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PREFACE

This book contains one hundred highly rated problems used in the train-
ing and testing of the USA International Mathematical Olympiad (IMO)
team. It is not a collection of one hundred very difficult, impenetrable
questions. Instead, the book gradually builds students' algebraic skills
and techniques. This work aims to broaden students' view of mathemat-
ics and better prepare them for possible participation in various mathe-
matical competitions. It provides in-depth enrichment in important areas
of algebra by reorganizing and enhancing students' problem-solving tac-
tics and strategies. The book further stimulates students' interest for
future study of mathematics.





INTRODUCTION

In the United States of America, the selection process leading to par-
ticipation in the International Mathematical Olympiad (IMO) consists
of a series of national contests called the American Mathematics Con-
test 10 (AMC 10), the American Mathematics Contest 12 (AMC 12),
the American Invitational Mathematics Examination(AIME), and the
United States of America Mathematical Olympiad (USAMO). Partici-
pation in the AIME and the USAMO is by invitation only, based on
performance in the preceding exams of the sequence. The Mathemati-
cal Olympiad Summer Program (MOSP) is a four-week, intense train-
ing of 24-30 very promising students who have risen to the top of the
American Mathematics Competitions. The six students representing the
United States of America in the IMO are selected on the basis of their
USAMO scores and further IMO-type testing that takes place during
MOSP. Throughout MOSP, full days of classes and extensive problem
sets give students thorough preparation in several important areas of
mathematics. These topics include combinatorial arguments and identi-
ties, generating functions, graph theory, recursive relations, telescoping
sums and products, probability, number theory, polynomials, theory of
equations, complex numbers in geometry, algorithmic proofs, combinato-
rial and advanced geometry, functional equations and classical inequali-
ties.

Olympiad-style exams consist of several challenging essay problems. Cor-
rect solutions often require deep analysis and careful argument. Olym-
piad questions can seem impenetrable to the novice, yet most can be
solved with elementary high school mathematics techniques, cleverly ap-
plied.

Here is some advice for students who attempt the problems that follow.

Take your time! Very few contestants can solve all the given prob-
lems.

Try to make connections between problems. A very important
theme of this work is: all important techniques and ideas featured
in the book appear more than once!

Olympiad problems don't "crack" immediately. Be patient. Try
different approaches. Experiment with simple cases. In some cases,
working backward from the desired result is helpful.

Even if you can solve a problem, do read the solutions. They may
contain some ideas that did not occur in your solutions, and they
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may discuss strategic and tactical approaches that can be used else-
where. The formal solutions are also models of elegant presenta-
tion that you should emulate, but they often obscure the torturous
process of investigation, false starts, inspiration and attention to
detail that led to them. When you read the solutions, try to re-
construct the thinking that went into them. Ask yourself, "What
were the key ideas?" "How can I apply these ideas further?"

Go back to the original problem later, and see if you can solve it
in a different way. Many of the problems have multiple solutions,
but not all are outlined here.

All terms in boldface are defined in the Glossary. Use the glossary
and the reading list to further your mathematical education.

Meaningful problem solving takes practice. Don't get discouraged
if you have trouble at first. For additional practice, use the books
on the reading list.
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ABBREVIATIONS AND NOTATIONS

Abbreviations
AHSME American High School Mathematics

Examination
AIME American Invitational Mathematics

Examination
AMC10 American Mathematics Contest 10
AMC12 American Mathematics Contest 12,

which replaces AHSME
ARML American Regional Mathematics League
IMO International Mathematical Olympiad
USAMO United States of America Mathematical Olympiad
MOSP Mathematical Olympiad Summer Program
Putnam The William Lowell Putnam Mathematical

Competition
St. Petersburg St. Petersburg (Leningrad) Mathematical

Olympiad

Notations for Numerical Sets and Fields
Z the set of integers

the set of integers modulo n
the set of positive integers
the set of nonnegative integers
the set of rational numbers
the set of positive rational numbers
the set of nonnegative rational numbers
the set of n-tuples of rational numbers
the set of real numbers
the set of positive real numbers
the set of nonnegative real numbers
the set of n-tuples of real numbers
the set of complex numbers
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1. INTRODUCTORY PROBLEMS

Problem 1
Let a, b, and c be real and positive parameters. Solve the equation

a+bx+ b+cx+ c+ax= b -ax+ c-bx+ a-cx.

Problem 2
Find the general term of the sequence defined by x0 = 3, x1 = 4 and

axn+1 = xn_1 - nxn

for all' n E N.

Problem 3
Let x1, x2i ... , X. be a sequence of integers such that

(i) -1 < x, < 2, for z = 1, 2.... , n;

(ii) x1 + x2 + + xn 19;

(iii)

Determine the minimum and maximum possible values of

xi+x2+ +xn.

Problem 4
The function f, defined by

f(x) = ax+b
cx+d'

where a, b, c, and d are nonzero real numbers, has the properties

f (19) = 19, f (97) = 97, and f (f (x)) = x,

for all values of x, except -
d

c
Find the range of f.
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Problem 5
Prove that

(a-b)2 < a+b \< (a-b)2
8a - 2

a
8b

for all a>b>0.

Problem 6
Several (at least two) nonzero numbers are written on a board. One may

erase any two numbers, say a and b, and then write the numbers a + 2

and b - a instead.
2

Prove that the set of numbers on the board, after any number of the
preceding operations, cannot coincide with the initial set.

Problem 7
The polynomial

1-x+x2-x3+...+x16_x17

may be written in the form

ao + a1y + a2y2 + ... + a16y16 + a17y17,

where y = x + 1 and as are constants.
Find a2.

Problem 8
Let a, b, and c be distinct nonzero real numbers such that

1 1 1=c+-.a+b=b+-
c

Prove that Iabcl = 1.

Problem 9
Find polynomials f (x), g(x), and h(x), if they exist, such that for all x,

1 -1 ifx<-1
If (x) I - I g(x) I + h(x) = 3x + 2 if -1 < x < 0

-2x+2 ifx>0.
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Problem 10
Find all real numbers x for which

78x + 27"
12x + 18x 6

Problem 11
Find the least positive integer m such that

for all positive integers n.

Problem 12
Let a, b, c, d, and e be positive integers such that

abcde = a + b + c + d + e.

Find the maximum possible value of max{a, b, c, d, e}.

Problem 13
Evaluate

3 4 2001

1!+2!+3! +2!+3!+4! 1999!+2000!+2001!

Problem 14
Let x= vfa2 +a+1-'1a2 --a+1, a ER.
Find all possible values of x.

Problem 15
Find all real numbers x for which

10x + 1lx + 12x = 13x + 14x.
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Problem 16
Let f : N x N - N be a function such that f (1, 1) = 2,

f(m+1,n)= f(m,n) +m and f(m,n+1)= f(m,n)-n

for all m,nEN.
Find all pairs (p, q) such that f (p, q) = 2001.

Problem 17
Let f be a function defined on [0, 1] such that

f (O) =f(l) = 1 and I f (a) - f (b)I < I a - bI,

for all a b in the interval [0, 1].

Prove that

If(a)-f(b)I < 2

Problem 18
Find all pairs of integers (x, y) such that

x3 + y3 = (x + y)2.

