
10-601 Machine Learning, Fall 2012

Homework 2

Instructors: Tom Mitchell, Ziv Bar-Joseph

TA in charge: Selen Uguroglu
email: sugurogl@cs.cmu.edu

—— SOLUTIONS ——–

1 Naive Bayes, 20 points

Problem 1. Basic concepts, 10 points
Naive Bayes reduces the number of parameters that must be estimated for a Bayesian classifier, by making a
conditional independence assumption when modeling P (X|Y ). The definition for conditional independence
is the following:

Definition: Given random variables X, Y and Z, X is conditionally independent of Y given Z, denoted
by X ⊥ Y |Z, if and only if :

P (X = xi|Y = yj , Z = zk) = P (X = xi|Z = zk),∀i, j, k (1)

Given this definition, please answer the following questions:
a. (1 point) Given X ⊥ Y |Z, can we say P (X,Y |Z) = P (X|Z)P (Y |Z)? Explain.

SOLUTION: Yes, P (X,Y |Z) = P (X|Y, Z)P (Y |Z) = P (X|Z)P (Y |Z)

b. (1 point) Given X ⊥ Y |Z, can we say P (X,Y ) = P (X)P (Y )? Explain.

SOLUTION: No, it has to be conditioned on Z, P (X,Y ) = P (X|Y )P (Y ), P (X|Y ) is not equal to P (X)

c. (2 points) Suppose X is a vector of n boolean attributes and Y is a single discrete-valued variable
that can take on J possible values.
Let θij = P (Xi|Y = yj). What is the number of independent θij parameters?

SOLUTION: nJ

d. (2 points) Consider the same problem, but now suppose X is a vector of n real-valued attributes,
where each of these Xi follows a Normal (Gaussian) distribution: P (Xi = xi|Y = yj) ∼ N(xi|µij , σij). How
many distinct µij , σij are there?

SOLUTION: nJ pairs ( nJ µij and nJ σij )
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We can write the classification rule for Naive Bayes as:

y∗ = argmaxyk

P (Y = yk)
∏

i P (Xi|Y = yk)∑
j P (Y = yj)

∏
i P (Xi|Y = yj)

(2)

e. (2 points) We often do not compute the denominator when estimating Y. Explain why.

SOLUTION: Denominator does not depend on yj , so we don’t have to compute it during maximiza-
tion.

f. (2 points) Is it possible to calculate P(X) from the parameters estimated by Naive Bayes?

SOLUTION: Yes, NB is a generative classifier. We can obtain P(X) by marginalizing P (X|Y ) over the
class variable, e.g. P (X) =

∑
y P (X|Y = y)P (Y = y).

Problem 2. Parameter estimation for Naive Bayes, 10 points
Whether X takes discrete or continuous inputs, Naive Bayes can be used for classification with the same
conditional independence assumptions. In this question, we’ll discuss how to estimate the parameters using
MLE for both of the cases.
a. (4 points)
Let X = 〈X1, X2 . . . Xn〉 be a vector of n Boolean values where the random variable Xi denotes the ith at-
tribute of X. Suppose we are interested in estimating the parameters for the first attribute X1. We typically
model P (X1|Y = yk) with a Bernoulli distribution:

P (X1 = x1j |Y = yk) = θ
x1j

1k (1− θ1k)(1−x1j) (3)

where j = 1 . . .M refers to the jth training instance (M is the number of training samples), and where x1j
refers to the value of X1 in the jth training instance . Assume that the M training instances are independent
and identically distributed (iid). Write down the MLE for θ̂1k. (you need not derive it - just write it down).

