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Abstract: In this paper, we present the integration of a
controller synthesis methodology in the Signal environment
through the description of a tool dedicated to the algebraic
computation of a controller and then to the simulation of
the controlled system. The same language is used to specify
the physical model of the system and the control objectives.
The controller is then synthesized using the formal calculus
tool Sigali. The result is then automatically integrated in a
new Signal program in order to obtain a simulation of the
result.
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Introduction

In this paper, we present the integration controller synthe-
sis techniques in the Signal environment [1] through the
description of a tool dedicated to the safe construction and
the simulation of reactive system controllers. The system is
specified in Signal and the control synthesis is performed
on a logical abstraction of this program, named polynomial
dynamical system (PDS) over

�
/3

� [7]. The control of the
system is performed by restricting the controllable input val-
ues to values suitable with respect to the control objectives.
This restriction is obtained by incorporating new algebraic
equations in the initial system. The theory of PDS uses clas-
sical tools in algebraic geometry, such as ideals, varieties and
comorphisms. This theory sets the basis for the verification
and the controller synthesis tool, Sigali, of the Signal envi-
ronment. In this paper, we present a tool developed around
the Signal environment allowing the visualization of the
synthesized controller by interactive simulation of the con-
trolled system. In a first stage, the user specifies in Signal

both the physical model and the control objectives to be en-
sured. A second stage is performed by the Signal compiler
which translates the initial Signal program into a PDS and
the control objectives in terms of polynomial relations and
operations. The controller is then synthesized using Sigali.
The result is a controller coded by a BDD(binary decision
diagram) [3]. In a third stage, in order to visualize the new
behavior of the controlled system, the controller and some
simulation processes are automatically included in the initial
Signal program. It is then sufficient for the user to compile
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the resulting Signal program which generates a simulator.
Academic examples are used to illustrate the application of
the tool.

1 The Signal environment

To specify our model, we use the synchronous data flow lan-
guage Signal [1]. The aim of Signal is to support the de-
sign of safety critical applications, especially those involving
signal processing and process control. The synchronous ap-
proach guarantees the determinism of the specified systems,
and supports techniques for the detection of causality cycles
and logical incoherences. The design environment features
a block-diagram graphical interface [2], a formal verification
tool, Sigali, and a compiler that establishes a hierarchy of
inclusion of logical clocks (representing the temporal charac-
teristics of discrete events), checks for the consistency of the
inter-dependencies, and automatically generates optimized
executable code ready to be embedded in environments for
simulation, test, prototyping or the actual system.

1.1 The Signal language.

The Signal language [1] manipulates signals X, which de-
note unbounded series of typed values, indexed by time. An
associated clock determines the set of instants at which val-
ues are present. The constructs of the language can be used
in an equational style to specify the relations between signal-
s, i.e., between their values and between their clocks. Data
flow applications are activities executed over a set of instants
in time. At each instant, input data is acquired from the ex-
ecution environment; output values are produced according
to the system of equations considered as a network of oper-
ations.

The Signal language is defined by a small kernel of op-
erators. The basic language constructs are summarized in
Table (1). Each operator has formally defined semantics and
is used to obtain a clock equation and the data dependencies
of the participating signals. For a more detailed description
of the language, its semantic, and applications, the reader is
referred to [1].

1.2 Sigali: The formal proof system

The Signal environment also contains a verification and
controller synthesis tool-box, named Sigali. This tool al-
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Language Construct Signal syntax Description
stepwise extensions C := A op B where op : arithmetic/relational/boolean operator

delay ZX := X $ n memorization of the nth past value of X
extraction C := A when B C equal to A when B is present and true
priority merging C := A default B if A is present C:=A else if B present C:= B else C absent
Process Composition (|P|Q|) processes are composed, common names correspond to shared signals
useful extensions

when B the clock of the true instants of B
event B the presence instants of B
Aˆ= B Clock of A equal with clock of B

Table 1: Basic Signal language constructs

lows to prove the correctness of the dynamical behavior of
the system. The equational nature of the Signal language
leads naturally to the use of a method based on polynomial
dynamical equation systems (PDS) over

�
/3

� (i.e., integers
modulo 3: {-1,0,1}) as a formal model of program behavior.
The theory of PDS uses classical tools in algebraic geometry,
such as ideals, varieties and comorphisms [6]. The techniques
consist in manipulating the system of equations instead of
the sets of solutions, which avoids enumerating the state s-
pace.