Problem 19

Let f (x) =
4x

2

2
for real numbers x.

Evaluate

f (2001I )
+f

(20012 )
+ +f (20001)

Problem 20
Prove that for n > 6 the equation

1 1 1+
2

+... +
2

= 1
x1 x2 x

has integer solutions.

Problem 21
Find all pairs of integers (a, b) such that the polynomial ax17 + bxls + 1
is divisible by x2 - x - 1.
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Problem 22
Given a positive integer n, let p(n) be the product of the non-zero digits
of n. (If n has only one digit, then p(n) is equal to that digit.) Let

S = p(1) + p(2) + + p(999).

What is the largest prime factor of S?

Problem 23
Let xn be a sequence of nonzero real numbers such that

xi_2xn_1
xn

2xn_2 - xn_1

for n = 3, 4, ....
Establish necessary and sufficient conditions on x1 and x2 for x., to be
an integer for infinitely many values of n.

Problem 24
Solve the equation

x3-3x= x+2.

Problem 25
For any sequence of real numbers A = {a1, a2, a3, }, define DA to be
the sequence {a2 - a1, a3 - a2, a4 - a3, ...}. Suppose that all of the terms
of the sequence A(AA) are 1, and that a19 = a92 = 0.
Find a1.

Problem 26
Find all real numbers x satisfying the equation

2x+3x-4x+6x-9x=1.

Problem 27
Prove that

80

16<Ev1 <17.
k=1 k

Problem 28
Determine the number of ordered pairs of integers (m, n) for which mn >
0 and

m3 + n3 + 99mn = 333.
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Problem 29
Let a, b, and c be positive real numbers such that a + b + c < 4 and
ab+bc+ca > 4.
Prove that at least two of the inequalities

la - bi < 2, lb - cl < 2, Ic - al < 2

are true.

Problem 30
Evaluate

n
1

E (n - k)!(n + k)!
k=O

Problem 31
Let 0 < a < 1. Solve

for positive numbers x.

Problem 32
What is the coefficient of x2 when

(1 + x)(1 + 2x)(1 + 4x)...(1+2 nX)

is expanded?

Problem 33
Let m and n be distinct positive integers.
Find the maximum value of Ix' - xnl where x is a real number in the
interval (0, 1).

Problem 34
Prove that the polynomial

(x - al)(x - a2)...(x - an) - 1,

where al, a2, , an are distinct integers, cannot be written as the prod-
uct of two non-constant polynomials with integer coefficients, i.e., it is
irreducible.
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Problem 35
Find all ordered pairs of real numbers (x, y) for which:

(1+x)(1+x2)(1+x4) = l+y7
and (1 + y)(1 + y2)(1 + y4) = 1 + x7.

Problem 36
Solve the equation

2(2x - 1)x2 + (2x-2 - 2)x = 2x+1 - 2

for real numbers x.

Problem 37
Let a be an irrational number and let n be an integer greater than 1.
Prove that

(a+ a2-1) +(a - a2-1)
is an irrational number.

Problem 38
Solve the system of equations

(x1 - x2 + x3)2 = x2(x4 + x5 - x2)

(x2 - x3 + x4)2 = x3(x5 + x1 - x3)

(x3 - x4 + x5)2 = x4(x1 + x2 - x4)

(x4 - x5 + x1)2 = x5(x2 + x3 - x5)

(x5 - x1 + x2)2 = xl(x3 + x4 - xl)

for real numbers x1, x2, x3, x4, x5.

Problem 39
Let x, y, and z be complex numbers such that

x + y + z = 2,

x2+y2+z2=3
and

Evaluate

xyz = 4.

1 1 1

xy+z-l+yz+x-l+zx+y-1
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Problem 40
Mr. Fat is going to pick three non-zero real numbers and Mr. Taf is going
to arrange the three numbers as the coefficients of a quadratic equation

x2+ x+ =0.
Mr. Fat wins the game if and only if the resulting equation has two
distinct rational solutions.
Who has a winning strategy?

Problem 41
Given that the real numbers a, b, c, d, and e satisfy simultaneously the
relations

a+b+c+d+e=8 and a2+b2+c2 +d2+e2=16,

determine the maximum and the minimum value of a.

Problem 42
Find the real zeros of the polynomial

Pa(x) = (x2 + 1)(x - 1)2 - ax 2,

where a is a given real number.

Problem 43
Prove that

1 3 2n - 1 1

2 4 2n 737
for all positive integers n.

Problem 44
Let

P(x) = aoxn + al xn-1 + ... + a,,

be a nonzero polynomial with integer coefficients such that P(r) _
P(s) = 0 for some integers r and s, with 0 < r < s.
Prove that ak < -s for some k.

Problem 45
Let m be a given real number.
Find all complex numbers x such that

(X) 2 x 2 2
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Problem 46
The sequence given by xo = a, x1 = b, and

xn+1 - 1 (Xn-1 + 1 I .

2

is periodic.

Prove that ab = 1.

Problem 47
Let a, b, c, and d be real numbers such that

Prove that

(a2+b2-1)(c2+d2-1) > (ac+bd-1)2.

a2 + b2 > 1 and c2 + d2 > 1.

Problem 48
Find all complex numbers z such that

(3z + 1)(4z + 1)(6z + 1)(12z + 1) = 2.

9

Problem 49
Let x1i x2, -, xn_1i be the zeros different from 1 of the polynomial
P(x)=xn-1,n>2.
Prove that

1 1 1

1-x1 + 1-x2
+...+

1-xn_1
n-1

2

Problem 50
Let a and b be given real numbers. Solve the system of equations

x - yx 2-yz
a,

1-x2+y2

y - x x2-y2 = b
1-x2+y2

for real numbers x and y.
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2. ADVANCED PROBLEMS

Problem 51
Evaluate

0200

2 5

0) + (2000) + (20800) + ... + (2000)

Problem 52
Let x, y, z be positive real numbers such that x4 + y4 + z4 = 1.
Determine with proof the minimum value of

x3
y

3 z3

1-x8+1y8+1-z8.

Problem 53
Find all real solutions to the equation

2X + 32: + 6X = x2.

Problem 54
Let {an}n>1 be a sequence such that al = 2 and

an 1

an+i =
2 + an

for allneN.
Find an explicit formula for an.

Problem 55
Let x, y, and z be positive real numbers. Prove that

x + y

x+ (x+y)(x+z) y+ (y+z)(y+x)

z
+ <

z + (z -+X) (z + y)
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Problem 56
Find, with proof, all nonzero polynomials f (z) such that

f(z2) + f(z)f(z + 1) = 0.

Problem 57
Let f : N -* N be a function such that f (n + 1) > f (n) and

f (f (n)) = 3n

for all n.

Evaluate f (2001).

Problem 58
Let F be the set of all polynomials f (x) with integers coefficients such
that f (x) = 1 has at least one integer root.
For each integer k > 1, find mk, the least integer greater than 1 for
which there exists f E F such that the equation f (x) = Mk has exactly
k distinct integer roots.

