst equation, what temperature is implicated for the ENa and EK this resting potential 
implies? Do you see any problems or contractions implied in this consequence? Describe and 
explain them. 

2.  Using Katz's numbers for Na+ concentrations and Koester's and Siegelbaum's numbers for K+ 
concentrations, find the Nernst potentials for Na+ and K+ at a temperature of 280 Kelvin. Then 
show that these potentials when combined with the Hodgkin-Huxley battery parameters 
implicate a resting potential in the range –62 ± 0.7 mV. What percentage uncertainty in the 
range of the experimental measurements does this imply? Is this a reasonable range?  

3.  Accepted data for squid places chloride concentrations at [Cl–]o at 540 nM and [Cl–]i in a 
range from 40 nM to 100 nM. At a temperature of 280 Kelvin, what is the range of Nernst 
potential implied by these figures? (Remember, the valence of chloride is –1). Using Vr = –62 
mV, is chloride a reasonable hypothesis for explaining the Hodgkin-Huxley leakage potential? 

4.  The Hodgkin-Huxley Na+ and K+ currents for the membrane at rest are not compatible with 
the 3:2 ratio required by the Na+-K+ pump. Is it possible to modify the leakage circuit 
component of the Hodgkin-Huxley model to remove this discrepancy by assuming there are 
persistent Na+, K+ and possibly Cl– channels already open at Vr = –62 mV? Use the Nernst 
potentials calculated at 280 Kelvin for the three ions (for chloride you have a range rather than 
one value). Remember that your modified leakage circuit must be equivalent to the Hodgkin-
Huxley leakage circuit with its Glk = 0.3 mS/cm2 and its leakage potential of 10.613 – 62 mV 
and the ratio of total Na+ current to K+ current must be 3:2.  

5.  The charge injected into a cell by a current source Is(t) is equal to the integral of the current 
from t = 0 to t = ∞. Show that a rectangular current pulse of amplitude Imax and width Tw 
injects the same amount of charge as an alpha-function pulse Imax⋅ g(α)(t), where g(α)(t) is given 
by (3.15), provided that the time constant of the alpha function equals exp(–1)⋅Tw.  

6.  Does the threshold for firing an action potential depend on the shape of the current pulse 
injected into the cell or does it only depend on the total charge injected? To find out, 
determine the threshold peak current Imax (within 0.2 µA/cm2) for a rectangular pulse Is of 
width Tw = 5 ms using a Hodgkin-Huxley simulation. Then repeat this for Is given by an alpha 
function using the time constant determined in exercise 5. What do you conclude? 

7.  Using the Hodgkin-Huxley simulation, characterize the refractory period by determining the 
required Imax needed to stimulate a second action potential given that a first action potential 
was stimulated with the Imax for the rectangular pulse found in exercise 6. Characterize the 
threshold from 10 to 20 ms after the application of the first pulse and fit an exponential curve 
function to your data.  
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MATLAB Script for Hodgkin-Huxley Simulation 
 
1  % file HHSquid.m Hodgkin-Huxley model using Euler's method 
2  % This script allows up to two current pulses to be injected 
3  % into the membrane to excite a response. The widths can 
4  % be independently set, but the pulses cannot overlap. If pulse 
5  % 2 is turned on before pulse 1 ends it replaces pulse 1. 
 
6  clear; clf; 
7  % maximal conductances (mS/cm^2); 1=K, 2=Na, 3=lk; 
8  % membrane capacitance is 1 uF/cm^2 
9    g(1)=36; g(2)=120; g(3)=0.3; 
 
10 % battery voltage (mV) relative to resting potential; 1=K, 2=Na; 

3=lk 
11     E(1)=-12; E(2)=115; E(3)=10.613; 
   
12 % variable initialization I_ext is in microamps/cm^2 
13   I_ext=0; V=-10; x=zeros(1,3); x(3)=1; t_rec=0;  
14   t_final=50; % t_final sets the time span of the simulation 
   
15 % applied pulses parameters; T1=on time for pulse 1, T2=on 

time  for pulse 2 
16 % Tw1 is the width of pulse 1, Tw2 is the width of pulse 2. 

I_on1 is the 
17 % amplitude of pulse 1 in microamps/square cm, I_on2 is the 

amplitude of 
18 % pulse 2. All times are in milliseconds. If T2>t_final the  
19 % second pulse is not applied. 
 
20   I_on1=2.5; I_on2=2.5; T1=10; T2=70; Tw1=5; Tw2=5; 
   
21 % time step for integration in milliseconds 
22   dt=0.01; 
   
23 % integration by Euler's method 
24 % computations for t < 0 establish initial conditions at t = 0. 
25   for t=-30:dt:t_final 
26       if t==T1; I_ext=I_on1; end  %turns on external current at 

t=T1 
27       if t==T1+Tw1; I_ext=0; end   %turns off external current 
28       if t==T2; I_ext=I_on2; end   %turns on second pulse 
29       if t==T2+Tw2; I_ext=0; end   %turns off second pulse 
       
30       %alpha parameters in H-H model 
31       alpha(1)=(10-V)/(100*(exp((10-V)/10)-1)); 
32       alpha(2)=(25-V)/(10*(exp((25-V)/10)-1)); 
33       alpha(3)=0.07*exp(-V/20); 
       
34       %beta parameters in H-H model 
35       beta(1)=0.125*exp(-V/80); 
36       beta(2)=4*exp(-V/18); 
37       beta(3)=1/(exp((30-V)/10)+1); 
       
38       %time constants (msec) and asymptotic values 
39       tau=1./(alpha+beta); 
40       x_0=alpha.*tau; 
       
41       %Euler integration 
42       x=(1-dt./tau).*x+dt./tau.*x_0; 
       
43       %conductance calculations 
44       gnmh(1)=g(1)*x(1)^4; 
45       gnmh(2)=g(2)*x(2)^3*x(3); 
46       gnmh(3)=g(3); 
       
47       %membrane voltage update 
48       I=gnmh.*(V-E); 
49       V=V+dt*(I_ext-sum(I)); 
       

50       %plotting records 
51       if t>=0; 
52         t_rec=t_rec+1; 
53           x_plot(t_rec)=t; 
54           y_plot(t_rec)=V; 
55           G(t_rec,1)=gnmh(1); % GK 
56           G(t_rec,2)=gnmh(2); % GNa 
57       end 
58    end 
59  plot(x_plot,y_plot); xlabel('Time (ms)'); ylabel('Relative 

Membrane Voltage (mV)'); 
60   figure; 
61   plot(x_plot,G); xlabel('Time (ms)'); ylabel('Conductance 

(mS/cm^2)'); 
-------------------------------------------------------------------------- 
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