10.4 Start Thinking

Consider $\odot M$ shown in the diagram. How are $m \angle B M C$ and $m \overparen{B C}$ related? How are $m \angle A$ and $m \angle B$ related? Explain your answer. Use this information to make a conclusion about the relationship between $m \overparen{B C}$ and $m \angle A$.

10.4 Warm Up

Find the measure of each angle in the polygon.
1.

2.

3.

10.4 Cumulative Review Warm Up

Find the area of the geometric figure. Round your answer to the nearest tenth, when necessary.

2.

3.

\qquad
\qquad

10.4 Practice A

In Exercises 1-3, find the indicated measure.

1. $m \angle K$
2. $m \overparen{D F}$
3. $m \overparen{S T}$

4. In the diagram shown, which statement is true? Explain.
A. $\angle S P R \cong \angle P S Q$
B. $\angle R Q S \cong \angle R P S$
c. $\angle R P S \cong \angle P R Q$
D. $\angle P R Q \cong \angle S Q R$

In Exercises 5-7, find the value of each variable.

6.

7.

8. Describe and correct the error in finding $m \angle B$.

9. You make a design using a pencil and a circular wheel, as shown.
a. Find $m \angle A B C$.
b. Find $m \angle A C B$.
c. What type of triangle is $\triangle A B C$?

Explain.

\qquad

10.4 Practice B

In Exercises 1-8, find the measure of the indicated arc or angle in $\odot P$ given $m \overparen{L M}=84^{\circ}$ and $m \widehat{K N}=116^{\circ}$.

1. $m \angle J K L$
2. $m \angle K M N$
3. $m \angle K L N$
4. $m \overparen{M J}$
5. $m \angle M K L$
6. $m \angle J K M$
7. $m \angle L N M$
8. $m \overparen{L K J}$

In Exercises 9-11, find the value of each variable.
9.

10.

11.

12. Copy and complete the proof.

Given: $\odot P$
Prove: $\triangle A E D \sim \triangle B E C$

STATEMENTS
1. $\odot P$
2. \quad

3. $\angle C A D \cong \angle D B C$
4. $\triangle A E D \sim \triangle B E C$

REASONS

1. Given
2. Vertical Angles

Congruence Theorem (Thm. 2.6)
3. \qquad
4. \qquad
13. Your friend claims that the angles $\angle A D B$ and $\angle B C A$ could be used in Step 3 of Exercise 12. Is your friend correct? Explain your reasoning.
14. Determine whether $\overline{A B}$ is a diameter of the circle. Explain your reasoning.

\qquad

10.4 Enrichment and Extension

Inscribed Angles and Polygons

1. Triangles $E F H$ and $F G H$ are inscribed in circle T with $\overparen{E H} \cong \overparen{E F}$. Find the measure of each numbered angle if $m \angle 2=3 a+2$ and $m \angle 3=12 a-2$.
2. A regular 13 -gon is inscribed in a circle. Find the measure of each arc intercepted by the sides of the polygon. Round your answer to the nearest hundredth of a degree.

In Exercises 3 and 4, find the measure of the numbered angles in the figure.
3.

4.

In Exercises 5 and 6, use the figure below, which shows a pentagon inscribed in circle O. Assume $\overline{A B} \cong \overline{B C} \cong \overline{C D}$ and $m \angle A B C=132^{\circ}$.
5. Find $m \angle A E B$.
6. Find $m \angle C O D$.

7. A puzzle in the form of a quadrilateral is inscribed in a circle. The vertices of the quadrilateral divide the circle into four arcs in a ratio of $1: 2: 5: 4$. Find the angle measures of the quadrilateral.
\qquad

How Did The Lettuce Get An A On The Test?

Write the letter of each answer in the box containing the exercise number.

Complete the sentence.

1. $\mathrm{A}(\mathrm{n})$ \qquad angle is an angle whose vertex is on a circle and whose sides contain chords of the circle.
2. An arc that lies between two lines, rays, or segments is called a(n) \qquad arc.
3. If the endpoints of a chord or arc lie on the sides of an inscribed angle, the chord or arc is said to \qquad the angle.
4. The measure of an inscribed angle is \qquad the measure of its intercepted arc.
5. If two inscribed angles of a circle intercept the same arc, then the angles are \qquad .
6. A polygon is an inscribed polygon when all of its \qquad lie on a circle.
7. The circle that contains the vertices of a polygon is a(n)
\qquad circle.
8. If a right triangle is inscribed in a circle, then the hypotenuse is $\mathrm{a}(\mathrm{n})$ \qquad of the circle.
9. A quadrilateral can be inscribed in a circle if and only if its opposite angles are \qquad .

Find the indicated measure using the diagram.
10. $m \overparen{F G}=98^{\circ}, m \overparen{G D}=142^{\circ}$; Find $m \angle G$.
11. $m \angle G=78^{\circ}$; Find $m \overparen{F D}$.

Find the indicated measure using the diagram.
12. $x^{\circ}=$
13. $y^{\circ}=$

8	13		7	3	6	4		1	5	11		9	12	2	10

