
CHAPTER 10 ST 762, M. DAVIDIAN

10 Quadratic vs. linear estimating equations for β

10.1 Introduction

For the general mean-variance model

E(Yj |xj) = f(xj,β), var(Yj |xj) = σ2g2(β,θ,xj), (10.1)

we have identified two main approaches to estimation of β (possibly jointly with σ and θ):

• Linear estimating equations, with the optimal choice being the GLS equation. These equations

require only that the analyst be willing to specify the first two moments of Yj|xj , as in (10.1).

• Quadratic estimating equations, which for g depending on β, involve not only the moments in

(10.1), but also require a specification for the third and fourth moments of Yj|xj . An example

of such a quadratic equation is that arising from consideration of the normal distribution, which

corresponds to making the particular assumption about the third and fourth moments of this

distribution (skewness=0, excess kurtosis=0).

An obvious question, posed at the end of Chapter 9, is whether or not there are trade-offs between the

two types of equations.

• If, in truth, the distribution of Yj|xj is exactly normal, and (10.1) holds, then standard likelihood

theory tells us that (in a large sample sense) estimation of β via the normal theory ML equation,

which is quadratic when g depends on β, is “optimal.” Under these circumstances, as the GLS

equation is linear in the data and thus a different estimating equation, it must be inefficient, and

it seems that the extra trouble to implement the quadratic normal ML approach is worthwhile

(although how worthwhile would depend on the specific problem). We will demonstrate this

formally in Section 10.2.

• However, how do these two approaches compare when the data are not really normal? If the data

are not really normal, then the third and fourth moment assumptions implicit in the normal ML

approach are not correct.

• As noted above, writing ǫj = {Yj − f(xj,β)}/{σg(β,θ,xj)}, the quadratic equations require the

analyst to specify E(ǫ3
j |xj) = ζj and var(ǫ2

j |xj) = 2 + κj , say.

Here, ζj and κj could conceivably be functions of xj and the parameters or fixed constants (e.g.

the same for all j), chosen by the data analyst.
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Intuition would suggest that, even if the data are not normal, were we able to specify these third

and fourth moments correctly, we would stand to gain efficiency over the linear GLS approach,

which only uses information on the first two moments.

• However, again, if we are wrong about ζj and κj , how do the approaches compare? Certainly, it

would be quite difficult to specify these moments in practice based on a finite sample. Making

the assumption of normality is of course tantamount to assuming that ζj ≡ 0 and κj ≡ 0 for all

j. If we are not willing to assume normality, these moments are likely something else. If we really

felt capable of understanding perfectly the form of ζj and κj for all j, chances are we would be

willing to specify an entire distribution for Yj |xj, in which case we might consider alternatively

maximum likelihood under that distribution (which could very well lead to something other than

a linear or quadratic estimating equation).

• Even if we were willing to believe that the ǫj are such that ζj ≡ ζ and κj ≡ κ for all j (e.g.

assuming ǫj are i.i.d.), but that ζ and κ are not both equal to zero (normality), it would still be

challenging to specify them based just on observed data. Are we “safer” not even trying?

• Another concern is that of misspecification of the variance model. We have already seen that

failure to get the variance function correct can result in loss of efficiency for GLS, but consistency

is preserved. What are the implications for quadratic equations? These equations seem more

highly dependent on the form of g, so intuition would suggest that the effects of misspecification

could be more deadly.

In this chapter, we will investigate these issues via large sample arguments. First, we will derive the

asymptotic behavior of estimators solving general quadratic estimating equations for β. This will allow

us to make direct comparisons in terms of asymptotic relative efficiency not only with GLS but within

the class of quadratic estimating equations in some special cases. We will also consider the effect of

misspecification of the variance function on estimation via quadratic equations and verify that the effects

can indeed be more serious than for GLS.

We will focus in particular on the special case of the normal theory ML quadratic equation. There is

some rationale for devoting some specific effort to this special case.

• The normal theory ML equation is the simplest case of a quadratic estimating equation. Because

it is so hard to specify third and fourth moments in practice with confidence, it is common practice

when using quadratic equations to use those dictated by normality, even if it is not believed the

data are really normal.
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This is actually more of an issue in the case of multivariate response, and we will discuss it in

Chapter 14. Two references in this context where adopting normal higher moments is advocated

as a practical approach are Prentice and Zhao (1991) and Liang, Zeger, and Qaqish (1992).

• As we have noted previously, in the univariate case, normal theory ML is considered the method

of choice over GLS; this is true in the pharmacokinetics literature, for example, where the ML

method is known by the alternative name extended least squares (ELS).

• Some of the issues that we will discuss, such as the effect of misspecification of the variance

function in different ways, are relevant to general quadratic equations but are easier to see in the

specific case of the normal ML equations.

10.2 Limiting distribution of β̂ based on quadratic estimating equations

We will begin by appealing to the usual M-estimator argument to derive the large sample normal

distribution of the estimator for β solving a general quadratic estimating equation.

As we did in Chapter 9, we will allow for the possibility that θ is unknown and estimated. Recall from

Chapter 5 that, with a quadratic estimating equation for β, it is necessary to consider joint estimation of

β, σ, and θ; in fact, even if θ is known, we still must consider estimation of β and σ jointly, in contrast

to the linear GLS case. Of course, results for the case of θ known will follow from simplification of those

for when it is estimated.

As we discussed in Chapter 6, there is an entire class of possible estimating equations for θ based on

different transformations of absolute residuals. Here, we will restrict attention to what would likely

be done in practice: If the analyst chooses to solve a quadratic equation for β, it is almost always

the case that s/he would also choose to solve a quadratic equation for (σ,θT )T jointly. Estimation of

variance parameters is almost always carried out using quadratic equations in practice, usually via the

PL method. Recall from Chapter 6 that this method is predicated on the assumption that var(ǫ2
j |xj) is

constant for all j (see page 124). In fact, as we have noted previously in passing, when the PL equation

is coupled with an equation for β, we have always used implicitly the assumption that ζj ≡ 0 for all j.

Here, we will consider a more general formulation.

Throughout this section, we will assume that the variance model in (10.1) is correctly specified, and

we will write generically ǫj = {Yj − f(xj ,β)}/{σg(β,θ,xj) when discussing assumptions on higher

moments. As before, we denote the true values of the model parameters as β0, σ0, and θ0. We will also

use ǫj later to represent the “true” standardized errors at these true values, as in Chapters 8 and 9.
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From our discussion in Chapters 5 and 6, it is clear that the most general form of quadratic estimating

equation of the type we have discussed involving a “gradient matrix” and “covariance matrix” may be

written as follows, using the shorthand notation used previously:

n∑

j=1









fβj 2σ2g2
j νβj

0 2σ2g2
j






1/σ

νθj



















σ2g2
j ζjσ

3g3
j

ζjσ
3g3

j (2 + κj)σ
4g4

j






−1




Yj − fj

(Yj − fj)
2 − σ2g2

j




 = 0. (10.2)

The equation is thus constructed under the assumption that E(ǫ3
j |xj) = ζj and var(ǫ2

j |xj) = 2+κj; this

equation of course follows by noting that

cov{Yj , (Yj − fj)
2 |xj} = σ3g3

j E(ǫ3
j |xj).

In the following argument, we assume that ζj and κj are either fixed constants or functions of xj and

possibly the parameters. These may not necessarily be correctly specified (i.e., equal to or of the same

form as the true skewness and excess kurtosis for each j).

In principle, this set of equations is just a special case of the general M-estimating equations discussed

in Section 8.2. We may write these succinctly as

n∑

j=1

Ψj(Yj ,β, σ,θ) = 0; (10.3)

for simplicity, we suppress explicit dependence on xj, as our arguments are conditional on the xj .

It is straightforward to observe that the general equation (10.2) is an unbiased estimating equation, as

clearly E{Ψj(Yj ,β0, σ0,θ0)|xj} = 0. Thus, we expect that the joint estimators, to be denoted here as

β̂, σ̂, and θ̂, are consistent for the true values β0, σ0, θ0.

Assuming consistency, we may proceed with the usual argument to derive the asymptotic distribution.

