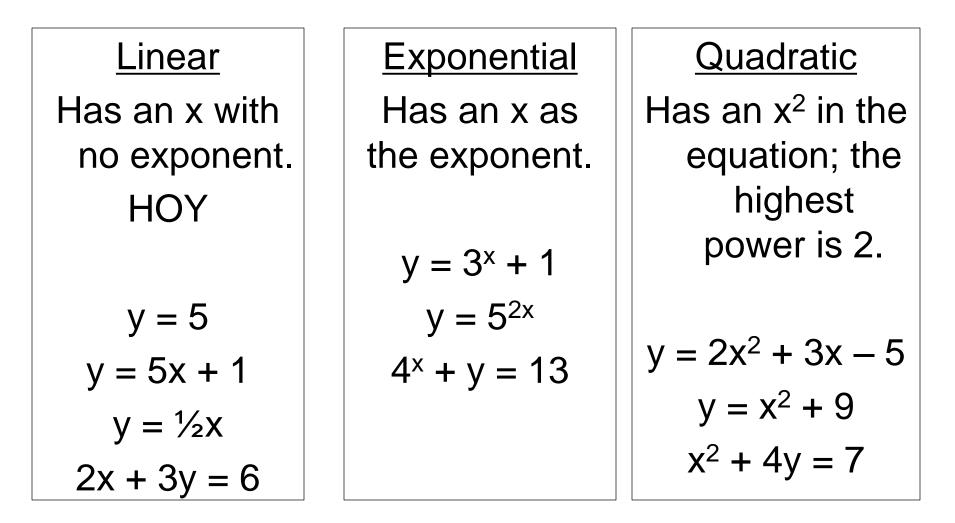
9.4 Compare Linear, Exponential, and Quadratic Models

•Students will Compare Linear, Exponential, and Quadratic Models

# Identifying from an equation:



# Examples:

• LINEAR, QUADRATIC or EXPONENTIAL?

- a)y =  $6^{x} + 3$
- b)y =  $7x^2 + 5x 2$
- c)9x + 3 = y

d) $4^{2x} = 8$ 

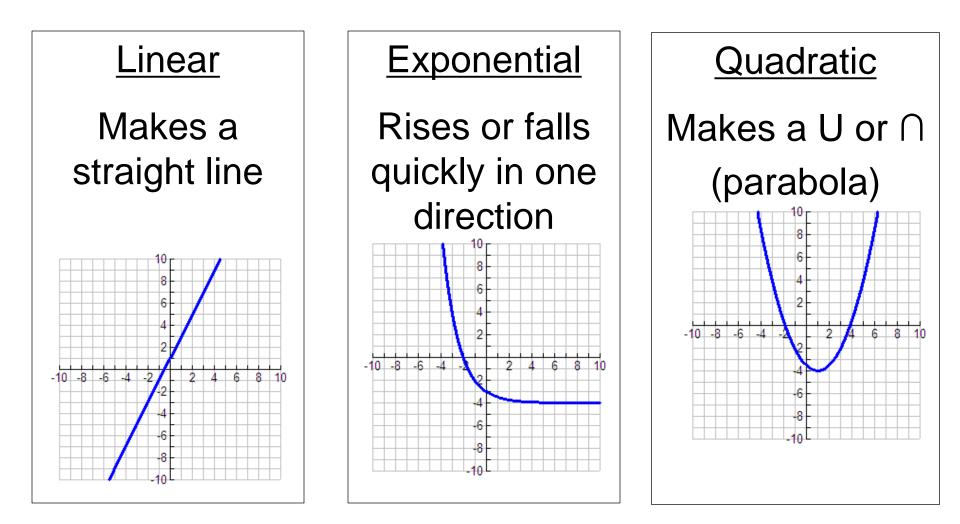
**Exponential Growth** 

**Positive Quadratic** 

**Increasing Linear** 

**Exponential Growth** 

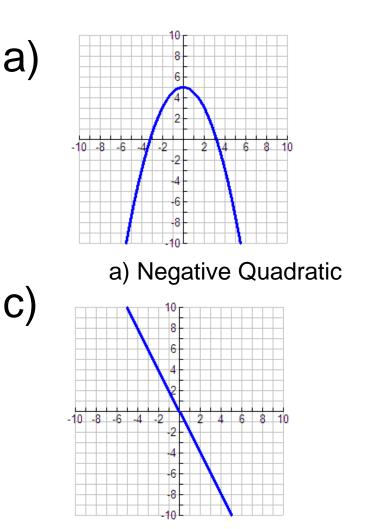
# Identifying from a graph:



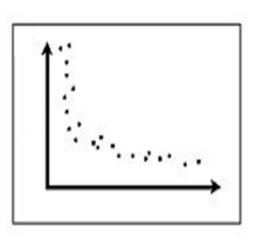
# LINEAR, QUADRATIC or EXPONENTIAL?

b)

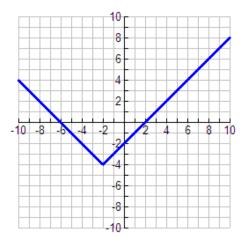
d)



c) Decreasing Linear



b) Exponential Decay



d) Neither (Absolute Value)

Is the table linear, quadratic or exponential? All x values must have a common difference

### <u>Linear</u>

- Never see the same y value twice.
- 1<sup>st</sup> difference is the same for the y values

### **Exponential**

- y changes more quickly than x.
- Never see the same y value twice.
- Common ratio for the y values

## <u>Quadratic</u>

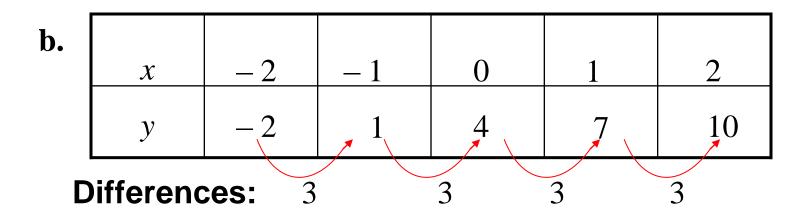
- See same y more than once.
- 2<sup>nd</sup> difference is the same for the y values

#### **Remember!**

When the independent variable changes by a constant amount,

- linear functions have constant first differences.
- quadratic functions have constant second differences.
- exponential functions have a constant ratio.