SOLUTION:

P (X1j = x1j |θ1k) = θ
x1j

1k (1− θ1k)(1−x1j) for one instance

Lets write down the likelihood:

L(θ1k) =

M∏
j=1

P (X1j |θ1k)I(Y
j=yk)

where I(Y j = yk) = 1, if Y j = yk ; I(Y j = yk) = 0 otherwise
Taking the log:

`(θ1k) = ln

M∏
j=1

P (X1j |θ1k)I(Y
j=yk)

=

M∑
j=1

I(Y j = yk) lnP (X1j |θ1k)

=

M∑
j=1

I(Y j = yk)

[
x1j ln θ1k + (1− x1j) ln(1− θ1k)

]
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taking derivative with respect to θ1k:

∂`(θ1k)

∂θ1k
=

M∑
j=1

I(Y j = yk)

[
x1j

1

θ1k
+ (1− x1j)

1

(1− θ1k)

]

Setting to 0:

0 =
1

θ1k

M∑
j=1

I(Y j = yk)x1j +
1

1− θ1k

M∑
j=1

I(Y j = yk)(1− x1j)

Lets denote

M∑
j=1

I(Y j = yk)x1j = #n1jk and

M∑
j=1

I(Y j = yk) = #n1k

then:

θ̂1k =

∑M
j=1 I(Y j = yk)x1j∑M
j=1 I(Y j = yk)

θ̂1k =
#n1jk
#n1k

b. (6 points)
Now suppose each Xi is distributed normally, i.e.

P (Xi = xij |Y = yk) =
1

σik
√

2π
exp

(
−(xij − µik)2

2σ2
ik

)
(4)

Suppose the variance is independent of the class variable Y, and Xi, i.e. σik = σ Derive the MLE estimator
for µik.

SOLUTION:

L(µik;σ) =
M∏
j=1

[
1

σ
√

2π
exp

(
−(xij − µik)2

2σ2

)]I(Y j=yk)

Taking the log:

`(µik, σ) =

M∑
j=1

I(Y j = yk)

[
ln

(
1

σ
√

2π

)
+

(
−(xij − µik)2

2σ2

)]
Taking derivative with respect to µik and setting it to 0:

0 =
∂

∂µik

M∑
j=1

I(Y j = yk)

[
ln

(
1

σ
√

2π

)
+

(
−(xij − µik)2

2σ2

)]

µ̂ik =

∑M
j=1 I(Y j = yk)xij∑M
j=1 I(Y j = yk)
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2 Regularized Multi-Class Logistic Regression, 20 points

We can easily extend the binary Logistic Regression model to handle multi-class classification. Let’s assume
we have K different classes, and posterior probability for class k is given by:

P (Y = k|X = x) =
exp(wT

k x)

1 +
∑K−1

t=1 exp(wT
t x)

for k = 1 . . .K-1

P (Y = K|X = x) =
1

1 +
∑K−1

t=1 exp(wT
t x)

where x is a n dimensional vector, wt
T is the transpose of wt. Notice that we ignored wt0 to simplify the

expression. Our goal is to estimate the weights using gradient ascent. We will also define priors on the
parameters to avoid overfitting and very large weights.
a. (12 points) Assume that you are given a D by N training matrix, where D is the number of training
examples, and N is the number of dimensions. Please explicitly write down the log likelihood, L(w1, ...,wK)
with L2 regularization on the weights. Show your steps.
HINT: You can simplify the multi class logistic regression expression above by introducing a fixed parameter
vector wK = 0.
b. (4 points) Note that there is not a closed form solution to maximize the log conditional likelihood,
L(w1, ...,wK), with respect to wk. However, we can still find the solution with gradient ascent by using
partial derivatives. Derive the expression for the ith component in the vector gradient L(w1, ...,wK) with
respect to wi, which is the partial derivative of L(w1, ...,wK) with respect to wi.
c. (2 points) Beginning with the initial weights of 0, write down the update rule for wk, using ν for the
step size.
d. (2 points) Will the solution converge to a global maximum?

SOLUTION: Let Ilk be an indicator function, where Ilk = 1 if Y l = k, otherwise Ilk = 0 . Then
we can write the likelihood as:

L(w1, ...,wK) =

D∏
l=1

K∏
k=1

P(Yl = k|Xl = x;w)Ilk

=

D∏
l=1

K∏
k=1

(
exp(wT

k x
l)∑

r exp(wT
r x

l)

)Ilk

Taking log:

`(w1, ...,wK) =

D∑
l=1

K∑
k=1

Ilk

[
wT

k x
l − ln

∑
r

exp(wT
r x

l)

]
Adding the L2 regularization term:

`(w1, ...,wK) =

D∑
l=1

K∑
k=1

Ilk

[
wT

k x
l − ln

∑
r

exp(wT
r x

l)