Writing for brevity α = (βT , σ,θT )T , α0 = (βT
0 , σ0,θ

T
0 )T , and thus Ψj(Yj,α), from Section 8.2 we have

n1/2(α̂−α0) ≈ −A−1
n Cn,

where

An = n−1
n∑

j=1

E{∂/∂α Ψj(Yj ,α0)|xj} and Cn = n−1/2
n∑

j=1

Ψj(Yj ,α0),

where expectation is of course with respect to the true distribution. We need only find A = limn→∞ An

and B from applying the central limit theorem to deduce

Cn
L
−→ N (0,B).

PAGE 245



CHAPTER 10 ST 762, M. DAVIDIAN

We may then conclude that

n1/2(α̂−α0)
L
−→ N{0,A−1B(A−1)T }.

To determine A and B, we first recall that we may write

Ψj(Yj ,α) = DT
j (α)V −1

j (α){sj(α)−mj(α)}, (10.4)

where, from (10.2), suppressing the argument α for brevity,

sj −mj =






Yj − fj

(Yj − fj)
2 − σ2g2

j




 , V j =






σ2g2
j ζjσ

3g3
j

ζjσ
3g3

j (2 + κj)σ
4g4

j




 ,

DT
j =









fβj 2σ2g2
j νβj

0 2σ2g2
j






1/σ

νθj














We will use a subscript “0” to denote evaluation at the true value α0.

Now by the matrix chain rule, recalling that, by ∂/∂α Ψj(Yj ,α0) we mean the indicated partial deriva-

tive matrix ∂/∂α Ψj(Yj,α) evaluated at α0, we have

∂/∂α Ψj(Yj ,α0) = {∂/∂α (DT
0jV

−1
0j )}(s0j −m0j) + DT

0jV
−1
0j {∂/∂α (s0j −m0j)}.

The expectation of the first term is equal to zero because E(s0j −m0j |xj) = 0, so that the derivative

of (DT
J V j) (which contains ζj and κj) does not play a role. Thus, if ζj and κj in V j depend on α, this

does not alter the properties of the estimator α̂ (through A) from those if ζj and κj were specified as

fixed constants. For the second term, it is straightforward to see that ∂/∂α (s0j −m0j) =

−






fT
β0j 0

2(Yj − f0j)f
T
β0j + 2σ2

0g
2
0jν

T
β0j 2σ2

0(1/σ0, g2
0jν

T
θ0j)




 = −D0j +






0 0

−2σ0f
T
β0jg0jǫj 0




 .

The second term in this expression has expectation zero, as E(ǫj |xj) = 0.

We thus obtain

E{∂/∂α Ψj(Yj,α0)|xj} = −DT
0jV

−1
0j D0j .

Write ζ0j and κ0j to denote the expressions for ζj and κj with α0 substituted in the event these quantities

are specified as functions of xj and α; otherwise, ζ0j and κ0j are the assumed fixed constants. Let

V 0j =






σ2
0g

2
0j ζ0jσ

3g3
0j

ζ0jσ
3
0g

3
0j (2 + κ0j)σ

4
0g

4
0j




 . (10.5)
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Note that this matrix depends on the assumed ζj and κj .

Thus, An = −n−1∑n
j=1 DT

0jV
−1
0j D0j , and A is the limit of this quantity.

Also, we have clearly that E{Ψj(Yj ,α0)|xj} = 0 and

var{Ψj(Yj ,α0)|xj} = DT
0jV

−1
0j var(s0j |xj)V

−1
0j D0j .

Here, var(s0j |xj) = V 0j if the assumptions E(ǫ3
j |xj) = ζ0j and var(ǫ2

j |xj) = 2 + κ0j are correct.

If the third and fourth moment assumptions used to construct the estimating equation are not correct,

then there are true quantities ζ∗j and κ∗
j , say, that correspond to the actual third and fourth moments

(that may depend on xj and α or may be constant for all j). Evaluating at α0 and writing ζ∗0j and κ∗
0j ,

var(s0j|xj) =






σ2
0g

2
0j ζ∗0jσ

3
0g

3
0j

ζ∗0jσ
3
0g

3
0j (2 + κ∗

0j)σ
4
0g

4
0j




 .

• Comparing this matrix to V 0j in (10.5), we see that this true covariance matrix of the “response”

(at α0) is not the same.

• In particular, it is the choice of third and fourth moment specifications used in forming the

quadratic estimating equation that are responsible for the difference. If these choices are incorrect,

then, the effect of this misspecification of third and fourth moments shows up here.

Putting this all together, we have

B = lim
n→∞

Bn, Bn = n−1
n∑

j=1

DT
0jV

−1
0j var(s0j |xj)V

−1
0j D0j,

and thus we may conclude the desired result.

GENERAL RESULT FOR QUADRATIC ESTIMATING EQUATIONS:

n1/2









β̂ − β0

σ̂ − σ0

θ̂ − θ0









L
−→ N (0,A−1BA−1), (10.6)

A = lim
n→∞

n−1
n∑

j=1

DT
0jV

−1
0j D0j , B = lim

n→∞
n−1

n∑

j=1

DT
0jV

−1
0j var(s0j |xj)V

−1
0j D0j .

Practically speaking, this result implies








β̂ − β0

σ̂ − σ0

θ̂ − θ0









·
∼ N







0,





n∑

j=1

DT
0jV

−1
0j D0j





−1



n∑

j=1

DT
0jV

−1
0j var(s0j|xj)V

−1
0j D0j









n∑

j=1

DT
0jV

−1
0j D0j





−1






.

(10.7)
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REMARKS:

• This result pertains to the entire vector of parameters. To deduce the limiting distribution of

n1/2(β̂ − β0) by itself, it would be necessary to carry out the indicated matrix inversion and

multiplications in (10.6) and (10.7) and extract the upper left (p× p) submatrix of the result.

Given the definitions of the matrices D0j , V 0j , and var(s0j |xj), it seems obvious that the ultimate

result could be quite unwieldy. The unfortunate consequence is that it is difficult to gain easily

constructive insight.

• Note that if the third and fourth moment assumptions used to form the estimating equation are

correct, then ζ0j = ζ∗0j and κ0j = κ∗
0j for all j, and

var(s0j |xj) = V 0j .

Note then that the results in (10.6) and (10.7) become

n1/2









β̂ − β0

σ̂ − σ0

θ̂ − θ0









L
−→ N (0,A−1),

and 







β̂ − β0

σ̂ − σ0

θ̂ − θ0









·
∼ N







0,





n∑

j=1

DT
0jV

−1
0j D0j





−1






,

respectively.

• Thus, the comparison between the quadratic estimating equation using the correct covariance

matrix (“weights”) and that using misspecified weights (through incorrect assumptions on skew-

ness and kurtosis) is of exactly the same form as that encountered when comparing (linear) GLS

estimators with correct and incorrect weights! By the same type of argument, it is possible to

show that the asymptotic covariance matrix in the case that the third and fourth moments are

correctly specified is “smaller” than that when they are not.

This supports the conjecture at the end of Chapter 9 that, in the quadratic case, the estimating

equation of the form (10.4) is “optimal” in the sense of satisfying an “asymptotic Gauss-Markov

property.” In particular, presumably, a similar argument could be used to show that solving

(10.4) in this particular case with the correct third and fourth moment assumptions would lead

to the most efficient estimator for (βT , σ,θT )T within the class of all estimators solving quadratic

estimating equations depending on the data through sj −mj defined in (10.4).
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• In fact, it is possible to deduce generally that the estimator for β found by solving the quadratic

estimating equation with the correct “weights” (so correct variance function, skewness, and kurto-

sis) is more efficient than the GLS estimator for β found by solving the linear estimating equation

with the correct “weights” (so correct variance function). Momentarily, we will exhibit this result

explicitly in a special case.

Now that we have derived the results for the general quadratic estimating equation (10.2), it is worth

noting an interesting feature. If one carries out the matrix multiplication in (10.2) (inverting the

“covariance” matrix), it should be clear that both the estimating equations corresponding to estimation

of β and of (σ,θT )T involve linear and quadratic terms (Yj − fj) and (Yj − fj)
2 − σ2g2

j . Note that this

is considerably more complicated than the sets of equations we have discussed previously, where the

equation for (σ,θT )T involved only a quadratic component.

• If we assume that the third and fourth moment assumptions are correct, with skewness 6= 0, then

the linear and quadratic terms are correlated. Thus, this suggests that when such correlation

exists, despite the fact that the mean does not involve σ and θ, there is information to be gained

on the variance parameters from the linear function of the data. As mean and variance depend

on β, there is possibly information to be gained about β from both the linear and quadratic

functions, regardless of the correlation.

