
1 VECTOR SPACES AND SUBSPACES

What is a vector? Many are familiar with the concept of a vector as:

• Something which has magnitude and direction.

• an ordered pair or triple.

• a description for quantities such as Force, velocity and acceleration.

Such vectors belong to the foundation vector space - Rn - of all vector spaces. The

properties of general vector spaces are based on the properties of Rn. It is therefore

helpful to consider briefly the nature of Rn.

1.1 The Vector Space Rn

Definitions

• If n is a positive integer, then an ordered n-tuple is a sequence of n real

numbers (a1, a2, . . . , an). The set of all ordered n-tuples is called n-space and

is denoted by Rn.

When n = 1 each ordered n-tuple consists of one real number, and so R may be

viewed as the set of real numbers. Take n = 2 and one has the set of all 2-tuples

which are more commonly known as ordered pairs. This set has the geometrical

interpretation of describing all points and directed line segments in the Cartesian x−y

plane. The vector space R3, likewise is the set of ordered triples, which describe all

points and directed line segments in 3-D space.

In the study of 3-space, the symbol (a1, a2, a3) has two different geometric in-

terpretations: it can be interpreted as a point, in which case a1, a2 and a3 are the

coordinates, or it can be interpreted as a vector, in which case a1, a2 and a3 are

the components. It follows, therefore, that an ordered n-tuple (a1, a2, . . . , an) can be
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viewed as a “generalized point” or a “generalized vector” - the distinction is math-

ematically unimportant. Thus, we can describe the 5-tuple (1, 2, 3, 4, 5) either as a

point or a vector in R5.

Definitions

• Two vectors u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) in Rn are called equal

if

u1 = v1, u2 = v2, . . . , un = vn

• The sum u + v is defined by

u + v = (u1 + v1, u2 + v2, . . . , un + vn)

• Let k be any scalar, then the scalar multiple ku is defined by

ku = (ku1, ku2, . . . , kun)

• These two operations of addition and scalar multiplication are called the stan-

dard operations on Rn.

• The zero vector in Rn is denoted by 0 and is defined to be the vector

0 = (0, 0, . . . , 0)

• The negative (or additive inverse) of u is denoted by -u and is defined by

−u = (−u1,−u2, . . . ,−un)

• The difference of vectors in Rn is defined by

v − u = v + (−u)

The most important arithmetic properties of addition and scalar multiplication

of vectors in Rn are listed in the following theorem. This theorem enabes us to

manipulate vectors in Rn without expressing the vectors in terms of componenets.

2



Theorem 1.1. If u = (u1, u2, . . . , un),v = (v1, v2, . . . , vn), and w = (w1, w2, . . . , wn)

are vectors in Rn and k and l are scalars, then:

1. u + v = v + u

2. u + (v + w) = (u + v) + w

3. u + 0 = 0 + u = u

4. u + (−u) = 0; that is, u− u = 0

5. k(lu) = (kl)u

6. k(u + v) = ku + kv

7. (k + l)u = ku + lu

8. 1u = u

1.2 Generalized Vector Spaces

The time has now come to generalize the concept of a vector. In this section a set of

axioms are stated, which if satisfied by a class of objects, entitles those objects to be

called “vectors”. The axioms were chosen by abstracting the most important prop-

erties (theorem 1.1). of vectors in Rn; as a consequence, vectors in Rn automatically

satisfy these axioms. Thus, the new concept of a vector, includes many new kinds

of vector without excluding the “common vector”. The new types of vectors include,

among other things, various kinds of matrices and functions.

Definition

A vector space V over a field F is a nonempty set on which two operations are

defined - addition and scalar multiplication. Addition is a rule for associating with

each pair of objects u and v in V an object u + v, and scalar multiplication is a rule

for associating with each scalar k ∈ F and each object u in V an object ku such that
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1. If u,v ∈ V , then u + v ∈ V .

2. If u ∈ V and k ∈ F, then ku ∈ V .

3. u + v = v + u

4. u + (v + w) = (u + v) + w

5. There is an object 0 in V, called a zero vector for V , such that u+0 = 0+u = u

for all u in V .

6. For each u in V , there is an object -u in V , called the additive inverse of u,

such that u + (−u) = −u + u = 0;

7. k(lu) = (kl)u

8. k(u + v) = ku + kv

9. (k + l)u = ku + lu

10. 1u = u

Remark The elements of the underlying field F are called scalars and the elements

of the vector space are called vectors. Note also that we often restrict our attention

to the case when F = R or C.

Examples of Vector Spaces

A wide variety of vector spaces are possible under the above definition as illus-

trated by the following examples. In each example we specify a nonempty set of

objects V . We must then define two operations - addition and scalar multiplication,

and as an exercise we will demonstrate that all the axioms are satisfied, hence entitling

V with the specified operations, to be called a vector space.

1. The set of all n-tuples with entries in the field F, denoted Fn (especially note

Rn and Cn).
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2. The set of all m× n matrices with entries from the field F, denoted Mm×n(F).

3. The set of all real-valued functions defined on the real line (−∞,∞).

4. The set of polynomials with coefficients from the field F, denoted P (F).

5. (Counter example) Let V = R2 and define addition and scalar multiplication

oparations as follows: If u = (u1, u2) and v = (v1, v2), then define

u + v = (u1 + v1, u2 + v2)

and if k is any real number, then define

ku = (ku1, 0).

1.2.1 Some Properties of Vectors

It is important to realise that the following results hold for all vector spaces. They

provide a useful set of vector properties.

Theorem 1.2. If u, v, w ∈ V (a vector space) such that u + w = v + w, then u = v.

Corollary 1.1. The zero vector and the additive inverse vector (for each vector) are

unique.

Theorem 1.3. Let V be a vector space over the field F, u ∈ V , and k ∈ F. Then the

following statement are true:

(a) 0u = 0

(b) k0 = 0

(c) (−k)u = −(ku) = k(−u)

(d) If ku = 0, then k = 0 or u = 0.
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1.2.2 Quiz

True or false?

(a) Every vector space contains a zero vector.

(b) A vector space may have more than one zero vector.

(c) In any vector space, au = bu implies a = b.

(d) In any vector space, au = av implies u = v.

1.3 Subspaces

It is possible for one vector space to be contained within a larger vector space. This

section will look closely at this important concept.

Definitions

• A subset W of a vector space V is called a subspace of V if W is itself a vector

space under the addition and scalar multiplication defined on V .

In general, all ten vector space axioms must be verified to show that a set W with

addition and scalar multiplication forms a vector space. However, if W is part of a

larget set V that is already known to be a vector space, then certain axioms need not

be verified for W because they are inherited from V . For example, there is no need

to check that u + v = v + u (axiom 3) for W because this holds for all vectors in V

and consequently holds for all vectors in W . Likewise, axioms 4, 7, 8, 9 and 10 are

inherited by W from V . Thus to show that W is a subspace of a vector space V (and

hence that W is a vector space), only axioms 1, 2, 5 and 6 need to be verified. The

following theorem reduces this list even further by showing that even axioms 5 and 6

can be dispensed with.

Theorem 1.4. If W is a set of one or more vectors from a vector space V , then W

is a subspace of V if and only if the following conditions hold.

(a) If u and v are vectors in W , then u + v is in W .
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(b) If k is any scalar and u is any vector in W , then ku is in W .

Proof. If W is a subspace of V , then all the vector space axioms are satisfied; in

particular, axioms 1 and 2 hold. These are precisely conditions (a) and (b).

Conversely, assume conditions (a) and (b) hold. Since these conditions are vector

space axioms 1 and 2, it only remains to be shown that W satisfies the remaining

eight axioms. Axioms 3, 4, 7, 8, 9 and 10 are automatically satisfied by the vectors

in W since they are satisfied by all vectors in V . Therefore, to complete the proof,

we need only verify that Axioms 5 and 6 are satisfied by vectors in W .

Let u be any vector in W . By condition (b), ku is in W for every scalar k. Setting

k = 0, it follows from theorem 1.3 that 0u = 0 is in W , and setting k = −1, it follows

that (−1)u = −u is in W .

Remarks

• Note that a consequence of (b) is that 0 is an element of W .

• A set W of one or more vectors from a vector space V is said to be closed

under addition if condition (a) in theorem 1.4 holds and closed under scalar

multiplication if condition (b) holds. Thus, theorem 1.4 states that W is a

subspace of V if and only if W is closed under addition and closed under scalar

multiplication.

Examples of Subspaces

1. A plane through the origin of R3 forms a subspace of R3. This is evident

geometrically as follows: Let W be any plane through the origin and let u and

v be any vectors in W other than the zero vector. Then u + v must lie in W

because it is the diagonal of the parallelogram determined by u and v, and ku

must lie in W for any scalar k because ku lies on a line through u. Thus, W is

closed under addition and scalar multiplication, so it is a subspace of R3.
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2. A line through the origin of R3 is also a subspace of R3. It is evident geomet-

rically that the sum of two vectors on this line also lies on the line and that a

scalar multiple of a vector on the line is on the line as well. Thus, W is closed

under addition and scalar multiplication, so it is a subspace of R3.

3. Let n be a positive integer, and let W consist of all functions expressible in the

form

p(x) = a0 + a1x + · · ·+ anx
n

where a0, . . . , an belong to some field F. Thus, W consists of the zero function

together with all polynomials in F of degree n or less. The set W is a subspace

of P (F) (example 4 on page 5), and if F = R it is also a subspace of the vector

space of all real-valued functions (discussed in example 3 on page 5).

To see this, let p and q be the polynomials

p(x) = a0 + a1x + · · ·+ anx
n

and

q(x) = b0 + b1x + · · ·+ bnx
n

Then

(p + q)(x) = p(x) + q(x) = (a0 + b0) + (a1 + b1)x + · · ·+ (an + bn)xn

and

(kp)(x) = kp(x) = (ka0) + (ka1)x + · · ·+ (kan)xn

These functions have the form given above, so p + q and kp lie in W . This

vector space W is denoted Pn(F).

4. The transpose AT of an m× n matrix A is the n×m matrix obtained from A

by interchanging rows and columns. A symmetric matrix is a square matrix A

such that AT = A. The set of all symmetric matrices in Mn×n(F) is a subspace

of Mn×n(F).
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5. The trace of an n × n matrix A, denoted tr(A), is the sum of the diagonal

entries of A. The set of n× n matrices having trace equal to zero is a subspace

of Mn×n(F).