Problem 59
Let x1 = 2 and

2x'+1 =xn-x, + 1,

for n > 1.
Prove that

1 < 1 + 1 +...+ 1 <1-22,,
22",

x1 x2 xn

Problem 60
Suppose that f : R+ -> 1[8+ is a decreasing function such that for all
x,yER+,

f(x + y) +N(X) + f(y)) = f(f(x + f(y)) + f(y + f(x))).

Prove that f(f(x)) = x.
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Problem 61
Find all functions f : Q - Q such that

f(x + y) + f(x - y) = 2f(x) + 2f(y)

for all x, y E Q.

Problem 62
Let2<a<1.
Prove that the equation

x3(x + 1) = (x + a)(2x + a)

has four distinct real solutions and find these solutions in explicit form.

Problem 63
Let a, b, and c be positive real numbers such that abc = 1.
Prove that

a+b+l+b+c+l+c+a+l C1

Problem 64
Find all functions f, defined on the set of ordered pairs of positive inte-
gers, satisfying the following properties:

f(x,x) = x, f(x,y) = f(y,x), (x+y)f(x,y) = yf(x,x+y).

Problem 65
Consider n complex numbers zk, such that zk < 1, k = 1,2,... , n.
Prove that there exist e1, e2, ... , en E {-1, 1} such that, for any m < n,

<2.

Problem 66
Find a triple of rational numbers (a, b, c) such that

9 32-1= 3a+ 3b+ yc-.
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Problem 67
Find the minimum of

1 1 1
logxl (X2 -

4
+ logX2 X3 = 4) + ... + logy xl - 4

where x1i x2, ... , xn, are real numbers in the interval (4, 1).

Problem 68
Determine x2 + y2 + z2 + w2 if

x2 y2 ,Z2 w2

22-12 +22-32 +22-52 +22-72

x2 2 ,Z2 w2

42-12 +42-32 +42-52 +42-72
x2 2 z2 w2

Y
_

62 - 2 + 62 - 32 + 62 - 52 + 62l - 72 = 1,

x2
y

2 z2 w2

82-12 +82-32 +82-52 +82-72 -1.

Problem 69
Find all functions f : R -> R such that

f(xf(x) +f(y)) = (f(x))2 +y
for all x, y E R.

Problem 70
The numbers 1000, 1001, , 2999 have been written on a board.
Each time, one is allowed to erase two numbers, say, a and b, and replace

them by the number 2 min(a, b).

After 1999 such operations, one obtains exactly one number c on the
board. Prove that c < 1.

Problem 71
Let al, a2.... , a,,, be real numbers, not all zero.
Prove that the equation

1 +a1x+ 1+a,,x=n

has at most one nonzero real root.
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Problem 72
Let {an} be the sequence of real numbers defined by al = t and

an+i = 4an(1 - an)

forn>1.
For how many distinct values of t do we have ai998 = 0?

Problem 73

(a) Do there exist functions f : JR --> JR and g : JR -+ R such that

f(g(x)) = x2 and g(f(x)) = x3

for all x E R?

(b) Do there exist functions f : JR -> JR and g : JR -+ JR such that

f(g(x)) = x2 and g(f(x)) = x4

for allxEJR?

Problem 74
Let 0 < al < a2 < an, 0 < bl < b2 . . < bn be real numbers such that

n n

E ai
> E bi.

i=1 i=1

Suppose that there exists 1 < k < n such that bi < ai for 1 < i < k and
b2 a2 for i > k.
Prove that

ala2 ... an > blb2 ... b,.

Problem 75
Given eight non-zero real numbers al, a2, , as, prove that at least one
of the following six numbers: alai + a2a4, alas + a2a6, ala7 + a2a8,
a3a5 + a4a6, a3a7 + a4a8, a5a7 + a6a8 is non-negative.

Problem 76
Let a, b and c be positive real numbers such that abc = 1.
Prove that

ab be ca

as+b5+ab+b5+c5+bc+c5+a5+ca l
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Problem 77
Find all functions f : R -> R such that the equality

f(f(x) + y) = f(x2 - y) + 4f(x)y

holds for all pairs of real numbers (x, y).

Problem 78
Solve the system of equations:

x+ 3x - y =3x2 + y2

x+3y
Y x2+y2 =0.

Problem 79
Mr. Fat and Mr. Taf play a game with a polynomial of degree at least 4:

x2n + _x2n-1 + _x2n-2 +... + _x + 1.

They fill in real numbers to empty spaces in turn. If the resulting poly-
nomial has no real root, Mr. Fat wins; otherwise, Mr. Taf wins.
If Mr. Fat goes first, who has a winning strategy?

Problem 80
Find all positive integers k for which the following statement is true: if
F(x) is a polynomial with integer coefficients satisfying the condition

0<F(c) <k for c=0,1,...,k+1,

then F(O) = F(1) = ... = F(k + 1).

Problem 81
The Fibonacci sequence Fn is given by

F1=F2=1,Fn+2=Fn+1+Fn (nEN).

Prove that

+2 + Fen-2 -
2F2.F2n =

F2n3
3

9

for alln>2.
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Problem 82
Find all functions u : lib -> R for which there exists a strictly monotonic
function f :ill; -> l such that

f(x + y) = f(x)u(y) + f(y)

for all x, y E R.

Problem 83
Let z1i Z2.... , zn be complex numbers such that

Iz1I+Iz21+...+znl =1.

Prove that there exists a subset S of {z1, Z2.... , zn} such that

I: z
zES

6

Problem 84
A polynomial P(x) of degree n > 5 with integer coefficients and n distinct
integer roots is given.

Find all integer roots of P(P(x)) given that 0 is a root of P(x).

Problem 85
Two real sequences x1i x2, ... , and y1, Y2, ... , are defined in the following
way:

X1 = Ill = V3, xn+1 = xn + 1 + X ,

and
yn

Yn+1 =
1 -} 1 + y2

for all n > 1. Prove that 2 < xnyn < 3 for all n > 1.

Problem 86
For a polynomial P(x), define the difference of P(x) on the interval [a, b]
([a, b), (a, b), (a, b]) as P(b) - P(a).
Prove that it is possible to dissect the interval [0, 1] into a finite number
of intervals and color them red and blue alternately such that, for every
quadratic polynomial P(x), the total difference of P(x) on red intervals
is equal to that of P(x) on blue intervals.
What about cubic polynomials?
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Problem 87
Given a cubic equation

x3 + _x2 + _x + - = 0,

Mr. Fat and Mr. Taf are playing the following game. In one move, Mr.
Fat chooses a real number and Mr. Taf puts it in one of the empty spaces.
After three moves the game is over. Mr. Fat wins the game if the final
equation has three distinct integer roots.
Who has a winning strategy?

Problem 88
Let n > 2 be an integer and let f : ]I82 ---> R be a function such that for
any regular n-gon A1A2 ... An,

f(A1)+f(A2)+...+f(An) =0.

Prove that f is the zero function.

Problem 89
Let p be a prime number and let f (x) be a polynomial of degree d with
integer coefficients such that:

(i) f (0) = 0, f (1) = 1;

(ii) for every positive integer n, the remainder upon division of f (n)
by p is either 0 or 1.

Prove that d > p - 1.

Problem 90
Let n be a given positive integer.

