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Today’s the Big Day
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Today
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def An Normal random variable 𝑋 is defined as follows:

Other names: Gaussian random variable

Normal Random Variable

5

𝑓 𝑥 =
1

𝜎 2𝜋
𝑒− 𝑥−𝜇 2/2𝜎2

𝑋~𝒩(𝜇, 𝜎2)
Support: −∞,∞

Variance

Expectation

PDF

𝐸 𝑋 = 𝜇

Var 𝑋 = 𝜎2

𝑋~𝒩(𝜇, 𝜎2)
mean

variance

𝑥

𝑓
𝑥
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Carl Friedrich Gauss

Carl Friedrich Gauss (1777-1855) was a remarkably influential
German mathematician.

Did not invent Normal distribution but rather popularized it
6

http://upload.wikimedia.org/wikipedia/commons/9/9b/Carl_Friedrich_Gauss.jpg
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Why the Normal?

• Common for natural phenomena: 
height, weight, etc.

• Most noise in the world is Normal

• Often results from the sum of many 
random variables

• Sample means are distributed normally

7

That’s what they 

want you to believe…
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Why the Normal?

• Common for natural phenomena: 
height, weight, etc.

• Most noise in the world is Normal

• Often results from the sum of many 
random variables

• Sample means are distributed normally

8

Actually log-normal

Just an assumption

Only if equally weighted

(okay this one is true, we’ll see

this in 3 weeks)
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Okay, so why the Normal?

Part of CS109 learning goals:

• Translate a problem statement into a random variable

In other words: model real life situations with probability distributions

9

value

How do you model student heights?

• Suppose you have data from one classroom.

Fits perfectly!

But what about in 

another classroom?
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A Gaussian maximizes entropy for a 

given mean and variance.

Part of CS109 learning goals:

• Translate a problem statement into a random variable

In other words: model real life situations with probability distributions

0
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Okay, so why the Normal?

10

Occam’s Razor:

“Non sunt multiplicanda 

entia sine necessitate.”

Entities should not be multiplied 

without necessity.

value

How do you model student heights?

• Suppose you have data from one classroom.

• Same mean/var

• Generalizes well
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I encourage you to stay critical of how 

to model real-world phenomena.

Why the Normal?

• Common for natural phenomena: 
height, weight, etc.

• Most noise in the world is Normal

• Often results from the sum of many 
random variables

• Sample means are distributed normally

11

Actually log-normal

Just an assumption

Only if equally weighted

(okay this one is true, we’ll see

this in 3 weeks)
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Anatomy of a beautiful equation

Let 𝑋~𝒩 𝜇, 𝜎2 .

The PDF of 𝑋 is defined as:

12

𝑓 𝑥 =
1

𝜎 2𝜋
𝑒
−

𝑥 − 𝜇 2

2𝜎2

normalizing constant
exponential

tail

symmetric

around 𝜇

variance 𝜎2

manages spread

𝑥

𝑓
𝑥
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Campus bikes

You spend some minutes, 𝑋, traveling
between classes.

• Average time spent: 𝜇 = 4 minutes

• Variance of time spent: 𝜎2 = 2 minutes2

Suppose 𝑋 is normally distributed. What is the 
probability you spend ≥ 6 minutes traveling?

13

𝑋~𝒩(𝜇 = 4, 𝜎2 = 2)

𝑃 𝑋 ≥ 6 = න
6

∞

𝑓(𝑥)𝑑𝑥 = න
6

∞ 1

𝜎 2𝜋
𝑒
−

𝑥 − 𝜇 2

2𝜎2 𝑑𝑥

(call me if you analytically solve this)
Loving, not scary
…except this time
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Computing probabilities with Normal RVs

For a Normal RV 𝑋~𝒩 𝜇, 𝜎2 , its CDF has no closed form.

𝑃 𝑋 ≤ 𝑥 = 𝐹 𝑥 = න
−∞

𝑥 1

𝜎 2𝜋
𝑒
−

𝑦 − 𝜇 2

2𝜎2 𝑑𝑦

However, we can solve for probabilities numerically using a function Φ:

𝐹 𝑥 = Φ
𝑥 − 𝜇

𝜎

14

Cannot be 

solved 

analytically

⚠️

CDF of

𝑋~𝒩 𝜇, 𝜎2
A function that has been 

solved for numerically

To get here, we’ll first 

need to know some 

properties of Normal RVs.