This may seem counterintuitive, but it is worth remembering that in simpler problems estimation

of variance is often considered separately from that of mean, mostly because of the heavy emphasis

on the normal distribution. In the case of more general distributions, this shows that, to gain

efficiency, it is necessary to exploit additional information.

SOME SPECIFIC COMPARISONS: To gain some insight into the properties of the estimator for β, we

will consider a simpler form of the quadratic estimating equation (10.2). In particular, we will simplify

things by focusing on the situation where the equation is formed by assuming that ζj ≡ 0 and κj ≡ κ

for all j; for simplicity, we will regard κ as a fixed constant, although it could also depend on the

parameters (just not on j). Under these conditions, the estimating equation becomes

n∑

j=1









fβj 2σ2g2
j νβj

0 2σ2g2
j






1/σ

νθj



















σ2g2
j 0

0 (2 + κ)σ4g4
j






−1




Yj − fj

(Yj − fj)
2 − σ2g2

j




 = 0. (10.8)

Note that now the “covariance matrix” used to form the estimating equation is a diagonal matrix. This

feature simplifies the calculations.
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Moreover, the assumption of symmetry (skewness=0) is one of those corresponding to the normal

distribution. Thus, considering this situation subsumes the particular case of the quadratic estimating

equations corresponding to normal theory ML.

To deduce the large sample distribution of the estimators solving (10.8), we may appeal directly to

the M-estimator argument. This will yield a practical result of the form (10.7), where the covariance

matrix V 0j is now diagonal, so has a straightforward inverse. This result pertains to all estimators,

so to obtain the asymptotic covariance matrix for β̂ alone, we need to carry out the multiplication to

extract the upper left (p× p) submatrix of the joint covariance matrix of β̂, σ̂, and θ̂.

Rather than just proceeding directly in this way, evaluating An = n−1∑n
j=1 DT

0jV
−1
0j Dj and Bn =

n−1∑n
j=1 DT

0jV
−1
0j var(s0j |xj)V

−1
0j Dj and then n−1A−1

n BnA−1
n and deducing its upper left (p × p)

submatrix, we will modify things slightly in a way that will prove very convenient both now and when

we consider properties of variance parameter estimators in Chapter 12.

In particular, if we write the expansion of the estimating equation (10.8) in the usual way, it is straight-

forward to verify that we obtain

n1/2









β̂ − β0

σ̂ − σ0

θ̂ − θ0









≈ −A−1
n Cn, or −Ann1/2









β̂ − β0

σ̂ − σ0

θ̂ − θ0









≈ Cn, (10.9)

where here

An = −n−1
n∑

j=1













σ−2
0 g−2

0j fβ0jf
T
β0j +

4

2 + κ
νβ0jν

T
β0j

4

2 + κ
νβ0j

(

1/σ0 νT
θ0j

)

4

2 + κ






1/σ0

νθ0j




 νT

β0j

4

2 + κ






1/σ2
0 1/σ0ν

T
θ0j

1/σ0νθ0j νθ0jν
T
θ0j


















.

We also have, expressing things in terms of ǫj,

Cn = n−1/2
n∑

j=1









σ−1
0 g−1

0j fβ0jǫj + 2(2 + κ)−1(ǫ2
j − 1)νβ0j

2(2 + κ)−1(ǫ2
j − 1)






1/σ0

νθ0j














.

It is straightforward to verify that (10.9) may be rewritten, by multiplying through each row by a

multiplicative factor depending on σ0, as follows.
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Equation (10.9) becomes

n−1
n∑

j=1













g−2
0j fβ0jf

T
β0j +

4σ2
0

2 + κ
νβ0jν

T
β0j

4σ0

2 + κ
νβ0j

(

1 νT
θ0j

)

4σ0

2 + κ






1

νθ0j




 νT

β0j

4

2 + κ






1 νT
θ0j

νθ0j νθ0jν
T
θ0j


















n1/2









(β̂ − β0)/σ0

(σ̂ − σ0)/σ0

θ̂ − θ0









≈ n−1/2
n∑

j=1









g−1
0j fβ0jǫj + 2σ0(2 + κ)−1(ǫ2

j − 1)νβ0j

2(2 + κ)−1(ǫ2
j − 1)






1

νθ0j














.

The scaling by σ0 will turn out to be fortuitous shortly.

Recalling that τθ(β,θ,xj) = {1, νT
θ (β,θ,xj)}

T , if we define as before X = X(β0), W = diag(g−2
01 , . . . , g−2

0n ),

R =









νT
β01

...

νT
β0n









(n× p), Q =









τT
θ01

...

τT
θ0n









(n× q + 1),

then we may write this more succinctly as

n−1










XT WX +
4σ2

0

2 + κ
RT R

4σ0

2 + κ
RT Q

4σ0

2 + κ
QT R

4

2 + κ
QT Q










n1/2









(β̂ − β0)/σ0

(σ̂ − σ0)/σ0

θ̂ − θ0









≈ n−1/2
n∑

j=1






g−1
0j fβ0jǫj + 2σ0(2 + κ)−1(ǫ2

j − 1)νβ0j

2(2 + κ)−1(ǫ2
j − 1)τθ0j




 . (10.10)

We write this as

n1/2









(β̂ − β0)/σ0

(σ̂ − σ0)/σ0

θ̂ − θ0









≈ A∗−1
n C∗

n.

We already have the form of A∗
n; it remains to determine the form of A∗−1

n and the behavior of C∗
n.

First consider C∗
n.

Suppose that, in truth, the skewness and kurtosis of the response are not necessarily the same as those

assumed in forming the estimating equation (10.8). In particular, suppose that in truth

E(ǫ3
j |xj) = ζ∗, and var(ǫ2

j |xj) = 2 + κ∗.
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Under these conditions, we apply the multivariate central limit theorem to C∗
n. We observe that a

summand of C∗
n of course has mean zero and covariance matrix















g−2
0j fβ0jf

T
β0j +

4σ2
0(2 + κ∗)

(2 + κ)2
νβ0jν

T
β0j

2ζ∗

(2 + κ)g0j
fβ0jτ

T
θ0j +

4σ0(2 + κ∗)

(2 + κ)2
νβ0jτ

T
θ0j

+
2σ0ζ

∗

(2 + κ)g0j
{fβ0jν

T
β0j + fT

β0jνβ0j}

2ζ∗

(2 + κ)g0j
τθ0jf

T
β0j +

4σ0(2 + κ∗)

(2 + κ)2
τθ0jν

T
β0j

4(2 + κ∗)

(2 + κ)2
τθ0jτ

T
θ0j















.

Thus, using the definitions above, it is straightforward to conclude that C∗
n

L
−→ N (0,B∗), where

B∗ = limn→∞ B∗
n and

B∗
n = n−1















XT WX +
4σ2

0(2 + κ∗)

(2 + κ)2
RT R

2ζ∗

2 + κ
XT W 1/2Q +

4σ0(2 + κ∗)

(2 + κ)2
RT Q

+
2σ0ζ

∗

2 + κ
{XT W 1/2R + RT W 1/2X}

2ζ∗

2 + κ
QT W 1/2X +

4σ0(2 + κ∗)

(2 + κ)2
QT R

4(2 + κ∗)

(2 + κ)2
QT Q















.

(10.11)

Now consider inversion of A∗
n. This calculation is facilitated by the following well known matrix result.

INVERSE OF PARTITIONED MATRIX: Consider a generic (k × k) matrix

C =






C11 C12

C21 C22




 ,

where the Cij are submatrices such that C11 is (k1 × k1) and C22 is (k2 × k2) such that k = k1 + k2,

and C−1
11 and C−1

22 exist, as do all other inverses below. Then

C−1 =






D11 D12

D21 D22




 ,

where

D11 = (C11 −C12C
−1
22 C21)

−1

D22 = (C22 −C21C
−1
11 C12)

−1 = C−1
22 + C−1

22 C21D11C12C
−1
22

D12 = −C−1
11 C12D22 = −D11C12C

−1
22

D21 = −C−1
22 C21D11.
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Write

A∗−1
n = n−1










XT WX +
4σ2

0

2 + κ
RT R

4σ0

2 + κ
RT Q

4σ0

2 + κ
QT R

4

2 + κ
QT Q










−1

= n−1






A∗11
n A∗12

n

A∗12T
n A∗22

n




 .