1.2.1 Logical abstraction of a Signal program

To model its behavior, a Signal process is translated in-
to a system of polynomial equations over

�
/3

� [6]. The
three possible states of a boolean signal X (i.e., present and
true, present and false, or absent) are coded in a signal vari-

able x by (present ∧ true → 1, present ∧ false → 1 and
absent → 0). For the non-boolean signals, we only code the
fact that the signal is present (by 1) or absent (by 0). Each
of the primitive processes of Signal are then encoded in a
polynomial equation (cf Table (2))1.

boolean instructions
B := not A b = −a

C := A and B
c = ab(ab − a − b − 1)
a2 = b2

C := A or B
c = ab(1 − a − b − ab)
a2 = b2

C := A default B c = a + (1 − a2)b
C := A when B c = a(−b − b2)

B := A $1 (init b0)

x′ = a + (1 − a2)x
b = a2x

x0 = b0

non-boolean Instructions
B := f(A1, . . . , An) b2 = a2

1
= · · · = a2

n

C := A default B c2 = a2 + b2 − a2b2

C := A when B c2 = a2(−b − b2)

B := A $1 (init b0) c2 = a2

Table 2: Translation of the primitive operators.

Any Signal specification can then be translated into a
set of equations called polynomial dynamical system (PDS).
Formally, a PDS can be reorganized into three subsystems

1For the non boolean expressions, we just translate the syn-
chronization between the signals.

of polynomial equations of the form:

S =

�� � X ′ = P (X, Y, U)
Q(X, Y, U) = 0
Q0(X) = 0

(1)

where X, Y, U, X ′ are vectors of variables in
�

/3
� and

dim(X) = dim(X ′) = n. The components of the vectors
X and X ′ represent the states of the system and are called
state variables. They come from the translation of the delay
operator. Y is a vector of variables in

�
/3

� , called uncon-

trollable event variables, whereas U is a vector of controllable

event variables2. The first equation is the state transition e-

quation; the second equation is called the constraint equation

and specifies which event may occur in a given state; the last
equation gives the initial states. The behavior of such a PDS
is the following: at each instant t, given a state xt and an
admissible yt, we can choose some ut which is admissible,
i.e., such that Q(xt, yt, ut) = 0. In this case, the system
evolves into state xt+1 = P (xt, yt, ut).

1.2.2 Control synthesis problem

Given a PDS S, as defined by (1) a controller is defined by
a system of two equations C(X, Y, U) = 0 and C0(X) = 0,
where the latter equation C0(X) = 0 determines initial s-
tates satisfying the control objectives and the former de-
scribes how to choose the instantaneous controls; when the
controlled system is in state x, and an event y occurs, any
value u such that Q(x, y, u) = 0 and C(x, y, u) = 0 can be
chosen. The behavior of the system S composed with the
controller is then modeled by:

Sc =

�� � X ′ = P (X,Y, U)
Q(X, Y, U) = 0, C(X, Y, U) = 0

Q0(X) = 0, C0(X) = 0
(2)

Using algebraic methods, avoiding state space enumeration,
we are able to compute controllers (C, C0) which ensure:

• the invariance of a set of states (S Security()), the
reachability of a set of states from the initial states of
the system (S Reachability()), the attractivity of a set
of states E from a set of states F (S Attractivity())
[4],

2For simplicity, we can consider that the uncontrollable event
variables are emitted by the system in the direction of the con-
troller, whereas the controllable event variables are emitted by the
controller in the direction of the system.



• the minimally restrictive control (choice of a command
such that the system evolves, at the next instant, into
a state where the maximum number of uncontrollable
events is admissible (S Free Max()))[8],

• the stabilization of a system (choice of a command such
that the system evolves, at the next instant, into a s-
tate with minimal change for the state variable values
(S Stab()))[8].

For more details on the way others controllers are synthe-
sized, the reader may refer to [4, 8].