1.3.1 Operations on Vector Spaces

Definitions

• The addition of two subsets U and V of a vector space is defined by:

U + V = {u + v|u ∈ U,v ∈ V }

• The intersection ∩ of two subsets U and V of a vector space is defined by:

U ∩ V = {w|w ∈ U and w ∈ V }

• A vector space W is called the direct sum of U and V , denoted U ⊕V , if U and

V are subspaces of W with U ∩ V = {0} and U + V = W .

The following theorem shows how we can form a new subspace from other ones.

Theorem 1.5. Any intersection or sum of subspaces of a vector space V is also a

subspace of V .

1.3.2 Quiz

True or false?

(a) If V is a vector space and W is a subset of V that is also a vector space, then W

is a subspace of V .

(b) The empty set is a subspace of every vector space.

(c) If V is a vector space other than the zero vector space, then V contains a subspace

W such that W 6= V .

(d) The intersection of any two subsets of V is a subspace of V .

(e) Any union of subspaces of a vector space V is a subspace of V .
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1.4 Linear Combinations of Vectors and Systems of Linear

Equations

Have m linear equations in n variables:

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...

am1x1 + am2x2 + · · ·+ amnxn = bm

Write in matrix form: Axxx = bbb.

A = [aij] is the m× n coefficient matrix.

xxx =


x1

...

xn

 is the column vector of unknowns, and bbb =


b1

...

bm

 is the column

vector of RHS.

Note: aij, bj ∈ R or C.

1.4.1 Gaussian Elimination

To solve Axxx = bbb:

write augmented matrix: [A|bbb].

1. Find the left-most non-zero column, say column j.

2. Interchange top row with another row if necessary, so top element of column j is

non-zero. (The pivot.)

3. Subtract multiples of row 1 from all other rows so all entries in column j below

the top are then 0.

4. Cover top row; repeat 1 above on rest of rows.

Continue until all rows are covered, or until only 00 . . . 0 rows remain.
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Result is a triangular system, easily solved by back substitution: solve the last

equation first, then 2nd last equation and so on.

1.4.2 Example

Use Gaussian elimination to solve:

x3 − x4 = 2

−9x1 − 2x2 + 6x3 − 12x4 = −7

3x1 + x2 − 2x3 + 4x4 = 2

2x3 = 6

1.4.3 Definition (row echelon form)

A matrix is in row echelon form (r.e.f.) if each row after the first starts with more

zeros than the previous row (or else rows at bottom of matrix are all zeros).

The Gauss algorithm converts any matrix to one in row echelon form. The 2

matrices are equivalent, that is, they have the same solution set.

1.4.4 Elementary row operations

1. ri ↔ rj : swap rows i and j.

2. ri → ri − crj : replace row i with

(row i minus c times row j).

3. ri → cri :

replace row i with c times row i, where c 6= 0.

The Gauss algorithm uses only 1 and 2.

1.4.5 Possible solutions for Axxx = bbb

Consider the r.e.f. of [A|bbb]. Then we have three possibilities:
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(1) Exactly one solution; here the r.e.f. gives each variable a single value, so the

number of variables, n, equals the number of non-zero rows in the r.e.f.

(2) No solution; when one row of r.e.f. is (0 0 . . . d) with d 6= 0. We can’t solve

0x1 + 0x2 + · · · + 0xm = d if d 6= 0; it says 0 = d. In this case the system is said to

be inconsistent.

(3) Infinitely many solutions; here the number of rows of the r.e.f. is less than

the number of variables.

Note that a homogeneous system has bbb = 000, i.e., all zero RHS. Then we always

have at least the trivial solution, xi = 0, 1 ≤ i ≤ n.

1.4.6 Examples

x1 + x2 − x3 = 0

2x1 − x2 = 0

4x1 + x2 − 2x3 = 0

x2 − 2x3 + 4x4 = 2

2x2 − 3x3 + 7x4 = 6

x3 − x4 = 2

1.4.7 Different right hand sides

To solve Axxx = bbbj, for j = 1, . . . , r, for r different sets of right hand sides bbbj:

Form a big augmented matrix [A|bbb1bbb2 . . . bbbr] and find its r.e.f. [U |bbb′1bbb
′
2 . . . bbb′r]. So

U will be a r.e.f. corresponding to A. Then solve each of the systems Uxxx = bbb′j,

j = 1, 2, . . . , r, by back substitution.
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1.4.8 Special case: finding A−1 (if it exists)

If A is n×n and it has an inverse, then solving Axxx = eeej (where eeej is the n×1 column

with 1 in jth place and 0 elsewhere) gives jth column of A−1.

So we find r.e.f. of [A|eee1eee2 . . . eeen], i.e., determine the r.e.f. of [A|I] where I is n×n

identity matrix.

Once we have found the r.e.f. of [A|I] to be [U |∗], we then use row operations to

convert it to [I|D], so D = A−1.

If the last row of U is all zeros, A has no inverse.

Note that if A and I are square, AC = I implies CA = I and conversely.

If such a matrix C exists, it is unique. We write C = A−1, and we say A is

non-singular or invertible.

1.4.9 Example

Does A =


1 −1 4

1 0 −2

2 −2 10

 have an inverse?

If so, find it.

1.4.10 Linear combinations

Definitions

• A vector w is called a linear combination of the vectors v1, v2, . . . , vr if it can

be expressed in the form

w = k1v1 + k2v2 + · · ·+ krvr

where k1, k2, . . . , kr are scalars.

Example
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1. Consider the vectors u = (1, 2,−1) and v = (6, 4, 2) in R3. Show that w =

(9, 2, 7) is a linear combination of u and v and that w′ = (4,−1, 8) is not a

linear combination of u and v.

1.4.11 Spanning

If v1,v2, . . . ,vr are vectors in a vector space V , then generally some vectors in V may

be linear combinations of v1,v2, . . . ,vr and others may not. The following theorem

shows that if a set W is constructed consisting of all those vectors that are expressible

as linear combinations of v1,v2, . . . ,vr, then W forms a subspace of V .

Theorem 1.6. If v1,v2, . . . ,vr are vectors in a vector space V , then:

(a) The set W of all linear combinations of v1,v2, . . . ,vr is a subspace of V.

(b) W is the smallest subspace of V that contains v1,v2, . . . ,vr every other subspace

of V that contains v1,v2, . . . ,vr must contain W

Proof. (a) To show that W is a subspace of V , it must be proven that it is closed

under addition and scalar multiplication. There is at least one vector in W ,

namely, 0, since 0 = 0v1 + 0v2 + · · ·+ 0vr. If u and v are vectors in W , then

u = c1v1 + c2v2 + · · ·+ crvr

and

v = k1v1 + k2v2 + · · ·+ krvr

where c1, c2, . . . , cr, k1, k2, . . . , kr are scalars. Therefore

u + v = (c1 + k1)v1 + (c2 + k2)v2 + · · ·+ (cr + kr)vr

and, for any scalar k,

ku = (kc1)v1 + (kc2)v2 + · · ·+ (kcr)vr

Thus, u + v and ku are linear combinations of v1,v2, . . . ,vr and consequently

lie in W . Therefore, W is closed under addition and scalar multiplication.

14



(b) Each vector vi is a linear combination of v1,v2, . . . ,vr since we can write

vi = 0v1 + 0v2 + · · ·+ 1vi + · · ·+ 0vr

Therefore, the subspace W contains each of the vectors v1,v2, . . . ,vr. Let W ′

be any other subspace that contains v1,v2, . . . ,vr. Since W ′ is closed under

addition and scalar multiplication, it must contain all linear combinations of

v1,v2, . . . ,vr. Thus W ′ contains each vector of W .

Definitions

• If S = {v1,v2, . . . ,vr} is a set of vectors in a vector space V , then the subspace

W of V consisting of all linear combinations of the vectors in S is called the

space spanned by v1,v2, . . . ,vr, and it is said that the vectors v1,v2, . . . ,vr

span W . To indicate that W is the space spanned by the vectors in the set

S = {v1,v2, . . . ,vr} the below notation is used.

W = span(S) or W = span{v1,v2, . . . ,vr}

Examples The polynomials 1, x, x2, . . . , xn span the vector space Pn defined previ-

ously since each polynomial p in Pn can be written as

p = a0 + a1x + · · ·+ anx
n

which is a linear combination of 1, x, x2, . . . , xn. This can be denoted by writing

Pn = span{1, x, x2, . . . , xn}

Spanning sets are not unique. For example, any two noncolinear vectors that lie

in the x− y plane will span the x− y plane. Also, any nonzero vector on a line will

span the same line.
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Theorem 1.7. Let S = {v1,v2, . . . ,vr} and S ′ = {w1,w2, . . . ,wk} be two sets of

vectors in a vector space V . Then

span(S) = span(S ′)

if and only if each vector in S is a linear combination of those in S ′ and (conversely)

each vector in S ′ is a linear combination of those in S.

Proof. If each vector in S is a linear combination of those in S ′ then

span(S) ⊆ span(S ′)

and if each vector in S ′ is a linear combination of those in S then

span(S ′) ⊆ span(S)

and therefore

span(S) = span(S ′).

If

vi 6= a1w1 + a2w2 + · · ·+ anwn

for all possible a1, a2, . . . , an then

vi ∈ span(S) but vi 6∈ span(S ′)

therefore

span(S) 6= span(S ′)

and vice versa.

1.4.12 Quiz

True or false?

(a) 000 is a linear combination of any non-empty set of vectors.

(b) If S ⊆ V (vector space V ), then span(S) equals the intersection of all subspaces

of V that contain S.
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1.5 Linear Independence

In the previous section it was stated that a set of vectors S spans a given vector space

V if every vector in V is expressible as a linear combination of the vectors in S. In

general, it is possible that there may be more than one way to express a vector in V

as a linear combination of vectors in a spanning set. This section will focus on the

conditions under which each vector in V is expressible as a unique linear combination

of the spanning vectors. Spanning sets with this property play a fundamental role in

the study of vector spaces.

Definitions If S = {v1, v2, . . . , vr} is a nonempty set of vectors, then the vector

equation

k1v1 + k2v2 + · · ·+ krvr = 0

has at least one solution, namely

k1 = 0, k2 = 0, . . . , kr = 0

If this is the only solution, then S is called a linearly independent set. If there are

other solutions, then S is called a linearly dependent set.

