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10.  CONSOLIDATION 

 

 

10.1 INFLUENCE OF DRAINAGE ON RATE OF SETTLEMENT 

 

 When a saturated stratum of sandy soil is subjected to a stress increase, such as that 

caused by the erection of a building on the ground surface, the pore water pressure is increased.  

This increase in pore pressure leads to drainage of some water from the voids of the soil.  Because 

of the relatively high permeability of the sandy soil this drainage process will occur quite quickly.  

In other words the pore pressure increase will dissipate rapidly.  As a consequence of the drainage 

of some water from the soil, volume change will occur and settlement will take place. 

 

 When a saturated stratum of clayey soil is subjected to a stress increase, the dissipation 

of the excess pore pressure generated will take place much more slowly because of the relatively 

low permeability of the clayey soil.  This means that the settlement, caused by the drainage of 

some water from the voids of the soil, will take place gradually over a long period of time. 

 

 Fig. 10.1(a) represents a rigid but smooth walled container which is filled with saturated 

soil.  The container is sealed by means of a membrane covering the upper surface of the soil.  A 

uniform pressure of ∆σ is applied to the top of the soil.  Since the soil is saturated and the 

container is rigid no settlement of the soil will be observed.  If the pore pressure change within the 

soil was observed it would be found to equal the applied stress ∆σ.  Since the applied (total) stress 

and the pore pressure both increase by equal amounts, there will be no change in effective stress.  

The absence of any observed settlement is therefore consistent with the principle of effective 

stress, which requires that volume change will occur only as a result of an effective stress change. 

 

 In Fig. 10.1(b) an opening has been provided in the membrane to enable water to be 

expelled or drained from the container of soil.  Under the effect of the increase in pore pressure 

∆u (=∆σ), water will be expelled from the soil and this drainage of water will continue until the 

water pressure decreases to the equilibrium value prevailing before the stress change of ∆σ was 

applied to the soil.  This means that the pore pressure change finally will be zero.  Since the total 

stress has increased by ∆σ the effective stress will also increase by ∆σ.  In response to this 

effective stress change, settlement of the soil will occur, the amount depending upon the 

compressibility of the soil. 

 

 These observations illustrate that in a one dimensional compression situation for a 

saturated soil, settlement of the soil in response to an applied stress occurs only when water is 

allowed to be expelled from the soil. 
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(a) Sample sealed, drainage prevented        (b) drainage permitted 

 

Fig.10.1 Influence of Drainage upon stress changes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 10.2 Vertical stress changes during consolidation 

 

The stress changes throughout the depth of a soil layer in a one dimensional field situation are 

illustrated in Fig. 10.2.  The initial conditions ar represented in Fig. 10.2(a).  Since the water table 
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is coincident with the ground surface the initial pore pressure ui at any depth z below the ground 

surface is 

  ui = ρw g z 

 

the initial total vertical stress σi is 

 

  σi = ρ sat g z 

 

and the initial effective vertical stress σ'i is 

 

  σ'i = σi - ui 

   = ρ sat g z - ρw g z 

   = ρb g z 

 

where ρb is the buoyant density of the soil.  The distribution of this effective stress throughout the 

depth of soil is shown by the hatched area. 

 

 In Fig. 10.2(b) a stress of ∆σ has been applied over the ground surface.  The stress 

diagram has been drawn for the instant following the application of load before any water has 

been expelled from the soil.  The pore pressure will increase by an amount equal to the applied 

stress as in the case of Fig. 10.1(a).  The pore pressure u at any depth z below the ground surface 

is 

 

  u = ui + ∆u 

   = ρw g z + ∆σ 

 

and the effective stress is the same as that before the load application. 