2 Integration in the Signal envi-

ronment

In this section we present how the controller synthesis
methodology has been integrated in the Signal environmen-
t. First, to simplify the use of the tool, the same language
is now used to specify the physical model of the system
and the control objectives (as well as the verification ob-
jectives). Moreover, some obstacles prevent the diffusion of
formal methods for logical controller synthesis. The most
important deals with the abstraction of the obtained con-
trollers, coded, in our framework, by BDDs. The result is
in general too complex to be satisfactorily understood. We
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Figure 1: Description of the tool

developed a tool allowing the controller synthesis as well as
the visualization of the result by interactive simulation of the
controlled system. Figure (1) sums up the different stages
necessary to perform such simulations. In the first stage, the
user specifies the physical model and the control objectives
in Signal. The second stage is performed by the Signal

compiler which translates the initial Signal program into a
PDS and the control objectives in terms of polynomial re-
lations and operations. The controller is then synthesized,
using Sigali. In the third stage, the obtained controller is
included in the initial Signal program in order to perform
simulation.

2.1 First phase: Specification of the

model

The physical model is first specified in the language Signal.
It describes the global behavior of the system. In the same
stage we specify a process, that describes all the properties
that must be enforced on the system. This process can also

contain some property verification objectives. Using a new
extension of the Signal language, named Signal+, it is now
possible to express the properties to be checked as well as the

(| Sigali(Verif_Objective(Prop))

| Sigali(Control_Objective(Prop))

|)

Table 3: Basic syntax of Signal+

control objectives to be synthesized, directly, in the Signal

program. The syntax is shown in Table (3):

The keyword Sigali means that the subexpression has to
be evaluated by Sigali. The function Verif Objective (it
could be invariance, reachability, attractivity) means
that Sigali has to check the verification objectives according
to the boolean PROP, which can be seen as a set of states
in the corresponding PDS.

The function Control Objective means that Sigali has
to compute a controller in order to ensure the control objec-
tive for the controlled system (it could be one of the control
objectives presented in section (1.2.2).

The complete Signal program is obtained by putting in
parallel the two processes (see Table (4)).

(| System() (Physical model in Signal)

| Objectives() (verif and control Objectives)

|)

Table 4: The complete Signal program

2.2 Second phase: Verification & Con-

troller Synthesis

In order to perform the computation of the controller with
regard to the different control objectives, the Signal com-
piler produces a file which contains the PDS resulting from
the abstraction of the complete Signal program and the al-
gebraic control (as well as verification) objectives. We thus
obtain a file that can be read by Sigali.

Suppose that we must enforce, in a Signal program
named “system.SIG” the invariance of the set of states where
the boolean PROP is true. The corresponding Signal pro-
gram is then given by Table (5).

(| (| system{} (the physical specified in Signal) |)

| PROP : definition of the boolean PROP in Signal

| Sigali(S_Invariance(True(PROP))

|)

Table 5: A part of the Signal program

The corresponding Sigali file, obtained after the compi-
lation of the global Signal program, is the following (Table
(6)):

The file “system.z3z” is the PDS that represents the
initial system. The PROP signal becomes a polynomial
Set States expressed by state variables and events, which
is equal to 0 when PROP is true. The last line of the file
consists in synthesizing a controller which ensure the invari-
ance of the set of states where the polynomial Set States
takes the value 0. This file is then interpreted by Sigali



read(‘‘system.z3z’’); => loading of the PDS

Set_States : True(PROP)

=> Compute the states where PROP is true

S_c: S_Invariance(S,Set_States) => Synthesize the con-

-troller that ensures the invariance of Set_States

Table 6: The resulting Sigali file

that checks the verification objective and computes the con-
troller. The result of the controller synthesis is a polynomial
which is represented by a BDD which is saved in a file, used
to perform simulation.

2.3 Third phase: Result Simulation

To obtain a simulation that allows to visualize the new be-
havior of the controlled system, the controller (more pre-
cisely, a resolver process) is automatically integrated in the
initial Signal program as well as simulation processes fol-
lowing the architecture of Figure (2).
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Figure 2: The resulting Signal program

2.3.1 Integration of the resolver in a Signal

program & simulator building

A controller is a polynomial coded in a BDD. In most cas-
es, several values are possible for each command, when the
system evolves into a state. Therefore, an algebraic equa-
tion resolver has been developed in Signal for the control
part of the resolver process and in C++ for the algebraic
equation resolver part. This process solves polynomial equa-
tions (i.e., controllers) according to the internal state values
and the input event values. The constraint part of the con-
troller is given by a polynomial C(X, Y, U) = 0. The resolver
process provides, for given values x, y , all the possible val-
ues for the command u. Note that not only one but all the
alternatives of commands are proposed. This process is auto-
matically integrated in the initial Signal program, following
the diagram of Figure (2). The links (i.e., the connections
through signals) between the process resolver and the pro-
cess which specifies the system are automatically added in
order to obtain the new Signal program.