Examples

1. If v1 = (2,−1, 0, 3), v2 = (1, 2, 5,−1) and v3 = (7,−1, 5, 8), then the set of

vectors S = {v1,v2,v3} is linearly dependent, since 3v1 + v2 − v3 = 0.

2. The polynomials

p1 = 1− x, p2 = 5 + 3x− 2x2, p3 = 1 + 3x− x2

form a linearly dependent set in P2 since 3p1 − p2 + 2p3 = 0

3. Consider the vectors i = (1, 0, 0), j = (0, 1, 0),k = (0, 0, 1) in R3. In terms of

components the vector equation

k1i + k2j + k3k = 0
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becomes

k1(1, 0, 0) + k2(0, 1, 0) + k3(0, 0, 1) = (0, 0, 0)

or equivalently,

(k1, k2, k3) = (0, 0, 0)

Thus the set S = {i, j,k} is linearly independent. A similar argument can be

used to extend S to a linear independent set in Rn.

4. In M2×3(R), the set
 1 −3 2

−4 0 5

 ,

 −3 7 4

6 −2 −7

 ,

 −2 3 11

−1 −3 2


is linearly dependent since

5

 1 −3 2

−4 0 5

+3

 −3 7 4

6 −2 −7

−2

 −2 3 11

−1 −3 2

 =

 0 0 0

0 0 0

 .

The following two theorems follow quite simply from the definition of linear inde-

pendence and linear dependence.

Theorem 1.8. A set S with two or more vectors is:

(a) Linearly dependent if and only if at least one of the vectors in S is expressible

as a linear combination of the other vectors in S.

(b) Linearly independent if and only if no vector in S is expressible as a linear

combination of the other vectors in S.

Example

1. Recall that the vectors

v1 = (2,−1, 0, 3), v2 = (1, 2, 5,−1), v3 = (7,−1, 5, 8)
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were linear dependent because

3v1 + v2 − v3 = 0.

It is obvious from the equation that

v1 =
−1

3
v2 +

1

3
v3, v2 = −3v1 + 1v3, v3 = 3v1 + 1v2

Theorem 1.9. (a) A finite set of vectors that contains the zero vector is linearly

dependent.

(b) A set with exactly two vectors is linearly independent if and only if neither vector

is a scalar multiple of the other.
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2 BASIS AND DIMENSION

A line is thought of as 1-Dimensional, a plane 2-Dimensional, and surrounding space

as 3-Dimensional. This section will attempt to make this intuitive notion of dimension

precise and extend it to general vector spaces.

2.1 Coordinate systems of General Vector Spaces

A line is thought of as 1-Dimensional because every point on that line can be specified

by 1 coordinate. In the same way a plane is thought of as 2 Dimensional because

every point on that plane can be specified by 2 coordinates and so on. What defines

this coordinate system? The most common form of defining a coordinate system is

the use of coordinate axes. In the case of the plane the x and y axes are used most

frequently. But there is also a way of specifying the coordinate system with vectors.

This can be done by replacing each axis with a vector of length one that points in

the positive direction of the axis. In the case of the x− y plane the x and y-axes are

replaced by the well known unit vectors i and j respectively. Let O be the origin of

the system and P be any point in the plane. The point P can be specified by the

vector OP . Every vector, OP can be written as a linear combination of i and j:

OP = ai + bj

The coordinates of P , corresponding to this coordinate system, are (a, b).

Informally stated, vectors such as i and j that specify a coordinate system are

called “basis vectors” for that system. Although in the preceding discussion our

basis vectors were chosen to be of unit length and mutually perpendicular this is

not essential. As long as linear combinations of the vectors chosen are capable of

specifiying all points in the plane. In our example this only requires that the two

vectors are not colinear. Different basis vectors however do change the coordinates of

a point, as the following example demonstrates.
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Example Let S = {i, j}, U = {i, 2j} and V = {i + j, j}. Let the sets S,U and V be

three sets of basis vectors. Let P be the point i + 2j. The coordinates of P relative

to each set of basis vectors is:

S → (1, 2)

U → (1, 1)

T → (1, 1)

The following definition makes the preceding ideas more precise and enables the

extension of a coordinate system to general vector spaces.

Definition

• If V is any vector space and S = {v1,v2, . . . ,vn} is a set of vectors in V , then

S is called a basis for V if the following two conditions hold:

(a) S is linearly independent

(b) S spans V

A basis is the vector space generalization of a coordinate system in 2-space and

3-space. The following theorem will aid in understanding how this is so.

Theorem 2.1. If S = {v1,v2, . . . ,vn} is a basis for a vector space V , then every

vector v in V can be expressed in the form v = c1v1 + c2v2 + · · · + cnvn in exactly

one way.

Proof. Since S spans V , it follows from the definition of a spanning set that every

vector in V is expressible as a linear combination of the vectors in S. To see that

there is only one way to express a vector as a linear combination of the vectors in S,

suppose that some vector v can be written as

v = c1v1 + c2v2 + · · ·+ cnvn

and also as

v = k1v1 + k2v2 + · · ·+ knvn
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Subtracting the second equation from the first gives

0 = (c1 − k1)v1 + (c2 − k2)v2 + · · ·+ (cn − kn)vn

Since the right side of this equation is a linear combination of vectors in S, the linear

independence of S implies that

(c1 − k1) = 0, (c2 − k2) = 0, . . . , (cn − kn)

That is

c1 = k1, c2 = k2, . . . , cn = kn

Thus the two expressions for v are the same.

Definitions

• If S = {v1,v2, . . . ,vn} is a basis for a vector space V , and

v = c1v1 + c2v2 + · · ·+ cnvn

is the expression for a vector v in terms of the basis S, then the scalars

c1, c2, . . . , cn are called the coordinates of v relative to the basis S. The vector

(c1, c2, . . . , cn) in Fn constructed from these coordinates is called the coordi-

nate vector of v relative to S; it is denoted by

[v]S = (c1, c2, . . . , cn)

• If v = [v]S then S is called the standard basis.

Remark It should be noted that coordinate vectors depend not only on the basis S

but also on the order in which the basis vectors are written; a change in the order

of the basis vectors results in a corresponding change of order for the entries in the

coordinate vectors.

Examples
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1. In example 3 of Section 1.5 it was shown that if

i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1)

then S = {i, j,k} is a linearly independent set in R3. This set also spans R3

since any vector v = (a, b, c) can be written as

v = (a, b, c) = a(1, 0, 0) + b(0, 1, 0) + c(0, 1, 1) = ai + bj + ck

Thus, S is a basis for R3. It is in fact a standard basis for R3. Looking at

the coefficients of i, j and k above, it follows that the coordinates of v relative

to the standard basis are a, b and c, so

[v]S = (a, b, c)

and so we have

[v]S = v.

2.2 Dimension of General Vector Spaces

Definition

• A nonzero vector space V is called finite-dimensional if it contains a finite

set of vectors {v1,v2, . . . ,vn} that forms a basis. If no such set exists, V is

called infinite-dimensional. In addition, the zero vector space is regarded as

finite-dimensional.

Examples

• The vector spaces Fn and Pn are both finite-dimensional.

• The vector space of all real valued functions defined on (−∞,∞) is infinite-

dimensional.

Theorem 2.2. If V is a finite-dimensional vector space and {v1,v2, . . . ,vn} is any

basis, then:
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(a) Every set with more than n vectors is linearly dependent.

(b) No set with fewer than n vectors spans V .

Proof. (a) Let S ′ = {w1,w2, . . . ,wm} be any set of m vectors in V , where m > n.

It remains to be shown that S ′ is linearly dependent. Since S = {v1,v2, . . . ,vn}

is a basis for V , each wi can be expressed as a linear combination of the vectors

in S, say:

w1 = a11v1 + a21v2 + · · ·+ an1vn

w2 = a12v1 + a22v2 + · · ·+ an2vn

...

wm = a1mv1 + a2mv2 + · · ·+ anmvn

To show that S ′ is linearly dependent, scalars k1, k2, . . . , kn must be found, not

all zero, such that

k1w1 + k2w2 + · · ·+ kmwm = 0

combining the above 2 systems of equations gives

(k1a11 + k2a12 + · · ·+ kma1m)v1

+ (k1a21 + k2a22 + · · ·+ kma2m)v2

. . .

+ (k1an1 + k2an2 + · · ·+ kmanm)vn = 0

Thus, from the linear independence of S, the problem of proving that S ′ is a

linearly dependent set reduces to showing there are scalars k1, k2, . . . , km, not

all zero, that satisfy

a11k1 + a12k2 + · · ·+ a1mkm = 0

a21k1 + a22k2 + · · ·+ a2mkm = 0

...
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an1k1 + an2k2 + · · ·+ anmkm = 0

As the system is homogenous and there are more unknowns than equations

(m > n), we have an infinite number of solutions, or in other words there are

non trivial solutions such that k1, k2, . . . , km are not all zero.

(b) Let S ′ = {w1,w2, . . . ,wm} be any set of m vectors in V , where m < n. It

remains to be shown that S ′ does not span V . The proof is by contradiction:

assume S ′ spans V . This leads to a contradiction of the linear dependence of

the basis S = {v1,v2, . . . ,vn} of V .

If S ′ spans V , then every vector in V is a linear combination of the vectors in

S ′. In particular, each basis vector vi is a linear combination of the vectors in

S ′, say

v1 = a11w1 + a21w2 + · · ·+ an1wm

v2 = a12w1 + a22w2 + · · ·+ an2wm

...

vn = a1nw1 + a2nw2 + · · ·+ amnwm

To obtain the contradiction it will be shown that there exist scalars k1, k2, . . . , kn

not all zero, such that

k1v1 + k2v2 + · · ·+ knvn = 0

Observe the similarity to the above two systems compared with those given in

the proof of (a). It can be seen that they are identical except that the w’s and

the v’s and the m’s and n’s have been interchanged. Thus the above system in

the same way again reduces to the problem of finding k1, k2, . . . , kn not all zero,

that satisfy

a11k1 + a12k2 + · · ·+ a1mkn = 0

a21k1 + a22k2 + · · ·+ a2mkn = 0
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...

am1k1 + am2k2 + · · ·+ amnkn = 0

As the system is homogenous and there are more unknowns than equations

(n > m), we have an infinite number of solutions, or in other words there

exist non trivial solutions such that k1, k2, . . . , km are not all zero. Hence the

contradiction.