Normal RV: 
Properties

15

10b_normal_props
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Properties of Normal RVs

Let 𝑋~𝒩 𝜇, 𝜎2 with CDF 𝑃 𝑋 ≤ 𝑥 = 𝐹 𝑥 .

1. Linear transformations of Normal RVs are also Normal RVs.

If 𝑌 = 𝑎𝑋 + 𝑏, then 𝑌~𝒩(𝑎𝜇 + 𝑏, 𝑎2𝜎2).

2. The PDF of a Normal RV is symmetric about the mean 𝜇.

𝐹 𝜇 − 𝑥 = 1 − 𝐹 𝜇 + 𝑥

16
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1. Linear transformations of Normal RVs

Let 𝑋~𝒩 𝜇, 𝜎2 with CDF 𝑃 𝑋 ≤ 𝑥 = 𝐹 𝑥 .

Linear transformations of X are also Normal.

If 𝑌 = 𝑎𝑋 + 𝑏, then 𝑌~𝒩 𝑎𝜇 + 𝑏, 𝑎2𝜎2

Proof:

• 𝐸 𝑌 = 𝐸 𝑎𝑋 + 𝑏 = 𝑎𝐸 𝑋 + 𝑏 = 𝑎𝜇 + 𝑏

• Var 𝑌 = Var 𝑎𝑋 + 𝑏 = 𝑎2Var 𝑋 = 𝑎2𝜎2

• 𝑌 is also Normal

17

Proof in Ross,

10th ed (Section 5.4)

Linearity of Expectation

Var 𝑎𝑋 + 𝑏 = 𝑎2Var 𝑋
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2. Symmetry of Normal RVs

Let 𝑋~𝒩 𝜇, 𝜎2 with CDF 𝑃 𝑋 ≤ 𝑥 = 𝐹 𝑥 .

The PDF of a Normal RV is symmetric about the mean 𝜇.

𝐹 𝜇 − 𝑥 = 1 − 𝐹 𝜇 + 𝑥

18

𝑓
(𝑥
)

𝑥𝜇
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Using symmetry of the Normal RV

19

1. 𝑃 𝑍 ≤ 𝑧

2. 𝑃 𝑍 < 𝑧

3. 𝑃 𝑍 ≥ 𝑧

4. 𝑃 𝑍 ≤ −𝑧

5. 𝑃 𝑍 ≥ −𝑧

6. 𝑃(𝑦 < 𝑍 < 𝑧) 🤔

A. 𝐹 𝑧

B. 1 − 𝐹(𝑧)

C. 𝐹 𝑧 − 𝐹(𝑦)

= 𝐹 𝑧

𝑧

𝑓
(𝑧
)

𝐹 𝜇 − 𝑥 = 1 − 𝐹 𝜇 + 𝑥

𝜇 = 0

Let 𝑍~𝒩 0,1 with CDF 𝑃 𝑍 ≤ 𝑧 = 𝐹 𝑧 .

Suppose we only knew numeric values
for 𝐹 𝑧 and 𝐹 𝑦 , for some 𝑧, 𝑦 ≥ 0.

How do we compute the following probabilities?
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Using symmetry of the Normal RV

20

1. 𝑃 𝑍 ≤ 𝑧

2. 𝑃 𝑍 < 𝑧

3. 𝑃 𝑍 ≥ 𝑧

4. 𝑃 𝑍 ≤ −𝑧

5. 𝑃 𝑍 ≥ −𝑧

6. 𝑃(𝑦 < 𝑍 < 𝑧)

A. 𝐹 𝑧

B. 1 − 𝐹(𝑧)

C. 𝐹 𝑧 − 𝐹(𝑦)

= 𝐹 𝑧

= 𝐹 𝑧

= 1 − 𝐹(𝑧)

= 1 − 𝐹(𝑧)

= 𝐹 𝑧

= 𝐹 𝑧 − 𝐹(𝑦)

Symmetry is particularly useful when 

computing probabilities of zero-mean 

Normal RVs.