]
− λ

2
||wk||2
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Taking derivative with respect to wi:

∂
`(w1, ...,wK)

∂wi
=

D∑
l=1

[
Ilix

l − xl exp(wT
i x

l)∑
r exp(wT

i x
l)

]
− λwi

∂
l(w1, ...,wK)

∂wi
=

D∑
l=1

[
Ili − P (Y l = i|X l)

]
xl − λwi

Then the update rule with gradient ascent for wi is:

wi ← wi + ν
∑D

l=1

[
Ili − P (Y l = i|X l)

]
xl − νλwi

This will converge to a global maximum since it is a concave function

3 Generative-Discriminative Classifiers, 20 points

In class, we learned that when Y takes Boolean values and X is a n dimensional vector of X = 〈X1, X2 . . . Xn〉
continuous variables, where each Xi, i = 1 . . . n is distributed normally (i.e. P (Xi|Y = yk) = N(µik, σi)),
then Logistic Regression is the discriminative equivalent of Naive Bayes under the Naive Bayes assumptions.

a. (14 points) Consider instead the case where X = 〈X1, X2 . . . Xn〉 is a vector of boolean variables.
Prove that even in this case, P (Y |X) follows the same logistic function form (and hence that Logistic Re-
gression is also the discriminative counterpart to a Naive Bayes classifier over boolean features). [Hint: see
Exercise 3 in the Mitchell reading on Naive Bayes and Logistic Regression. ]

SOLUTION: In the lecture we derived:

P (Y = 1|X) =
1

1 + exp

(
ln
P (X|Y = 0)P (Y = 0)

P (X|Y = 1)P (Y = 1)

)
=

1

1 + exp

(
ln

PY = 0)

P (Y = 1)
+
∑
i

ln
P (Xi|Y = 0)

P (Xi|Y = 1)

)
Prior for P (Y = 1) = π and P (Y = 0) = 1− π. Also, each Xi has binomial distribution:

P (Xi|Y = 0) = θXi
i0 (1− θi0)(1−Xi)

P (Xi|Y = 1) = θXi
i1 (1− θi1)(1−Xi)

Inserting this back to the equation:

P (Y = 1|X) =
1

1 + exp

(
ln

1− π
π

+
∑
i

ln
θXi
i0 (1− θi0)(1−Xi)

θXi
i1 (1− θi1)(1−Xi)

)
=

1

1 + exp

(
ln

1− π
π

+
∑
i

Xi ln
θi0
θi1

+ (1−Xi) ln
(1− θi0)

(1− θi1)

)
=

1

1 + exp

(
ln

1− π
π

+
(1− θi0)

(1− θi1)
+
∑
i

Xi

[
ln
θi0
θi1
− ln

(1− θi0)

(1− θi1)

])
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If we set:

w0 = ln
1− π
π

+
∑
i

ln
(1− θi0)

(1− θi1)
and

wi = ln
θi0
θi1
− ln

(1− θi0)

(1− θi1)

then we can reach:

P (Y = 1|X) =
1

1 + exp

(∑
i wiXi

)
which is equivalent to the LR formulation.

b. (2 points) Suppose the data satisfies the conditional independence assumption of Naive Bayes. As the
number of training examples approaches infinity, which classifier produces better results, NB or LR? Justify
your answer in one sentence.

SOLUTION: Under conditional independence assumptions, we showed that Logistic regression is dis-
criminative counterpart of Naive Bayes. Therefore, if the data satisfies CI assumptions, Naive Bayes and
Logistic Regression will produce equivalent results.

c. (2 points) Suppose the data does not satisfy the conditional independence assumption of Naive Bayes.
As the number of training examples approaches infinity, which classifier produces better results, NB or LR?
Justify your answer in one sentence.

SOLUTION: Logistic Regression will produce better results, since it doesn’t assume that data satis-
fies conditional independence.

d. (2 points) Is it possible to calculate P(X) from the parameters estimated by Logistic Regression?
Explain.

SOLUTION: No it is not, LR is a discriminative classifier, that estimates P (Y |X), not P (X|Y ). In
order to calculate P(X), we need to know P (X|Y ).