The last theorem essentially states the following. Let S be a set with n vectors

which forms a basis for the vector space V . Let S ′ be another set of vectors in V

consisting of m vectors. If m is greater than n, S ′ cannot form a basis for V as the

vectors in S ′ cannot be linearly independent. If m is less than n, S ′ cannot form a

basis for V because it does not span V . Thus, theorem 2.2 leads directly into one of

the most important theorems in linear algebra.

Theorem 2.3. All bases for a finite-dimenstional vector space have the same number

of vectors.

And thus the concept of dimension is almost complete. All that is needed is a

definition.

Definition

• The dimension of a finite-dimensional vector space V , denoted by dim(V ), is

defined to be the number of vectors in a basis for V . In addition, the zero vector

space has dimension zero.

Examples

1. The dimensions of some common vector spaces are given below:

dim(Fn) = n

dim(Pn) = n + 1

dim(Mn×n(F)) = mn
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2. Determine a basis (and hence dimension) for the solution space of the homoge-

nous system:

2x1 + 2x2 − x3 + x5 = 0

−x1 − x2 + 2x3 − 3x4 + x5 = 0

x1 + x2 − 2x3 − x5 = 0

x3 + x4 + x5 = 0

2.3 Related Theorems

The remaining part of this section states theorems which illustrate the subtle relation-

ships among the concepts of spanning, linear independence, basis and dimension. In

many ways these theorems form the building blocks of other results in linear algebra.

Theorem 2.4. Plus/Minus Theorem. Let S be a nonempty set of vectors in a

vector space V .

(a) If S is a linearly independent set, and if v is a vector in V that is outside of

the span(S), then the set S ∪ {v} that results by inserting v is still linearly

independent.

(b) If v is a vector in S that is expressible as a linear combination of other vectors

in S, and if S − {v} denotes the set obtained by removing v from S, then S

and S − {v} span the same space: that is,

span(S) = span(S − {v})

A proof will not be included, but the theorem can be visualised in R3 as follows.

(a) Consider two linearly independent vectors in R3. These two vectors span a

plane. If you add a third vector to them that is not in the plane, then the three

vectors are still linearly independent and they span the entire domain of R3.
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(b) Consider three non-colinear vectors in a plane that form a set S. The set S

spans the plane. If any one of the vectors is removed from S to give S ′ it is

clear that S ′ still spans the plane. That is span(S) = span(S ′).

Theorem 2.5. If V is an n-dimensional vector space and if S is a set in V with

exactly n vectors, then S is a basis for V if either S spans V or S is linearly inde-

pendent.

Proof. Assume that S has exactly n vectors and spans V . To prove that S is a basis

it must be shown that S is a linearly independent set. But if this is not so, then

some vector v in S is a linear combination of the remaining vectors. If this vector is

removed from S, then it follows from the theorem 2.4(b) that the remaining set of

n-1 vectors still spans V . But this is impossible, since it follows from theorem 2.2(b),

that no set with fewer than n vectors can span an n-dimensional vector space. Thus,

S is linearly independent.

Assume S has exactly n vectors and is a linearly independent set. To prove that

S is a basis it must be shown that S spans V . But if this is not so, then there is some

vector v in V that is not in span(S). If this vector is inserted in S, then it follows

from the theorem 2.4(a) that this set of n+1 vectors is still linearly independent. But

this is impossible because it follows from theorem 2.2(a) that no set with more than n

vectors in an n-dimensional vector space can be linearly independent. Thus S spans

V .

Examples

• v1 = (−3, 8) and v2 = (1, 1) form a basis for R2 because R2 has dimension two

and v1 and v2 are linearly independent.

Theorem 2.6. Let S be a finite set of vectors in a finite-dimensional vector space V .

(a) If S spans V but is not a basis for V , then S can be reduced to a basis for V by

removing appropriate vectors from S.
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(b) If S is a linearly independent set that is not already a basis for V , then S can

be enlarged to a basis for V by inserting appropriate vectors into S.

Proof. (a) The proof is constructive and is called the left to right algorithm.

Let vc1 be the first nonzero vector in the set S. Choose the next vector in

the list which is not a linear combination of vc1 and call it vc2 . Find the next

vector in the list which is not a linear combination of vc1 and vc2 and call it

vc3 . Continue in such a way until the number of vectors chosen equals dim(V ).

(b) This proof is also constructive.

Let V be a vector space. Begin with u1,u2, . . . ,ur which form a linearly inde-

pendent family in V . Let v1,v2, . . . ,vn be a basis for V . Now it is necessary

and important that r < n. To extend the basis, simply apply the left to right

algorithm to the set (note that this set spans V because it contains a basis

within it)

u1,u2, . . . ,ur,v1,v2, . . . ,vn

This will select a basis for V that commences with u1,u2, . . . ,ur

Theorem 2.7. If W is a subspace of a finite-dimensional vector space V , then

dim(W ) ≤ dim(V ); moreover, if dim(W ) = dim(V ), then W = V

Proof. Let S = {w1,w2, . . . ,wm} be a basis for W . Either S is also a basis for V or it

is not. If it is, then dim(W ) = dim(V ) = m. If it is not, then by the previous theorem,

vectors can be added to the linearly independent set S to make it into a basis for V ,

so dim(W ) < dim(V ). Thus, dim(W ) ≤ dim(V ) in all cases. If dim(W ) = dim(V ),

then S is a set of m linearly independent vectors in the m-dimensional vector space

V ; hence by theorem 2.5, S is a basis for V . Therefore W = V .
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2.3.1 Quiz

True or false?

(a) The zero vector space has no basis.

(b) Every vector space that is spanned by a finite set has a basis.

(c) Every vector space has a finite basis.

(d) A vector space cannot have more than one basis.

(e) If a vector space has a finite basis, then the number of vectors in every basis is

the same.

(f) Suppose that V is a finite dimensional vector space, S1 is a linear independent

subset of V , and S2 is a subset of V that spans V . Then S1 cannot contain

more vectors than S2.

(g) If S spans the vector space V , then every vector in V can be written as a linear

combination of vectors in S in only one way.

(h) Every subspace of a finite dimensional vector space is finite dimensional.

(i) If V is an n dimensional vector space, then V has exactly one subspace with

dimension 0 and one with dimension n.

(j) If V is an n dimensional vector space, and if S is a subset of V with n vectors,

then S is linearly independent if and only if S spans V .
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3 INNER PRODUCT SPACES AND ORTHONOR-

MAL BASES

In many applications of vector spaces, we are concerned with the notion of measure-

ment. In this section we introduce the idea of length through the structure of inner

product spaces. We only consider F = R or C.

Definition

Let V be a vector space over F. We define an inner product 〈, 〉 on V to be a function

that assigns a scalar 〈u,v〉 ∈ F to every pair of ordered vectors u,v ∈ V such that

the following properties hold for all u,v,w ∈ V and α ∈ F:

(a) 〈u + v,w〉 = 〈u,w〉+ 〈v,w〉

(b) 〈αu,v〉 = α〈u,v〉

(c) 〈u,v〉 = 〈v,u〉

(d) 〈u,u〉 > 0 if u 6= 0.

The main example is when V = Fn. In this case we often use the notation

〈u,v〉 ≡ u · v which is determined by

u · v =
n∑

i=1

uivi

where u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn).

Definitions

• A vector space V over F endowed with a specific inner product is called an

inner product space. If F = R then V is said to be a real inner product space,

whereas if F = C we call V a complex inner product space.

• The norm (or length, or magnitude) of a vector u is given by ‖u‖ =
√
〈u,u〉.
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• Two vectors u,v in an inner product space are said to be orthogonal if 〈u,v〉 =

0.

• If u and v are orthogonal vectors and both u and v have a magnitude of one

(with respect to 〈, 〉), then u and v are said to be orthonormal.

• A set of vectors in an inner product space is called an orthogonal set if all

pairs of distinct vectors in the set are orthogonal. An orthogonal set in which

each vector has a magnitude of one is called an orthonormal set.

The following additional properties follow easily from the axioms:

Theorem 3.1. Let V be an inner product space, x,y, z ∈ V and c ∈ F.

(a) 〈x,y + z〉 = 〈x,y〉+ 〈x, z〉.

(b) 〈x, cy〉 = c̄〈x,y〉.

(c) 〈x,0〉 = 〈0,x〉 = 0.

(d) 〈x,x〉 = 0 if and only if x = 0.

(e) If 〈x,y〉 = 〈x, z〉 for all x ∈ V , then y = z.

Proof. (a) - (d) exercises

(e) By part (a) and (b), 〈x,y − z〉 = 0 for all x ∈ V . Since this is true for all x,

it is true for x = y − z, thus 〈y − z,y − z〉 = 0. By (d) this implies that y = z.

Now that the groundwork has been laid the following theorem can be stated. The

proof of this result is extremely important, since it makes use of an algorithm, or

method, for converting an arbitary basis into an orthonormal basis.

Theorem 3.2. Every non-zero finite dimensional inner product space V has an or-

thonormal basis.

Proof. Let {u1,u2, . . . ,um} be any basis for V . It suffices to show that V has an

orthogonal basis, since the vectors in the orthogonal basis can be normalized to pro-

duce an orthonormal basis for V . The following sequence of steps will produce an

orthogonal basis {v1,v2, . . . ,vm} for V .
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Step 1 Let v1 = u1.

Step 2 Obtain a vector v2 that is orthogonal to v1 by computing the component of

u2 that is orthogonal to the space W1 spanned by v1. This can be done using

the formula:

v2 = u2 −
(
〈u2,v1〉
〈v1,v1〉

)
v1

Of course, if v2 = 0, then v2 is not a basis vector. But this cannot happen,

since it would then follow from the preceding formula for v2 that

u2 =

(
〈u2,v1〉
〈v1,v1〉

)
v1 =

(
〈u2,v1〉
〈u1,u1〉

)
u1

which says that u2 is a multiple of u1, contradicting the linear independence of

the basis S = {u1,u2, . . . ,un}.