𝑧

𝑓
(𝑧
)

𝐹 𝜇 − 𝑥 = 1 − 𝐹 𝜇 + 𝑥

𝜇 = 0

Let 𝑍~𝒩 0,1 with CDF 𝑃 𝑍 ≤ 𝑧 = 𝐹 𝑧 .

Suppose we only knew numeric values
for 𝐹 𝑧 and 𝐹 𝑦 , for some 𝑧, 𝑦 ≥ 0.

How do we compute the following probabilities?



Normal RV:
Computing 
probability

21

10c_normal_probs
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Computing probabilities with Normal RVs

Let 𝑋~𝒩 𝜇, 𝜎2 .

To compute the CDF, 𝑃 𝑋 ≤ 𝑥 = 𝐹 𝑥 :

• We cannot analytically solve the integral (it has no closed form)

• …but we can solve numerically using a function Φ:

𝐹 𝑥 = Φ
𝑥 − 𝜇

𝜎

22

CDF of the

Standard Normal, 𝑍



Lisa Yan, CS109, 2020

The Standard Normal random variable 𝑍 is defined as follows:

Other names: Unit Normal

CDF of 𝑍 defined as:

Standard Normal RV, 𝑍

23

𝑍~𝒩(0, 1) Variance

Expectation 𝐸 𝑍 = 𝜇 = 0

Var 𝑍 = 𝜎2 = 1

𝑃 𝑍 ≤ 𝑧 = Φ(𝑧)

Note: not a new distribution; just

a special case of the Normal
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Φ has been numerically computed

24

𝑃 𝑍 ≤ 1.31 = Φ(1.31)

𝑓
𝑧

𝑧

Φ(𝑧)

Standard Normal Table only has 

probabilities Φ(𝑧) for 𝑧 ≥ 0.
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History fact: Standard Normal Table

25

The first Standard Normal Table was 
computed by Christian Kramp, French 
astronomer (1760–1826), in Analyse
des Réfractions Astronomiques et 
Terrestres, 1799

Used a Taylor series expansion to the 
third power
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Probabilities for a general Normal RV

Let 𝑋~𝒩 𝜇, 𝜎2 . To compute the CDF 𝑃 𝑋 ≤ 𝑥 = 𝐹 𝑥 ,
we use Φ, the CDF for the Standard Normal 𝑍~𝒩(0, 1):

𝐹 𝑥 = Φ
𝑥 − 𝜇

𝜎
Proof:

26

𝐹 𝑥 = 𝑃 𝑋 ≤ 𝑥

= 𝑃 𝑋 − 𝜇 ≤ 𝑥 − 𝜇 = 𝑃
𝑋 − 𝜇

𝜎
≤
𝑥 − 𝜇

𝜎

= 𝑃 𝑍 ≤
𝑥 − 𝜇

𝜎

Algebra + 𝜎 > 0

Definition of CDF

•
𝑋−𝜇

𝜎
=

1

𝜎
𝑋 −

𝜇

𝜎
is a linear transform of 𝑋.

• This is distributed as 𝒩
1

𝜎
𝜇 −

𝜇

𝜎
,
1

𝜎2
𝜎2 =𝒩 0,1

• In other words, 
𝑋−𝜇

𝜎
= 𝑍~𝒩 0,1 with CDF Φ.= Φ

𝑥 − 𝜇

𝜎
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Probabilities for a general Normal RV

Let 𝑋~𝒩 𝜇, 𝜎2 . To compute the CDF 𝑃 𝑋 ≤ 𝑥 = 𝐹 𝑥 ,
we use Φ, the CDF for the Standard Normal 𝑍~𝒩(0, 1):

𝐹 𝑥 = Φ
𝑥 − 𝜇

𝜎
Proof:

27

𝐹 𝑥 = 𝑃 𝑋 ≤ 𝑥

= 𝑃 𝑋 − 𝜇 ≤ 𝑥 − 𝜇 = 𝑃
𝑋 − 𝜇

𝜎
≤
𝑥 − 𝜇

𝜎

= 𝑃 𝑍 ≤
𝑥 − 𝜇

𝜎

Algebra + 𝜎 > 0

Definition of CDF

•
𝑋−𝜇

𝜎
=

1

𝜎
𝑋 −

𝜇

𝜎
is a linear transform of 𝑋.