 

 Under the effect of the additional (excess hydrostatic) pore pressure, water will be 

expelled from the soil.  Water will be expelled through the upper boundary of the soil and, if the 

underlying rock is pervious, through the lower boundary as well.  This drainage of water will 

continue until the pore pressure distribution coincides with that which existed before the surface 

stress was applied as shown in Fig. 10.2(c).  This means that the stress ∆σ which was originally 

carried as a pore pressure ∆u has now been transferred to effective stress.  The final effective 

stress σ'f at any depth z is 

 

  σ'f = σ'i + ∆σ 

   = ρb g z + ∆σ 
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 As a result of the increase ∆σ in effective stress the soil will undergo a volume decrease 

as a consequence of the expulsion of water from the soil and a time dependent settlement of the 

ground surface would be observed.  The process of gradual transfer of stress from the pore 

pressure to effective stress with the associated volume change is referred to as consolidation.  The 

rate at which the settlement occurs depends upon the rate at which water is expelled from the soil 

and this depends upon the total head gradient and the permeability of the soil. 

 

6.2 USE OF A RHEOLOGICAL MODEL 

 

 An understanding of the time dependent nature of the settlement for a consolidating soil 

may be assisted by considering the consolidation process a rheological model.  A simple model 

that is often used is the Kelvin model (Fig. 10.3) which consists of a linear spring and a dashpot in 

parallel.  The spring constant (E
-
) and the dashpot constant (η) are defined as follows 

 

  σs = E
-
 ε  (10.1) 

 

  σD = η (dε/dt)  (10.2) 

 

where  σs = stress in the spring 

 

  σD = stress in the dashpot 

 

  ε = strain 

 

  t = time 

 

If a stress (∆σ) is applied to the model and remains constant 

 

  ∆σ = σs + σD  (10.3) 

 

   = E
-
 ε + η (dε/dt) 

 

Assuming that the strain is zero at time zero, the solution to this equation is 

 

  ε = (∆σ/E
-
) (1 - e - (E

-
/η)t) (10.4) 

 

which demonstrates the time dependency of the strain. 
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Fig. 10.3  Kelvin Model 

 

 

 

 

Fig. 10.4 

 

In the analogy provided by use of the Kelvin model the stress in the spring (σs) can be interpreted 

as effective stress in the soil and the stress in the dashpot (σD) may be interpreted as the pore 

water pressure. 
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EXAMPLE 

 

 In a Kelvin model evaluate the stresses in the spring and in the dashpot (as proportions of 

the applied stress) as a function of time.  The spring constant (E
-
) is 1 MPa and the dashpot 

constant (η) is 1011 Ns/m2. 

 

 From equations (10.4) and (10.1) 

 

  σs = E
-
 e = ∆σ (1 - e - (E

-
/η)t) 

 

and from equation (10.3) 

 

  σD = ∆σ - σs = ∆σ  e - (E
-
/η)t) 

 

Expressing σs and σD as proportions of ∆ σ 

 

  σs/ ∆σ = 1 - e- (E
-
/η)t)  (10.5) 

 

  σD/ ∆σ = e - (E
-
/η)t)  (10.6) 

 

   = 1 - (σs/ ∆σ) 

 

 The time variations in σs and σD may be found from equations (10.5) and (10.6) 

following substitution for the given values of E
-
 and η.  The single curve representing variations in 

both stresses has been plotted in Fig. 10.4. 

 

10.3 CONSOLIDATION AS A SEEPAGE PROBLEM 

 

 The seepage of water from the soil during consolidation may be represented by means of 

a head diagram of the type shown in Fig. 5.5.  The problem will be illustrated for the situation 

shown in Fig. 10.5., in which a compressible clay is sandwiched between two relatively 

incompressible sand layers, the water table being at the ground surface. 

 

 Before the application of the surface pressure a hydrostatic pore pressure distribution 

prevails throughout the water in the voids of the soils.  In other words the pressure head line is 

represented by line ACFB.  The elevation head line from the arbitrarily chosen datum is given by 

line GH.  The total head line is therefore HIKB.  Since the total head has a constant value (equal 

to GB) throughout the depth of soil considered, no seepage will take place. 
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 As discussed in Section 10.1 immediately following the application of a wide surface 

pressure ∆σ to the ground surface the pore pressure in the saturated clay will rise by an amount 

∆u where 

 

  ∆u = ∆σ 

 

 In other words the pressure head in the clay will increase by an amount (∆u/ρw g).  

