
© Hitachi, Ltd. 2017. All rights reserved.

10 Million Smart Meter Data with Apache HBase

5/31/2017

OSS Solution Center

Hitachi, Ltd.

Masahiro Ito
Open Source Summit Japan 2017

1 © Hitachi, Ltd. 2017. All rights reserved.

Who am I?

• Masahiro Ito

 Software Engineer at Hitachi, Ltd.

 Focus on development of Big Data Solution with

Apache Hadoop and its related OSS.

 Mail: masahiro.ito.ph@hitachi.com

 Book and Web-articles (in Japanese)

• Apache Spark ビッグデータ性能検証

（Think IT Books）

• ユースケースで徹底検証！

HBaseでIoT時代のビッグデータ管理機能を試す

– https://thinkit.co.jp/series/6465

mailto:masahiro.ito.ph@hitachi.com
https://thinkit.co.jp/series/6465
https://thinkit.co.jp/series/6465
https://thinkit.co.jp/series/6465
https://thinkit.co.jp/series/6465

2 © Hitachi, Ltd. 2017. All rights reserved.

Agenda

1. Motivation

2. What is NoSQL?

3. Overview of HBase architecture

4. Performance evaluation with 10 million smart meter data

5. Summary

3 © Hitachi, Ltd. 2017. All rights reserved.

1. Motivation

4 © Hitachi, Ltd. 2017. All rights reserved.

Motivation

• The internet of things (IoT) and NoSQL

 Various sensor devices generate large amounts of data.

 NoSQL has higher performance and scalability than RDB.

 HBase is one of NoSQL.

• Is HBase suitable for sensor data management?

 HBase seems to be suitable for managing time series data such as sensor

data.

 I will introduce the result of performance evaluation of HBase with 10

million smart meter data.

5 © Hitachi, Ltd. 2017. All rights reserved.

2. What is NoSQL?

6 © Hitachi, Ltd. 2017. All rights reserved.

NoSQL (Not only SQL)

• NoSQL refers to databases other than RDB (Relational DataBase).

• Motivations of NoSQL include:

 More flexible data model (not tabular relations).

 High performance and large disk capacity.

• With simpler "horizontal" scaling to clusters of machines.

 etc.

• NoSQL databases are increasingly used in big data and real-time

web applications.

7 © Hitachi, Ltd. 2017. All rights reserved.

Features of RDB

Relational model ACID Transaction

Date Product User ID

• Table format (tabular relations)
• SQL interface

 Supports complex queries

Update

Update

Update

User ID User Name

Date Product User Name

• Atomicity
• Consistency
• Isolation
• Durability

8 © Hitachi, Ltd. 2017. All rights reserved.

3 Vs of Big Data: Challenges of RDB for big data

Exclusive control of
transaction is overhead.

Transaction control over
distributed data is difficult. RDB

Volume

Need to manage large
amount of distributed data.

Velocity

Need to process large number
of requests in real time.

GB
PB

It is incompatible with the
predefined table.

Variety

Need to manage data of
various structures.

SNS

Log Pictures

Sensor
data

9 © Hitachi, Ltd. 2017. All rights reserved.

3 Vs of Big Data: Challenges of RDB for big data

It is incompatible with the
predefined table.

Exclusive control of
transaction is overhead.

Transaction control over
distributed data is difficult. RDB

NoSQL
Limiting the scope of transaction control makes it possible
to improve performance and disk capacity with scale out.

Variety

Need to manage data of
various structures.

Volume

Need to manage large
amount of distributed data.

Velocity

Need to process large number
of requests in real time.

SNS
GB

PB

Log Pictures

Sensor
data

10 © Hitachi, Ltd. 2017. All rights reserved.

3 Vs of Big Data: Challenges of RDB for big data

It is incompatible with the
predefined table.

Exclusive control of
transaction is overhead.

Transaction control over
distributed data is difficult. RDB

NoSQL
Limiting the scope of transaction control makes it possible
to improve performance and disk capacity with scale out.