From the form of A∗
n and the partitioned matrix result, we obtain

A∗11
n = {XT WX +

4σ2
0

2 + κ
RT R−

4σ2
0

2 + κ
RT Q(QT Q)−1QT R}−1

= (XT WX +
4σ2

0

2 + κ
RT P R)−1, P = I −Q(QT Q)−1QT .

A∗12
n = −σ0(X

T WX +
4σ2

0

2 + κ
RT P R)−1RT Q(QT Q)−1

= −σ0A
∗11
n S, S = RT Q(QT Q)−1

Now it is straightforward to verify that the upper left (p × p) submatrix of n−1A∗−1
n B∗

nA∗−1
n (note we

have multiplied by n−1 in anticipation of the asymptotic distribution result) is given by

A∗11
n B∗

n11A
∗11
n + A∗12

n B∗T
n12A

∗11
n + A∗11

n B∗
n12A

∗12T
n + A∗12

n B∗
n22A

∗12T
n ,

which, using the expressions above, may be rewritten as

A∗11
n (B∗

n11 − σ0SB∗T
n12 − σ0B

∗
n12S

T + σ2
0SB∗

n22S
T )A∗11

n . (10.12)

where the matrices B∗
n11, B∗

n12, and B∗
n22, are the obvious submatrices of B∗

n.

Using (10.11) and the definition of S, the middle term in (10.12) may be seen to simplify to, by tedious

algebra,

XT WX +
4σ2

0(2 + κ∗)

(2 + κ)2
RT PR +

2σ0ζ
∗

2 + κ
(XT W 1/2PR + RT PW 1/2X).

Combining all of this, we obtain the final result.

LARGE SAMPLE DISTRIBUTION, QUADRATIC ESTIMATING EQUATION WITH ζj ≡ 0 AND

κj = κ: If we construct quadratic estimating equations for (βT , σ,θT )T as in (10.8) by taking E(ǫ3
j |xj) ≡

0 and var(ǫ2
j |xj) = 2 + κ for all j, and, in truth, E(ǫ3

j |xj) = ζ∗ and var(ǫ2
j |xj) = 2 + κ∗ for all j, then

n1/2(β̂ − β0)
L
−→ N (0, σ2

0Γ
−1∆Γ−1), (10.13)

where

Γ = lim
n→∞

Γn = lim
n→∞

n−1(XT WX +
4σ2

0

2 + κ
RT P R) = Σ−1

WLS +
4σ2

0

2 + κ
Σβ, (10.14)

and

∆ = lim
n→∞

∆n = lim
n→∞

n−1

{

XT WX +
4σ2

0(2 + κ∗)

(2 + κ)2
RT PR +

2σ0ζ
∗

2 + κ
(XT W 1/2PR + RT PW 1/2X)

}

= Σ−1
WLS +

4σ2
0(2 + κ∗)

(2 + κ)2
Σβ +

2σ0ζ
∗

2 + κ
(T β + T T

β ). (10.15)
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We may write this in a more “practical” way as

β̂ − β0
·
∼ N (0, σ2

0n
−1Γ−1

n ∆nΓ
−1
n ),

of course. However, it is evident that the form of the large sample covariance matrix is very complicated,

and depends not only on the assumed skewness and excess kurtosis (0 and κ) but also the true ones,

assumed to be ζ∗ and κ∗ here.

This result is of little practical use. Its main usefulness is in the insights that may be gleaned from it,

as follows.

One immediate conclusion from the calculations and the final result is that, unlike for GLS, the prop-

erties of β̂ do depend on those of σ̂ and θ̂. This is easily deduced from inspection of (10.10); clearly,

the properties of all the estimators are linked together. This is also evident in the final result: unlike

the large sample covariance matrix of β̂GLS , which depends only on the matrices X and W having to

do with gradient of the mean function and the “weights,” the large sample covariance matrix of the

quadratic estimator depends also on the matrices R and Q, which clearly arise from the dependence of

the variance model on β, σ, and θ.

Thus, in the above result, the properties of the quadratic estimator for β are obviously tied up with

those of the quadratic variance parameter estimators used for σ and θ.

We now consider some special cases.

(a) Use normal ML and the data really are normal. If we choose κ ≡ 0 for all j in setting up the

quadratic estimating equations, then solving them jointly in (βT , σ,θT )T corresponds to joint

normal theory ML estimation of all parameters. If in fact ζ∗ = 0 and κ∗ = 0, then the ǫj have first

four moments corresponding exactly to those of the N (0, 1) distribution; certainly, this would be

true if the data truly are normally distributed. Note, however, that the result we are about to

deduce really only depends on the true first four moments matching those of the normal.

Under these conditions, it is easy to see that (10.14) and (10.15) reduce to

Γ = Σ−1
WLS + 2σ2

0Σβ = Σ−1
ML and ∆ = Σ−1

ML,

say, so that (10.13) becomes

n1/2(β̂ − β0)
L
−→ N (0, σ2

0ΣML). (10.16)

(10.16) represents the large sample behavior of the joint normal theory ML estimator for β when

the data are really normally distributed (or at least share the first four normal moments).

PAGE 254



CHAPTER 10 ST 762, M. DAVIDIAN

Usual large sample theory for maximum likelihood implies that the covariance matrix σ2
0ΣML is

thus the “smallest” that may be attained if the model (10.1) is correct and the data truly are

normal.

Recall that the GLS estimator with the “optimal” weights using the correct variance function

satisfies

n1/2(β̂GLS − β0)
L
−→ N (0, σ2

0ΣWLS).

This is true regardless of the true distribution of the data, as the arguments in Chapter 9 required

only that the first two moments of Yj|xj are correctly specified.

Comparing the large sample covariance matrices of the ML estimator β̂ and β̂GLS , it is evident

that

ΣWLS“ ≥ ”ΣML = (Σ−1
WLS + 2σ2

0Σβ)−1,

assuming that ΣWLS and Σβ are positive definite. This may be deduced by noting that

(Σ−1
WLS + 2σ2

0Σβ)−1 = ΣWLS −ΣWLS{ΣWLS + (σ2
0/2)Σ

−1
β )−1ΣWLS.

Thus, we see that, in the case where the data truly are normal and we use the normal theory

ML estimating equations for all parameters, β̂GLS is inefficient relative to the quadratic estimator

β̂, which is the “optimal” choice under these conditions. Solving the “optimal” linear estimating

equation still results in an estimator for β that is less precise (asymptotically) than the quadratic

ML estimator.

The source of the improvement is evident from the form of ΣML. The term

Σβ = lim
n→∞

n−1RT PR

depends on the function νβ(β,θ,xj) in R, which arises from the appearance of β in the variance

function. Thus, it is apparent that this term represents taking advantage of the additional infor-

mation on β available in g. That is, when the data truly are normal (or at least share the first

four moments of the normal), the quadratic equation exploits this extra information in a way that

the linear GLS equation cannot.

(b) Use normal ML but the data are really only symmetrically distributed. Now suppose that we again

form the quadratic estimating equation using the normal skewness and kurtosis (so take κ ≡ 0),

but, in truth, although the data are symmetrically distributed, they are more prone to extreme

observations than would be expected under normality in a way that happens similarly across all

j. So, formally, ζ∗ ≡ 0 but κ∗ > 0.
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Under these conditions,

Γ = Σ−1
WLS + 2σ2

0Σβ = Σ−1
ML and ∆ = Σ−1

WLS + (2 + κ∗)σ2
0Σβ,

so that

Γ−1∆Γ−1 = ΣQ = (Σ−1
WLS + 2σ2

0Σβ)−1{Σ−1
WLS + (2 + κ∗)σ2

0Σβ}(Σ
−1
WLS + 2σ2

0Σβ)−1.

How do β̂GLS and the quadratic estimator β̂ compare now? The properties of β̂GLS are unchanged.

It is no longer immediately clear that ΣWLS“ ≥” ΣQ. In fact, one may try very hard to establish

a general ordering for any choice of f and g; however, it only seems possible to show that ΣQ is

“smaller” if κ∗ ≤ 2.

Thus, if we use the normal theory ML quadratic estimator for β but the data are only symmetri-

cally distributed with positive excess kurtosis, then the “optimality” advantage no longer applies

uniformly; in fact, it is not clear which estimator is to be preferred.