Because of the relatively high permeability of the sand the pore pressure increase will dissipate 

very rapidly in the sand.  The pressure in the sand will be transferred to effective stress almost 

immediately.  For this reason no pressure head increase has been drawn for the pore water in the 

sand.  The new pressure head diagram is now represented by ACDEFB. 

 

 If the elevation head is added to the pressure head the total head line HIJLKB is 

obtained.  This line shows that there are sudden changes in total head at the upper and lower 

boundaries of the clay layer.  Because of the very large total head gradients (theoretically infinity) 

at these locations water will be expelled from the clay into the sand layers.  This expulsion of 

water commences at the two boundaries of the clay layer and works progressively in towards the 

centre of the clay.  As the water is expelled the excess hydrostatic pore pressure decreases, the 

total head decreases, the total head gradient decreases and consequently the rate at which the 

water is expelled decreases.  This unsteady seepage situation is represented by the total head lines 

for various times which are drawn for the upper portion of the clay in the IJLK portion of the 

diagram in Fig. 10.5.  The total head line gradually approaches line IK as time elapses and finally 

coincides with it as the total head gradient becomes zero and the expulsion of water ceases.  At 

this stage the original excess hydrostatic pore pressure (∆u) has been fully transferred to effective 

stress. 

 

 The rate at which this process of consolidation proceeds depends upon a number of 

factors such as the soil properties, the layer thickness and the boundary conditions.  These are 

examined qualitatively in Section 10.4 and quantitatively in Section 10.5. 

 

10.4 FACTORS AFFECTING THE RATE OF CONSOLIDATION 

 

10.4.1 Permeability 

 

 An increase in permeability of the consolidating soil would lead to an increase in the rate 

of seepage flow, other factors remaining constant.  With the greater rate of expulsion of  
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Fig. 10.5  Head Diagram for Consolidation 

 

 

 

 

 

 

Fig. 10.6  Element of Soil in a Consolidating Layer 
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water from the soil the pore pressures will dissipate more rapidly.  This means that a more rapid 

rate of consolidation occurs. 

 

10.4.2 Compressibility 

 

 A greater compressibility leads to a greater decrease in the void space of the soil for a 

particular stress change.  This means that a greater volume of water must be expelled from the soil 

and this will require a longer time.  Consequently a lower rate of consolidation will result. 

 

10.4.3 Layer Thickness 

 

 An increase in the layer thickness leads to a decrease in the total head gradient during the 

stage of pore water expulsion.  It also means an increase in the volume of water to be expelled and 

both of these effects lead to a lower rate of consolidation. 

 

10.4.4 Boundary Conditions 

 

 The presence of drainage boundaries through which water may be expelled has a 

significant effect on the rate of consolidation.  If drainage layers exist on both sides of a 

consolidating layer (doubly drained) the rate of expulsion of water will be greater than in the case 

where one drainage layer only exists, the other side being an impermeable layer (singly drained).  

Consequently, a consolidating layer which is doubly drained will consolidate at a faster rate than 

one which is singly drained. 

 

10.5 TERZAGHI THEORY OF ONE DIMENSIONAL CONSOLIDATION 

 

 A layer of soil undergoing consolidation is represented in Fig. 10.6(a).  The soil is 

underlain by an impermeable base so in this case the flow of water is in the upward direction 

towards the drainage boundary at the ground surface.  An element of soil measuring dx, dy, dz has 

been selected for development of the consolidation equation and this element is enlarged in Fig. 

10.6(b). 

 

 The rate of water flow into the element is indicated by Qin and the rate of flow out of the 

element is indicated by Qout.  Since the element is decreasing in volume during consolidation, Qin 

and Qout will not be equal. 

 

 The ratio of flow in and out of the element will be given by the Darcy equation (see 

section 5.1). 