• This is distributed as 𝒩
1

𝜎
𝜇 −

𝜇

𝜎
,
1

𝜎2
𝜎2 =𝒩 0,1

• In other words, 
𝑋−𝜇

𝜎
= 𝑍~𝒩 0,1 with CDF Φ.= Φ

𝑥 − 𝜇

𝜎

1. Compute 𝑧 = 𝑥 − 𝜇 /𝜎.

2. Look up Φ 𝑧 in Standard Normal table.



Lisa Yan, CS109, 2020

Campus bikes

You spend some minutes, 𝑋, traveling between classes.
• Average time spent: 𝜇 = 4 minutes
• Variance of time spent: 𝜎2 = 2 minutes2

Suppose 𝑋 is normally distributed. What is the probability 
you spend ≥ 6 minutes traveling?

28

𝑋~𝒩(𝜇 = 4, 𝜎2 = 2) 𝑃 𝑋 ≥ 6 = න
6

∞

𝑓(𝑥)𝑑𝑥 (no analytic solution)

1. Compute 𝑧 =
𝑥−𝜇

𝜎
2. Look up Φ(𝑧) in table

𝑃 𝑋 ≥ 6 = 1 − 𝐹𝑥(6)

= 1 − Φ
6 − 4

2

×

≈ 1 − Φ 1.41

1 − Φ 1.41
≈ 1 − 0.9207
= 0.0793
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Is there an easier way? (yes)

Let 𝑋~𝒩 𝜇, 𝜎2 . What is 𝑃 𝑋 ≤ 𝑥 = 𝐹 𝑥 ?

• Use Python

• Use website tool

29

from scipy import stats
X = stats.norm(mu, std)
X.cdf(x)

SciPy reference:
https://docs.scipy.org/doc/scipy/refere

nce/generated/scipy.stats.norm.html

Website tool: 
https://web.stanford.edu/class/cs109

/handouts/normalCDF.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norm.html
https://web.stanford.edu/class/cs109/handouts/normalCDF.html


(live)
10: The Normal 
(Gaussian) Distribution
Lisa Yan

July 13, 2020

30
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The Normal (Gaussian) Random Variable

Let 𝑋~𝒩 𝜇, 𝜎2 .

The PDF of 𝑋 is defined as:

31

𝑓 𝑥 =
1

𝜎 2𝜋
𝑒
−

𝑥 − 𝜇 2

2𝜎2

normalizing constant
exponential

tail

symmetric

around 𝜇

variance 𝜎2

manages spread

𝑥

𝑓
𝑥

Review



Think
Slide 34 has a question to go over by 
yourself.

Post any clarifications here!

https://us.edstem.org/courses/667/discussion/89934

Think by yourself: 2 min

32

🤔(by yourself)

https://us.edstem.org/courses/667/discussion/89934
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Normal Random Variable

Match PDF to distribution:

𝒩 0, 1

𝒩(−2, 0.5)

𝒩 0, 5

𝒩(0, 0.2)

33

A. 

B.

C.

D.

𝑋~𝒩(𝜇, 𝜎2)
mean variance

🤔(by yourself)

𝑥

𝑓
𝑥
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Knowing how to use a Standard Normal Table will 

still be useful in our understanding of Normal RVs.

Computing probabilities with Normal RVs: Old school

34

*particularly useful if we had closed book exams with no calculator**

**we have open book exams with calculators this quarter

Φ 𝑧 for non-negative 𝑧

*



Lisa Yan, CS109, 2020

Computing probabilities with Normal RVs

Let 𝑋~𝒩 𝜇, 𝜎2 . What is 𝑃 𝑋 ≤ 𝑥 = 𝐹 𝑥 ?

1. Rewrite in terms of standard normal CDF Φ by computing 𝑧 =
𝑥−𝜇

𝜎
.

Linear transforms of Normals are Normal:

𝐹 𝑥 = Φ
𝑥 − 𝜇

𝜎

2. Then, look up in a Standard Normal Table, where 𝑧 ≥ 0.

Normal PDFs are symmetric about their mean:

Φ −𝑧 = 1 − Φ 𝑧

35

Review

𝑍 =
𝑋−𝜇

𝜎
, where 𝑍~ 𝒩 0,1
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Get your Gaussian On

Let 𝑋~𝒩 𝜇 = 3, 𝜎2 = 16 . Std deviation 𝜎 = 4.