(c) Use the quadratic estimating equation (10.8) with ζ ≡ 0 assuming var(ǫj |xj) = 2 + κ for some

constant κ where in fact ζ ≡ ζ∗ ≡ 0 and κ ≡ κ∗. In this situation, we are willing to specify that

the data are symmetrically distributed with some common fourth moment, and we are correct.

Thus, the quadratic estimating equation is “optimal.”

Under these conditions, we have

Γ = Σ−1
WLS +

4σ2
0

2 + κ∗
Σβ and ∆ = Σ−1

WLS +
4σ2

0

2 + κ∗
Σβ ,

so that

Γ−1∆Γ−1 = {Σ−1
WLS +

4σ2
0

2 + κ∗
Σβ}

−1.

Again, the properties of β̂GLS are unchanged. By an argument similar to that in case (a) above,

we have

ΣWLS“ ≥ ”{Σ−1
WLS +

4σ2
0

2 + κ∗
Σβ}

−1.

Thus, the quadratic estimator is “better” than the linear GLS estimator when we know the data

are symmetric and are able to specify correctly a value for the excess kurtosis. (This extends to

the case where we specify a function.)

This is of theoretical interest, but, in practice, it would be very unusual that one would feel

comfortable being able to specify the excess kurtosis if one did not believe in the normality

assumption! In general, as we have pointed out previously, being able to deduce the form of

higher (than two) moments from observed data is very difficult.
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(d) g does not depend on β. In this case, Σβ ≡ 0 and T β ≡ 0, as νβ(β,θ,xj) ≡ 0 so that R = 0.

Thus, if g does not depend on β, as expected, there is no additional information on β to be gained

from g. Then, regardless of the assumed or true third and fourth moments, (10.13) reduces to

n1/2(β̂ − β0)
L
−→ N (0, σ2

0ΣWLS),

as Γ = ∆ = ΣWLS here. Of course, νβ ≡ 0 renders the estimating equation linear.

This verifies our intuition: for estimating β, there is nothing to be gained by using a quadratic

equation over a linear one (GLS) if g does not involve the regression parameter β.

REMARKS: Examination of this special case highlights some of the general properties in the comparison

between GLS and the quadratic estimator (with (σ,θT )T also estimated by the corresponding quadratic

estimators). Assuming that the first two moments are correctly specified in (10.1):

• The large sample properties of the quadratic estimator depend on the assumed and true third and

fourth moments of the data. Those of the GLS estimator do not, and are unchanged regardless

of the nature of the true third and fourth moments.

• If the third and fourth moments are correctly specified, the “optimal” GLS estimator is inefficient

relative to the resulting quadratic estimator for β. If these are not correctly specified, it is no

longer clear that one estimator dominates the other in terms of efficiency.

• Although we have made some comparisons, it is clear that computing the actual value of ARE

for GLS relative to the quadratic estimator would depend on the problem: the nature of f , g,

design, and so on. Thus, these observations are qualitative; although GLS is inefficient in some

circumstances, how much of a loss really results will depend on the problem.

• Intuitively, because the performance of the quadratic estimator depends on third and fourth

moment properties, it would seem to be sensitive to incorrect assumptions about them, whereas

the performance of the GLS estimator does not depend on these moments at all. In the next

section, we investigate this in a special case.

• A trade-off between linear and quadratic estimating equations for β seems to be emerging. If we

are confident in our ability to specify third and fourth moments of Yj |xj, then we can exploit that

knowledge to obtain a potentially more precise estimator than could be obtained via GLS. So, for

example, if we are confident that the data truly are normal, we are better off using normal theory

ML in terms of efficiency.
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However, if we are wrong about the third and fourth moments, it seems that going to the extra

trouble of using the quadratic equation could hurt rather than help. As the properties of the

GLS estimator do not depend at all on third and fourth moments, and no specification of them is

required, it would be insensitive to this issue, so might be a “safer” choice.

To gain greater understanding of the trade-off, we consider misspecification of third and fourth moments

for the quadratic estimating equation in the next section.

10.3 Robustness of linear and quadratic equations to misspecification of third and

fourth moments

As mentioned in the last section, although we can gain general insights into the relative performance

of GLS and the quadratic estimating equations, nothing we have done actually quantifies the degree to

which one estimator might be inefficient relative to the other under different circumstances. One way to

do this for a particular problem (models f and g, true values of parameters, distribution for Yj |xj, and

settings of xj) would be to substitute these into the expressions for fixed n or to carry out simulations.

Here, we do the former and consider the implications of the theory in a very simple model for which

AREs can be calculated under different conditions. The following is taken from Carroll and Ruppert

(1988, pp. 21–23).

Consider the simple mean-variance model

E(Yj) = β, var(Yj) = σ2β2, β 6= 0. (10.17)

Here, we do not condition on covariates, as there are none. The main feature of (10.17) is that the

variance depends on the mean (in fact, the Yj have constant coefficient of variation σ under this model).

As usual, denote the true values of the parameters by β0 and σ0; for simplicity, take σ2 = σ2
0 to be

known; and let ǫj = (Yj − β0)/(σ0β0).

LINEAR ESTIMATING EQUATION (GLS): Regardless of the third and fourth moments of the Yj ,

the GLS estimating equation (C =∞) is

n∑

j=1

β−2(Yj − β) = 0,

which yields

β̂GLS = n−1
n∑

j=1

Yj = Ȳ .
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By elementary application of the weak law of large numbers and the central limit theorem, we may

show explicitly the β̂GLS is consistent, as

Ȳ
p
−→ β0,

and

n1/2(β̂GLS − β0)
L
−→ N (0, σ2

0ΣWLS), ΣWLS = β2
0 .

Note that this is true regardless of the values of E(ǫ3
j ) and var(ǫ2

j ).

QUADRATIC ESTIMATING EQUATION (NORMAL ML): Consider the particular quadratic esti-

mating equation corresponding to the assumptions of the normal skewness and kurtosis. From (10.8)

with κ ≡ 0 and considering only the first p rows corresponding to estimation of β, the estimating

equation is
Yj − β

σ2
0β

2
+

(Yj − β)2 − σ2
0β

2

σ2
0β

3
= 0,

which may be simplified to

σ2
0β

2 − βȲ − Tn = 0, Tn = n−1
n∑

j=1

Y 2
j . (10.18)

This equation is quadratic in β so may be solved using the quadratic formula, which yields two roots

β̂ =
−Ȳ ± (Ȳ 2 + 4σ2

0Tn)1/2

2σ2
0

.

It turns out that the positive root is the appropriate one, as it is the one that maximizes the corre-

sponding normal likelihood, to which solving the estimating equation corresponds in this case. Writing

β̂ML to reflect the fact that the estimator is normal theory ML, we have

β̂ML =
−Ȳ + (Ȳ 2 + 4σ2

0Tn)1/2

2σ2
0

,

thus providing an explicit expression for the quadratic estimator.

Suppose, in truth, E(ǫ3
j ) = ζ0 6= 0 and var(ǫ2

j) = 2 + κ0. Now of course Ȳ
p
−→ β0, and thus Ȳ 2 p

−→ β2
0 .

Moreover, using Yj = β0 + σ0β0ǫj , we have

Tn = β2
0 + 2σ0β

2
0n−1

n∑

j=1

ǫj + σ2
0β

2
0n−1

n∑

j=1

ǫ2
j

p
−→ β2

0(1 + σ2
0),

as n−1∑n
j=1 ǫj

p
−→ 0 and n−1∑n

j=1 ǫ2
j

p
−→ 1. Thus, as β̂ML is a continuous function of these quantities,

we may conclude that

β̂ML
p
−→

β0(1 + 2σ2
0)− β0

2σ2
0

= β0.

This shows explicitly that β̂ML is consistent, which, of course, is not unexpected, as β̂ML solves an

unbiased estimating equation.
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It is also possible to show, by a Taylor series of

n1/2(β̂ML − β0) = n1/2

{

−Ȳ + (Ȳ 2 + 4σ2
0Tn)1/2

2σ2
0

− β0

}

about Ȳ = β0 and Tn = β2
0(1 + σ2

0) that

n1/2(β̂ML − β0) ≈ (1 + σ2
0)

−1σ0β0n
−1/2

n∑

j=1

{ǫj + σ0(ǫ
2
j − 1)},

from which, by application of the central limit theorem, we obtain

n1/2(β̂ML − β0)
L
−→ N (0, σ2

0ΣML), ΣML =
β2

0{1 + (2 + κ0)σ
2
0 + 2σ0ζ0

(1 + 2σ2
0)

2
.