Adopted flexible data
structure other than table.

Variety

Need to manage data of
various structures.

Volume

Need to manage large
amount of distributed data.

Velocity

Need to process large number
of requests in real time.

SNS
GB

PB

Log Pictures

Sensor
data

11 © Hitachi, Ltd. 2017. All rights reserved.

There are lots of NoSQL in the world (many others)

Redis

Riak

MongoDB

Couchbase

Neo4j

Cassandra

TITAN

HBase

12 © Hitachi, Ltd. 2017. All rights reserved.

NoSQL is generally classified by data model

Redis

Riak

MongoDB

Couchbase

Neo4j

Cassandra

TITAN

HBase

Key value store Wide column store

Graph database Document store

13 © Hitachi, Ltd. 2017. All rights reserved.

NoSQL is generally classified by data model

Key value store Wide column store

Graph database Document store

Low latency access with simple data structure.

Key Value

Each row has different number of columns.

Key Value Value Value

Store structure data such as JSON.

Key Document

001

{
 ID: 001
 User: {
 Name: “Engineer”
 }
}

Represent relationship between data as graph
structure.

Node

Node

Node

Node

Node

14 © Hitachi, Ltd. 2017. All rights reserved.

3. Overview of HBase architecture

15 © Hitachi, Ltd. 2017. All rights reserved.

HBase overview

• HBase is distributed, scalable, versioned, and non-relational

(wide column type) big data store.

• A Google Bigtable clone.

 Implemented in Java based on the paper of Bigtable.

• One of the OSS in Apache Hadoop eco-system.

16 © Hitachi, Ltd. 2017. All rights reserved.

Relationship between HBase and Hadoop (HDFS)

• HBase build on HDFS (Hadoop Distributed File System).

Commodity servers

MapReduce
[Parallel processing framework]

YARN (Yet Another Resource Negotiator)
[Cluster resource management framework]

HDFS (Hadoop Distributed File System)
[Distributed File System]

Hadoop

HBase
[Distributed database]

17 © Hitachi, Ltd. 2017. All rights reserved.

Relationship between HBase and Hadoop (HDFS)

• HBase build on HDFS (Hadoop Distributed File System).

Commodity servers

MapReduce
[Parallel processing framework]

YARN (Yet Another Resource Negotiator)
[Cluster resource management framework]

HDFS (Hadoop Distributed File System)
[Distributed File System]

Hadoop

HBase
[Distributed database]

• HDFS can read/write large files with high throughput.
• However, it is not suitable for read/write small data.

18 © Hitachi, Ltd. 2017. All rights reserved.

Relationship between HBase and Hadoop (HDFS)

• HBase build on HDFS (Hadoop Distributed File System).

Commodity servers

MapReduce
[Parallel processing framework]

YARN (Yet Another Resource Negotiator)
[Cluster resource management framework]

HDFS (Hadoop Distributed File System)
[Distributed File System]

Hadoop

HBase
[Distributed database]

• HDFS can read/write large files with high throughput.
• However, it is not suitable for read/write small data.

HBase can read/write many small data
with low latency.
⇒ HBase is a complement to HDFS.

19 © Hitachi, Ltd. 2017. All rights reserved.

HBase architecture: Master/Slave model

• HBase processes the request and HDFS saves the data.

Master Node Client Node

Data

HDFS DataNode

Disk

HBase RegionServer

Disk ・・・・・

Slave Node

HDFS DataNode

Disk

HBase RegionServer

Disk ・・・・・

Slave Node

HDFS DataNode

Disk

HBase RegionServer

Disk ・・・・・

Slave Node

HBase Client HBase Master

HDFS NameNode

ZooKeeper

Data Data

Managing RegionServers

Managing data

Data is stored in HDFS
and data is replicated
between nodes.

20 © Hitachi, Ltd. 2017. All rights reserved.

HBase

Data model: Conceptual view

 This table looks like a RDB’s table.

Namespace (Grouping tables.)

