Q1:

1- What is the distinction between computer structure and computer function?

Structure is how devices are interrelated, while function is the individual characteristics of each one.

- Structure: The way in which the components are interrelated.
- Function: The operation of each individual component as part of the structure

2- What are the four main functions and components of a general purpose computer?

- 1- Data processing
- 2- Data movement
- 3- Data storage
- 4- Control

A general purpose computer has four main components: the arithmetic and logic unit (ALU), the control unit, the memory, and the input and output devices (collectively termed I/O).

3- List and define the main structural components of a computer.

- CPU (Central processing unit): known as processor as well, it's the main computer component, responsible for the main functions of the computer.
- I/O: responsible for the communication between the computer and the external world.
- Data storage: device responsible for data saving.
- System bus: responsible for the interconnection between data storage, CPU and I/O.

4- List and define the main structural components of a processor.

- Control unit: Controls the operation of the CPU and hence the computer itself.
- ALU: make logical and arithmetic operations.
- Registers: temporally storage for data while processor operations.
- Internal bus: interconnect control unit, ALU and registers inside processor.

5- Explain Moore's law.

The number of transistors that could be put on a single chip would double each year.

- **6-** Explain the key characteristics of a computer family.
 - A computer family share the same architecture, allowing older programs versions to be run in newer hardware machines.
 - Along versions, you can see a faster processor speed, a larger memory capacity and an increase of the number of capacitors in a processor chip.
 - Similar or identical instruction set, Similar or identical operating system, Increasing speed, Increasing number of I/O ports, Increasing memory size, Increasing cost.
- 7- Choose a computer or a computer family, state its features, its technology principal, then compare between it with the previous and next computer or computer family?

1974 - 8080

Intel's first general purpose microprocessor

Its technology principal:

Designed to be the CPU of a general-purpose microcomputer.

8 bit microprocessor.

Features:

- 1. faster
- 2. has a richer instruction set
- 3. has a large addressing capability

Used in first personal computer – Altair

Previous computer:

1972 – Intel 8008

- 1. 8-bit microprocessor
- 2. designed for specific application
- 3. twice as complex as the 4004

Next computer:

At the end of 1970s – 8086

- 1. 8086 5MHz 29000 transistors.
- 2. Much more powerful
- 3. Use 16 bit
- 4. Instruction cache, prefetch few instructions
- 5. 8088 (8 bit external bus) used in first IBM PC

Q2:

For the following IAS computer architecture, indicate the width in bits of each of the data paths.

- Overall data paths to/from MBR is 40 bits
- Overall data paths to/from MAR is12 bits.
- All Paths to/from AC is 40 bits, IR is 8 and IBR 20 because it holds temporarily the right hand instruction from a word in memory.
- All Paths to/from MQ is 40 bits.

Q3 1-

A benchmark program is run on a 40 MHz processor. The executed program consists of 100,000 instruction executions, with the following instruction mix and clock cycle count:

Instruction Type	Instruction Count	Cycles per Instruction
Integer arithmetic	45000	1
Data transfer	32000	2
Floating point	15000	2
Control transfer	8000	2

Determine the effective CPI, MIPS rate, and execution time for this program.

$$CPI = \frac{\sum_{i=1}^{n} (CPIi*Ii)}{Ic}$$

$$CPI = (1 \times 45000) + (2 \times 32000) + (2 \times 15000) + (2 \times 8000) /100,000 = 1.55$$
MIPS rate = f / CPI * 106 = 40 * 106 / 1.55* 106 = 25.80

Consider two different machines, with two different instruction sets, both of which have a clock rate of 200 MHz. The following measurements are recorded on the two machines running a given set of benchmark programs:

Instruction Type	Instruction Count (millions)	Cycles per Instruction
Machine A		
Arithmetic and logic	8	1
Load and store	4	3
Branch	2	4
Others	4	3
Machine A		
Arithmetic and logic	10	1
Load and store	8	2
Branch	2	4
Others	4	3

Answer:

$$CPI_{A} = \frac{\sum CPI_{i} \times I_{i}}{I_{c}} = \frac{(8 \times 1 + 4 \times 3 + 2 \times 4 + 4 \times 3) \times 10^{6}}{(8 + 4 + 2 + 4) \times 10^{6}} \approx 2.22$$

$$MIPS_{A} = \frac{f}{CPI_{A} \times 10^{6}} = \frac{200 \times 10^{6}}{2.22 \times 10^{6}} = 90$$

$$CPU_{A} = \frac{I_{c} \times CPI_{A}}{f} = \frac{18 \times 10^{6} \times 2.2}{200 \times 10^{6}} = 0.2 \text{ s}$$

$$CPI_{B} = \frac{\sum CPI_{i} \times I_{i}}{I_{c}} = \frac{(10 \times 1 + 8 \times 2 + 2 \times 4 + 4 \times 3) \times 10^{6}}{(10 + 8 + 2 + 4) \times 10^{6}} \approx 1.92$$

$$MIPS_{B} = \frac{f}{CPI_{B} \times 10^{6}} = \frac{200 \times 10^{6}}{1.92 \times 10^{6}} = 104$$

$$CPU_{B} = \frac{I_{c} \times CPI_{B}}{f} = \frac{24 \times 10^{6} \times 1.92}{200 \times 10^{6}} = 0.23 \text{ s}$$

b) Machine **B** has a **higher MIPS** than machine A, but it requires **a longer CPU time** to execute the same amount of benchmark programs.

The following table, based on data reported in the literature [HEAT84], shows the execution times, in seconds, for five different benchmark programs on three machines.

Benchmark	Processor			
	R	M	Z	
E	417	244	134	
F	83	70	70	
Н	66	153	135	
I	39,449	35,527	66,000	
K	772	368	369	

- a. Compute the speed metric for each processor for each benchmark, normalized to machine R. That is, the ratio values for R are all 1.0. Other ratios are calculated using Equation (2.5) with R treated as the reference system. Then compute the arithmetic mean value for each system using Equation (2.3). This is the approach taken in [HEAT84].
- b. Repeat part (a) using M as the reference machine. This calculation was not tried in [HEAT84].
- c. Which machine is the slowest based on each of the preceding two calculations?
- **d.** Repeat the calculations of parts (a) and (b) using the geometric mean, defined in Equation (2.6). Which machine is the slowest based on the two calculations?

a- Normalize to R:

Benchmark		Processo	r
	R	M	Z
E	1	1.71	3.11
F	1	1.19	1.19
Н	1	0.43	0.49
I	1	1.11	0.60
K	1	2.10	2.09
Arithmetic	1	1.31	1.50
mean			

b- Normalize to M

Benchmark	Processor		
	R	M	Z
E	0.59	1	1.82
F	0.84	1	1
Н	2.32	1	1.13
I	0.90	1	0.54
K	0.48	1	1
Arithmetic	1.01	1	1.10
mean			

c- On (a) ${\bf R}$ is the slowest machine on (b), ${\bf M}$ is the slowest Machine.

d- Normalize to R:

Benchmark	Processor		
	R	M	Z
E	1	1.71	3.11
F	1	1.19	1.19
Н	1	0.43	0.49
I	1	1.11	0.60
K	1	2.10	2.09
Geometric mean	1	1.15	1.18

• Normalize to M:

Benchmark	Processor			
	R	M	Z	
E	0.59	1	1.82	
F	0.84	1	1	
H	2.32	1	1.13	
Ι	0.90	1	0.54	
K	0.48	1	1	
Geometric	0.87	1	1.02	
mean				

R is the slowest!