At the same time, the user has the option of adding in this
new program some generic processes of simulation. These

Signal processes perform, after compilation, the automat-
ic construction of graphical input acquisition buttons and
output display windows for the signals of the interface of
the programs, in an oscilloscope-like fashion3; with regard
to the commands, the graphical acquisition button process-
es are automatically added in the Signal program when the
resolver is included. We finally compile the resulting Signal

program that generates executable code ready for simulation.

2.3.2 Simulation principle

The event values are chosen by the user under the control of
the resolver through an interactive dialogue box.

When a choice is performed by the user, this choice is au-
tomatically sent to the algebraic resolver, which returns the
set of possible values for the remaining commands. In fact,
each time a new choice is made by the user, a new controller
is computed, in the sense that one variable of the polyno-
mial controller has been instantiated. New constraints can
then appear on the commands which are not totally spec-
ified. During this exchange between the dialogue box and
the resolver, some commands can be totally specified by the
resolver in which case their values are then imposed. The
choice of the command values can be performed step by step
by the user, or using a random process for a step of simula-
tion. In the second case, the resolver chooses the command
values. The user can also ask for a random simulation during
an indeterminate number of simulation steps.

3 Some examples

This section illustrates the application of our design environ-
ment to two classical examples of control synthesis problems:
the cat and mouse example [9] and a flexible manufacturing
cell control problem [5].

3.1 The cat and mouse example

A cat and a mouse are placed in a maze shown in Figure (3).
The animals can move through doors represented by arrows
in this figure. Doors C1, . . . , C7 are exclusively for the cat,
whereas the doors M1, . . . , M6 are exclusively for the mouse.
Each doorway can be traversed in only one direction, with
the exception of the door C7. A sensor associated with each
door detects the passages and a control mechanism allows
each door to be opened or closed, except for door C7 which
always stays opened.

Initially, the cat and the mouse are in room 2 and 4 re-
spectively. The problem is to control the doors in order to
guarantee the two following requirements:

1. The cat and the mouse never occupy the same room
simultaneously.

2. It is always possible for the animals to return to their
initial positions.

In order to control the system, we assume that the control-
lable events are door opening and closing requests.

3We are also able to perform real graphical animation in order
to simulate the behavior of the system (see section 3)



Figure 3: The cat and mouse example.

Specification in Signal: The complete behavior of the
system is specified in Signal. Two processes compose the
system. One describes the state of the doors (open or closed)
and the second describes the state of the rooms (i.e., in which
room the cat and the mouse are). Table (7) represents a part
of this process.

(| (| Mouse_Room_0 := (when Z_Mvt_Mouse_3)

default (when Z_Mvt_Mouse_6)

default (false when Z_Mvt_Mouse_1)

default (false when Z_Mvt_Mouse_4)

default Z_Mouse_Room_0

| Z_Mouse_Room_0 := Mouse_Room_0 $1 |)

| (| Mouse_Room_1 := (when Z_Mvt_Mouse_2)

default (false when Z_Mvt_Mouse_3)

default Z_Mouse_Room_1

| Z_Mouse_Room_1 := Mouse_Room_1$1 |)

| Mouse_Room_1 ^= Mouse_Room_0

|)

Table 7: Specification of the states of the rooms

The control objectives are specified by another process.
Table (8) describes this specification. We first introduce the
signals cat mouse room i, (i=0,...,4) which are true when
the cat and the mouse are both in room i. Then, the boolean
error is true when one of the signals cat mouse room i
is true and it is false otherwise (in terms of automata, we
describe the set of states where objective 1 is violated). To
ensure the two objectives, we require Sigali to compute a
controller which ensures (i) the invariance of the set of states
where the boolean error is false (objective 1) and (ii) the
reachability of the cat and mouse initial positions (objective
2).