Table

RowKey
ColumnFamily ColumnFamily

Qualifier Qualifier Qualifier Qualifier

Row 1 Cell Cell Cell

Row 2 Cell Cell

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

Row N Cell Cell Cell

Table

Namespace

Value is stored in Cell.
The past values are stored
together with Timestamp.

Timestamp Value

20170310 CCC

20170124 BBB

20160930 AAA

Rows in a table are
sorted by RowKey

Each row can have a different number of columns.

21 © Hitachi, Ltd. 2017. All rights reserved.

Physical view of Table Conceptual view of Table

Data model: Physical view

• Data is stored as key value.
 The keys are sorted in the order of RowKey, Column (ColumnFamily:qualifier), Timestamp.

 It is a “multi-dimensional sorted map”.

• SortedMap<RowKey, SortedMap<Column, SortedMap<Timestamp, Value>>>

RowKey
Column

(ColumnFamily:qualifier)
Timestamp Type Value

Row 1 fam1:Col1 20170310 Delete -

Row 1 fam1:Col1 20170310 Put Val_01

Row 1 fam2:Col3 20170215 Put Val_03

Row 1 fam2:Col4 20170309 Put Val_04

Row 2 fam1:Col1 20170310 Put Val_05

Row 2 fam1:Col2 20160104 Put Val_06

Row 2 fam2:Col3 20170221 Delete -

Row 2 fam2:Col3 20170204 Put Val_07

Key Value

RowKey
fam1 fam2

Col1 Col2 Col3 Col4

Row 1 - Val_03 Val_04

Row 2 Val_05 Val_06 -

22 © Hitachi, Ltd. 2017. All rights reserved.

Operations and functions

• Operations

 Put, Get, Scan, Delete, etc.

RowKey Column Timestamp Type Value

Row 1 fam1:Col1 20170310 Delete -

Row 1 fam1:Col1 20170310 Put Val_01

Row 2 fam2:Col3 20170215 Put Val_03

Row 2 fam2:Col4 20170309 Put Val_04

Row 3 fam1:Col1 20170310 Put Val_05

Row 3 fam1:Col2 20160104 Put Val_06

Row 4 fam2:Col3 20170221 Delete -

Row 4 fam2:Col3 20170204 Put Val_07

Scan multiple rows
with sequential access

Get a row with
random access

Delete a value by
adding tombstones

• Functions

 Index

• Only be set to RowKey and Column.

 Transaction

• Only within one Row. Put a row

23 © Hitachi, Ltd. 2017. All rights reserved.

Table

Distributed data management

• How is a table physically divided?

RowKey Column ・・・ Value

Row 1 fam1:Col1 ・・・ Val_01

Row 1 fam1:Col2 ・・・ Val_02

Row 1 fam1:Col3 ・・・ Val_03

Row 1 fam2:Col1 ・・・ Val_04

Row 2 fam1:Col1 ・・・ Val_05

Row 2 fam2:Col2 ・・・ Val_06

Row 2 fam2:Col3 ・・・ Val_07

Row 3 fam1:Col1 ・・・ Val_08

Row 3 fam2:Col1 ・・・ Val_09

Row 4 fam1:Col2 ・・・ Val_10

Row 4 fam1:Col4 ・・・ Val_11

Row 4 fam2:Col3 ・・・ Val_12

Row 4 fam2:Col5 ・・・ Val_13

24 © Hitachi, Ltd. 2017. All rights reserved.

Table

Table is divided into Region with the range of RowKey

Region
(Row1-2)

Region
(Row3-4)

RowKey Column ・・・ Value

Row 1 fam1:Col1 ・・・ Val_01

Row 1 fam1:Col2 ・・・ Val_02

Row 1 fam1:Col3 ・・・ Val_03

Row 1 fam2:Col1 ・・・ Val_04

Row 2 fam1:Col1 ・・・ Val_05

Row 2 fam2:Col2 ・・・ Val_06

Row 2 fam2:Col3 ・・・ Val_07

Row 3 fam1:Col1 ・・・ Val_08

Row 3 fam2:Col1 ・・・ Val_09

Row 4 fam1:Col2 ・・・ Val_10

Row 4 fam1:Col4 ・・・ Val_11

Row 4 fam2:Col3 ・・・ Val_12

Row 4 fam2:Col5 ・・・ Val_13

25 © Hitachi, Ltd. 2017. All rights reserved.