Step 3 To construct a vector v3 that is orthogonal to both v1 and v2, compute the

component of u3 orthogonal to the space W2 spanned by v1 and v2 using the

formula:

v3 = u3 −
(
〈u3,v1〉
〈v1,v1〉

)
v1 −

(
〈u3,v2〉
〈v2,v2〉

)
v2

As in step 2, the linear independence of {u1,u2, . . . ,un} ensures that v3 6= 0.

The remaining details are left as an exercise.

Step 4 To determine a vector v4 that is orthogonal to v1,v2 and v3, compute the

component of u4 orthogonal to the space W3 spanned by v1,v2 and v3 using

the formula

v4 = u4 −
(
〈u4,v1〉
〈v1,v1〉

)
v1 −

(
〈u4,v2〉
〈v2,v2〉

)
v2 −

(
〈u4,v3〉
〈v3,v3〉

)
v3

Continuing in this way, an orthogonal set of vectors, {v1,v2, . . . ,vm}, will be obtained

after m steps. Since V is an m-dimensional vector space and every orthogonal set is

linearly independent, the set {v1,v2, . . . ,vn} is an orthogonal basis for V .
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This preceding step-by-step construction for converting an arbitary basis into an

orthogonal basis is called the Gram-Schmidt process.

Examples: THE GRAM-SCHMIDT PROCESS

1. Consider the vector space R3 with the Euclidean inner product. Apply the

Gram-Schmidt process to transform the basis vectors u1 = (1, 1, 1),u2 = (0, 1, 1),u3 =

(0, 0, 1) into an orthogonal basis {v1,v2,v3}; then normalize the orthogonal ba-

sis vectors to obtain an orthonormal basis {q1,q2,q3}.

Step 1

v1 = u1 = (1, 1, 1)

Step 2

v2 = u2 −
(

u2 · v1

v1 · v1

)
v1

= (0, 1, 1)− 2

3
(1, 1, 1) =

(
−2

3
,
1

3
,
1

3

)
Step 3

v3 = u3 −
(

u3 · v1

v1 · v1

)
v1 −

(
u3 · v2

v2 · v2

)
v2

= (0, 0, 1)− 1

3
(1, 1, 1)− 1/3

2/3

(
−2

3
,
1

3
,
1

3

)
=

(
0,−1

2
,
1

2

)
Thus,

v1 = (1, 1, 1), v2 =

(
−2

3
,
1

3
,
1

3

)
, v3 =

(
0,−1

2
,
1

2

)
form an orthogonal basis for R3. The norms of these vectors are

‖v1‖ =
√

3, ‖v2‖ =

√
6

3
, ‖v3‖ =

1√
2

so an orthonormal basis for R3 is

q1 =
v1

‖v1‖
=

(
1√
3
,

1√
3
,

1√
3

)
, q2 =

v2

‖v2‖
=

(
−2√

6
,

1√
6
,

1√
6

)
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q3 =
v3

‖v3‖
=

(
0,− 1√

2
,

1√
2

)
The Gramm-Schmidt process with subsequent normalization not only converts an

arbitary basis {u1,u2, . . . ,un} into an orthonormal basis {q1,q2, . . . ,qn}, but it does

it in such a way that for k ≥ 2 the following relationships hold:

• {q1,q2, . . . ,qk} is an orthonormal basis for the space spanned by {u1, . . . ,uk}.

• qk is orthogonal to {u1,u2, . . . ,uk−1}.

The proofs are omitted but these facts should become evident after some thoughtful

examination of the proof of Theorem 3.1.

3.1 Quiz

True or false?

• An inner product is a scalar-valued function on the set of ordered pairs of

vectors.

• An inner product space must be over the field of real or complex numbers.

• An inner product is linear in both components.

• If x, y and z are vectors in an inner product space such that 〈x, y〉 = 〈x, z〉,

then y = z.

• If 〈x, y〉 = 0 for all x in an inner product space, then y = 0.

35



4 LINEAR TRANSFORMATIONS AND MATRI-

CES

Definitions

• Let V, W be vector spaces over a field F. A function that maps V into W ,

T : V → W , is called a linear transformation from V to W if for all vectors

u and v in V and all scalars c ∈ F

(a) T (u + v) = T (u) + T (v)

(b) T (cu) = cT (u)

• In the special case where V = W , the linear transformation T : V → V is called

a linear operator on V .

• Let A be an m × n matrix and let T : Fn → Fm be the linear transformation

defined by T (x) = Ax for all x ∈ Fn. Then as a matter of notational convention

it is said that T is the linear transformation TA.

4.0.1 Basic Properties of Linear Transformations

Theorem 4.1. If T : V → W is a linear transformation, then:

(a) If T is linear, then T (0) = 0

(b) T is linear if and only if T (av + w) = aT (v) + T (w) for all v,w in V and

a ∈ F.

(c) T (v −w) = T (v)− T (w) for all v and w in V .

Part (a) of the above theorem states that a linear transformation maps 0 into 0.

This property is useful for identifying transformations that are not linear. Part (b)

is usually used to show that a transformation is linear.

Examples
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1. TA is a linear transformation. Let A be an m× n matrix and let T : Fn → Fm

be the linear transformation defined by TA(x) = Ax for all x ∈ Fn. Let u and

v ∈ Fn, then

T (λu + v) = A(λu + v)

= λAu + Av

= λTA(u) + TA(v)

and thus TA is a linear transformation.

2. If I is the n× n identity matrix, then for every vector x in Fn

TI(x) = Ix = x

so multiplication by I maps every vector in Fn into itself. TI(x) is called the

identity operator on Fn.

3. Let A, B and X be n× n matrices. Then Y = AX −XB is also n× n.

Let V = Mn×n(F) be the vector space of all n×n matrices. Then Y = AX−XB

defines a transformation T : V → V . The transformation is linear since

T (λX1 + X2) = A(λX1 + X2)− (λX1 + X2)B

= λAX1 + AX2 − λX1b−X2B

= λ(AX1 −X1B) + AX2 −X2B

= λT (X1) + T (X2)

Theorem 4.2. If T : Fn → Fm is a linear transformation, then there exists an m×n

matrix A such that T = TA.

Example

1. Find the 2× 2 matrix A such that T = TA has the property that

T

 1

1

 =

 1

3

 and T

 2

1

 =

 0

1


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4.1 Geometric Transformations in R2

This section consists of various different transformations of the form TA that have a

geometrical interpretation. Such transformations form the building blocks for under-

standing linear transformations.

Examples of Geometric Transformations

• Operators on R2 and R3 that map each vector into its symmetric image about

some line or plane are called reflection operators. Such operators are of the

form TA and are thus linear. There are three main reflections in R2. These are

summarised below. Considering the transformation from the coordinates (x, y)

to (w1, w2) the properties of the operator are as follows.

1. Reflection about the y-axis: The equations for this transformation are

w1 = −x

w2 = y

The standard matrix for the transformation is clearly

A =

 −1 0

0 1


To demonstrate the reflection, consider the example below.

Let x =

 1

2



therefore TA(x) = Ax =

 −1

2


2. Reflection about the x-axis: The equations for this transformation are

w1 = x

w2 = −y

38



The standard matrix for the transformation is clearly

A =

 1 0

0 −1


To demonstrate the reflection, consider the example below.

Let x =

 1

2



therefore TA(x) = Ax =

 1

−2


3. Reflection about the line y = x: The equations for this transformation

are

w1 = y

w2 = x

The standard matrix for the transformation is clearly

A =

 0 1

1 0


To demonstrate the reflection, consider the example below.

Let x =

 1

2



therefore TA(x) = Ax =

 2

1


• Operators on R2 and R3 that map each vector into its orthogonal projection on a

line or plane through the origin are called orthogonal projection operators.
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Such operators are of the form TA and are thus linear. There are two main

projections in R2. These are summarised below. Considering the transformation

from the coordinates (x, y) to (w1, w2) the properties of the operator are as

follows.

1. Orthogonal projection onto the x-axis: The equations for this trans-

formation are

w1 = x

w2 = 0

The standard matrix for the transformation is clearly

A =

 1 0

0 0


To demonstrate the projection, consider the example below.

Let x =

 1

2



therefore TA(x) = Ax =

 1

0


2. Orthogonal projection on the y-axis: The equations for this transfor-

mation are

w1 = 0

w2 = y

The standard matrix for the transformation is clearly

A =

 0 0

0 1


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To demonstrate the projection, consider the example below.

Let x =

 1

2



therefore TA(x) = Ax =

 0

2


• An operator that rotates each vector in R2, through a fixed angle θ is called

a rotation operator on R2. Such operators are of the form TA and are thus

linear. There is only one rotation in R2, due to the generality of the formula.

This rotation is summarised below. Considering the transformation from the

coordinates (x, y) to (w1, w2) the properties of the operator are as follows.

1. Rotation through an angle θ: The equations for this transformation

are

w1 = x cos θ − y sin θ

w2 = x sin θ + y cos θ

The standard matrix for the transformation is clearly

A =

 cos θ − sin θ

sin θ cos θ


To demonstrate the projection, consider the example below.

Let θ = 30◦ and let x =

 1

0



therefore TA(x) = Ax =

 √
3

2

1
2


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• If k is a nonnegative scalar, then the operator T (x) = kx on R2 and R3 is

called a contraction with factor k if 0 ≤ k ≤ 1, and a dilation with

factor k if k ≥ 1. Such operators are of the form TA and are thus linear.

The contraction and the dilation operators are summarised below. Considering

the transformation from the coordinates (x, y) to (w1, w2) the properties of the

operator are as follows.

1. Contraction with factor k on R2, (0 ≤ k ≤ 1): The equations for this

transformation are.

w1 = kx

w2 = ky

The standard matrix for the transformation is clearly

A =

 k 0

0 k


To demonstrate the contraction, consider the example below.

Let k =
1

2
and let x =

 1

2


therefore TA(x) = Ax =

 1
2

1


2. Dilation with factor k on R2, (k ≥ 1): The equations for this transfor-

mation are

w1 = kx

w2 = ky

The standard matrix for the transformation is clearly

A =

 k 0

0 k


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To demonstrate the dilation, consider the example below.

Let k = 2 and let x =

 1

2


therefore TA(x) = Ax =

 2

4


4.2 Product of Linear Transformations

Definition

• If T1 : U → V and T2 : V → W are linear transformations, the composite of

T2 with T1 denoted by T2 ◦ T1, is the function defined by the formula

(T2 ◦ T1)(u) = T2(T1(u))

where u is a vector in U .

