HISTOGRAMS

EXAMPLE: READING-OFF HISTOGRAMS

I. How many $40-50$ year old's were eating at the Sushi restaurant? 5 people
2. Which age group was most represented in the restaurant? 30 - 40 year old's

EXERCISE: HISTOGRAMS

Draw a histogram of the length of time an average battery lasts.

Time a battery Frequency lasts (in hours)

$1<t \leq 3$	5
$3<t \leq 6$	9
$6<t \leq 9$	12
$9<t \leq 12$	3

Now answer the following questions:
I. How many hours does the longest battery last?
2. What percentage of batteries last 4 hours?

FREQUENCY POLYGONS

- Can be thought of a histogram with a line graph drawn over it
$>$ The points of the line graph are plotted on top of each bar of the histogram, in the position of the midpoint of each bar

Drawing a frequency polygon

EXAMPLE: DRAWING FREOUENCY POLYGONS

CUMULATIVE FREOUENCY GRAPHS

- Has a typical " S "- shaped curve
$>$ Also known as OGIVES
- Reflects the cumulative frequency (i.e. a running total of frequencies)

EXAMPLE: DRAWING FREQUENCY POLYGONS

Weight (kg)	Frequency	Midpoint	
$50<w \leq 60$	I	55	Midpoint
$60<w \leq 70$	II	65	$=\frac{50+60}{2}$
$70<w \leq 80$	8	75	$=55$
$80<w \leq 90$	2	85	
$90<w \leq 100$	3	95	

NB: The straight line must be extended down to the x-axis, on either side of the bars!

EXERCISE: FREQUENCY POLYGONS

Draw a frequency polygon of volume of water in a swimming pool over time.
$\left.\left.\begin{array}{|c|c|l}\hline \text { Volume (litres) } & \text { Frequency } & \begin{array}{l}\text { Now answer the } \\ \text { following questions: }\end{array} \\ \hline 1000<v \leq 3000 & 5 & \text { l. How much water } \\ 3000<v \leq 5000 & 9 & \text { do most swimming }\end{array} \right\rvert\, \begin{array}{l}\text { pools hold? }\end{array}\right\}$

EXAMPLE: DRAWING OGIVES

Mass (in kg)	$20-30-$	$40-$	$50-$	$60-70$	
Frequency	3	5	10	8	4
Cumulative Frequency	3	$3+5$ $=8$	$8+10$ $=18$	$18+8$ $=26$	$26+4$ $=30$

Cumulative frequency = previous frequency + current frequency
-Cumulative frequency is plotted against the upper class boundary for each class interval

Mass (kg)

EXAMPLE: READING-OFF OGIVES

- Since ogives indicate the cumulative frequency, we can determine the position of the quartiles
- Recap! Quartiles divide the data into quarters
* Lower quartile (QI): 25\% of the data lies below QI and 75\% of the data above
* Median (Q2): 50\% of the data lies below Q2 and 50\% of the data above
* Upper quartile (Q3): 75\% of the data lies below Q3 and 25% of the data above

EXAMPLE: READING-OFF OGIVES

$>$ For data values smaller than 50 (i.e. $n<50$), the position of the quartiles can be found as follows:

- In our example: $\mathrm{n}=30$:

The lower quartile $=1 / 4(n+1)=1 / 4(31)$
$=7.7^{\text {th }}$ position
The median

$$
\begin{aligned}
& =1 / 2(n+1)=1 / 2(31) \\
& =15.5^{\text {th }} \text { position }
\end{aligned}
$$

The upper quartile $=3 / 4(n+I)=3 / 4(3 I)$

$$
=23.25^{\text {th }} \text { position }
$$

Cumulative Frequency Graphs

EXERCISE: OGIVES

Draw a cumulative frequency graph of the distance workers travel to work per day:

Distance (km)	Frequency
$0<d \leq 20$	12
$20<d \leq 40$	26
$40<d \leq 60$	8
$60<d \leq 80$	4

Now answer the following questions:
I. How many workers were surveyed?
2. Determine the upper quartile.
NB! Plot cumulative frequency 3. Determine the vs the upper class boundary! lower quartile.

MEASURES OF CENTRALTENDENCY

I. MEAN

- Also known as the average
- Easy to calculate:

$$
\bar{x}=\frac{\sum x}{n}=\frac{\text { sum of all the } x \text { values }}{\text { number of values in the data set }}
$$

- Use it if all the actual values are relevant
- Do not use it if it is distorted by outliers

MEASURES OF CENTRAL TENDENCY

2. MEDIAN

Recap: Mean and Median
-Also known as Q2 (from quartiles), so 50% of the values lie above and 50% of the values lie below it

- Data values must be organized into order
- Can only be found for numbers
- If there are an even number of entries, it may not be one of the values.