 

  Qin = k i A   (5.4) 
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Now volume of element = dx  dy  dz 

 

Pore volume  = dx  dy  dz  
e

1 + e
 = dx  dy  dz  n 

 

where e indicates the void ratio, and n is the porosity of the soil 

 

Rate of change

of pore volume
  = -  dx  dy  dz  

t

n

∂

∂
 (10.8) 

 

 In order to satisfy continuity the rate of change of pore volume must equal the rate of 

storage of water.  Equating these two rates as given by equations (10.7) and (10.8). 
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    (10.9) 

 

 Now 
∂n

 ∂t
 =  

∂n

 ∂σ'
  
∂σ'

 ∂t
 

 

   =  -  mv  
∂σ'

 ∂t
  from equation (9.12) (10.10) 

 

where mv is the one dimensional compressibility. 
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 Since σ' = σ - (ui + u) 

 

 where ui is the hydrostatic pore water pressure which does not vary with time 

 

  u is the excess hydrostatic pore water pressure which varies with time. 

 

  
∂σ'

∂t
  =  

∂σ
∂t

  -  
∂u

∂t
 

 

and substituting into equation (10.10) 

 

  
∂n

∂t
  =  mv  







∂u

∂t
  -  
∂σ
∂t

 

 

and substituting into equation (10.9) 

 

  k  
∂2h

 ∂z2 =  mv  






∂u

 ∂t
  -  
∂σ
∂t

                                                           (10.11) 

 

The total head h is the sum of the elevation and pressure heads 

 

  h = he  +  hp 

 

   = he  +  






ui

ρwg
  +  

u

ρwg
 

 

in which ui (hydrostatic pore water pressure) varies linearly with z 

 

  u (excess hydrostatic pore water pressure) varies non-linearly with z 

 

Therefore 
∂2h

 ∂z2  =  
1

ρwg
  
∂2u

 ∂z2 

 

 Substituting into equation (10.11) 

 

  
k

ρwgmv
  
∂2u

 ∂z2 =   
∂u

 ∂t
  -  
∂σ
∂t

 

 

 or cv  
∂2u

 ∂z2 = 
∂u

 ∂t
  -  
∂σ
∂t

                                                                             (10.12) 
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 where cv   = 
k

ρwgmv
 (10.13) 

 

cv is the coefficient of consolidation and is a measure of the rate at which the consolidation 

process proceeds. 

 

 In many consolidation problems in which the total stress σ remains constant throughout 

consolidation, equation (10.12) simplifies to 

 

  cv  
∂2u

 ∂z2  =  
∂u

 ∂t
    (10.14) 

 

 This is the basic differential equation for one dimensional consolidation which was 

developed by Terzaghi (1943).  The solutions to equation (10.14) for various boundary conditions 

have been described in detail by Taylor (1948).  The solution for the case of a constant initial 

excess hydrostatic pore pressure ( ∆ u) may be expressed as follows. 

 

  u = ∑
m = 0

 m = ∞

   
2 ∆u

M
  ( )sin (Mz/H)  e -M

2
T (10.15) 

 

where u = pore pressure (excess hydrostatic) at particular values of depth 

(z) and time (t) 

 

  ∆u = initial value of excess hydrostatic pore pressure 

 

  M = (π/2)  (2 m + 1) 

 

  m = integer 

 

  H = thickness of a singly drained layer 

 

  T = dimensionless time factor 

 

   = cv t/H2 

 

 The progress of consolidation is usually indicated by a variable known as the degree of 

consolidation (U) and this is defined as follows 

 

  U (z,t) = 1 - (u/∆u)  (10.16) 



10-13 

 

 In terms of the degree of consolidation, the solution to the differential equation (10.14) 

becomes 

 

  U (z,t) =  1  -  ∑
m = 0

 m = ∞

   
2

M
  (sin (Mz/H)) e -M

2
T (10.17) 

 

 Equation (10.17) is illustrated graphically in Fig. 10.7, in which the lines of equal time 

factor are known as isochrones.  These lines represent the degrees of consolidation at particular 

times and at particular locations throughout the thickness of the consolidating layer.  For example, 

at point P at a time corresponding to a time factor T of 0.4 the pore pressure (excess hydrostatic) 

has dissipated to 40% of the initial value which is the same as saying that the degree of 

consolidation is 0.6. 

 

 Fig. 10.7 shows that the soil adjacent to the drainage boundary consolidates quickly 

whereas the soil adjacent to the impermeable boundary consolidates much more slowly. 

 

 For a soil layer that is drained at both the upper and lower boundaries the value of H 

must be made equal to one half of the total layer thickness.  The isochrones in Fig. 10.7 would 

apply to the upper half of the layer and their mirror images would apply to the lower half. 

