9.4 Compare Linear, Exponential, and Quadratic Models

-Students will Compare Linear, Exponential, and Quadratic Models

Identifying from an equation:

Linear

Has an x with no exponent. HOY

$$
y=5
$$

$$
y=5 x+1
$$

$$
y=1 / 2 x
$$

$$
2 x+3 y=6
$$

Exponential

Has an x as the exponent.

$$
\begin{gathered}
y=3^{x}+1 \\
y=5^{2 x} \\
4^{x}+y=13
\end{gathered}
$$

Quadratic

Has an x^{2} in the equation; the highest power is 2.

$$
\begin{gathered}
y=2 x^{2}+3 x-5 \\
y=x^{2}+9 \\
x^{2}+4 y=7
\end{gathered}
$$

Examples:

- LINEAR, QUADRATIC or EXPONENTIAL?
a) $y=6^{x}+3$
b) $y=7 x^{2}+5 x-2$
c) $9 x+3=y$
d) $4^{2 x}=8$

Exponential Growth
Positive Quadratic
Increasing Linear
Exponential Growth

Identifying from a graph:

Linear

Makes a straight line

Exponential

Rises or falls quickly in one direction

Quadratic
Makes a U or \cap
(parabola)

LINEAR, QUADRATIC or EXPONENTIAL?

a)

a) Negative Quadratic
c)

c) Decreasing Linear
b)

b) Exponential Decay
d)

d) Neither (Absolute Value)

Is the table linear, quadratic or exponential? All x values must have a common difference

Linear

- Never see the same y value twice.
- $1^{\text {st }}$ difference is the same for the y values

Exponential

- y changes more quickly than x .
- Never see the same y value twice.
- Common ratio for the y values

Quadratic

- See same y more than once.
- $2^{\text {nd }}$ difference is the same for the y values

Remember!

When the independent variable changes by a constant amount,

- linear functions have constant first differences.
- quadratic functions have constant second differences.
- exponential functions have a constant ratio.

EXAMPLE 2 Identify functions using differences or ratios

ANSWER

The table of values represents a linear function.

EXAMPLE 2 Identify functions using differences or ratios

Use differences or ratios to tell whether the table of values represents a linear function, an exponential function, or a quadratic function.

ANSWER

The table of values represents a quadratic function.

GUIDED PRACTICE

2. Tell whether the table of values represents a linear function, an exponential function, or a quadratic function.

x	-2	-1	0	1
y	0.08	0.4	2	10

ANSWER
exponential function

Example 3: Problem-Solving Application

SOLVING

Use the data in the table to describe how the number of people changes. Then write a function that models the data. Use your function to predict the number of people who received the e-mail after one week.

E-mail forwarding	
Time (Days)	Number of People Who Received the E-mail
0	8
1	56
2	392
3	2744

Solve

Step 1 Describe the situation in words.

This is an example of exponential growth.

Step 2 Write the function.
There is a constant ratio of 7. The data appear to be exponential.
$y=a b^{x} \quad$ Write the general form of an exponential function.
$y=a(7)^{x} \quad$ Plug in the common ratio for b.
$y=8(7)^{x} \quad$ Plug in your initial (starting) amount for a.
This is your model.

Step 3 Predict the e-mails after 1 week.

$$
\begin{aligned}
y & =8(7)^{x} & & \text { Write the function. } \\
& =8(7)^{7} & & \begin{array}{c}
\text { Substitute } 7 \text { for } \times(1 \text { week }=7 \\
\text { days }) .
\end{array} \\
& =6,588,344 & & \text { Use a calculator. }
\end{aligned}
$$

There will be 6,588,344 e-mails after one week.

Check It Out! Example 3

Use the data in the table to describe how the oven temperature is changing. Then write a function that models the data. Use your function to predict the temperature after 1 hour.

Oven Temperature				
Time (min)	0	10	20	30
Temperature ($\left.{ }^{\circ} \mathrm{F}\right)$	375	325	275	225

Solve

Step 1 Describe the situation in words.

Oven Temperature	
$\begin{array}{\|l\|} \hline \text { Time } \\ \text { (min) } \end{array}$	Temperature (${ }^{\circ} \mathrm{F}$)
0	375
10	325
20	275
30	225

This is an example of a decreasing linear function.

Step 2 Write the function.
There is a constant reduction of 50° each 10 minutes. The data appear to be linear.

$$
\begin{array}{ll}
y=m x+b & \begin{array}{l}
\text { Write the general form of a linear } \\
\text { function. }
\end{array} \\
y=-5(x)+b & \text { The slope } m \text { is }-50 \text { divided by } 10
\end{array}
$$

Step 3 Predict the temperature after 1 hour.

$$
\begin{array}{rlr}
y & =-5 x+375 \quad \text { Write the function. } \\
& =-5(60)+375 & \text { Substitute } 60 \text { for } x . \\
& =75^{\circ} \mathrm{F} & \text { Simplify. }
\end{array}
$$

The temperature will be $75^{\circ} \mathrm{F}$ after 1 hour.