(| (| Cat_Mouse_Room_0:= when(Z_Cat_Room_0 and Z_Mouse_Room_0)

| ....... |)

| (| Error:= Cat_Mouse_Room_0 default Cat_Mouse_Room_1

default Cat_Mouse_Room_2 default Cat_Mouse_Room_3

default Cat_Mouse_Room_4 default false |)

| (| Initial_States:= Z_Cat_Room_2 and Z_Mouse_Room_4 |)

| (| Sigali(S_Security(False(Error)))

| Sigali(S_Reachability(True(Initial_States)))

|)

|)

Table 8: Specification of the control objectives

Controller synthesis and simulation of the results:
The global system (the model process, and the control ob-
jectives process) is automatically translated by the compiler
in a PDS. Once the controller has been synthesized by Si-

gali it is integrated in the Signal environment as explained
in Section 2.3.1. After the compilation of this new Signal

program, a graphical simulation is obtained (see Figure (4)).

(a) The
events

(b) The simulator in-
terface

(c) The
commands

Figure 4: Cat and Mouse Problem Simulation

Figure (4(a)) represents the uncontrollable events (i.e.,
the cat and mouse movements). Figure (4(c)) represents
the commands (i.e., the opening and closing requests). The
choice of the user is limited by the resolver in order to ensure
the two objectives. Figure (4(b)) represents the graphical
interface of simulation.

3.2 The AGV example

We now consider a flexible manufacturing cell composed by
five workstations, as shown in Figure (5). Five Automated
Guided Vehicles (AGV’s) transport materials between pairs
of stations, passing through conflict zones shared with other
AGV’s. We assume that the controller receives signals from
the AGV’s indicating their current positions in the manu-
facturing cell and that we can stop the AGV’s before they
enter in some conflict zones (Ci transitions in Figure (5)).
The control synthesis problem is to coordinate the move-

Figure 5: The manufacturing cell

ment of the various AGV’s in order to avoid collisions in the
conflict zones.

Specification in Signal: The global system has
been decomposed into 10 sub-systems, respectively coding
the 5 work-stations, and the 5 AGV circuits (processes



Work Station i and Agv i). The movement in each sub-
system is cadenced by a clock, possibly different for each sub-
system. Synchronizations between the different subsystems
are performed through exchanged messages, coding the state
of each subsystem. To realize the control objective, we define
the states of the system where two AGV’s are at the same
time in a common zone. For example, the signal Conflic-
t area 1 is a boolean which is true when the AGV 1 and the
AGV 2 are both in the conflict zone 1. Each conflict zone can
be specified in Signal in this manner. The boolean Con-
flict area is true when one of the Conflict area i is true,
it is false otherwise. It corresponds to the forbidden states
(i.e., the states where two AGV’s share a conflict zone). We
also add in the Signal program the control objectives (Si-
gali(S Security(False(Conflict Area)))). Once the PDS
is obtained, the controller is computed and incorporated in
the new Signal program.

Simulation: Even if an animated simulation (similar to
the cat and mouse simulation) has been realized, we choose
to show here a simulation using the generic Signal processes
dedicated to the simulation.

Figure 6: Simulation of the AGV’s synthesis problem

In this simulation, the position of an AGV (AGV i) in
each subsystem is encoded by an integer corresponding to
the current position of the AGV in the sub-Petri net. The
scopes WST i code the positions inside the corresponding
workstation and finally the scopes Zone i are integers which
are equal to 1 when two AGV’s are in zone number i at the
same time, and equal to 0 otherwise.

4 Conclusion

In this paper, we have presented the integration of a con-
troller synthesis methodology in the Signal environment
through the description of a tool dedicated to the algebraic
computation of a controller and then to the simulation of the
controlled system.

The specification of the system is done in a discrete event
framework using the language Signal. In order to facilitate
this step, the user can use a block-diagram graphic interface.

This environment allows the user to have graphical and tex-
tual representations of the language structures. These rep-
resentations may be used together during the building or the
“reading” of the program. The formal verification of a Sig-

nal program, as well as the automatic controller design are
performed using a formal calculus system named Sigali.

Finally, in order to facilitate the use of the controller
synthesis methodology, we have added in the Signal lan-
guage the possibility of directly expressing the control ob-
jectives (and the verification objectives) in the initial Sig-

nalprogram. Therefore, it is not necessary for the user to
know (or to understand) the mathematical framework that
is necessary to perform the computation of the controller.
Moreover, as the result is an equation encoded by a BDD,
we have developed a simulator in the Signal environment
which allows the user to visualize the new behavior of the
controlled system.
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