Digital System Design

Objectives:

1. Understanding decimal, binary, octal and hexadecimal numbers.
2. Counting in decimal, binary, octal and hexadecimal systems.
3. Convert a number from one number system to another system.
4. Advantage of octal and hexadecimal systems.

1. Understanding decimal, binary, octal and hexadecimal numbers

Decimal number systems:

\checkmark Decimal numbers are made of decimal digits:
(0,1,2,3,4,5,6,7,8,9
\qquad 10-base system)
\checkmark The decimal system is a "positional-value system" in which the value of a digit depends on its position.

Examples:

* $453 \rightarrow 4$ hundreds, 5 tens and 3 units.
$\checkmark 4$ is the most weight called "most significant digit" MSD.
$\checkmark 3$ carries the last weight called 'least significant digit" LSD.
* number of items that a decimal number represent:

$$
9261=\left(9 \times 10^{3}\right)+\left(2 \times 10^{2}\right)+\left(6 \times 10^{1}\right)+\left(1 \times 10^{0}\right)
$$

* The decimal fractions:
$3267.317=\left(3 \times 10^{3}\right)+\left(2 \times 10^{2}\right)+\left(6 \times 10^{1}\right)+\left(7 \times 10^{0}\right)+\left(3 \times 10^{-1}\right)+$ $\left(6 \times 10^{-2}\right)+\left(1 \times 10^{-3}\right)$
\checkmark Decimal point used to separate the integer and fractional part of the number.
\checkmark Formal notation $\rightarrow(3267.317)_{10}$ •
\checkmark Decimal position values of powers of (10).

Positional values "weights"

10^{4}	10^{3}	10^{2}	10^{1}	10^{0}		10^{-1}	10^{-2}	10^{-3}	10^{-4}
$\boldsymbol{4}$	$\boldsymbol{4}$	$\mathbf{4}$	$\mathbf{4}$	$\mathbf{4}$		4	4	\uparrow	4
2	7	7	8	3	.	2	3	4	5
MSD									LSD

Binary numbers:

- Base-2 system (0 or 1).
- We can represent any quantity that can be represented in decimal or other number systems using binary numbers.
- Binary number is also positional-value system (power of $\mathbf{2}$).

Example: 1101.011

Notes:

- To find the equivalent of binary numbers in decimal system, we simply take the sum of products of each digit value $(0,1)$ and its positional value:

Example:(1011.101)2

$=\left(1 \times 2^{3}\right)+\left(0 \times 2^{2}\right)+\left(1 \times 2^{1}\right)+\left(1 \times 2^{0}\right)+\left(1 \times 2^{-1}\right)+\left(0 \times 2^{-2}\right)+\left(1 \times 2^{-3}\right)$
$=8+0+2+1+\frac{1}{2}+0+\frac{1}{8}=11.625_{10}$
In general, any number (decimal, binary, octal and hexadecimal) is simply the sum of products of each digit value and its positional value.

- In binary system, the term binary digit is often called bit.
- Binary values at the output of digital system must be converted to decimal values for presentation to the outside world.
- Decimal values must be converted into the digital system.
- Group of 8 bits are called a byte.

Octal Number System

- octal number system has a base of $8:(\mathbf{0 , 1}, \mathbf{2}, \mathbf{3}, 4,5,6,7)$

Examples:

. $(1101.011)_{8}$

- $(4327)_{8}$
$=\left(4 \times 8^{3}\right)+\left(3 \times 8^{2}\right)+\left(2 \times 8^{1}\right)+\left(7 \times 8^{0}\right)$
- 372.36_{8}
$=\left(3 \times 8^{2}\right)+\left(7 \times 8^{1}\right)+\left(2 \times 8^{0}\right)+\left(3 \times 8^{-1}\right)+\left(6 \times 8^{-2}\right)$

Note: octal number don't use digits 8 or 9

Hexadecimal number system (16-base)

\checkmark Hexadecimal numbers are made of 16 digits, it uses the digits $\mathbf{0}$ through $\mathbf{9}$ plus the letters $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}, \mathbf{F}$.

Examples:

```
    - (A29)}\mp@subsup{)}{16}{
=(10\times162) +(2\times1\mp@subsup{6}{}{1})+(9\times1\mp@subsup{6}{}{0})=(2601)}\mp@subsup{)}{10}{
    - (2c7.38)
=(2\times16}\mp@subsup{6}{}{2})+(12\times1\mp@subsup{6}{}{1})+(7\times1\mp@subsup{6}{}{0})+(7\times1\mp@subsup{6}{}{0})+(3\times1\mp@subsup{6}{}{-1})+(8\times1\mp@subsup{6}{}{-2}
```

Note:
\checkmark For hex numbers the digits $10,11,12,13,14,15$ are represented by $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}, \mathbf{f}$ as shown in the following table:

Number Systems			
Decimal	Binary	Octal	Hex
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	B
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

2. Counting in decimal ,binary, octal and hexadecimal systems

Decimal counting:

- Start with 0 in the units position and take each digit in progression until reach 9.
- Add 1 to the next higher position and start over 0 in the first position.
- Continue process until the count 99.
- Add 1 to the third position and start over with 0 in the first position.

Note: the largest number that can be represented using 8 bits is

$$
2^{n}-1=2^{8}-1=255_{10}=11111111_{2}
$$

Counting in hexadecimal:

\checkmark For \mathbf{n} hex digit positions, we can count for decimal $\mathbf{0}$ to $\mathbf{1 6}^{\mathbf{n}} \mathbf{- 1}$, for a total of 16^{n} different values.
\checkmark The general representation for a number in the form:

$$
a_{4} a_{3} a_{2} a_{1} a_{0} \cdot a_{-1} a_{-2} a_{-3}
$$

Using r-base/radix number system, in which the number of radix r can be written as

$$
\begin{aligned}
\mathbf{n}_{r}= & +a_{4} \cdot r^{4}+a_{3} \cdot r^{3}+a_{2} \cdot r^{2}+a_{1} \cdot r^{1} \\
& +a_{0} \cdot r^{0}+a_{-1} \cdot r^{-1}+a_{-2} \cdot r^{-2}+\ldots
\end{aligned}
$$

Numbering System	Radix
Decimal	$\mathbf{r}=10$
Binary	$\mathbf{r}=2$
Octal	$\mathbf{r}=8$
Hex	$\mathbf{r}=16$

Counting in binary system: (counting range)

\checkmark Using \mathbf{n} bits, we can represent decimal numbers ranging from $\mathbf{0}$ to $\mathbf{2}^{\mathbf{n}} \mathbf{- 1}$, a total of $\mathbf{2}^{\mathbf{n}}$ different numbers.

Examples:

- for $\mathrm{n}=4$ bits

We can count from $\mathbf{0 0 0 0}$ to $\mathbf{1 1 1 1}_{2}$ (see table above) which is 0_{10} to 15_{10} (16 different numbers).

- How many bits are needed to represent decimal values ranging from 0 to 12500?

Answer:
= With $\mathbf{1 3}$ bits, we can count from $\mathbf{0}$ to $2^{13}-1=8191$ (not enough)

- With $\mathbf{1 4}$ bits, we can count from $\mathbf{0}$ to $\mathbf{2}^{\mathbf{1 4}} \mathbf{- 1}=\mathbf{1 6 . 3 8 3}$ (okay)
- What is the total range of decimal values that can be represented in 8 bits?

Answer:
For $\mathbf{N}=\mathbf{8}$, we can represent form $\mathbf{0}$ to $\mathbf{2}^{\mathbf{8}} \mathbf{- 1}=\mathbf{2 5 5}$.