 

 A comparison of the total head lines in Fig. 10.5 with the isochrones of Fig. 10.7 shows 

that they are identical in the sense that they both represent the distribution of excess hydrostatic 

pore pressure throughout the thickness of the layer at various times. 

 

EXAMPLE 

 

 A 10m thick submerged clay layer which is drained at both the upper and lower 

boundaries is subjected to a wide surface pressure of 50kN/m2.  The water table is coincident with 

the top of the clay layer at the ground surface.  If the coefficient of consolidation of the clay is 

1.16 x 10-2 cm2/sec determine the pore pressure at the mid depth of the layer 50 days after the 

surface pressure was applied. 

 

 For this problem the value of H will be equal to half of the overall layer thickness. 

 

  H = 5m 

 

 From the information provided the dimensionless time factor may be calculated 
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  T = 
cv t

H2  

 

   = 
1.16 x 10-2 x 50 x 24 x 3600

5002  

   = 0.2 

 

The mid depth of this clay layer is represented by the value of (z/H) of 1.0 in Fig. 10.7.  For a time 

factor of 0.2 the degree of consolidation is 0.23.  That is 

 

  1 - 
u

∆u
 = 0.23 

 

  ∴  
u

∆u
 = 0.77 

 

    u = 0.77 x ∆u 

     = 0.77 x 50 

     = 38.5 kN/m2 

 

 This is the excess hydrostatic pore pressure, the total pore pressure being found by the 

addition of the hydrostatic pore pressure. 

 

 total pore pressure = ρw g z + u 

    = 1.0 x 9.81 x 5 + 38.5 

    = 49.0 + 38.5 

    = 87.5 kN/m2 
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Fig. 10.7  Isochrones for One Dimensinal Consolidation 

 

 

 

 

 

 

Fig. 10.8  Determination of Average Degree of Consolidation 

 

    

 

 

 

 

 

 

 

 

 

 

 

  Fig. 10.8 Determination of Average Degree of Consolidation 
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10.6 RATE OF SETTLEMENT 

 

 The overall behaviour of a consolidating layer with time may be studied by means of 

average degrees of consolidation (Uav), which can be evaluated by means of integration over the 

thickness of the layer. 

 

  Uav = 1 - 

⌡⌠

o

 H

  u  dz

⌡⌠

o

 H

  ∆u  dz

 (10.18) 

 

 If equation (10.18) is applied to the theoretical solution for u for the case of ∆u being 

constant with depth, the following expression is obtained 

 

  Uav = 1 - ∑
m = 0

m =α 

  
2

M2 e -M
2

T (10.19) 

 

 This is illustrated graphically in Fig. 10.8 for the T = 0.2 curve.  The average degree of 

consolidation corresponding to this value of the time factor is selected such that the hatched areas 

are equal.  The resulting relationship between average degree of consolidation and time factor is 

shown in Fig. 10.9 and in Table 10.1.  This relationship holds for a constant initial excess 

hydrostatic pore pressure (∆u) throughout the layer thickness.  Different relationships between U 

and T have been determined for other initial pore pressure distributions (Taylor (1984), Das 

(1985)).  It may be noted that the use of the Kelvin model (Section 10.2) produces “consolidation” 

curves that are not exactly the same shape as that for the Terzaghi theory (Fig. 10.9). 

 

TABLE 10.1 

 

Variation of Time Factor with Average Degree of Consolidation 

 

U T U T 

0.1 0.008 0.6 0.287 

0.2 0.031 0.7 0.403 

0.3 0.071 0.8 0.567 

0.4 0.126 0.9 0.848 

0.5 0.197 1.0 _ 
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 The average degree of consolidation is a “degree of pore pressure dissipation” according 

to the definition in equation (10.18).  In order to examine the time rate of settlement, it is 

necessary to determine the relationship between the degree of consolidation (U) and the “degree 

of settlement” (Us) where 

 

  Us = ρ t / ρ final  (10.20) 

 

ρt and ρfinal being the settlement of the ground surface at any time t and the settlement that finally 

occurs respectively. 