Remark: Observe that this definition requires the domain of T2 (which is V ) to

contain the range of T1; this is essential for the formula T2(T1(u)) to make sense.

The next result shows that the composition of two linear transformations is itself

a linear transformation.

Theorem 4.3. If T1 : U → V and T2 : V → W are linear transformations, then

(T2 ◦ T1) : U → W is also a linear transformation.

Proof. If u and v are vectors in U and s ∈ F, then it follows from the definition of a

composite transformation and from the linearity of T1 and T2 that

T2 ◦ T1(su + v) = T2(T1(su + v))

= T2(sT1(u) + T1(v))

= sT2(T1(u)) + T2(T1(v))

= sT2 ◦ T1(u) + T2 ◦ T1(v)

and thus the proof is complete.
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Examples

1. Let A be an m × n matrix, and B be an n × p matrix, then AB is an m × p

matrix. Also TA : Fn → Fm, and TB : Fp → Fn are both linear transformations.

Then

TA ◦ TB = TA(TB(x))

= ABx

= (AB)x

= TAB(x)

where x ∈ Fp. And therefore TA ◦ TB = TAB : Fp → Fm.

2. If V has a basis β = {v1,v2} and T : V → V is a linear transformation given

by

T (v1) = 2v1 + 3v2

T (v2) = −7v1 + 8v2

To find T ◦ T (−v1 + 3v2) takes two steps as shown below.

T (−v1 + 3v2) = −T (v1) + 3T (v2)

= −2v1 − 3v2 + 3(−7v1 + 8v2)

= −23v1 + 21v2

Hence

T ◦ T (−v1 + 3v2) = T (−23v1 + 21v2)

= −23T (v1) + 21T (v2)

= −23(2v1 + 3v2) + 21(−7v1 + 8v2)

= −193v1 + 99v2
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4.3 Kernel and Image

Definitions

• If T : V → W is a linear transformation, then the set of vectors in V that T

maps into 0 is called the kernel of T . It is denoted by ker(T ). In mathematical

notation:

ker(T ) = {v ∈ V | T (v) = 0}

• If T : V → W is a linear transformation, then the set of all vectors in W that

are images under T of at least one vector in V is called the Image (or range in

some texts) of T ; it is denoted by Im(T ). In mathematical notation:

Im(T ) = {w ∈ W |w = T (v) for some v ∈ V }

Examples

1. Let I : V → V be the identity operator. Since Iv = v for all vectors in V ,

every vector in V is the image of some vector (namely, itself); thus, Im(I) = V .

Since the only vector that I maps into 0 is 0, it follows that ker(I) = {0}.

2. Let T : R3 → R3 be the orthogonal projection on the x − y plane. The kernel

of T is the set of points that T maps into 0 = (0, 0, 0); these are the points on

the z-axis. Since T maps every point in R3 into the x − y plane, the image of

T must be some subset of this plane. But every point (x0, y0, 0) in the x − y

plane is the image under T of some point; in fact, it is the image of all points on

the vertical line that passes through (x0, y0, 0). Thus Im(T ) is the entire x− y

plane.

3. Let T : R2 → R2 be the linear operator that rotates each vector in the x−y plane

through the angle θ. Since every vector in the x − y plane can be obtaine by

rotating some vector through the angle θ, one obtains Im(T ) = R2. Moreover,

the only vector that rotates into 0 is 0, so ker(T ) = {0}.
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4. Find the kernel and image of the linear transformation T : R3 → R2 given by

T (


x

y

z

) =

 x− y

2z


In all of the preceding examples, ker(T ) and Im(T ) turned out to be subspaces.

This is no accident as the following theorem points out.

Theorem 4.4. If T : V → W is a linear transformation, then:

(a) The kernel of T is a subspace of V .

(b) The range of T is a subspace of W .

Proof. (a) To show that ker(T ) is a subspace, it must be shown that it contains at

least one vector and is closed under addition and scalar multiplication. By part

(a) of Theorem 4.1, the vector 0 is in ker(T ), so this set contains at least one

vector. Let v1 and v2 be vectors in ker(T ), and let k be any scalar. Then

T (v1 + v2) = T (v1) + T (v2) = 0 + 0 = 0

so that v1 and v2 is in ker(T ). Also,

T (kv1) = kT (v1) = k0 = 0

so that kv1 is in ker(T ).

(b) Since T (0) = 0, there is at least one vector in Im(T ). Let w1 and w2 be vectors

in the range of T , and let k be any scalar. To prove this part it must be shown

that w1 + w2 and kw1 are in the range of T ; that is, vectors a and b must be

found in V such that T (a) = w1 + w2 and T (b) = kw1.

Since w1 and w2 are in the range of T , there are vectors a1 and a2 in V such

that T (a1) = w1 and T (a2) = w2. Let a = a1 + a2 and b = ka1. Then

T (a) = T (a1 + a2) = T (a1) + T (a2) = w1 + w2
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and

T (b) = T (ka1) = kT (a1) = kw1

which completes the proof.

Theorem 4.5. If T : U → V is a linear transformation and {u1,u2, . . . ,un} forms

a basis for U , then Im(T ) = span(T (u1), T (u2), . . . , T (un))

This theorem is best demonstrated by a simple example.
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Example

Let A be m× n and let T = TA. Then TA : Fn → Fm. Let {e1, e2, . . . , en} be the

standard basis for Fn. Then by the previous theorem it can be stated

Im(TA) = span(TA(e1), TA(e2), . . . , TA(en))

= span(Ae1, Ae2, . . . , Aen)

= span(col1(A), col2(A), . . . , coln(A))

4.4 Rank and Nullity

Definitons If T : U → V is a linear transformation,

• the dimension of the image of T is called the rank of T and is denoted by

rank(T ),

• the dimension of the kernel is called the nullity of T and is denoted by nul-

lity(T).

Example

• Let U be a vector space of dimension n, with basis {u1,u2, . . . ,un}, and let

T : U → U be a linear transformation defined by

T (u1) = u2, T (u2) = u3, · · · , T (un−1) = un and T (un) = 0

Find bases for ker(T ) and Im(T ) and determine rank(T ) and nullity(T ).

Theorem 4.6. If T : U → V is a linear transformation from an n-dimensional vector

space U to a vector space V , then

rank(T ) + nullity(T ) = dim(U) = n

Proof. The proof is divided up into two cases.
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Case 1 Let U be the zero vector space. Then due to theorem 4.1 it is known that

T (0) = 0. Therefore it can be stated that

Im(T ) = {0} and ker(T ) = {0}

therefore

rank(T )+nullity(T ) = 0 + 0 = 0 = dim(U)

Case 2 Let U be an n-dimensional vector space with the basis {u1,u2, . . . ,un}. Then

the proof can be divided into three parts.

(a) Consider the case where ker(T ) = {0}. Let u ∈ ker(T ). As u ∈ U it can

be expressed as

u = x1u1 + x2u2 + · · ·+ xnun (1)

As u ∈ ker(T ) it can be stated that

0 = T (u) = x1T (u1) + x2T (u2) + · · ·+ xnT (un) (2)

Due to the fact that ker(T ) = {0}, u = 0. Due to the linear indepen-

dence of u1,u2, . . . ,un it follows from equation (1) that x1, x2, . . . , xn =

0. It then also follows from equation (2) that T (u1), T (u2), . . . , T (un)

are linearly independent. It is known from Theorem 4.5 that Im(T ) =

span(T (u1), T (u2), . . . , T (un)). As T (u1), T (u2), . . . , T (un) are linearly

independent they form a basis for Im(T ). It can therefore be stated that

rank(T )+nullity(T ) = n + 0 = n = dim(U)

(b) Consider the case where ker(T ) = U . Theorem 4.5 states: Im(T ) =

span(T (u1), T (u2), . . . , T (un)). However u1,u2, . . . ,un ∈ ker(T ). There-

fore T (u1), T (u2), . . . , T (un) = 0. So it can be stated that Im(T ) =

span(0) = {0}. Therefore

rank(T )+nullity(T ) = 0 + n = n = dim(U)
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(c) Consider the case where 1 ≤ nullity(T ) < n. Assume that the nullity(T ) =

r, and let u1,u2, . . . ,ur be a basis for the kernel. Since {u1,u2, . . . ,ur}

form a linearly independent set, theorem 2.6(b) states that there are n− r

vectors, ur+1,ur+2, . . . ,un, such that {u1, . . . ,ur,ur+1, . . . ,un} is a basis

for U . To complete the proof it shall be shown that the n − r vectors in

the set S = {T (ur+1), . . . , T (un)} form a basis for the image of T . It then

follows that

rank(T )+nullity(T ) = n− r + r = n = dim(U)

First it shall be shown that S spans the image of T . If b is any vector in

Im(T ), then b = T (u) for some vector u in U . Since {u1, . . . ,ur,ur+1, . . . ,un}

is a basis for U , the vector u can be written in the form

u = c1u1 + · · ·+ crur + cr+1ur+1 + · · ·+ cnun

since u1, . . . ,ur lie in the kernel of T , it is clear that T (u1), . . . , T (ur) = 0,

so that

b = T (u) = cr+1T (ur+1) + · · ·+ cnT (un)

Thus, S spans the image of T .

Finally, it shall be shown that S is a linearly independent set and conse-

quently forms a basis for Im(T ). Suppose that some linear combination

of the vectors in S is zero; that is,

kr+1T (ur+1) + · · ·+ knT (un) = 0 (3)

It must be shown that kr+1 = · · · = kn = 0. Since T is linear, equation (3)

can be rewritten as

T (kr+1ur+1 + · · ·+ knun) = 0
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which says that kr+1ur+1 + · · · + knun is in the kernel of T . This vec-

tor can therefore be written as a linear combination of the basis vectors

{u1, . . . ,ur}, say

kr+1ur+1 + · · ·+ knun = k1u1 + · · ·+ krur

Thus,

k1u1 + · · ·+ krur − kr+1ur+1 − · · · − knun = 0

Since {u1, . . . ,un} is linearly independent, all of the k’s are zero; in par-

ticular kr+1 = · · · = kn = 0, which completes the proof.