Consider the sequence ao, a1, , an, with ao = 2 and

2
ak_1

ak = ak-1 +
n

fork=1,2, ,n.
Prove that

1-1<an,<1.
n
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Problem 91
Let a1, a2.... , an be nonnegative real numbers, not all zero.

(a) Prove that xn - alxn-1 - - an-lx - an = 0 has precisely one
positive real root R.

(b) Let A= 1aj and B=yn 3a,.

Prove that AA < RB.

Problem 92
Prove that there exists a polynomial P(x, y) with real coefficients such
that P(x, y) > 0 for all real numbers x and y, which cannot be written
as the sum of squares of polynomials with real coefficients.

Problem 93
For each positive integer n, show that there exists a positive integer k
such that

k = f(x)(x + 1)2n + g(x)(x2n + 1)

for some polynomials f, g with integer coefficients, and find the smallest
such k as a function of n.

Problem 94
Let x be a positive real number.

(a) Prove that

(b) Prove that

°O (n - 1)! _ 1E (x + n) x'

00 (n-1)! 00
1

n=1
n(x + 1)...(x + n) ti=1(x + k)2*
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Problem 95
Let n > 3 be an integer, and let

X C S= {1,2,...,n3}

be a set of 3n2 elements.

Prove that one can find nine distinct numbers a,, bz, c, (i = 1, 2, 3) in X
such that the system

aix + bly + c1z = 0
a2x + b2y + c2z = 0

a3x+b3y+c3z = 0

has a solution (x0, yo, z0) in nonzero integers.

Problem 96
Let n > 3 be an integer and let x1, x2, , xn be positive real numbers.

n

1Suppose that ) = 1.

Prove that

x1+ x2+...+ xn>(n-1) 1 + 1 +...+ 1

xl x2 xn

Problem 97
Let x1, X2.... , xn be distinct real numbers. Define the polynomials

P(x) = (x - x1)(x - x2)...(x - xn)

and

Q(x) = P(x)
(I

+ 1 + ... + -L-)
x-x1 x-x2 x - xn

Let y', y2, ... , yn_1 be the roots of Q. Show that

inIxi - x,j < inlyi-y31.
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Problem 98
Show that for any positive integer n, the polynomial

AX) = (x2 + x)2' + 1

cannot be written as the product of two non-constant polynomials with
integer coefficients.

Problem 99
Let fl, f2i f3 : JR -> JR be functions such that

a1f1 + a2f2 +a3f3

is monotonic for all al, a2, a3 E R.
Prove that there exist c1, c2, c3 E JR, not all zero, such that

CI fl (x) + C2f2(x) + C3f3(x) = 0

for allxEJR.

Problem 100
Let X1, x2, ... , xn be variables, and let yi, y2, ... , Y2"_1 be the sums of
nonempty subsets of xi.
Let pk(xl, ... , x7) be the kth elementary symmetric polynomial in
the yi (the sum of every product of k distinct yis).
For which k and n is every coefficient of pk (as a polynomial in xl.... , xn)
even?

For example, if n = 2, then yl, y2i y3 are x1, x2, x1 + x2 and

p1 = Yi + y2 + y3 = 2x1 + 2x2i
P2 = Y1Y2 + Y2Y3 + y3y1 = xl + X2 + 3x1x2i

P3 = y1112y3 = xlx2 + xlx2

Problem 101
Prove that there exist 10 distinct real numbers al, a2i ..., alo such that
the equation

(x - al)(x - a2) ... (x - alo) = (x + al)(x + a2)...(x + alo)

has exactly 5 different real roots.





SOLUTIONS TO
INTRODUCTORY PROBLEMS





3. SOLUTIONS TO

INTRODUCTORY PROBLEMS

Problem 1 [Romania 1974]
Let a, b, and c be real and positive parameters.
Solve the equation

a+bx+ vl'b c+ax=ax+ c-bx+ a-cx.

Solution 1
It is easy to see that x = 0 is a solution. Since the right hand side is a
decreasing function of x and the left hand side is an increasing function
of x, there is at most one solution.
Thus x = 0 is the only solution to the equation.

Problem 2
Find the general term of the sequence defined by xo = 3, x1 = 4 and

2xn+1 = xn_1 - nxn

for allnEN.

Solution 2
We shall prove by induction that xn = n + 3. The claim is evident for
n=0,1.
Fork>1,ifxk_1=k+2=k+2andXk =k+3, then

Xk+1 = x2_1 - kxk = (k + 2)2 - k(k + 3) = k + 4,

as desired.

This completes the induction.
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Problem 3 [AHSME 1999]
Let x1i X2.... , x, be a sequence of integers such that

(i) -1 < xti < 2, for i = 1, 2,... , n;

(ii)

xl + x2 + + x2 = 99.

Determine the minimum and maximum possible values of

xi+x2+...+xn.

Solution 3
Let a, b, and c denote the number of -Is, Is, and 2s in the sequence,
respectively. We need not consider the zeros. Then a, b, c are nonnegative
integers satisfying

-a+b+2c= 19 and a+b+4c= 99.

It follows that a = 40 - c and b = 59 - 3c, where 0 < c < 19 (since b > 0),
so

xl +x2 + +xn = -a+b+8c = 19+6c.
When c = 0 (a = 40, b = 59), the lower bound (19) is achieved.
When c = 19 (a = 21, b = 2), the upper bound (133) is achieved.

Problem 4 [AIME 1997]
The function f, defined by

f(x) = ax+b
cx+d'

where a, b, c, and d are nonzero real numbers, has the properties

f (19) = 19, f (97) = 97, and f (f (x)) = x,

for all values of x, except - d
C

Find the range of f.

Solution 4, Alternative 1
For all x, f (f (x)) = x, i.e.,

a (ax+b ) +bcx+d

c
ax+b

+d -x'
(cx+d)



3. Solutions to Introductory Problems

(a2 + bc)x + b(a + d)

c(a + d)x + be + d2 -
x,

c(a + d)x2 + (d2 - a2)x - b(a + d) = 0,

which implies that c(a + d) = 0. Since c 0, we must have a = -d.
The conditions f (19) = 19 and f (97) = 97 lead to the equations

192c=2. 19a+b and 972c=2.97a+b.

Hence

(972 - 192)c = 2(97 - 19)a.

It follows that a = 58c, which in turn leads to b = -1843c. Therefore

Ax) = 58x - 1843 = 58 + 1521

x-58 x-58'

29

which never has the value 58.
Thus the range of f is R - {58}.

Solution 4, Alternative 2
The statement implies that f is its own inverse. The inverse may be
found by solving the equation

ay + b
cy + d

for y. This yields
_ dx-bf i(x)

-cx + a
The nonzero numbers a, b, c, and d must therefore be proportional to d,
-b, -c, and a, respectively; it follows that a = -d, and the rest is the
same as in the first solution.

Problem 5
Prove that

(a-b)2 a+b
<

(a-b)2
8a - 2

a
8b

for all a>b>0.
Solution 5, Alternative 1
Note that

+ ` < 1 < +V1`
C

2f / 2Vb J
,
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(V 1b+Vb-)2(Vw-Vb-)2 <(Vu-VO)2< (/+/)2(/ -Vrb)2
4a 4b

(a-b)2
<

a-2 ab+b
<

(a-b)2
8a - 2 - 8b

from which the result follows.