We are now in a position to calculate the ARE of β̂ML relative to β̂GLS , which is given by

ARE =
σ2

0ΣWLS

σ2
0ΣML

=
(1 + 2σ2

0)
2

1 + (2 + κ0)σ
2
0 + 2σ0ζ0

.

Note that the comparison thus depends on the true CV σ0 as well as the true skewness and excess

kurtosis ζ0 and κ0. Table 10.1 shows the values of ARE for various distributions and σ0, ζ0, and κ0.

Table 10.1: ARE of ML to GLS for the simple model under different conditions.

True Distribution κ0 ζ0 σ0 ARE

Normal 0 0 0.20 1.08
0 0 0.30 1.18
0 0 1.00 3.00

Symmetric 2 0 0.20 1.01
(ζ0 = 0) 2 0 0.30 1.02

2 0 1.00 1.80
4 0 0.20 0.94
4 0 0.30 0.90
4 0 1.00 1.29
6 0 0.20 0.88
6 0 0.30 0.81
6 0 1.00 1.00
8 0 0.20 0.83
8 0 0.30 0.73
8 0 1.00 0.82

Gamma 0.24 0.40 0.20 0.93
(ζ0 = 2σ0, κ0 = 6σ2

0) 0.54 0.60 0.30 0.88
0.96 0.80 0.40 0.82
6.00 2.00 1.00 0.69

IMPLICATIONS: We may make the following observations from Table 10.1.

• If the data are truly normally distributed, the quadratic estimator, which is the normal theory

ML estimator, is uniformly more precise that the GLS estimator, as expected.

Note, however, for CVs that are relatively “small” (σ0 ≤ 0.30), the gain in efficiency for ML is

not substantial and decreases with decreasing CV. A CV of 1.00 is considered pretty large; in this

situation, the GLS estimator is seriously relatively inefficient.
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As CV reflects the “noise-to-signal” ratio in the data, we see that for “high quality” data where

the “signal” dominates the “noise” (small CV), ML and GLS appear to exhibit similar perfor-

mance. For “low quality” data, where the noise dominates the signal, we see that ML performs

substantially better. This makes intuitive sense – as the ML estimator exploits information about

β in the variance, when the variance is large (of similar magnitude to the mean), it seems likely

that we would be able to gain more information about β than when the variance is of much smaller

magnitude than the mean.

• If the data come from a symmetric but “heavy-tailed” distribution (relative to normality), the

quadratic estimator, which assumes excess kurtosis is zero, is inefficient relative to GLS, except

when the CV σ0 gets very large. The inefficiency becomes worse as κ0 increases. This shows, as

noted previously, that there is no general ordering of the relative precision of GLS and normal

theory ML in this case.

• The gamma distribution has constant CV. Recall from Chapter 4 that the linear estimator β̂GLS

is in fact the maximum likelihood estimator for β under the gamma distribution; hence, we would

expect that GLS would be uniformly relatively more efficient when the data are truly from a

gamma distribution, as seen in the table.

In practice, it may difficult to distinguish between normal and gamma distributions (both with

constant CV) if σ0 is “small.” Thus, if we mistakenly assume normality when the data really arise

from a gamma distribution and use β̂ML instead of β̂GLS , we stand to lose efficiency.

• Note further that the gamma distribution has the property that ζ0 = 2σ0 → 0 and κ0 = 6σ2
0 → 0

as σ0 → 0. This demonstrates that, as the CV becomes small, the gamma and normal distributions

in fact coincide in their first four moments. This explains why distinguishing between them is

difficult for “small” CV. We will see more of the significance of “σ0 → 0” shortly.

These observations, which reflect more general phenomena, suggest that using GLS rather than normal

theory ML estimation of β may be sensible in many circumstances. For small “noise-to-signal” in

particular, it seems that possible loss of efficiency if the data are really normal is offset by possible

larger gains if they are not.
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10.4 Robustness of linear and quadratic equations to misspecification of the vari-

ance function

In addition to efficiency considerations, there is a compelling reason to favor GLS estimation over solving

quadratic estimating equations. To illustrate, we first consider the very simple model (10.17). Suppose

that we assume the model in (10.17),

E(Yj) = β, var(Yj) = σ2β2,

but, in truth, the correct model is

E(Yj) = β, var(Yj) = σ2β2+2θ

for some θ > 0. Thus, in adopting the assumed model, we have misspecified the variance function as

g(β) = β when the correct model is g(β) = β1+θ. Denote true values in the correct model with a “0”

subscript, and suppose for simplicity we know σ0.

Consider estimation of β under the assumed model.

LINEAR ESTIMATING EQUATION (GLS): To obtain the GLS estimator under our assumed model,

we would again solve (C =∞)
n∑

j=1

β−2(Yj − β) = 0,

which still yields

β̂GLS = n−1
n∑

j=1

Yj = Ȳ .

In spite of the variance misspecification, we still have from the weak law of large numbers that β̂GLS is

consistent, i.e.

Ȳ
p
−→ β0

under the true distribution of the data (under the correct model).

QUADRATIC ESTIMATING EQUATION (NORMAL ML): Again consider the normal theory ML

equation. From the previous section, under the assumed model, we would obtain

β̂ML =
−Ȳ + (Ȳ 2 + 4σ2

0Tn)1/2

2σ2
0

.

However, under the correct model, note that ǫj = (Yj−β0)/(σ0β
1+θ0

0 ) is such that E(ǫj) = 0, var(ǫ2
j ) = 1.

Under this correct model, we still have Ȳ
p
−→ β0 and Ȳ 2 p

−→ β2
0 , but now, with this definition of ǫj ,

Tn = n−1
n∑

j=1

(β0 + σ0β
1+θ0

0 ǫj)
2 = β2

0 + 2σ2
0β

2+θ0n−1
n∑

j=1

ǫj + σ2
0β

2+2θ0n−1
n∑

j=1

ǫ2
j

p
−→ β2

0(1 + σ2
0β

2θ0).
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Combining, we find that

β̂ML
p
−→ β0

{

(1 + 4σ2
0 + 4σ4

0β2θ0

0 )1/2 − 1

2σ2
0

}

.

The term in large braces is equal to 1 iff θ0 = 0; that is, iff we are correct about the variance model.

Otherwise, this shows that β̂ML is inconsistent, even if the data are truly normally distributed!

IMPLICATION: Misspecification of the variance function g can have a profound effect on quadratic

estimators for β in general in that the resulting estimator will be inconsistent. Our simple example

demonstrates this explicitly, but that this is the case in general is easy to see from inspection of the

general quadratic estimating equation (10.2):

n∑

j=1









fβj 2σ2g2
j νβj

0 2σ2g2
j






1/σ

νθj



















σ2g2
j ζjσ

3g3
j

ζjσ
3g3

j (2 + κj)σ
4g4

j






−1




Yj − fj

(Yj − fj)
2 − σ2g2

j




 = 0.

Assuming f is correctly specified, as we have been doing all along, note that if the variance function is

misspecified, then

E{(Yj − fj)
2 − σ2g2

j |xj} 6= 0

at the true values.

Thus, if g is misspecified, the quadratic estimating equation will be biased. Note this is true even if we

have correctly specified everything else. The result is that the quadratic estimator for β need not be

consistent.

In contrast, as we saw in Chapter 9, misspecification of the variance function may affect efficiency of

linear estimators like GLS, but it does not affect consistency.

Thus, we may conclude that the GLS approach yields an estimator for β in the general model (10.1)

that is robust to misspecification of the variance model in that it will still be consistent even if this

model is incorrectly specified. Quadratic estimators enjoy no such robustness property; a misspecified

variance model may lead to inconsistent estimation.

• The trade-off is thus as follows. With a quadratic estimating equation, we stand potentially to

gain efficiency over a linear estimating equation for estimating β as long as we have modeled things

correctly. This potential increase comes at the expense of possible inconsistency if the variance

model is not correct! With a linear estimating equation, we may lose efficiency; how much depends

on the “quality” of the data. However, we are protected against possible inconsistency.

• The result is that, in practice, most analysts prefer to use the “safer” GLS approach.
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This phenonmenon is now well appreciated, and, as we will see in Chapter 14, is especially well known

in the multivariate case. An early reference in the case of univariate response, as considered here, is

van Houwelingen (1988).