HDFS

HBase Region Server

Data is distributed on the cluster via Regions

• Automatic sharding
 Regions are automatically split and re-distributed as data grows.

• Simple horizontal scaling
 Adding slave nodes improves performance and expands disk capacity.

Slave Node

Region

MemStore

レコード レコード KeyValue

HBase Client

HFile HFile HFile

Region

MemStore

レコード レコード KeyValue

HFile HFile HFile

HBase Region Server

Slave Node

Region

MemStore

レコード レコード KeyValue

HFile HFile HFile

Region

MemStore

レコード レコード KeyValue

HFile HFile HFile

Region holds data across
HBase (as cache in memory)
and HDFS (as file in disk).

26 © Hitachi, Ltd. 2017. All rights reserved.

Summary of HBase architecture

• Simple horizontal scaling

 Adding slave nodes improves performance and expands disk capacity

• Data is stored as sorted key value

 Like multi-dimensional sorted map.

 By designing RowKey carefully, data that are accessed together are

physically co-located.

• Limited the index and transaction

 Index : Only be set to RowKey and Column.

 Transaction: Only within one Row.

27 © Hitachi, Ltd. 2017. All rights reserved.

4. Performance evaluation with 10 million smart meter data

28 © Hitachi, Ltd. 2017. All rights reserved.

i. Evaluation scenario

29 © Hitachi, Ltd. 2017. All rights reserved.

Smart meter data management

• We assumed the Meter Data Management System for 10 million smart meters.
 Smart meters collect consumption of electric energy from customers.

• Send the collected data to the Meter Data Management System every 30 minutes.

 The collected data is used for power charge calculation and demand forecast analysis, etc.

Meter Data
Management System Data from smart meters (every 30min.)

・・・
0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

Data Analysis
System

Total
10 million
meters

Power Grid Power plants

30 © Hitachi, Ltd. 2017. All rights reserved.

Data Analysis System Meter Data Management System

System overview

• Write 10 million records every 30 minutes in HBase.

• Read to analyze records stored in HBase.

10 million
smart meters

0000

0000

0000

Data from smart meters
(every 30min.)

Gateway servers
(with HBase clients)

HBase Cluster Analysis server
(with HBase client)

Read data

Analyst

Queueing data from smart meters and
send data to HBase RegionServers

31 © Hitachi, Ltd. 2017. All rights reserved.

10 million
smart meters

0000

0000

0000

Gateway servers
(with HBase clients)

HBase Cluster Analysis server
(with HBase client)

Contents of performance evaluation

Analyst

③ Read performance
Measure read time and throughput in
two kinds of analysis use cases.

② Data compression performance
Measure data compression ratio and
compression / decompression time.

① Write performance
Measure write time and throughput
of 10 million records.

32 © Hitachi, Ltd. 2017. All rights reserved.

Evaluation environment

Client Node Master Node

CPU Core 16 2

Memory 12 GB 16 GB

of disk 1 1

Capacity of disk 80 GB 160 GB

Per slave node Total

CPU Core 32 128

Memory 128 GB 512 GB

of disk 6 24

Capacity of disk 900 GB -

Total capacity
of disks

5.4 TB
（5,400 GB）

21.6 TB
（21,600 GB）

4 Slave Nodes
(Physical Machines)

1 Client Node
1 Master Node
(Virtual Machine)

10Gbps LAN

10Gbps SW

1Gbps LAN

disk disk
・・・ disk

Software version
CDH5.9 (HBase1.2.0 + Hadoop2.6.0)

33 © Hitachi, Ltd. 2017. All rights reserved.