Solution 5, Alternative 2
Note that

(a+b\2
aba+b 2 (a-b)2

ab = _
2 a + b + ab 2(a+b)+4 ab

2

Thus the desired inequality is equivalent to

4a>a+b+2 ab>4b,

which is evident as a > b > 0 (which implies a > ab > b).

Problem 6 [St. Petersburg 1989]
Several (at least two) nonzero numbers are written on a board. One may

erase any two numbers, say a and b, and then write the numbers a + 2

and b - 2 instead.

Prove that the set of numbers on the board, after any number of the
preceding operations, cannot coincide with the initial set.

Solution 6
Let S be the sum of the squares of the numbers on the board. Note that
S increases in the first operation and does not decrease in any successive
operation, as

\2
Ca+2 J +(b-2)2=4(a2+b2)>a2+b2

with equality only if a = b = 0.
This completes the proof.
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Problem 7 [AIME 1986]
The polynomial

1-x+x2-x3++x16-x17

may be written in the form

ao + aly + a2y2 + ... + a16y16 + a17y17,

where y = x + 1 and as are constants. Find a2.

Solution 7, Alternative 1
Let f (x) denote the given expression. Then

xf(x)=x-x2+x3-...-x18

and

Hence

(1 + x)f(x) = 1 - x18.

f(x) = f(y - 1) =
1 - (y - 1)18 - 1 - (y - 1)18

1+(y-1) y

Therefore a2 is equal to the coefficient of y3 in the expansion of

1-(y-1)1s

a2 =
(18)

= 816.

Solution 7, Alternative 2
Let f (x) denote the given expression. Then

f(x) = f(y - 1) = 1 (y - 1) + (y - 1)2 (y - 1)
17

=1+(1-y)+(1-y)2+...+(1-y)17.

Thus

2) +
(1),+...

+
(17) = (18).a2 = (2

Here we used the formula

(n)
k+ (k+ 1) - (k + 1

and the fact that
(22)

_
(33)

= 1.
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Problem 8
Let a, b, and c be distinct nonzero real numbers such that

a+-=b+-=c+-.
Prove that IabcI = 1.

Solution 8
From the given conditions it follows that

a .- b = b bc c , b -c = ccaa, andc-a= aabb

Multiplying the above equations gives (abc)2 = 1, from which the desired
result follows.

Problem 9 [Putnam 1999]
Find polynomials f (x), g(x), and h(x), if they exist, such that for all x,

-1 ifx<-1
If (X) I - Ig(x) I + h(x) = 3x + 2 if -1 < x < 0

-2x + 2 ifx > 0.

Solution 9, Alternative 1
Since x = -1 and x = 0 are the two critical values of the absolute
functions, one can suppose that

F(x) = alx + 1 l+ blxl+ cx + d
(c-a-b)x+d-a ifx<-1
(a+c-b)x+a+d if-1<x<0
(a+b+c)x+a+d ifx > 0,

which implies that a = 3/2, b = -5/2, c = -1, and d = 1/2.
Hence f (x) = (3x + 3)/2, g(x) = 5x/2, and h(x) = -x + z .

Solution 9, Alternative 2
Note that if r(x) and s(x) are any two functions, then

r+s+Ir - sl
max(r, s) = 2

Therefore, if F(x) is the given function, we have

F(x) = max{-3x - 3, 0} -max{5x, 0} + 3x + 2
= (-3x - 3 + 13x + 31)/2 - (5x+I5xl)/2+3x+2

.= 1(3x+3)/21 - 15x/21 - x+ 21
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Problem 10
Find all real numbers x for which

8x + 27x 7

12x + 18x 6

Solution 10
By setting 2x = a and 3x = b, the equation becomes

a3 + b3 7

a2b + b2a 6

a2 - ab + b2 _ 7

ab 6'

6a2 - 13ab + 6b2 = 0,

(2a - 3b)(3a - 2b) = 0.

Therefore 2x+1 = 3x+1 or 2x-1 = 3x-1, which implies that x = -1 and
x = 1.
It is easy to check that both x = -1 and x = 1 satisfy the given equation.

Problem 11 [Romania 1990]
Find the least positive integer m such that

C2nln
n

<m

for all positive integers n.

Solution 11
Note that

C2 n) <

(0)+(1)+...+\2n1
2

and for n = 5,
10)

( 5
= 252 > 35

=(1+1)2n=4n

Thus m = 4.
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Problem 12
Let a, b, c, d, and e be positive integers such that

abcde=a+b+c+d+e.

Find the maximum possible value of max{a, b, c, d, e}.

Solution 12, Alternative 1
Suppose that a < b < c < d < e. We need to find the maximum value of
e. Since

e<a+b+c+d+e<5e,
then e < abcde < 5e, i.e. 1 < abcd < 5.

Hence (a, b, c, d) = (1, 1, 1, 2), (1, 1, 1, 3), (1, 1, 1, 4), (1, 1, 2, 2), or
(1, 1, 1, 5), which leads to max{e} = 5.

Solution 12, Alternative 2
As before, suppose that a < b < c < d < e. Note that

1_ 1+ 1+ 1+ 1+ 1
bcde cdea deab eabc abcd

< I + I + 1
++d=3+d+

de de dc
I e

Therefore, de < 3 + d + e or (d- 1)(e- 1) < 4.
If d = 1, then a = b = c = 1 and 4 + e = e, which is impossible.
Thus d-1>lande-1<4ore<5.
It is easy to see that (1, 1, 1, 2, 5) is a solution.
Therefore max{e} = 5.

Comment: The second solution can be used to determine the maxi-
mum value of {x1i X2.... , x.n}, when xi, x2, ... , xn are positive integers
such that

1112... 1n =X1 +X2 + ...+ 1n.

Problem 13
Evaluate

3 4 2001

1! + 2! + 3! + 2! -3!+ 4! + + 1999! + 2000! + 200 1!
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Solution 13
Note that

k+2 _ k+2
k! + (k + 1)! + (k + 2)! k![1+k+1+(k+1)(k+2)]

1

k!(k + 2)

k+1
(k + 2)!

(k + 2) - 1

(k + 2)!

(k + 1)! (k + 2)!

By telescoping sum, the desired value is equal to

1 1

2 2001!

Problem 14
Let x = a2+a+1- a2-a+ 1, a E R.
Find all possible values of x.

Solution 14, Alternative 1
Since

and

x=

we have

Squaring both sides of

a2+Ial+1> Ial

2a

a2 + a + 1 + a2-a+1'

jxj < 12a/al = 2.

x+ vl-a-2 a2+a+1

35

yields

2x a2-a+1=2a-x2.
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Squaring both sides of the above equation gives

x2(22 - 4)
2 2 2 2 2 =4(x - 1)a = x - 4) or a(x

4(x2 - 1)

Since a2 > 0, we must have

22(x2 -4) (X2
- 1) > 0,

Since IxI < 2, x2 -4 < 0 which forces x2 -1 < 0. Therefore, -1 < x < 1.
Conversely, for every x E (-1, 1) there exists a real number a such that

x = a2+a+1- a2-a+1.