10.5 The effect of “slight” misspecification in a special case

In the previous section, we saw that misspecification of the variance function can lead to inconsistency

for quadratic estimators. In deducing this result, we took the perspective that the specified form of

the variance function is simply incorrect; e.g., the functional relationship between mean and variance is

wrongly modeled.

In practice, the data analyst would likely investigate the nature of variance and potential variance

models via diagnostic plotting techniques as in Chapter 7 and combine this evidence with possible

subject-matter considerations to arrive at a variance specification. Under these realistic conditions, if a

misspecification occurs, most likely the analyst will not be “flat-out” wrong about the variance model.

Rather, the specified model may be “reasonable” but only “slightly” wrong, reflecting the imperfect

ability to deduce underlying true features of the data generating mechanism exactly from a finite sample.

A natural question is then how such “slight” variance misspecification might affect the properties of

quadratic estimators and the comparison with linear GLS estimators. Carroll and Ruppert (1982) in-

vestigated this issue in the case of a linear mean model, but extension to the nonlinear case is straight-

forward. In particular, these authors compared the robustness of the GLS and the quadratic normal

theory ML estimators to “slight” misspecification when the true underlying distribution of the data is

normal.

The argument makes clever use of the notion of contiguity, as we now discuss.

“SLIGHT MISSPECIFICATION”: In order to characterize “slight” misspecification, the authors took

a similar approach to that of investigating the properties of hypothesis testing procedures under local

alternatives to the null hypothesis. Here is the set-up.

Assume that the Yj|xj are in truth normally distributed. Thus, as long as the assumptions on both

mean and variance are correct, this situation would favor the quadratic normal theory ML estimator.

Restricting attention to the normal distribution allows us to focus only on the effects of misspecification,

easing interpretation.

As usual, let β0, σ0, and θ0 denote the values of parameters of model parameters.
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Suppose that we assume the following model, which we will refer to as Model 1:

E(Yj |xj) = f(xj,β), var(Yj |xj) = σ2g2(β,θ,xj) = σ2w−1
j (β,θ).

However, suppose that, in truth, Yj|xj follows the model

E(Yj |xj) = f(xj ,β), var(Yj |xj) = σ2w−1
j,n(β,θ),

where

wj,n(β,θ) = wj(β,θ){1 + 2Cn−1/2hj(β,θ)}

for some constant C and a function hj (which may depend on xj) satisfying

n−1
n∑

j=1

h2
j (β0,θ0)→ γ, 0 < γ <∞.

We will call this Model 2.

The “true” model, Model 2, thus implies, for fixed n, the specification

var(Yj |xj) = σ2w−1
j (β,θ){1 + 2Cn−1/2hj(β,θ)}−1.

Thus, in the assumed model, Model 1, we are “off” in terms of specifying the variance function by a

factor depending on n−1/2.

• As n → ∞, Model 1 becomes identical to the true Model 2, but, for fixed n, the models differ.

Model 1 represents what we believe by our assumption, and Model 2 represents departures from

the assumption, similar to a null hypothesis and alternatives to it.

• The idea is to try and characterize the realistic practical situation where the analyst bases the

assumed model on the available data. As more and more data become available (n → ∞), the

analyst has more information with which to deduce a variance model and so becomes “better at”

this modeling. The analyst will specify a fixed model that does not depend on n, of course, as in

Model 1. Thus, Model 2, although obviously a technical device, has the practical interpretation

as deviating slightly from this fixed, assumed model.

IDEA: The idea of the argument is to investigate the sensitivity of the GLS and normal theory ML

estimators computed assuming Model 1 to the fact that, in truth, Model 2 holds. The approach is to

compare the limiting distributions of β̂ML and β̂GLS computed under Model 1 when Model 2 holds.
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• As the misspecification of the variance model is “slight,” the hope would be that an estimator

that is robust to “slight” misspecification would have the same large sample properties under both

Models 1 and 2. That is, the properties would be insensitive to whether or not, in truth, Model

1 or Model 2 holds.

Rather than attack this problem directly, which is certainly possible, Carroll and Ruppert (1982) made

clever use of the notion of contiguity. In particular, as mentioned above, it is standard to investigate the

properties of hypothesis testing procedures under both the null hypothesis (assumed Model 1 here) and

local alternatives (true Model 2 here), where local alternatives differ from the null by a term depending

on n−1/2. It turns out that the notion of contiguity provides a convenient theoretical device for studying

this that may be exploited for our problem.

A formal treatment of the theory of contiguity we will use is given by Hájek and Sidák (1967); see also

van der Vaart (1998, Section 6.2). Here, we will just state the definitions and theorems necessary for

our argument.

CONTIGUITY: For each n, let pn and qn be probability densities. The sequence of densities {qn} is

said to be contiguous to {pn} if, for any sequence of events An,

Ppn(An)→ 0 as n→∞

implies Pqn(An)→ 0, where Pp denotes probability measure under the density p.

Thus, if pn and qn are densities under a null and alternative hypothesis, respectively, and if An is the

critical region for a test, this says that if Type I error = Ppn(An)→ 0 then power = Pqn(An)→ 0.

We will use this by identifying pn as the (normal) density of the data under Model 1 and qn as that

under Model 2.

It turns out that if one can establish that two densities corresponding to two different models are

contiguous, then it is straightforward to derive limiting distribution results under the contiguous model

(Model 2 here) from those that are more easily obtained assuming Model 1. A series of results due to

LeCam describe how this may be accomplished; see also van der Vaart (1998, Section 7.5)..

COROLLARY TO LECAM’S FIRST LEMMA: Let Ln = qn/pn be the likelihood ratio. If, under pn,

log Ln
L
−→ N (µ, τ2), µ = −τ2/2,

then qn is contiguous to pn.
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LECAM’S THIRD LEMMA: Let Sn be any statistic. Suppose that, under pn,





Sn

log Ln






L
−→ N












µ1

−τ2
2 /2




 ,






τ2
1 τ12

τ12 τ2
2












,

so that qn is contiguous to pn (by the corollary above). Then, under qn,

Sn
L
−→ N (µ1 + τ12, τ

2
1 ).

Although this is stated for a univariate statistic Sn, the result extends readily to multivariate Sn, say.

We may now exploit these results. If we can derive the joint distribution of Sn = n1/2(β̂ − β0) and

log Ln assuming Model 1 holds for each of β̂ = β̂ML and β̂GLS , using LeCam’s third lemma, we can

immediately deduce the behavior of n1/2(β̂−β0) for Model 2. This of course requires showing contiguity.

Identifying pn as the likelihood under Model 1 and qn as that under Model 2, the loglikelihoods have

the form

log pn = −n log 2π − n log σ + (1/2)
n∑

j=1

log wj(β,θ)− (1/2)
n∑

j=1

wj(β,θ){Yj − f(xj ,β}
2/σ2,

log qn = −n log 2π − n log σ + (1/2)
n∑

j=1

log wj(β,θ) + (1/2)
n∑

j=1

log{1 + 2Cn−1/2hj(β,θ)}

−(1/2)
n∑

j=1

wj(β,θ){Yj − f(xj,β}
2{1 + 2Cn−1/2hj(β,θ)}/σ2.

First, suppose that Model 1 holds. Then ǫj = wj(β0,θ0){Yj−f(xj ,β0)}
2/σ0 ∼ N (0, 1), and, evaluated

at the true values for the model, we have

log Ln = log qn − log pn = (1/2)
n∑

j=1

log{1 + 2Cn−1/2hj(β0,θ0)} − Cn−1/2
n∑

j=1

hj(β0,θ0)ǫ
2
j .

Using log(1 + x) ≈ x− x2/2 for all x, we may approximate this as

log Ln ≈ −Cn−1/2
n∑

j=1

hj(β0,θ0)(ǫ
2
j − 1)− C2n−1

n∑

j=1

h2
j (β0,θ0). (10.19)

Assuming Model 1 holds, var(ǫ2
j |xj) = var(ǫ2

j) = 2. Thus, using Slutsky’s theorem and the central limit

theorem applied to (10.19), we have under pn that

log Ln
L
−→ N (−C2γ, 2C2γ).

Thus, by the corollary, Model 2 is contiguous to Model 1. This result explains why the authors set up

Model 2 as they did.
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In fact, it is straightforward to construct the joint, large sample distributions of n1/2(β̂ML − β0) and

n1/2(β̂GLS − β0) and log Ln under Model 1.