 

  Us = 
ρt

ρfinal
  =   

mv ∆σ't H

mv ∆σ'f H
  =  

∆σ't
∆σ'f

 (10.21) 

 

 where ∆σ't is the average change in vertical effective stress at any time t 

 

  ∆σ'f is the final change in the vertical effective stress at the end of   

   consolidation. 

 

 

 

 

 

Fig. 10.9  Consolidation Curve from Terzaghi Theory 
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 If ∆σ is the total applied stress at t = 0 then the initial pore pressure (excess hydrostatic) 

∆u is 

 

  ∆u = ∆σ 

 

 and ∆σ’
(t = o) = 0 

 

 At any time t during consolidation if the average excess hydrostatic pore pressure is 

indicated by u then 

 

  ∆σ't = ∆σ  -  u 

 

   = ∆u  -  u 

 

and finally when the pore pressure has fully dissipated 

 

  u = 0 

 

 and ∆σ'f = ∆σ = ∆u 

 

 Substituting these values into equation (6.21) 

 

  Us = 
σ't
σ'f

 =  
∆u - u

∆u
  =  1 - 

u

∆u
 

 

   = U 

 

so the average degree of consolidation is equal to the degree of settlement.  In other words, the 

settlement of the consolidating layer takes place at the same rate as that of the average pore 

pressure dissipation for the case of one dimensional consolidation. 

 

EXAMPLE 

 

 A layer of submerged soil 8m thick is drained at its upper surface but is underlain by an 

impermeable shale.  The sol is subjected to a uniform vertical stress which is produced by the 

construction of an extensive embankment on the ground surface.  If the coefficient of 

consolidation for the soil is 2 x 10-3 cm2/sec calculate the times when 50% and 90% respectively 

of the final settlement will take place. 

 

 Since this soil layer is singly drained 
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  H = 8m 

 

 When 50% of the settlement has taken place the degree of consolidation U will be 0.5.  

From Table 10.1 the corresponding time factor T50 is 0.197. 

 

  T50 = 
cv t50

H2  

 

 ∴ t50 = 
T50 H2

cv
 

 

   = 
0.197 x 82

2 x 10-3 x 10-4  sec 

 

   = 2.0 yr 

 

Similarly for 90% consolidation 

 

  T90 = 0.848  =  
cv t90

H2  

 

 ∴ t90 = 
0.848 x 82

2 x 10-3 x 10-4  sec 

 

   = 8.6 yr 

 

10.7 LABORATORY DETERMINATION OF THE COEFFICIENT OF 

 CONSOLIDATION 

 

 When it is required to predict the time rate of settlement of soil in the field, it is 

necessary to know the coefficient of consolidation, cv and the appropriate boundary conditions.  

The oedometer test (described in Section 5.4) with vertical flow of water only is applicable to one 

dimensional consolidation problems which are encountered in situations where a wide surface 

load is placed over a relatively thin compressible stratum.  There are two commonly used methods 

for the determination of the coefficient of consolidation from oedometer data.  These are known 

as the logarithm of time fitting method and the square root of time fitting method.  With these 

methods the experimental deflection - time plots are fitted to the theoretical degree of 

consolidation - time factor curves. 
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10.7.1 Log Time Method 

 

 With this method the experimental data for a particular load increment is presented on a 

deflection - log (time) plot as illustrated in Fig. 10.10(b). The theoretical degree of consolidation - 

time factor curve is plotted in a similar fashion as shown in Fig. 10.10(a).  With the theoretical 

curve the initial and final points (U = 0 and 1.0 respectively) are known but this cannot be said for 

the experimental curve.  With this fitting method the theoretical and experimental curves are 

compared to facilitate selection of the U = 0 and U = 1.0 points on the experimental plot.  The 

initial dial gauge reading at zero time does not necessarily correspond with U = 0.  Similarly the 

final reading taken does not necessarily correspond with U = 1.0. 

 

 Since the initial portion of the curve is approximately parabolic the zero point may be 

estimated by means of the construction showing Fig. 10.10(a).  The difference in ordinates (a) 

between two time factors in the ratio of 4 to 1 is measured above the upper point.  This procedure 

has been repeated on the experimental curve in Fig. 10.10(b) to enable the determination of the 

dial gauge reading corresponding to the beginning of consolidation (ie. U = 0.0). 