MEASURES OF DISPERSION
I. RANGE
-Measures how far spread out the data is

- Easy to calculate:

Range = highest value - lowest data value

MEASURES OF DISPERSION

- The 3 quartiles, together with the smallest and largest data value makes up the " 5 -Number Summary"

Data Representation of USA Statistics

MEASURES OF CENTRAL TENDENCY

3. MODE

Measures of Central Tendency Example
$>$ Mode is the value that occurs most frequently
-Easy to find from diagram, frequency table or bar graph.
$>$ No calculations are necessary to find it.
>Is always one of the data values

MEASURES OF DISPERSION

2. QUARTILES

Finding Quartiles
>Divides the data into quarters
$>$ For data values <50, we can calculate

* Lower quartile (QI): $Q_{1}=\frac{1}{4}(n+1)$
* Median (Q2): $\quad Q_{2}=\frac{1}{2}(n+1)$
* Upper quartile $\left(\mathrm{Q}_{3}\right): Q_{3}=\frac{3}{4}(n+1)$

MEASURES OF DISPERSION

3. INTERQUARTILE RANGE (IQR)

-Measures the spread of the "core" 50% of the data
$>$ Far more useful than range

- Need to first calculate the upper (Q1)and lower quartiles (Q3)
- IQR = Q3 - Q1

Working with quartiles and IQR

MEASURES OF DISPERSION

4. SEMI-QUARTILE RANGE $\left(Q_{s}\right)$
$>$ Is half the inter-quartile range
$>Q_{S}=1 / 2($ Q3 - Q1)

MEASURES OF DISPERSION

5. OUTLIERS

-Any value that is considered outside the group of data
-Calculated as:
Outlier > Q3 + 1,5 IQR or
Outlier < Q1 - 1,5 IQR

MEASURES OF DISPERSION

6. STANDARD DEVIATION Understanding Standard Deviation
-Measure of spread around the mean

- Commonly used in statistical investigations
- Takes all data values into account
- Can be calculated using a table or your calculator

>3. Square the difference between the data value and the mean

4. Add the sum of all the squared differences

x	$(x-\bar{x})$	$(x-\bar{x})^{2}$
27	$-1,14$	1,2996
31	2,86	8,1796
27	$-1,14$	1,2996
27	$-1,14$	1,2996
28	$-0,14$	0,0196
30	1,86	3,4596
27	$-1,14$	1,2996
	$\sum(x-\bar{x})^{2}$	16,8572

$>\left[\right.$ From Step 4: $\left.\Sigma(x-\bar{x})^{2}=16,8572\right]$

- 5. To calculate the variance (σ^{2}), divide the sum of all the squared differences by the total number of data values

$$
\begin{aligned}
\sigma^{2} & =\frac{\sum(x-\bar{x})^{2}}{n} \\
& =\frac{16,8572}{7} \\
& =2,408 \ldots
\end{aligned}
$$

Calculating the mean and variance
$>\left[\right.$ From Step 5: $\left.\sigma^{2}=2.408 \ldots\right]$

- 6. To calculate the standard deviation (σ), take the square root of the variance

Standard deviation $=\sqrt{\text { Variance }}$

$$
\begin{aligned}
\sigma & =\sqrt{2,408 \ldots} \\
& =1,55
\end{aligned}
$$

$>$ The smaller the number the narrower the data spread (and vice versa)
E.g. Data set: 2, 5, 6, 8, 9

- 3. Enter data values and press = after each one [2 =] [5 =] [6 =] [8 =] [9 =]
>4. Now clear your screen after the data values have been inputted
[AC]
>5. To find the mean
[SHIFT STAT]
[4: Var]
[2: $\bar{x}][=]$
Answer $=6$

6. To find the standard deviation [SHIFT STAT]
[4: Var]
[3: $\sigma x][=]$
Answer $=2,44948 \ldots$

STANDARD DEVIATION

$>$ Given the following set of data: $12,4,11,26,8$
a) Identify the outlier. 26
b) Determine the standard deviation.
$\bar{x}=12,2$
$\sigma=7,44$

BOX-AND-WHISKER PLOTS

- Show the distribution of the "5-Number Summary" i.e. Lowest no; Q1; Q2; Q3; and Highest no

```
Playing with Box-and-Whisker
``` Plots

\section*{Histograms \& Box-and-Whisker Plots}
\(>\) The distribution or spread of the data can then be classified as symmetrical or skewed

\section*{BOX-AND-WHISKER PLOTS}

Data is skewed to the left when Q2 is closer to Q3

- Data is skewed to the right when Q 2 is closer to Q 1

\section*{STANDARD DEVIATION}

Given the following set of data: \(12,4, I I, 26,8\) [From previous question: \(\bar{x}=12,2\) and \(\sigma=7,44\)]
c) How many data values fall within one standard deviation of the mean? \(\bar{x}+\sigma=12,2+7,44=19,64\) \(\bar{x}-\sigma=12,2-7,44=4,66\)

Data set that falls within \(4,66-19,64\) is: \(2 \checkmark, 4 \times\), || \(\checkmark, 26 \times, 8 \checkmark \therefore 3\) data values

\section*{BOX-AND-WHISKER PLOTS}
- Symmetrical distribution can be seen when Q2 is in the middle of Q1 and Q3

Interpreting Box-and-Whisker Plots

\section*{BOX-AND-WHISKER PLOTS}
- If the biggest number in the data set is far removed from the bulk of the data, then it is an outlier
- The outlier will result in a long "whisker"

\section*{DISTRIBUTION CURVES}
1. NORMAL DISTRIBUTION

3. DISTRIBUTION SKEWED TO THE RIGHT

\section*{SCATTER PLOTS}
- A positive correlation exists when the line of best fit is a positive straight line

\section*{2. DISTRIBUTION SKEWED TO THE LEFT}

The few very low scores
Scores result in the mean being below the median.

\section*{SCATTER PLOTS}
\(\downarrow\) A negative correlation exists when the line of best fit is a negative straight line

\section*{SCATTER PLOTS Scatter plots and}
correlations
> No correlation exists when one cannot draw a line of best fit
```