#### **EXAMPLE 2** Identify functions using differences or ratios

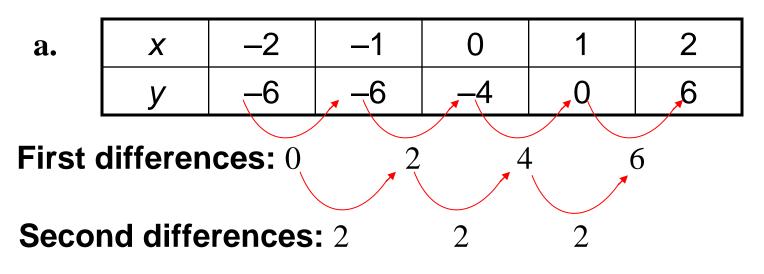


#### ANSWER

The table of values represents a linear function.

### **EXAMPLE 2** Identify functions using differences or ratios

Use differences or ratios to tell whether the table of values represents a *linear function*, an *exponential function*, or a *quadratic function*.





The table of values represents a quadratic function.



2. Tell whether the table of values represents a *linear function*, an *exponential function*, or a *quadratic function*.

| x | -2   | - 1 | 0 | 1  |
|---|------|-----|---|----|
| У | 0.08 | 0.4 | 2 | 10 |



exponential function

#### **Example 3:** *Problem-Solving Application*

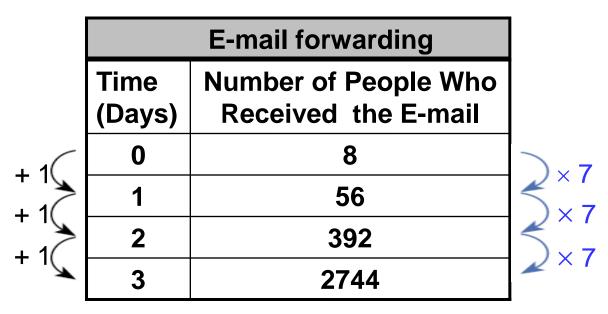


Use the data in the table to describe how the number of people changes. Then write a function that models the data. Use your function to predict the number of people who received the e-mail after one week.

| E-mail forwarding |                                             |  |  |  |  |
|-------------------|---------------------------------------------|--|--|--|--|
| Time (Days)       | Number of People Who Received<br>the E-mail |  |  |  |  |
| 0                 | 8                                           |  |  |  |  |
| 1                 | 56                                          |  |  |  |  |
| 2                 | 392                                         |  |  |  |  |
| 3                 | 2744                                        |  |  |  |  |



#### **Step 1** Describe the situation in words.



This is an example of exponential growth.

**Step 2** Write the function.

There is a constant ratio of 7. The data appear to be exponential.

- *y* = *ab*<sup>*x*</sup> Write the general form of an exponential function.
- $y = a(7)^{x}$  Plug in the common ratio for b.
- $y = 8(7)^{x}$  Plug in your initial (starting) amount for a. This is your model.

#### **Step 3** Predict the e-mails after 1 week.

- $y = 8(7)^{x}$  Write the function.
  - $= 8(7)^{7}$   $= 8(7)^{7}$  = 6,588,344 Substitute 7 for x (1 week = 7) days). = 6,588,344 Use a calculator.

There will be 6,588,344 e-mails after one week.

#### **Check It Out! Example 3**

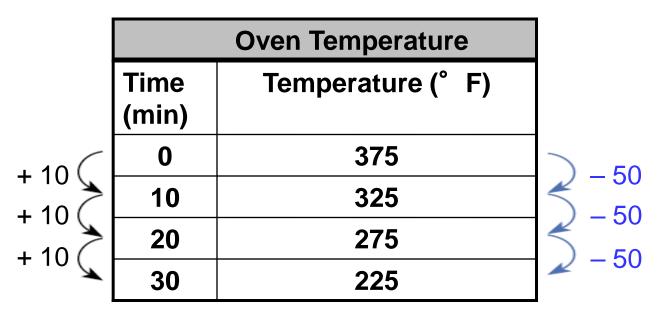


Use the data in the table to describe how the oven temperature is changing. Then write a function that models the data. Use your function to predict the temperature after 1 hour.

| Oven Temperature |     |     |     |     |  |  |  |
|------------------|-----|-----|-----|-----|--|--|--|
| Time (min)       | 0   | 10  | 20  | 30  |  |  |  |
| Temperature (°F) | 375 | 325 | 275 | 225 |  |  |  |



#### Step 1 Describe the situation in words.



This is an example of a decreasing linear function.

#### **Step 2** Write the function.

There is a constant reduction of 50° each 10 minutes. The data appear to be linear.

- y = mx + b Write the general form of a linear function.
- y = -5(x) + b The slope m is -50 divided by 10.
- y = -5(0) + b Choose an x value from the table, such as 0.
- y = 0 + 375 The starting point is b which is 375.

y = 375y = -5x + 375 This is your model.

#### **Step 3** Predict the temperature after 1 hour.

- y = -5x + 375 Write the function.
  - = -5(60) + 375 Substitute 60 for x.
  - = 75° F Simplify.

The temperature will be 75° F after 1 hour.