Solution 14, Alternative 2
Let A = (-1/2, //2), B = (1/2, //2), and P = (a, 0). Then P
is a point on the x-axis and we are looking for all possible values of
d = PA - PB.
By the Triangle Inequality, SPA - PBj < IABI = 1. And it is clear
that all the values -1 < d < 1 are indeed obtainable. In fact, for such
a d, a half hyperbola of all points Q such that QA - QB = d is well
defined. (Points A and B are foci of the hyperbola.)
Since line AB is parallel to the x-axis, this half hyperbola intersects the
x- axis, i.e., P is well defined.

Problem 15
Find all real numbers x for which

lOx + 11x + 12x = 13x + W.

Solution 15
It is easy to check that x = 2 is a solution. We claim that it is the only
one. In fact, dividing by 132 on both sides gives

(10 )
x + (11)x+

/
( 13)2 = 1+ (13)2.

The left hand side is a decreasing function of x and the right hand side
is an increasing function of x.
Therefore their graphs can have at most one point of intersection.
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Comment: More generally,

a2+(a+ 1)2 + . . . + (a + k)2

= (a + k + 1)2 + (a + k + 2)2 + +(a+2k)2

for a = k(2k + 1), k E N.

Problem 16 [Korean Mathematics Competition 2001]
Let f : N x N - N be a function such that f (1, 1) = 2,

f(m+1,n)= f(m,n)+m and f(m,n+ 1) =f(m,n) -n

for all m, n E N.

Find all pairs (p, q) such that f (p, q) = 2001.

Solution 16
We have

f(p,q) = f(p - 1,q) + p - 1

= f(p-2,q)+(p-2)+(p- 1)

f(l,q) + p(p- 1)
2

f(1,q-1)-(q-1)+p(p-1)

2

f(1,1) -
q(q - 1) + p(p - 1)

2 2

2001.

Therefore

p(p - 1) - q(q - 1)

2 2

= 1999,

(p-q)(p+q- 1) = 2.1999.

Note that 1999 is a prime number and that p - q < p + q - 1 for p, q E N.
We have the following two cases:

1. p - q = 1 and p + q - 1 = 3998. Hence p = 2000 and q = 1999.

2. p - q = 2 and p + q - 1 = 1999. Hence p = 1001 and q= 999.
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Therefore (p, q) = (200Q, 1999) or (1001, 999).

Problem 17 [China 1983]
Let f be a function defined on [0, 1] such that

f(0)=f(1)=1andlf(a)-f(b)I <Ia-bI,
for all a 54 bin the interval [0, 1].

Prove that

If(a) - f(b)I < 2

Solution 17
We consider the following cases.

1. Ia - bI < 1/2. Then I f (a) - f (b) I < I a - bI , as desired.

2. Ia - bI > 1/2. By symmetry, we may assume that a > b. Then

If(a)-f(b)I = If(a)-f(1)+f(0)-f(b)I
If(a)-f(1)I +If(0)-f(b)I

< Ia-1I+I0-bI
1-a+b-0
1-(a-b)
1

<
2,

as desired.

Problem 18
Find all pairs of integers (x, y) such that

x3 + y3 = (x + y)2.

Solution 18
Since x3+y3 = (x+y)(x2-xy+y2), all pairs of integers (n, -n), n c- 7G,
are solutions.

Suppose that x + y 54 0. Then the equation becomes

x2-xy+y2=x+y,
i.e.

x2-(y+1)x+y2-y=0.
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Treated as a quadratic equation in x, we calculate the discriminant

0=y2+2y+1-4y2+4y=-3y2+6y+1.

Solving for 0 > 0 yields

3-2y 3+2y
3

- y-
3

Thus the possible values for y are 0, 1, and 2, which lead to the solutions
(1, 0), (0,1), (1, 2), (2, 1), and (2, 2).

Therefore, the integer solutions of the equation are (x, y) = (1, 0), (0, 1),
(1, 2), (2,1), (2, 2), and (n, -n), for all n E Z.

Problem 19 [Korean Mathematics Competition 2001]
Let

f(x) =
2

4x + 2

for real numbers x. Evaluate

f ( 2001) + f ( 2001) + + f ( 20001)

Solution 19
Note that f has a half-turn symmetry about point (1/2, 1/2). Indeed,

2 _ 2-4x _ 4xf(1-x)= 41-x+2 4+2.4x 4x+2'

from which it follows that f (x) + f (1 - x) = 1.
Thus the desired sum is equal to 1000.

Problem 20
Prove that for n > 6 the equation

1 1 12 + 2 + . + 2 = 1
x1 x2 xn

has integer solutions.

Solution 20
Note that

1 1 1 1 1

a2 (2a)2 + (2a)2 + (2a)2 + (2a)2'
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from which it follows that if (x,i x2, , xn) _ (a,, a2,
ger solution to

1 1 1

2

+...+
-2

+
2x 2

1 2 n

then

(x1, x2, ... , xn-1, xn, xn+l, Xn+2, xn+3)
= (a1 a2 ... an-1,2an,2an,2an,2an,)

is an integer solution to

1 12 + 2 + +
2

xl x2 xn+3
= 1.

) is an inte-

Therefore we can construct the solutions inductively if there are solutions
for n = 6, 7, and 8.

Since x1 = 1 is a solution for n = 1, (2, 2, 2, 2) is a solution for n = 4,
and (2, 2, 2, 4, 4, 4, 4) is a solution for n = 7.

It is easy to check that (2, 2, 2, 3, 3, 6) and (2, 2, 2, 3, 4, 4, 12, 12) are solu-
tions for n = 6 and n = 8, respectively. This completes the proof.

Problem 21 [AIME 1988]
Find all pairs of integers (a, b) such that the polynomial

ax17+bx16+1

is divisible by x2 - x - 1.

Solution 21, Alternative 1
Let p and q be the roots of x2 - x - 1 = 0. By Vieta's theorem,
p + q = 1 and pq = -1. Note that p and q must also be the roots of
ax17 + bx16 + 1 = 0. Thus

ap17 + bp16 = -1 and aq17 + bg16 = -1.

Multiplying the first of these equations by q16, the second one by p16
and using the fact that pq = -1, we find

ap + b = -q16 and aq + b = -p's
(1)

Thus
1s 16

a =
p

- q = (p8 + g8)(p4 + g4)(p2 + q2)(p + q)
p-q
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Since

p+q = 1,

p2+q2 = (p+q)2-2pq=1+2=3,

p4 + q4 = (p2 + q2)2 - 2p2g2 =9-2=7,

p8 + q8 = (p4 + q4)2 - 2p4g4 = 49 - 2 = 47,

it follows that a = 1 - 3. 7 - 47 = 987.
Likewise, eliminating a in (1) gives

-b =
p17 - q17

p-q
p16 + p15q + p14g2 + ... + q'6

(p16 + q'6) + pq(p14 + q14) + p2g2(p12 + q12)

+ ... + p7g7(p2 + q2) + p8g8

(p16 + q16) _ (p14 + q14) +
... - (p2 + q2) + 1.