4 Programming, 40 points

We will now learn how to use Naive Bayes and Logistic Regression to solve a real world problem: text
categorization. Text categorization (also referred as text classification) is the task of assigning documents
to one or more topics. For our homework, we will use a benchmark dataset that is frequently used in text
categorization problems. This dataset, Reuters-21578, consists of documents that were appeared in Reuters
newswire in 1987. Each document was then manually categorized into a topic among over 100 topics. In this
homework we are only interested in earn and acquisition (acq) topics, so we will be using a shortened version
of the dataset (documents assigned to topics other than ”earn” or ”acq” are not in the dataset provided
for the homework). As features, we will use the frequency (counts) of each word occurred in the document.
This model is known as bag of words model and it is frequently used in text categorization.
You can download HW2 data from the class website. In this folder you will find:
train.csv: Training data. Each row represents a document, each column separated by commas represents
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features (word counts). There are 4527 documents and 5180 words.
train labels.txt: labels for the training data
test.csv: Test data, 1806 documents and 5180 words
test labels.txt: labels for the test data
word indices: words corresponding to the feature indices.

For your convenience we also included a version of this dataset in .mat format, (reuters.mat) so that you
can directly import it to Matlab.

Implement regularized Logistic Regression (LR) using gradient descent. Use step size ν = 0.001, and reg-
ularization constant, λ = 0.01. Choose an appropriate threshold value as stopping criteria to decide if the
weights are converged.
Implement Naive Bayes. To avoid 0 probabilities, choose a Beta distribution with equal valued parameters
as a prior when estimating Naive Bayes parameters using MAP. You may need to implement with log prob-
abilities to avoid underflow.

a. Train your classifiers on the training set that is given. For each of the classifier, report training ac-
curacy, testing accuracy and the amount of time spent training the classifier. For logistic regression, plot log
likelihood with respect to iterations needed to converge.

SOLUTION:

Naive Bayes:
Elapsed time: 0.025 seconds.
Training Accuracy: 0.97
Test Accuracy: 0.98

Logistic Regression:
Elapsed time: is 407.4 seconds.
Training Accuracy: 0.996
Test Accuracy: 0.99
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4.1 Feature selection with Mutual Information

Feature selection usually improves the classification performance on text categorization tasks. In this ques-
tion, we are going to select top 1000 most informative features with mutual information (MI). Mutual
information measures the contribution of a term on the correct classification decision. We can define the
expected mutual information between the word Wi and the class variable Y by:

I(wi;Y ) =
∑

wi∈{0,1}

∑
yj∈{0,1}

P (Wi = wi, Y = yj)log2
P (Wi = wi, Y = yj)

P (Wi = wi)P (Y = yj)
(5)

b. Implement mutual information feature selection method, and reduce the dataset to include only the
top 1000 most informative features. Run Naive Bayes and Logistic Regression on this new dataset and re-
port training, testing accuracies and the amount of time spent training the classifiers. For logistic regression,
plot log likelihood with respect to iterations needed to converge. Did feature selection improve classification
accuracy on the test set?

SOLUTION:
First 10 features:
’vs’
’ct’
’shr’
’net’
’qtr’
’rev’
’note’
’loss’
’mth’
’avg’

Naive Bayes:

Elapsed time: 0.02 seconds.
Training Accuracy: 0.96
Test Accuracy: 0.98

Logistic Regression:
Elapsed time is 70.86 seconds.
Training Accuracy: 0.995
Test Accuracy: 0.985
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c. We will now try to see if Naive Bayes assumptions hold for this dataset. Lets first reduce the number
of features to 100, using MI as the feature selection method as described above. Then, randomly select
20 instances from the training set, and train your classifiers on the reduced training dataset. Test both
classifiers on the same test dataset, and report accuracies. Then add 50 more randomly selected instances
from the rest of the training set to the reduced sample and train both classifiers. Repeat this until you use
all training instances for training. Include a plot of Naive Bayes and Logistic Regression accuracies on the
same figure, y axis should be the classification accuracy, x axis should be the number of training samples.
What do you observe? What can you tell about the Naive Bayes assumptions? Do they hold in this dataset?

SOLUTION:
As training data goes infinity, Naive Bayes and Logistic regression converges to the same value, so we can
say that the NB assumptions hold on this particular dataset.
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