Examples Let T : R2 → R2 be the linear operator that rotates each vector in the

x − y plane through an angle of θ. It was shown previously that ker(T ) = {0} and

Im(T ) = R2. Thus,

rank(T )+nullity(T ) = 2 + 0 = 2 = dim(U)

which is consistent with the fact that the domain of T is two-dimensional.

4.5 Matrix of a Linear Transformation

In this section it shall be shown that if U and V are finite-dimensional vector spaces,

then with a little ingenuity any linear transformation T : U → V can be regarded as

a matrix transformation. The basic idea is to work with coordinate matrices of the

vectors rather than with the vectors themselves.

Definition

• Suppose that U is an n-dimensional vector space and V an m-dimensional vector

space. Let T : U → V be a linear transformation. Let β and γ be bases for U

and V respectively, then for each x in U , the coordinate vector [x]β will be a

51



vector in Fn, and the coordinate vector [T (x)]γ will be a vector in Fm. If there

exists an m× n matrix A, such that

A[x]β = [T (x)]γ (4)

then A is called the matrix of the transformation relative to bases β

and γ and it is written

A = [T ]γβ

Theorem 4.7. Let β = {u1,u2, . . . ,un} and γ = {v1,v2, . . . ,vm} be bases for the

vector spaces U and V respectively, and let x ∈ U . If T : U → V is a linear

transformation then

(a) the matrix of the transformation relative to bases β and γ always exists. That

is to say, there always exists a matrix A = [T ]γβ such that

A[x]β = [T (x)]γ

(b) The matrix of the transformation relative to basis β and γ has the form

[T ]γβ = [[T (u1)]γ | [T (u2)]γ | · · · | [T (un)]γ]

Proof. Let β = {u1,u2, . . . ,un} be a basis for the n-dimensional space U and let

γ = {v1,v2, . . . ,vm} be a basis for the m-dimensional space V . Then the matrix

[T ]γβ = A must have the form

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn


such that (4) holds for all vectors x in U . In particular, this equation must hold for

the basis vectors u1,u2, . . . ,un; that is,

A[u1]β = [T (u1)]γ, A[u2]β = [T (u2)]γ, . . . , A[un]β = [T (un)]γ (5)
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But

[u1]β =



1

0

0
...

0


, [u2]β =



0

1

0
...

0


, . . . , [un]β =



0

0

0
...

1


so

A[u1]β =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn





1

0

0
...

0


=


a11

a21

...

am1



A[u2]β =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn





0

1

0
...

0


=


a12

a22

...

am2


...

A[un]β =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn





0

0

0
...

1


=


a1n

a2n

...

amn


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Substituting these results into equation (5) yields
a11

a21

...

am1

 = [T (u1)]γ,


a12

a22

...

am2

 = [T (u2)]γ, . . . ,


a1n

a2n

...

amn

 = [T (un)]γ

which shows that the successive columns of A are coordinate vectors of

T (u1), T (u2), . . . , T (un)

with respect to the basis γ. Thus the matrix for T with respect to the bases β and γ

is

[T ]γβ = [[T (u1)]γ | [T (u2)]γ | · · · | [T (un)]γ]

Thus the proof is complete.

Examples

1. Let TB : Fn → Fm be a linear transformation defined by T (X) = BX where B

is an m×n matrix. Let β = {E1,E2, . . . ,En} be the standard basis for Fn and

let γ = {e1, e2, . . . , em} be the standard basis for Fm. Then it is known from

the previous theorem that [T ]γβ is the following matrix

[TB]γβ = [[TB(E1)]γ | [TB(E2)]γ | · · · | [TB(En)]γ]

In general, for 1 ≤ j ≤ n it follows from the definition of the transformation

that

TB(Ej) = BEj = colj(B) = b1je1 + b2je2 + · · ·+ bmjem

therefore

[TB(Ej)]γ =


b1j

b2j

...

bmj

 = colj(B)
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and thus it is clear that

[TB]γβ = B

2. Let U have the basis β = {u1,u2,u3} and let V have the basis γ = {v1,v2}.

Let T be the linear transformation defined by

T (u1) = 2v1 + v2, T (u2) = v1 − v2, T (u3) = 2v2

Then clearly

[T ]γβ =

 2 1 0

1 −1 2


3. Let V = M2×2(R) and let T : V → V be the linear transformation given by

T (X) = BX −XB where X ∈ V and

B =

 a b

c d


Let β = {E11, E12, E21, E22} be the standard basis for V where

E11 =

 1 0

0 0

 , E12 =

 0 1

0 0

 , E21 =

 0 0

1 0

 , E22 =

 0 0

0 1


To find [T ]ββ it is necessary to do the following calculations:

T (E11) = BE11 − E11B =

 a b

c d

 1 0

0 0

−
 1 0

0 0

 a b

c d



=

 0 −b

c 0

 = 0E11 +−bE12 + cE21 + 0E22

T (E12) = BE12 − E12B =

 a b

c d

 0 1

0 0

−
 0 1

0 0

 a b

c d


=

 −c a− d

0 c

 = −cE11 + (a− d)E12 + 0E21 + cE22
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T (E21) = BE21 − E21B =

 a b

c d

 0 0

1 0

−
 0 0

1 0

 a b

c d


=

 b 0

d− a −b

 = bE11 + 0E12 + (d− a)E21 +−bE22

T (E22) = BE22 − E22B =

 a b

c d

 0 0

0 1

−
 0 0

0 1

 a b

c d


=

 0 b

−c 0

 = 0E11 + bE12 +−cE21 + 0E22

Therefore it follows that

[T ]ββ =


0 −c b 0

−b a− d 0 b

c 0 d− a −c

0 c −b 0


The following theorem follows directly from the definition of the matrix of a linear

transformation.

Theorem 4.8. Let T : U → V be a linear transformation, and let β and γ be bases

for U and V respectively. Then if u ∈ U

[T (u)]γ = [T ]γβ[u]β

Examples

1. Let U have the basis β = {u1,u2,u3} and let V have the basis γ = {v1,v2}.

Let T be the linear transformation defined by

T (u1) = 2v1 + v2, T (u2) = v1 − v2, T (u3) = 2v2

Given that u = 3u1 +−2u2 + 7u3

[u]β =


3

−2

7

 , and [T ]γβ =

 2 1 0

1 −1 2


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Hence

[T (u)]γ = [T ]γβ[u]β =

 2 1 0

1 −1 2




3

−2

7

 =

 4

19


Hence T (u) = 4v1 + 19v2.

Example

1. Let T : V → W be a linear transformation, and let β = {v1,v2,v3} and γ =

{w1,w2,w3} be bases for V and W respectively. T is the linear transformation

given by

T (v1) = w1 + w2 +−w3

T (v2) = 2w1 +−3w2

T (v3) = 3w1 +−2w2 +−w3

Find ker(T ) and Im(T ).

The following theorem gives a recipe for finding bases for ker(T ) and the Im(T )

where possible.

Theorem 4.9. Let A be an m×n matrix such that A = [T ]γβ, where T : V → W is a

linear transformation and β = {v1,v2, . . . ,vn} and γ = {w1,w2, . . . ,wm} are bases

for V and W respectively. Let s = nullity(A) and r = rank(A). Then suppose that

xj =


x1j

x2j

...

xnj


for 1 ≤ j ≤ s, form a basis for N(A), while colc1(A), colc2(A), . . . , colct(A) form a

basis for C(A) Then
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1. (a) the vectors u1,u2, . . . ,us defined by

uj = x1jv1 + x2jv2 + · · ·+ xnjvn

will be a basis for the kernel of T .

(b) the vectors T (vc1), T (vc2), . . . , T (vcr) form a basis for the image of T .

2. If N(A) = {0}, then ker(T ) = {0}

If C(A) = {0}, then Im(T ) = {0}

3. Thus it follows that rank(T ) = rank(A) and nullity(T ) = nullity(A).
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Quiz: True or false?

Let U and V be vector spaces of dimension n and m respectively over a field F,

and let T be a linear transformation from U to V . Let β = {u1,u2, . . . ,un} be a

basis for U and let γ = {v1,v2, . . . ,vm} be a basis for V . Let u ∈ U .

(a) For any a1, . . . , an ∈ F,

T (
n∑

i=1

aiui) =
n∑

i=1

aiT (ui).

(b) {T (u1), . . . , T (un)} is a basis for Im(T ).

(c) If nullity(T ) = 0 then m = n.

(d) rank(T ) + nullity(T ) = n

(e) If α is a basis for ker(T ) and α ⊆ β, then β \ α is a basis for Im(T ).

(f) If U = Fn, then [u]β = u.

(g) [ui]β = ei.

(h) [u]β will be a column vector if and only if U = Fn.

(i) [u]β depends on the order of β.

(j) If A = [T ]γβ, then coliA = [T (ui)]β.

(k) If m = n and ui = vi for all i, then [T ]γβ = I.

(l) To get [T ]γβ, we need to calculate T (ui) for each i, and express the answer as a

linear combination of vectors from γ.
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4.6 T -invariant subspaces

Definition

Let T : V → V be a linear operator. A subspace W of V is called T -invariant if

T (w) ∈ W, ∀w ∈ W.

Examples

The are many examples of T -invariant subspaces. Veriy that the following are all

T -invariant:

• {0}

• V

• ker(T )

• Im(T )

• Eλ which is the space spanned by linearly independent eigenvectors of T corre-

sponding to eigenvalue λ. (*)

• A T -cyclic subspace of V generated by v ∈ V , given by span{v, T (v), T 2(v), . . .}

4.7 Vector space of linear transformations

If f, g : V → W are functions and V , W are vector spaces over F we have seen that

we can define addition and scalar multiplication by (f + g)(v) = f(v) + g(v) and

(af)(v) = af(v) with a ∈ F and v ∈ V .

Using the above definition, it is easily verified that if T1, T2 are linear transforma-

tions, then the linear combination aT1 + T2 is also a linear transformation. In fact,

the set of all linear transformations from V to W is itself a vector space, denoted

`(V, W ). In the case V = W we often write `(V ).
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In fact we have the relationships

[T1 + T2]
γ
β = [T1]

γ
β + [T2]

γ
β,

[aT ]γβ = a[T ]γβ.

This is leading up to the notion of associating the vector space `(V, W ) with

Mm×n in the case V and W are of dimension n and m respectively. Before making

this identification we should investigate the concept of isomorphic vector spaces.