Table design

• Divided the table into 400 Regions in advance.
 100 Regions per RegionServer

 Region split key: 0001, 0002, …, 0399

RowKey

(<Salt>-<Meter ID>-<Date>-<Time>)

Column

(ColumnFamily:qualifier)
Timestamp Type Value

0000-0000000001-20170310-1100 CF: Put 3.241

0000-0000000001-20170310-1030 CF: Put 0.863

・・・ ・・・ Put 0.430

0000-0000000001-20160910-1100 CF: Put 0.044

0001-0000000002-20170310-1100 CF: Put 2.390

・・・ ・・・ Put 1.432

To distribute data among Regions, add 0000 to 0399 (meter ID modulo 400)
to the head of RowKey. This technique is called “Salt”.

Region
(～0001)

Region
(0001～0002)

Region
(0002～0003)

Region
(0399～)

34 © Hitachi, Ltd. 2017. All rights reserved.

ii. Evaluation of write performance

35 © Hitachi, Ltd. 2017. All rights reserved.

Evaluation of write performance

• Generate 10 million records with HBase clients.

• Send put request using multi clients.

• Measured the write time and throughput of 10 million records.

10 million
smart meters

0000

0000

0000

HBase Cluster
(RegionServers)

Gateway servers
(with HBase clients)

Tuning parameters
① # of clients
② # of send records per request

HBase
client

Tuning parameters
③ # of Regions

36 © Hitachi, Ltd. 2017. All rights reserved.

0 sec

500 sec

1,000 sec

1,500 sec

2,000 sec

2,500 sec

3,000 sec

3,500 sec

4,000 sec

4,500 sec

1 4 8 16 32 64 128

time

of clients

Write time

1

10

100

1,000

10,000

100,000

of records

per request

46,729

327,869

526
0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

1 4 8 16 32 64 128

Records per
second

of clients

Throughput

100,000

10,000

1,000

100

10

1

of records

per request

Write performance

• Write time and throughput of 10 million records.

• Stored multiple records by one request:

 Records per request: 1 to 10,000 ⇒ Throughput: 526 to 46,729 records/sec (89x)

• Increased the number of clients:

 # of Clients: 1 to 64 ⇒ Throughput: 46,729 to 327,869 records/sec (7x)

OutOfMemoryError
with HBase client

37 © Hitachi, Ltd. 2017. All rights reserved.

iii. Evaluation of Compression performance

38 © Hitachi, Ltd. 2017. All rights reserved.

Compressor and data block encoding

• HBase tends to increase data size for the following reasons.
 The number of records increases because data is stored in key value format.

 Each record length is long because a key is composed of many fields.

• Compress data with a combination of compressor and data block encoding.

• Measured the file size, write time, and read time of 10 million records.

Compressors
Compress block
of HFiles.

Data Block Encoding
Limit duplication of
information in keys.

PREFIX_TREE

FAST_DIFF

DIFF

PREFIX SNAPPY

LZ4

GZIP

39 © Hitachi, Ltd. 2017. All rights reserved.

Data block encoding performance with 10 million records

311 MB

311 MB

404 MB

425 MB

586 MB

0 MB 200 MB 400 MB 600 MB 800 MB

DIFF

FAST_DIFF

PREFIX_TREE

PREFIX

NONE

HFile size

E
n

c
o

d
in

g

HFile size

46 sec

50 sec

47 sec

55 sec

31 sec

0 sec 20 sec 40 sec 60 sec

Write time

Write time

43 sec

46 sec

50 sec

45 sec

45 sec

0 sec 20 sec 40 sec 60 sec

Read time

Read time

Reduced to 53%
by DIFF encoding

Increased 48%
by DIFF encoding

Reduced 4%
by DIFF encoding

40 © Hitachi, Ltd. 2017. All rights reserved.