1. 𝑃 𝑋 > 0

36

• If 𝑋~𝒩 𝜇, 𝜎2 , then 

𝐹 𝑥 = Φ
𝑥−𝜇

𝜎

• Symmetry of the PDF of 

Normal RV implies  

Φ −𝑧 = 1 − Φ 𝑧



Breakout 
Rooms

Slide 39 has two questions to go over in 
groups.

Post any clarifications here!

https://us.edstem.org/courses/667/discussion/89934

Breakout rooms: 5 mins

37

🤔
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Get your Gaussian On

Let 𝑋~𝒩 𝜇 = 3, 𝜎2 = 16 .
Note standard deviation 𝜎 = 4.

How would you write each of the below
probabilities as a function of the
standard normal CDF, Φ?

1. 𝑃 𝑋 > 0 (we just did this)

2. 𝑃 2 < 𝑋 < 5

3. 𝑃 𝑋 − 3 > 6

38

• If 𝑋~𝒩 𝜇, 𝜎2 , then 

𝐹 𝑥 = Φ
𝑥−𝜇

𝜎

• Symmetry of the PDF of 

Normal RV implies  

Φ −𝑧 = 1 − Φ 𝑧

🤔
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Get your Gaussian On

Let 𝑋~𝒩 𝜇 = 3, 𝜎2 = 16 . Std deviation 𝜎 = 4.

1. 𝑃 𝑋 > 0

2. 𝑃 2 < 𝑋 < 5

39

• If 𝑋~𝒩 𝜇, 𝜎2 , then 

𝐹 𝑥 = Φ
𝑥−𝜇

𝜎

• Symmetry of the PDF of 

Normal RV implies  

Φ −𝑧 = 1 − Φ 𝑧
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Get your Gaussian On

Let 𝑋~𝒩 𝜇 = 3, 𝜎2 = 16 . Std deviation 𝜎 = 4.

1. 𝑃 𝑋 > 0

2. 𝑃 2 < 𝑋 < 5

3. 𝑃 𝑋 − 3 > 6

40

Compute 𝑧 =
𝑥−𝜇

𝜎

• If 𝑋~𝒩 𝜇, 𝜎2 , then 

𝐹 𝑥 = Φ
𝑥−𝜇

𝜎

• Symmetry of the PDF of 

Normal RV implies  

Φ −𝑥 = 1 − Φ 𝑥

𝑃 𝑋 < −3 + 𝑃 𝑋 > 9

= 𝐹 −3 + 1 − 𝐹 9

= Φ
−3 − 3

4
+ 1 −Φ

9 − 3

4

Look up Φ(z) in table
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Get your Gaussian On

Let 𝑋~𝒩 𝜇 = 3, 𝜎2 = 16 . Std deviation 𝜎 = 4.

1. 𝑃 𝑋 > 0

2. 𝑃 2 < 𝑋 < 5

3. 𝑃 𝑋 − 3 > 6

41

Compute z =
𝑥−𝜇

𝜎
Look up Φ(z) in table

𝑃 𝑋 < −3 + 𝑃 𝑋 > 9

= 𝐹 −3 + 1 − 𝐹 9

= Φ
−3 − 3

4
+ 1 −Φ

9 − 3

4

= Φ −
3

2
+ 1 −Φ

3

2

= 2 1 − Φ
3

2

≈ 0.1337

• If 𝑋~𝒩 𝜇, 𝜎2 , then 

𝐹 𝑥 = Φ
𝑥−𝜇

𝜎

• Symmetry of the PDF of 

Normal RV implies  

Φ −𝑥 = 1 − Φ 𝑥



Interlude for 
jokes/announcements

42
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Announcements

43

Problem Set 3

Due: Friday 7/13 1pm PT

Tim’s OH permanently moved to 8-10pm PT, Wednesday
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Interesting probability news

44

https://www.forbes.com/sites/lanceeliot/2020/04/12/on-

the-probabilities-of-social-distancing-as-gleaned-from-ai-self-

driving-cars/#218da4489472

https://www.forbes.com/sites/lanceeliot/2020/04/12/on-the-probabilities-of-social-distancing-as-gleaned-from-ai-self-driving-cars/#218da4489472


Breakout 
Rooms

Slide 47 has two questions to go over in 
groups.