 

 The theoretical U = 1.0 point corresponds with the intersection of the tangent through the 

point of inflexion and the asymptote to infinite time factor as shown in Fig. 10.10(a).  On the 

experimental curve the asymptote is sometimes not horizontal but the point of intersection still 

provides a reasonable estimate of the ordinate corresponding to U = 1.0.  The compression which 

takes place between ordinates U = 0 and U = 1.0 is referred to as primary compression to 

distinguish it from the secondary compression which occurs after consolidation is complete as 

shown in Fig. 10.10(b). 

 

 Once the ordinates corresponding to U = 0.0 and U = 1.0 are known, intermediate values 

may be determined.  The U = 0.5 (or 50%) point on the curve is normally selected for the 

calculation of coefficient of consolidation. 

 

 The time factor T50 corresponding to 50% consolidation is (from Fig. 10.10(a)) 0.197.  

The actual time t50 corresponding to 50% consolidation may be read form Fig. 10.10(b).  The 

coefficient of consolidation cv, may then be calculated from the equation defining the time factor 

 

  cv = 
T50 H2

t50
  =  

0.197 H2

t50
 (10.22) 
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10.7.2 Square Root of Time Method 

 

 When the theoretical degree of consolidation U is plotted against the square root of the 

time factor T the curve shown in Fig. 10.11(a) is obtained.  The initial portion of the curve is a 

straight line. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

               Fig.10.10  Log Time Fitting Method  
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   Fig.10.11  Square Root Fitting Method   

 

 

With the experimental curve, which is plotted in Fig. 10.11(b) an initial curvature is often present 

before the straight line portion.  This curvature is attributed to compression of air in the voids of 

the soil and the corrected origin is found by backward projection of the straight line portion to 

zero time. 
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 If a line (shown dashed in Fig. 10.11(a)) is drawn from the origin with abscissa equal to 

1.15 times that of the theoretical curve the two lines intersect at U = 0.9.  This characteristic is 

used to locate the 90% consolidation point on the experimental curve which is plotted in Fig. 

10.11(b).  The time, t90 corresponding to U = 0.9 is read from the experimental curve and the 

coefficient of consolidation is calculated from 

 

  cv = 
T90 H2

t90
  =  

0.848 H2

t90
 (10.23) 

 

 Typical values of the coefficient of consolidation are given in Table 10.2. 

 

TABLE 10.2 

 

Typical Values of Coefficient of Consolidation 

 

Soil cv (cm2/sec) x 10-4 

Mexico City Clay (MH) 

(Leonards & Girault, 1961) 

 

0.9 - 1.5 

Soft blue clay (CL - CH) 

(Wallace & Otto, 1964) 

 

1.6 - 26 

Organic Silt (OH) 

(Lowe, Zaccheo & Feldman, 1964) 

 

5 - 170 

Chicago Silty Clay (CL) 

(Terzaghi & Peck, 1967) 

 

8 - 11 

Sandy silty clay (ML - CL) dredge spoil 

(Van Tol et al, 1985) 

 

5 - 20 

Organic Silts and Clays (OH) 

(Sivakugan, 1990) 

 

1 - 10 
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EXAMPLE 

 

 The following time-compression data was obtained from an oedometer test during 

consolidation following the application of a load increment: 

 

Dial Gauge Reading (mm) Time 

8.99 

9.10 

9.14 

9.21 

9.29 

9.39 

9.50 

9.65 

9.74 

9.77 

9.79 

0 

6 sec 

12 sec 

30 sec 

1 min 

2 min 

4 min 

8 min 

20 min 

40 min 

100 min 

 

 If the thickness of the doubly drained sample is 17.0mm calculate the coefficient of 

consolidation. 

 

 The log time fitting method will be used to determine the coefficient of consolidation 

and the appropriate plot of the experimental data is presented in Fig. 10.12. 