41

For n > 1, let k2n = p2n +q2n. Then k2 = 3 and k4 = 7, and

k2n+4 = p2n+4 + q2n+4

= (p2n+2 + q2n+2)(p2 + q2) - p2g2(p2n + q2n)

= 3k2n+2 - k2n

for n > 3. Then k6 = 18, k8 = 47, klo = 123, k12 = 322, k14 = 843,
k16 = 2207.

Hence

-b = 2207- 843+322 - 123+47- 18+7- 3+ 1 = 1597

or

(a, b) = (987, -1597).

Solution 21, Alternative 2
The other factor is of degree 15 and we write

(c15x15-C14X14+...+c1x-co)(x2-x-1)=ax17+bx16+1.

Comparing coefficients:

x0 co=1,
x1: co-c,=0,c1=1
x2 : -co - c1 + c2 = 0, c2 = 2,

and for 3 < k < 15, xk: -Ck-2-Ck-1+Ck=O.
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It follows that for k < 15, ck = Fk+1 (the Fibonacci number).
Thus a = cl5 = F16 = 987 and b = -c14 - c15 = -F17 = -1597 or
(a, b) = (987, -1597).

Comment: Combining the two methods, we obtain some interesting
facts about sequences k2,,, and F2,,,_1. Since

3F2n+3 - F2n+5 = 2F2n+3 - F2n+4 = F2n+3 - F2n+2 = F2.+1,

it follows that F2,,,_1 and k2n satisfy the same recursive relation. It is
easy to check that k2 = F1 + F3 and k4 = F3 + F5.

Therefore ken = F2n_1 + F2n+i and

F2n+1 = ken - ken-2 + k2n_4 - ... + (_1)n- 1k2 + (-1)n.

Problem 22 [AIME 1994]
Given a positive integer n, let p(n) be the product of the non-zero digits
of n. (If n has only one digit, then p(n) is equal to that digit.) Let

S = p(1) + p(2) + ... + p(999).

What is the largest prime factor of S?

Solution 22
Consider each positive integer less than 1000 to be a three-digit number
by prefixing Os to numbers with fewer than three digits. The sum of the
products of the digits of all such positive numbers is

(0.0.0+0.0.
=(0+1+...+9)3-0.

However, p(n) is the product of non-zero digits of n. The sum of these
products can be found by replacing 0 by 1 in the above expression, since
ignoring 0's is equivalent to thinking of them as 1's in the products. (Note
that the final 0 in the above expression becomes a 1 and compensates
for the contribution of 000 after it is changed to 111.)
Hence

S=463-1=(46-1)(462+46+1)=33.5.7.103,

and the largest prime factor is 103.
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Problem 23 [Putnam 1979]
Let xn be a sequence of nonzero real numbers such that

1n-2xn-1
xn = 2xn-2 - 1n-1

for n = 3,4,....
Establish necessary and sufficient conditions on x1 and x2 for xn to be
an integer for infinitely many values of n.

Solution 23, Alternative 1
We have

1 21n-2 - xn_1 2 1

xn 1n-2xn-1 1n-1 Xn-2

Let yn = 1/xn. Then Yn - Yn-1 = Yn-1 - Yn-2, i.e., yn is an arithmetic
sequence. If xn is a nonzero integer when n is in an infinite set S, the
yn's for n E S satisfy -1 < yn < 1.
Since an arithmetic sequence is unbounded unless the common difference
is 0, Yn - Yn-1 = 0 for all n, which in turn implies that x1 = x2 = m, a
nonzero integer.

Clearly, this condition is also sufficient.

Solution 23, Alternative 2
An easy induction shows that

11x2 11x2
1n

(n - 1)x1 - (n - 2)x2 (x1 - x2)n + (2x2 - x1)'

for n = 3,4,....
In this form we see that xn will be an integer for infinitely many values
of n if and only if xl = x2 = m for some nonzero integer m.

Problem 24
Solve the equation

x3-3x= x+2.

Solution 24, Alternative 1
It is clear that x > -2. We consider the following cases.

1. -2 < x < 2. Setting x = 2 cos a, 0 < a < 7r, the equation becomes

8 cos3 a - 6 cos a = 2(cos a + 1).

or

2 cos 3a = V 4 cost
2 ,

a
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from which it follows that cos 3a = cos 22'

Then 3a-2=2m7r,mEZ,or 3a+2=2n7r,nEZ.

Since 0 < a < 7r, the solution in this case is

x=2cosO=2, x=2cos45 , and x=2cos47
.

2. x > 2. Then x3-4x=x(x2-4)>0and

x2-x-2=(x-2)(x+1)>0
or

It follows that
x3-3x>x> x+2.

Hence there are no solutions in this case.

Therefore, x = 2, x = 2 cos 47r/5, and x = 2 cos 47r/7.

Solution 24, Alternative 2
For x > 2, there is a real number t > 1 such that

x = t2 1+t2.

The equation becomes

(t2+)3 -3It2+ 2 ) = 1t2+ 2+2,

is+ 1

t6 =t+ 1t,

(t7-1)(t5-1)=0,
which has no solutions for t > 1.
Hence there are no solutions for x > 2.

For -2 < x < 2, please see the first solution.
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Problem 25 [AIME 1992]
For any sequence of real numbers A = {al, a2, a3, }, define AA to be
the sequence {a2 - al, a3 - a2, a4 - a3,...}.
Suppose that all of the terms of the sequence A(AA) are 1, and that
ai9 = a92 = 0.
Find al.

Solution 25
Suppose that the first term of the sequence AA is d.
Then

AA={d,d+l,d+2,...}

with the nth term given by d + (n - 1).
Hence

A = {al, a, +d, al +d+ (d+ 1), al +d+ (d+ 1) + (d+2),...}

with the nth term given by

an = al + (n - 1)d + 2 (n - 1)(n - 2).

This shows that an is a quadratic polynomial in n with leading coefficient
1/2.

Since alg = a92 = 0, we must have

an = 2 (n - 19)(n - 92),

so al = (1 - 19)(1 - 92)/2 = 819.

Problem 26 [Korean Mathematics Competition 2000]
Find all real numbers x satisfying the equation

2x+3x-4X+6X-9X=1.

Solution 26
Setting 2x = a and 3x = b, the equation becomes

1 + a2 + b2 - a - b - ab = 0.

Multiplying both sides of the last equation by 2 and completing the
squares gives

(1 - a) 2 + (a - b)2 + (b - 1)2 = 0.
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Therefore 1 = 2' = 3', and x = 0 is the only solution.

Problem 27 [China 1992]
Prove that

1
80

16 < ) '-<17.
k=

Solution 27
Note that

Therefore

vk

2( k+1-mi) = k+1+f <
80 1 80

'7k 1:(
k=1 '" k=1

which proves the lower bound.

On the other hand,

Therefore

2
(vrk- \ 2

>

1- k-1 k-1vfk-

80 1 80

1: <1+2E( - k-12 80-1<17,
k=1 k k=2

which proves the upper bound. Our proof is complete.

Problem 28 [AHSME 1999]
Determine the number of ordered pairs of integers (m, n) for which mn >
0 and

3 + n 3 + 99772n = 333m

Solution 28
Note that (m + n)3 = m3 + n3 + 3mn(m + n). If m + n = 33, then

333 = (m + n)3 = m3 + n3 + 377in(m + n) = m3 + n3 + 99mn.