Post any clarifications here!

https://us.edstem.org/courses/667/discussion/89934

Breakout rooms: 5 mins

45

🤔
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Noisy Wires

Send a voltage of 2 V or −2 V on
wire (to denote 1 and 0, respectively).

• 𝑋 = voltage sent (2 or −2)
• 𝑌 = noise, 𝑌~𝒩 0, 1
• 𝑅 = 𝑋 + 𝑌 voltage received.

Decode: 1 if 𝑅 ≥ 0.5
0 otherwise. 

1. What is P(decoding error | original bit is 1)?
i.e., we sent 1, but we decoded as 0?

2. What is P(decoding error | original bit is 0)?

These probabilities are unequal. Why might this be useful?
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🤔
𝐹
𝑅
(𝑟
)

𝑅 = 𝑟
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Noisy Wires

Send a voltage of 2 V or −2 V on
wire (to denote 1 and 0, respectively).

• 𝑋 = voltage sent (2 or −2)
• 𝑌 = noise, 𝑌~𝒩 0, 1
• 𝑅 = 𝑋 + 𝑌 voltage received.

Decode: 1 if 𝑅 ≥ 0.5
0 otherwise. 

1. What is P(decoding error | original bit is 1)?
i.e., we sent 1, but we decoded as 0?
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𝐹
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)

𝑅 = 𝑟

𝑃 𝑅 < 0.5| 𝑋 = 2 = 𝑃 2 + 𝑌 < 0.5 = 𝑃 𝑌 < −1.5 Y is Standard Normal

= Φ −1.5 = 1 − Φ 1.5 ≈ 0.0668
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Noisy Wires

Send a voltage of 2 V or −2 V on
wire (to denote 1 and 0, respectively).

• 𝑋 = voltage sent (2 or −2)
• 𝑌 = noise, 𝑌~𝒩 0, 1
• 𝑅 = 𝑋 + 𝑌 voltage received.

Decode: 1 if 𝑅 ≥ 0.5
0 otherwise. 

1. What is P(decoding error | original bit is 1)?
i.e., we sent 1, but we decoded as 0?

2. What is P(decoding error | original bit is 0)?
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𝐹
𝑅
(𝑟
)

𝑅 = 𝑟

0.0668

≈ 0.0062𝑃 𝑅 ≥ 0.5| 𝑋 = −2 = 𝑃 −2 + 𝑌 ≥ 0.5 = 𝑃 𝑌 ≥ 2.5
Asymmetric decoding probability: We would like to avoid 

mistaking a 0 for 1. Errors the other way are more tolerable.



Challenge: 
Sampling with 
the Normal RV
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LIVE
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ELO ratings
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What is the probability that the Warriors win?

How do you model zero-sum games?
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ELO ratings

Each team has an ELO score 𝑆, 
calculated based on their
past performance.

• Each game, a team has
ability 𝐴~𝒩 𝑆, 2002 .

• The team with the higher
sampled ability wins.

What is the probability
that Warriors win
this game?

Want: 𝑃 Warriors win = 𝑃 𝐴𝑊 > 𝐴𝐵
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Arpad Elo

Warriors 𝐴𝑊~𝒩 𝑆 = 1657, 2002

Opponents 𝐴𝐵~𝒩 𝑆 = 1470, 2002
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ELO ratings
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Want: 𝑃 Warriors win = 𝑃 𝐴𝑊 > 𝐴𝐵

≈ 0.7488, calculated by sampling

from scipy import stats
WARRIORS_ELO = 1657
OPPONENT_ELO = 1470
STDEV = 200
NTRIALS = 10000

nSuccess = 0
for i in range(NTRIALS):
w = stats.norm.rvs(WARRIORS_ELO, STDEV)
b = stats.norm.rvs(OPPONENT_ELO, STDEV)
if w > b:
nSuccess += 1

print("Warriors sampled win fraction", float(nSuccess) /
NTRIALS)
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Is there a better way?

𝑃 𝐴𝑊 > 𝐴𝐵

• This is a probability of an event involving two random variables!

• We’ll solve this problem analytically in upcoming weeks.

Big goal for next time: Events involving two discrete random variables.
Stay tuned!
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