

Topic: Volumes of Revolution around the Y-axis (1)

Chapter Reference: Core Pure 1, Chapter 5

minutes

1. Fig. 1 shows the curve $y = \sqrt{1 + e^{2x}}$.

The region bounded by the curve, the x-axis, the y-axis and the line x = 1 is rotated through 360° about the x-

2. Fig. 2 shows a sketch of the region enclosed by the curve $1 + e^{-2x}$, the x-axis, the y-axis and the line x = 1.

^x Fig. 2

Find the volume of the solid generated when this region is rotated through 360° about the *x*-axis. Give your answer in an exact form.

(5)

-	
1	

1.	
$V = \int_0^1 \pi y^2 dx = \int_0^1 \pi (1 + e^{2x}) dx$	M1
$=\pi\bigg[x+\frac{1}{2}e^{2x}\bigg]_0^1$	B1
$= \pi (1 + \frac{1}{2}e^2 - \frac{1}{2})$	M1
$=\frac{1}{2}\pi(1+e^2)^*$	E 1

2.

$V = \int \pi y^2 dx$	M1
$V = \int \pi y^2 dx$ $= \int_0^1 \pi (1 + e^{-2x}) dx$	M1
$= \pi \left[x - \frac{1}{2} e^{-2x} \right]_0^1$	B1
$=\pi(1-\frac{1}{2}e^{-2}+\frac{1}{2})$	M1
$= \pi (1\frac{1}{2} - \frac{1}{2} e^{-2})$	A1

Topic: Volumes of Revolution around the Y-axis (2)

Chapter Reference: Core Pure 1, Chapter 5

minutes

1. Fig. 1 shows the region enclosed by the curve $y = (1 + 2x^2)^{\frac{1}{3}}$ and the line y = 2.

Fig. 1

This region is rotated about the y-axis. Find the volume of revolution formed, giving your answer as a multiple of π . **(6)**

1.	
$y = (1 + 2x^2)^{\frac{1}{3}} \Rightarrow y^3 = 1 + 2x^2$ $\Rightarrow x^2 = \frac{1}{2}(y^3 - 1)$	M1
$V = \int_{1}^{2} \pi x^{2} dy = \frac{1}{2} \pi \int_{1}^{2} (y^{3} - 1) dy$	M1
www For A1 it must be correct with correct limits 1 and 2, but they may appear later	A1
$1/2[y^4/4-y]$ independent of π and limits	B 1
$= \frac{1}{2}\pi \left[\frac{1}{4}y^4 - y\right]_1^2 = \frac{1}{2}\pi(2 + \frac{3}{4})$	M1
$=\frac{11}{8}\pi$	A1

Topic: Adding and Subtracting Volumes (3)

Chapter Reference: Core Pure 1, Chapter 5

10 minutes

1. The region R is bounded by the curve with equation $y = x^3 - 3$, the line $y = -2x$ and the x-axis. The t	wo
lines intercept at point A .	
a. Verify that the coordinates of A are $(1, -2)$.	(2)
A solid is created by rotating the region 360° about the <i>x</i> -axis.	
b. Find the volume of this solid. Give your answer to three significant figures.	(6)

1a.

$-2x = x^3 - 3$	M1
Obtains (1, -2) using any valid method	A1

1b.

Attempt to split, find V_1 and V_2	M1
Use of correct limits [1, 1.442]	M1
A volume of $\frac{4}{3}\pi$ obtained	A1
A volume of 1.5552 obtained	A1
$V_1 + V_2 = \frac{4}{3}\pi + 1.5552 \dots = 5.74$ (award one mark if not 3 s.f.)	A2

Topic: Modelling with Volumes of Revolution (4)

Chapter Reference: Core Pure 1, Chapter 5

10 minutes

. A bowl has a height of 5cm. The shape of the bowl is modelled by rotating the curve with equation $y = 0.05x^2$	
through 2π radians about the y-axis.	
a. Find the diameter of the bowl.	(2)
b. Find the maximum volume of liquid that can be contained within the bowl.	(4)
	·

1a.

Equates $y = 5$ and $y = 0.05x^2$	M1
= 20	A1

1b.

Attempts to integrate	M1
Uses limits of $y = 0$ and $y = 5$	A1
250π (award one mark if π omitted)	A2

Topic: Modelling with Volumes of Revolution (5)

Chapter Reference: Core Pure 1, Chapter 5

10 minutes

1. The region R is the area between the curve $x = y^2 - 6y + 10$, the lines $y = 1$, $y = 4$ and	d the y-axis.
a. Find the area of the region R .	(3)
A ceiling lampshade is modelled by rotating region R through 360° about the y -axis.	
b. Use integration to find an exact value for the volume of the lampshade.	(5)

<u>1a.</u>

Attempts integration wrt y	M1
Uses limits of $y = 1$ and $y = 4$	A1
= 6	A1

1b.

Attempts integration	M1
Uses limits of $y = 1$ and $y = 4$	A1
$\pi\left(\left(\frac{1024}{5} + \frac{3584}{3} - 1328\right) - \left(\frac{1}{5} + \frac{56}{3} + 37\right)\right)$ (or correct integration)	M1
$= \frac{78}{5}\pi \text{ (award one mark if } \pi \text{ omitted)}$	A2