Compressor performance with 10 million records

126 MB

162 MB

175 MB

586 MB

0 MB 200 MB 400 MB 600 MB 800 MB

GZ

SNAPPY

LZ4

NONE

HFile size

C
o

m
p

re
s
s
o

r

HFile size

45 sec

51 sec

63 sec

31 sec

0 sec 20 sec 40 sec 60 sec 80 sec

Write time

Write time

52 sec

46 sec

51 sec

45 sec

0 sec 20 sec 40 sec 60 sec 80 sec

Read time

Read time

Reduced to 22%
by GZip algorithm

Increased 68%
by GZip algorithm

Increased 15%
by GZip algorithm

41 © Hitachi, Ltd. 2017. All rights reserved.

Compressor and data block encoding performance with 10 million records

110 MB
118 MB
120 MB
126 MB
138 MB
145 MB
146 MB
149 MB
151 MB
154 MB
162 MB
163 MB
175 MB
188 MB
189 MB

311 MB
311 MB

404 MB
425 MB

586 MB

0 MB 200 MB 400 MB 600 MB 800 MB

GZ + DIFF
GZ + FAST_DIFF

GZ + PREFIX
GZ + NONE

SNAPPY + DIFF
LZ4 + DIFF

GZ + PREFIX_TREE
SNAPPY + FAST_DIFF

SNAPPY + PREFIX
LZ4 + FAST_DIFF
SNAPPY + NONE

LZ4 + PREFIX
LZ4 + NONE

SNAPPY + PREFIX_TREE
LZ4 + PREFIX_TREE

NONE + DIFF
NONE + FAST_DIFF

NONE + PREFIX_TREE
NONE + PREFIX

NONE + NONE

HFile size

C
o

m
p

re
s
s
o

r
+

 E
n

c
o

d
in

g

HFile size

51 sec
41 sec

46 sec
45 sec

52 sec
47 sec
46 sec

41 sec
42 sec

49 sec
51 sec
50 sec

63 sec
41 sec

51 sec
46 sec

50 sec
47 sec

55 sec
31 sec

0 sec 20 sec 40 sec 60 sec 80 sec

Write time

Write time

52 sec
50 sec

54 sec
52 sec

47 sec
46 sec

54 sec
52 sec

46 sec
47 sec
47 sec
49 sec
51 sec
51 sec
53 sec

43 sec
46 sec

50 sec
45 sec
44 sec

0 sec 20 sec 40 sec 60 sec 80 sec

Read time

Read time

Reduced to 19%
by GZip + FAST_DIFF

Increased 33%
by GZip + FAST_DIFF

Increased 14%
by GZip + FAST_DIFF

42 © Hitachi, Ltd. 2017. All rights reserved.

iv. Evaluation of read performance

43 © Hitachi, Ltd. 2017. All rights reserved.

Evaluation of read performance

• Measure the read time and throughput in two kinds of analysis use cases.
 Use case A: Scan time series data of a few meters.

• To display the transition of power consumption per meter in the line chart.

 Use case B: Get the latest data of many meters.
• To calculate the average and total value of the latest power consumption.

 Evaluation settings
• Dataset: 10 million meter * 180 days records (Compressed by FAST_DIFF + GZ)

• Disabled caches and make sure to read data from disk.

HBase Cluster
(RegionServers)

Analyst

Read

Analysis server
(with HBase client)

HBase
client

Tuning parameters
① # of request threads

44 © Hitachi, Ltd. 2017. All rights reserved.

Use case A: Scan time series data of a few meters

• Scan meter data for 1-180 days of 1-100 meters.

 Scan time series data of one meter by one scan.

Since read multiple data with one Scan, the throughput improves as the term was longer.
 Term: 1 to 180 days ⇒ Throughput: 247 to 51,128 records/sec (207x)

16.9 sec

0 sec

2 sec

4 sec

6 sec

8 sec

10 sec

12 sec

14 sec

16 sec

18 sec

1 day
(48 records

/meter)

30 days
(1,440 records

/meter)

180 days
(8,640 records

/meter)

Read time

Term

Read time

100 meters

10 meters

1 meter

of meters
51,128

247
0

10,000

20,000

30,000

40,000

50,000

60,000

1 day
(48 records

/meter)

30 days
(1,440 records

/meter)

180 days
(8,640 records

/meter)

Records per
second

Term

Throughput

100 meters

10 meters

1 meter

of meters

45 © Hitachi, Ltd. 2017. All rights reserved.