From the folklore theory in Chapter 9, we have

n1/2(β̂GLS − β0) ≈ n−1/2
n∑

j=1

djǫj
L
−→ N (0, σ2

0ΣWLS),

where dj may be identified as σ0ΣWLSg−1
0j fβ0j. Similarly, from Section 10.2, we have

n1/2(β̂ML − β0) ≈ n−1/2
n∑

j=1

{b1jǫj + b2j(ǫ
2
j − 1)}

L
−→ N (0, σ2

0ΣML),

where the forms of b1j and b2j may be deduced.

We may now use the third lemma. Taking Sn = n1/2(β̂GLS − β0), we obtain, writing hj(β0,θ0) = h0j ,






n1/2(β̂GLS − β0)

log Ln




 ≈ n−1/2

n∑

j=1






djǫj

−Ch0j(ǫ
2
j − 1)




+ n−1

n∑

j=1






0

−C2h2
0j




 .

Using the central limit theorem, Slutsky’s theorem, and the fact that E(ǫ3
j |xj) = E(ǫ3

j ) = 0 under

normality, we obtain that, under pn,






n1/2(β̂GLS − β0)

log Ln






L
−→ N












0

−C2γ




 ,






σ2
0ΣWLS 0

0 2C2γ












.

Thus, by LeCam’s third lemma, we may immediately conclude that, under Model 2 (qn),

n1/2(β̂GLS − β0)
L
−→ N (0, σ2

0ΣWLS). (10.20)

RESULT FOR GLS: Under the “slight” misspecification of Model 1, β̂GLS has the same asymptotic

normal distribution as under the correct Model 2. Hence, GLS is robust to “slight” misspecification of

the variance function, as defined above.

We now apply the lemma with Sn = n1/2(β̂ML − β0). We have






n1/2(β̂ML − β0)

log Ln




 ≈ n−1/2

n∑

j=1






{b1jǫj + b2j(ǫ
2
j − 1)}

−Ch0j(ǫ
2
j − 1)




+ n−1

n∑

j=1






0

−C2h2
0j




 .

Now under Model 1 (pn), the covariance matrix of a summand in the first term on the right hand side

does not have off-diagonal elements equal to zero, as was the case for GLS above, because E{(ǫ2
j−1)}2 =

var(ǫ2
j ) = 2.
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Thus, letting q = limn→∞ n−1∑n
j=1 h0jb2j , we obtain under Model 1 (pn)






n1/2(β̂ML − β0)

log Ln






L
−→ N












0

−C2γ




 ,






σ2
0ΣML −2Cq

−2Cq 2C2γ












.

Thus, by LeCam’s third lemma, we conclude that, under Model 2 (qn),

n1/2(β̂ML − β0)
L
−→ N (−2Cq, σ2

0ΣML). (10.21)

RESULT FOR ML: Under the “slight” misspecification of Model 1, β̂ML no longer has the same

asymptotic normal distribution as under the correct Model 2. In particular, (10.21) implies that, if we

compute β̂ML assuming Model 1 is true, but Model 2 really holds, then, for large n,

β̂ML
·
∼ N (β0 − 2n−1/2Cq, n−1σ2

0ΣML).

Thus, the approximate (normal) sampling distribution of β̂ML is not centered about β0.

IMPLICATION FOR PRACTICE: If we were to proceed naively assuming Model 1 is true and

construct tests and confidence intervals for the true value β0 using the result under Model 1 that

β̂ML
·
∼ N (β0, n

−1σ2
0ΣML), it is clear that there is a potential for erroneous inference. How erroneous

would depend on the relevance of the theory for finite n and the severity of the misspecification, as

measured by C and q.

On the other hand, from (10.20), if we were to base such inference on β0 on β̂GLS , even if we “slightly”

misspecified the variance, we would expect the conclusions to be unaffected.

ARE of β̂ML relative to β̂GLS: Because the mean of the large sample normal distribution of n1/2(β̂ML−

β0) is not zero, the usual measure of relative efficiency is not appropriate, as it does not take this feature

into account. A standard practice in such situations is to instead base the comparison on the ratio of

mean square error (MSE) for each estimator, where the generic definition is

MSE = variance + bias2.

In the case of multivariate β, one can consider the MSE corresponding to estimating a linear combination

λT β0 for an λ (so this includes estimating each element separately). From (10.20) and (10.21), we have

under Model 2 that

nMSE(λT β̂GLS)→ σ2
0λ

TΣWLSλ, nMSE(λT β̂ML)→ σ2
0λ

TΣMLλ + 4C2λT q.

Now, under normality, we know that ΣML “≤” ΣWLS (i.e., λTΣMLλ ≤ λTΣWLSλ).
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However, the MSE for β̂ML involves an additional “bias” term depending on C and q. If λ is not

orthogonal to q, which seems unlikely in general, and if C and q are “large”, then it could well be that

the limiting nMSE(λT β̂GLS) ≤ nMSE(λT β̂ML), offsetting any advantage for the ML estimator.

REMARK: The above argument was in the context of the particular quadratic estimator for β cor-

responding to normal ML. However, all of the results we have described in that context have general

implications about the sensitivity of quadratic estimators to misspecification of the variance model. The

bottom line is that quadratic estimators are not robust to assumptions about the model and about the

distribution (or at least about third and fourth moments). In contrast, the GLS estimator is robust

to these issues. Consequently, it is no surprise that many authors warn about the use of quadratic

estimators unless the analyst has a great deal of confidence in the model and assumptions, and they

advocate GLS, which is also easier to compute, for routine use.

10.6 “Small σ”

We conclude this chapter by mentioning briefly a technical device that we will exploit heavily in Chap-

ter 12.

In Section 10.3, we discussed the notion of “high quality” data with “low” “noise-to-signal.” In many

applications, such data arise; for example, in pharmacokinetics, the range of the mean response is

often “large” relative to the magnitude of the variation over the whole range of the response. This

phenomenon can be seen in Figure 1.1 for the indomethacin data. Thus, even if variance changes over

the range of the mean response, it is “small” relative to the size of the mean, so that the “signal”

dominates.

In the general mean-variance model (10.1), it is common for the variance to depend on β through some

function of the mean. In fact, a routine feature that we have seen in several examples is that the variance

increases as a function of the mean. For (10.1) in this situation, then, the scale parameter σ governs

the magnitude of the variance relative to the range of the values taken on by the mean function. In the

particular case of the constant CV model g(β,θ,xj) = f(xj ,β), σ is equal to the CV, and so represents

exactly the “noise-to-signal.” But even for other functions g depending on the mean, the interpretation

of σ is thus similar.

A common technical device for representing this situation in (10.1) is to let not only n →∞, but also

to let σ → 0. It turns out that this device simplifies arguments, as we will see in Chapter 12, but it also

has practical relevance.
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It turns out that, under σ → 0, the possible advantages of quadratic estimating equations, as well

as some of their drawbacks, vanish. For definiteness, consider (10.10) in our study of the quadratic

equations in Section 10.2. Recall that we rescaled the problem to be in terms of (β̂ − β0)/σ0 and

(σ̂ − σ0)/σ0 to arrive at (10.10). This was no accident, as doing so ensures no problems in letting

σ0 → 0.

Under this condition, (10.10) reduces to

n−1









XT WX 0

0
4

2 + κ
QT Q









n1/2









(β̂ − β0)/σ0

(σ̂ − σ0)/σ0

θ̂ − θ0









≈ n−1/2
n∑

j=1






g−1
0j fβ0jǫj

2(2 + κ)−1(ǫ2
j − 1)τθ0j




 .

It should be clear that this implies that n1/2(β̂ − β0)/σ0
L
−→ N (0,ΣWLS). That is, the quadratic

contribution to the estimating equation and the connection between β̂ and the variance parameter

estimators is eliminated.

In fact, under this condition, the quadratic estimator has exactly the same large sample distribution as

β̂GLS . More formally, if n→∞ and σ0 → 0, then the quadratic estimator and GLS are asymptotically

equivalent. The advantage of the additional information on β contained in νβ is lost.

Recall we mentioned in Section 10.3 that the gamma and normal distributions coincide in their first four

moments when σ0 → 0. Recall also that, for the gamma distribution, a member of the scaled exponential

family class, the maximum likelihood estimator is GLS. We see that, as σ0 → 0, the maximum likelihood

estimators for β under the gamma and normality coincide, as intuition would suggest.
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