 

 The dial gauge reading corresponding to U = 0.0 is found by the procedure outlined in 

Section 10.7.1.  Several estimates have been made and the average has been selected to represent 

U = 0.0.  The corresponding dial gauge reading is 9.018mm. 

 

 The intersection of the tangent and the asymptote portions of the curve yields a dial 

gauge reading of 9.748mm for U = 1.0 as shown in Fig. 10.12.  Some secondary compression is 

occurring with this sample. 

 

 The dial gauge reading corresponding to U = 0.5 may now be calculated 

 

   = 
9.018 + 9.748

2
 

 

   = 9.383mm 

 

 If the time corresponding to U = 0.5 is read from the experimental plot 



10-25 

 

   

  

 

Fig. 10.12 

 

 

 

 

Fig. 10.13  Radial Flow Model 
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 t50 = 1.95 min 

 

Since the sample is drained at both upper and lower boundaries 

 

  H = 
17.0

2
 

 

   = 8.5 mm 

 

 Therefore, the coefficient of consolidation is 

 

  cv = 
T50 H2

t50
 

 

   = 
0.197 x 8.52

1.95 x 60
 

 

   = 0.122mm2/sec. 

 

10.8 OTHER CONSOLIDATION SOLUTIONS 

 

 It should be remembered that the Terzaghi consolidation theory discussed above applies 

only to cases of one dimensional drainage in which the parameters cv and mv are constant 

throughout the soil layer.  Other solutions have been developed for cases where the parameters cv 

and mv vary with depth; where there is more than one consolidating layer; and where the 

boundary conditions are such that the drainage is not purely one dimensional (for example see 

Biot, 1941 and Gibson and Lumb, 1953). 

 

 For the case of purely radial drainage under vertical loading of a cylindrical block of soil 

of diameter D to a central axial drain of diameter d, Barron (1948) has produced a free strain 

consolidation solution.  The model is illustrated in Fig. 10.13 and the solutions for various values 

of n (D/d) are shown in Fig. 10.14.  The time factor (Tr) for radial flow is defined as 

 

  Tr = cr t/D2  (10.24) 

 

 where cr = radial coefficient of consolidation 

 

   = kr / mv ρw g 

 

  kr = radial permeability 
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Fig. 10.14  Consolidation Rates for Radial Flow 

(after Barron, 1948) 

 

 

 

 

Fig. 10.15  Circular Footing, Permeable Top, Permeable Base 

(after Davis & Poulos, 1972) 
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 For comparative purposes the Terzaghi one dimensional solution for vertical flow has 

been superimposed on Fig. 10.14 and for this curve the time factor is as defined in section 10.5.  

Fig. 10.14 may be used for problems in which sand drains are used to accelerate the consolidation 

of a soil layer which has a high ratio of horizontal to vertical permeability. 

 

 For evaluating the rate of settlement of circular and strip footings on a soil layer, Davis 

and Poulos (1972) have produced a number of solutions.  Fig. 10.15 gives solutions for a circular 

footing on a soil layer with a permeable upper surface and a permeable base.  Fig. 10.16 gives 

solutions for a circular footing on a soil layer with a permeable upper surface and an impermeable 

base.  Fig. 10.17 gives solutions for a strip footing on a soil layer with a permeable upper surface 

and a permeable base.  With these three figures, the time factor (T) is defined as 

 

  T = cv t / h2  (10.25) 

 

 where cv = one dimensional coefficient of consolidation for vertical 

drainage 

 

  h = thickness of soil layer 

 

 The vertical axis of Figs. 10.15, 10.16 and 10.17 is average degree of pore pressure 

dissipation (UP).  This is calculated on any vertical line and is defined as 

 

  UP = 1 - 











⌡⌠

 

 

 u  dz / ⌡⌠

 

 

  ∆u  dz  (10.26) 

 

where u and ∆u are as defined in equation (10.15).  The degree of pore pressure dissipation (UP) 

is approximately equal to the degree of settlement (US). 
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Fig. 10.16  Circular Footing, Permeable Top, Impermeable Base 

(after Davis & Poulos, 1972) 

 

 

 

 

 

 

Fig. 10.17  Strip Footing, Permeable Top, Permeable Base  (after Davis & Poulos, 1972) 
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