Use case A: Scan time series data of a few meters (with multi thread)

• Scan meter data for 180 days of 1-100 meters.
 Scan request was executed in multi thread. (Maximum 1 Scan 1 thread)

Throughput was improved by running Scan requests in parallel.
 # of threads: 1 to 100 ⇒ Throughput: 51,128 to 356,387 records/sec (7x)

16.9 sec

2.4 sec

0 sec

2 sec

4 sec

6 sec

8 sec

10 sec

12 sec

14 sec

16 sec

18 sec

1 thread 10 threads 100 threads

Read time

of threads

Read time

100 meters × 180 days
(864,000 record)

10 meters × 180 days
(8,640 record)

1 meter× 180 days
(8,640 record)

of meters and term

51,128

356,387

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

1 thread 10 threads 100 threads

Records per
second

of threads

Throughput

100 meters × 180 days
(864,000 record)

10 meters × 180 days
(8,640 record)

1 meter× 180 days
(8,640 record)

of meters and term

46 © Hitachi, Ltd. 2017. All rights reserved.

Use case B: Get the latest data of many meters (with multi thread)

• Get the latest time (30 minutes) data of 10,000 to 10 million meters.
 Scan request can not be applied to these data.

 Requests are executed in multi thread.

 Batch execution of multiple “Get” request by one “batch” request.

Throughput was improved by running Get requests in parallel.
 # of threads: 1 to 100 ⇒ Throughput: 1,002 to 7,574 records/sec (7.5x)

9,981 sec

1,320 sec

0 sec

2,000 sec

4,000 sec

6,000 sec

8,000 sec

10,000 sec

12,000 sec

1 5 10 25 50 100

Read time

of threads

Read Time

10,000,000 meters

1,000,000 meters

100,000 meters

10,000 meters

of meters

1,002

7,574

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

1 5 10 25 50 100

Records per
second

of threads

Throughput

10,000,000 meters

1,000,000 meters

100,000 meters

10,000 meters

of meters

47 © Hitachi, Ltd. 2017. All rights reserved.

Comparison of Scan request with Get request

RowKey

(<Salt>-<Meter ID>-<Date>-<Time>)
・・・ Value

0000-0000000001-20170310-1100 3.241

0000-0000000001-20170310-1030 0.863

・・・ ・・・

0000-0000000001-20160910-1100 0.044

・・・ ・・・

0200-0000000201-20170310-1100 10.390

0200-0000000201-20170310-1030 14.325

・・・ ・・・

0200-0000000201-20160910-1100 9.32

・・・ ・・・

Use case A:
Scan 180 days time series data of
100 meters with 100 thread.
= Throughput 356,387 records/second

Use case B:
Get the latest 30 min. data of
10,000,000 meters with 100 thread.
= Throughput 7,574 records/second

• Scan request’s throughput was about 47x higher than the Get request.

• Careful RowKey design is important.
 Place the data that are accessed together physically co-located.

48 © Hitachi, Ltd. 2017. All rights reserved.

5. Summary

49 © Hitachi, Ltd. 2017. All rights reserved.

Summary

• HBase is suitable for storing time series data generated by

sensor devices.

• Lessons from performance evaluation:

 Careful RowKey design to be able to scan data is important.

• Scan request‘s throughput was more than 47x that of Get request.

 HBase has high multi-client / multi-thread concurrency.

• Throughput of the Put / Scan / Get request with multi-client / multi-thread is 7x

faster than single-client / single-thread.

 Choosing the appropriate compression setting.

• The storage size of time series data could be reduced to 19%.

50 © Hitachi, Ltd. 2017. All rights reserved.

Trademarks

• Apache HBase and Apache Hadoop are either a registered trademark or a trademark of Apache Software Foundation in the United States

and/or other countries.

• Other company and product names mentioned in this document may be the trademarks of their respective owners.