4.8 Isomorphisms and inverses of transformations

A linear transformation T : V → W is said to be invertible if there exists a unique

transformation T−1 : W → V such that T ◦ T−1 = IW and T−1 ◦ T = IV . We call

T−1 the inverse of T .

We have the following facts regarding inverses:

• A function is invertible if and only if it is one-to-one and onto.

• T−1 is linear.

• T is invertible if and only if rank(T ) = dim(V ) = dim(W ).

• [T−1]βγ = ([T ]γβ)−1.

We say that V is isomorphic to W if there exists an invertible linear transfor-

mation T : V → W . We write V ∼= W to indicate that V is isomorphic to W . Such

a T is called an isomorphism.

The main result of this section is the following:

If V and W are finite dimensional vector spaces over the same field, then V ∼= W

if and only if dim(V ) = dim(W ).

Examples

(a) T : F2 → P2(F) via T (a, b) = a + bx.

(b) T : P3(F) → M2(F) via T (a + bx + cx2 + dx3) =

 a + b b + c

c + d d

 .
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A corollary to our result is that for a vector space V over F, V is isomorphic to

Fn if and only if dim(V ) = n.

This formalises our association of n dimensional vector spaces with Fn as I hinted

at when we looked at standard bases.

Another consequence is that we can associate `(V, W ) with Mm×n.

4.9 Change of Basis

A basis of a vector space is a set of vectors that specify the coordinate system. A

vector space may have an infinite number of bases but each basis contains the same

number of vectors. The number of vectors in the basis is called the dimension of the

vector space. The coordinate vector or coordinate matrix of a point changes with

any change in the basis used. If the basis for a vector space is changed from some

old bases β to some new bases γ, how is the old coordinate vector [v]β of a vector

v related to the new coordinate vector [v]γ? The following theorem answers that

question.

Theorem 4.10. If the basis for a vector space is changed from some old basis β =

{u1,u2, . . . ,un} to some new basis γ = {v1,v2, . . . ,vn}, then the old coordinate

vector [w]β is related to the new coordinate vector [w]γ of the same vector w by the

equation

[w]γ = P [w]β

where the columns of P are the coordinate vectors of the old basis vectors relative to

the new basis; that is, the column vectors of P are

[u1]γ, [u2]γ, . . . , [un]γ

P is called the change of basis matrix or the change of coordinate matrix.

Proof. Let V be a vector space with a basis β = {u1,u2, . . . ,un} and a new basis
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γ = {v1,v2, . . . ,vn}. Let w ∈ V . Therefore w can be expressed as:

w = a1u1 + a2u2 + · · ·+ anun

Thus we have

[w]β = (a1, a2, . . . , an)

As γ is also a basis of V the elements of β can be expressed as follows

u1 = p11v1 + p21v2 + · · ·+ pn1vn

u2 = p12v1 + p22v2 + · · ·+ pn2vn

...

un = p1nv1 + p2nv2 + · · ·+ pnnvn

Combining this system of equations with the above expression for w gives

w = (p11a1 + p12a2 + · · ·+ p1nan)v1

+(p21a1 + p22a2 + · · ·+ p2nan)v2+

...

+(pn1a1 + pn2a2 + · · ·+ pnnan)vn+

and thus it can be seen that

[w]γ =


p11a1 + p12a2 + · · ·+ p1nan

p21a1 + p22a2 + · · ·+ p2nan

...

pn1a1 + pn2a2 + · · ·+ pnnan


which can be written as

[w]γ =


p11 p12 · · · p1n

p21 p22 · · · p2n

...
...

. . .
...

pn1 pn2 · · · pnn




a1

a2

...

an


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from which it can be seen

[w]γ = P [w]β

where P ’s columns are

[u1]γ, [u2]γ, . . . , [un]γ

Example

1. Consider the bases γ = {v1,v2} and β = {u1,u2} for R2, where

v1 = (1, 0); v2 = (0, 1); u1 = (1, 1); u2 = (2, 1)

(a) Find the transition matrix from β to γ. First the coordinate vectors of the

old basis vectors u1 and u2 must be found relative to the new basis β. By

inspection:

u1 = v1 + v2

u2 = 2v1 + v2

so that

[u1]γ =

 1

1

 and [u2]γ =

 2

1


Thus the transition matrix from β to γ

P =

 1 2

1 1


(b) Use the transition matrix to find [v]γ if

[v]β =

 −3

5


It is known from the above change of basis theorem 4.10 that

[v]γ =

 1 2

1 1

 −3

5

 =

 7

2


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As a check it should be possible to recover the vector v either from [v]β or

[v]γ. It is left for the student to show that −3u1+5u2 = 7v1+2v2 = (7, 2).

4.10 Similar Matrices

The matrix of a linear operator T : V → V depends on the basis selected for V . One

of the fundamental problems of linear algebra is to choose a basis for V that makes

the matrix for T as simple as possible - diagonal or triangular, for example. This

section is devoted to the study of this problem

To demonstrate that certain bases produce a much simpler matrix of transforma-

tion than others, consider the following example.

Example

1. Standard bases do not necessarily produce the simplest matrices for linear op-

erators. For example, consider the linear operator T : R2 → R2 defined by

T

 x1

x2

 =

 x1 + x2

−2x1 + 4x2


and the standard basis β = {e1, e2} for R2, where

e1 =

 1

0

 , e2 =

 0

1


By theorem 4.7, the matrix for T with respect to this basis is the standard

matrix for T; that is,

[T ]ββ = [T (e1) | T (e2)]

From the definition of the linear transformation T ,

T (e1) =

 1

−2

 , T (e2) =

 1

4


so

[T ]ββ =

 1 1

−2 4


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In comparison, consider the basis γ = {u1,u2}, where

u1 =

 1

1

 , u2 =

 1

2


By theorem 4.7, the matrix for T with respect to the basis γ is

[T ]γγ = [[T (u1)]γ | [T (u2)]γ

From the definiton of the linear transformation T ,

T (u1) =

 2

2

 = 2u1, T (u2) =

 3

6

 = 3u2

Hence

[T (u1)]γ =

 2

0

 , [T (e2)]γ =

 0

3


So

[T ]γγ =

 2 0

0 3


This matrix is ’simpler’ in the sense that diagonal matrices enjoy special prop-

erties that more general matrices do not.

Much research has been devoted to determining the “simplest possible form” that

can be obtained for the matrix of a linear operator T : V → V , by choosing the basis

appropriately. This problem can be attacked by first finding a matrix for T relative

to any basis, say a standard basis, where applicable, then changing the basis in a

manner that simplifies the matrix. Before pursuing this idea further, it is necessary

to grasp the theorem below. It gives a useful alternative viewpoint about change of

basis matrices; it shows that the transition matrix form a basis β to γ can be regarded

as the matrix of transformation of the identity operator.

Theorem 4.11. If β and γ are bases for a finite-dimensional vector space V , and if

I : V → V is the identity operator, then [I]γβ is the transition matrix form β to γ.
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Proof. Suppose that β = {u1,u2, . . . ,un} and γ = {v1,v2, . . . ,vn} are bases for V .

Using the fact that I(x) = x for all x ∈ V , it follows that

[I]γβ = [[I(u1)]γ | [I(u2)]γ | [I(un)]γ]

= [[u1]γ | [u2]γ | [un]γ]

which is the change of basis matrix from β to γ.

The ground work has been laid to consider the main problem in this section.

Problem: If β and γ are two bases for a finite-dimensional vector space V , and if

T : V → V is a linear operator, what relationship, if any, exists between the matrices

[T ]ββ and [T ]γγ?

The answer to this question can be obtained by considering the composition of

three linear operators. Consider a vector v ∈ V . Let the vector v be mapped into

itself by the identity operator, then let v be mapped into T (v) by T , then let T (v)

be mapped into itself by the identity operator. All four vector spaces involved in the

composition are the same (namely V ); however, the bases for the spaces vary. Since

the starting vector is v and the final vector is T (v), the composition is the same as

T ; that is,

T = I ◦ T ◦ I

If the first and last vector spaces are assigned the basis γ and the middle two spaces

are assigned the basis β, then it follows from the previous statement T = I ◦ T ◦ I,

that

[T ]γγ = [I ◦ T ◦ I]γγ = [I]γβ[T ]ββ[I]βγ

But [I]βγ is the change of basis matrix from γ to β and consequently [I]γβ is the change

of basis matrix from β to γ. Thus, let P = [I]βγ , then P−1 = [I]γβ and hence it can be

written that

[T ]γγ = P−1[T ]ββP

This is all summarised in the following theorem.
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Theorem 4.12. Let T : V → V be a linear operator on a finite-dimensional vector

space V , and let β and γ be bases for V . Then

[T ]γγ = P−1[T ]ββP (6)

where P is the change of basis matrix from γ to β.

Remark: When applying theorem 4.12, it is easy to forget whether P is the change

of basis matrix from β to γ or the change of basis matrix from γ to β. Just remember

that in order for [T ]ββ to operate succesfully on a vector v, v must be in the basis

β. Therefore, due to P ’s positioning in the formula, it must be the change of basis

matrix from γ to β.

Example

1. Let T : R2 → R2 be defined by

T

 x1

x2

 =

 x1 + x2

−2x1 + 4x2


Find the matrix of T with respect to the standard basis β = {e1, e2} for R2, then

use theorem 4.12 to find the matrix of T with respect to the basis γ = {u1,u2},

where

u1 =

 1

1

 , u2 =

 1

2


It was shown earlier that

[T ]ββ =

 1 1

−2 4


To find [T ]γγ from (6), requires the change of basis matrix P , where

P = [I]βγ = [[u1]β | [u2]β]

By inspection

u1 = e1 + e2

u2 = e1 + 2e2
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so that

[u1]β =

 1

1

 , [u2]β =

 1

2


Thus the transition matrix from γ to β is

P =

 1 1

1 2


It is clear that

P−1 =

 2 −1

−1 1


so that by theorem 4.12 the matrix of T relative to the basis γ is

[T ]γγ = P−1[T ]ββP =

 2 −1

−1 1

 1 1

−2 4

 1 1

1 2

 =

 2 0

0 3


which agrees with the previous result.

The relationship in (6) is of such importance that there is some terminology as-

sociated with it.

Definition

• If A and B are square matrices, it is said that B is similar to A if there is an

invertible matrix P such that B = P−1AP .
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