Hence m + n - 33 is a factor of m3 + n3 + 99mn - 333. We have

m3 + n3 + 99mn - 333
_ (m + n - 33)(m2 + n2 - mn + 33m + 33n + 332)

=
2

(m + n - 33)[(m - n)2 + (m + 33)2 + (n + 33)2].
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Hence there are 35 solutions altogether: (0, 33), (1, 32), , (33, 0), and
(-33, -33).

Comment: More generally, we have

a3 + b3 + C3 - 3abc

= 2(a + b + c) [(a - b)2 + (b - c)2 + (c - a)2].

Problem 29 [Korean Mathematics Competition 2001]
Let a, b, and c be positive real numbers such that a + b + c < 4 and
ab+bc+ca>4.
Prove that at least two of the inequalities

la - bi <2, lb - cl < 2, Ic - al < 2

are true.

Solution 29
We have

a+b+c)2 < 16,

i.e.

i.e.

a2 + b2 + c2 + 2(ab + be + ca) < 16,

a2 + b2 + c2 < 8,

i.e.

i.e.

a2 + b2 + c2 - (ab + be + ca) < 4,

(a - b)2 + (b - c)2 + (c - a)2 < 8,

and the desired result follows.

Problem 30
Evaluate

1

E
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Solution 30
Let Sn denote the desired sum. Then

Sn =
1

(2n)! a (n - k)! (n + k)!

1

(
2n 1

(2n)!
k=o

n - kJ

n)k1
n

(2k

2n
k=O

1 1
F 2n (2n\ 2n

(2n)! 2 r2zn + \2nJ
n

22n-1
L

1

(2n)! + 2(n!)2.

Problem 31 [Romania 1983]
Let 0 < a < 1. Solve

for positive numbers x.

Solution 31
Taking logo yields

a' log,, x=x°.

Consider functions from W -' R,

f(x)=a', 9(x) = logo x, h(x)=x'.

Then both f and g are decreasing and h is increasing. It follows that
f(x)g(x) = h(x) has unique solution x = a.

Problem 32
What is the coefficient of x2 when

(1 + x)(1 + 2x)(1 + 2nx)

is expanded?
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Solution 32
Let

fn(x) = an,o + an,1x + + an,nxn = (1 + x)(1 + 2x) . (1+2 nX).

It is easy to see that an,o = 1 and

a , 1 = 1 + 2 + + 2 = 2 ' - 1 .

Since

fn(x) = fn-1(x)(1 + 2'Lx)

= (1+(2n - 1)x + an_1,2x2 + ) (1+2 nX)
= 1+(2 n+1 - 1) x + (an_1,2 + 22n -2 n ) x2 +

we have

an,2 = an-1,2 + 22n -2 n

= an-2,2 + 22n-2 -2 n-1 +2 2n -2 n

a1,2 + (24 +2 6 +---+2 2n ) - (22 + 23 + ... + 2n)

2+
3

22n+2 -3.2 n+1 +2 (2n+1 - 1) (2n+1 - 2)

3 3

49

Problem 33
Let m and n be distinct positive integers.
Find the maximum value of I xm - xn I, where x is a real number in the
interval (0, 1).

Solution 33
By symmetry, we can assume that m > n. Let y = xm-n.
SinceO<x<1,xm<xnand0<y<1. Thus

Ixm - xnI = xn - xm = xn(l - xm-n) = (yn(1 - y)m-n)
.

Applying the AM-GM inequality yields

yn(l-y)'n-n = (mn
n)n ((m

nn)y)n(1-y)m-n

/
n n n mnny+(m-n)(1-y) )

1
n+m-n

(m-n) n+m- n

24(22n-2 _ 1)
- 4(2n-1 _ 1)

nn (m - n)m-n
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Therefore

m - xnI < (nn(m - n)m_n
x l = (m -

mm'

Equality holds if and only if

(m-n)y = 1-y
n

or

Comment: For m = n + 1, we have

nn
xn - xn+l <

(n + 1)n+l

n) / nnm

for real numbers 0 < x < 1. Equality holds if and only if x = n/(n + 1).

Problem 34
Prove that the polynomial

(x - al)(x - a2)...(x - an) - 1,

where al, a2,' , an are distinct integers, cannot be written as the prod-
uct of two non-constant polynomials with integer coefficients, i.e., it is
irreducible.

Solution 34
For the sake of contradiction, suppose that

f(x) _ (x - al)(x - a2)...(x - an) - 1

is not irreducible. Let f (x) = p(x)q(x) such that p(x) and q(x) are two
polynomials with integral coefficients having degree less than n. Then

g(x) = p(x) + q(x)

is a polynomial with integral coefficients having degree less than n.
Since

p(ai)q(ai) = f(ai) _ -1
and both p(ai) and q(a,) are integers,

jp(ai)j = q(ai)j = 1
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and

p(ai) + q(ai) = 0.

Thus g(x) has at least n roots. But degg < n, so g(x) = 0. Then

p(x) = -q(x) and f (x) = -p(x)2,

which implies that the leading coefficient of f (x) must be a negative
integer, which is impossible, since the leading coefficient of f (x) is 1.

Problem 35
Find all ordered pairs of real numbers (x, y) for which:

(1+x)(1+x2)(1+x4) = 1+y7
and (1 + y)(l + y2)(1 + y4) = 1 + x7.

Solution 35
We consider the following cases.

1. xy = 0. Then it is clear that x = y = 0 and (x, y) = (0, 0) is a
solution.

2. xy < 0. By the symmetry, we can assume that x > 0 > y. Then
(1 + x)(1 + x2)(1 + x4) > 1 and 1 + y7 < 1. There are no solutions

in this case.

3. x, y > 0 and x j4 y. By the symmetry, we can assume that x >
y > 0. Then

(1+x)(1+x2)(1+x4) > 1+x7 > 1+y7,

showing that there are no solutions in this case.

4. x, y < 0 and x j4 y. By the symmetry, we can assume that x < y <
0. Multiplying by 1- x and 1- y the first and the second equation,
respectively, the system now reads

1-x8 = (1+y7)(1-x)=1-x+y7-xy7

1-y8 = (1+x7)(1-y) = 1-y+x7-x7y.
Subtracting the first equation from the second yields

x8 - y8 = (x - y) + (x7 - y7) - xy(xs - y6). (1)

Since x < y < 0, x8 - y8 > 0, x - y < 0, x7 - y7 < 0, -xy < 0, and
x6 - y6 > 0. Therefore, the left-hand side of (1) is positive while
the right-hand side of (1) is negative.

Thus there are no solutions in this case.
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5. x = y. Then solving

1-x8=1-x+y7-xy7=l-x+x7-x8
leads to x = 0, 1, -1, which implies that (x, y) = (0, 0) or

Therefore, (x, y) = (0, 0) and (-1, -1) are the only solutions to the
system.

Problem 36
Solve the equation

2(2x - 1)x2 + (2x2 - 2)x = 2x+1 - 2

for real numbers x.

Solution 36
Rearranging terms by powers of 2 yields

2x2x + 2x+1(x2 - 1) -2 (X2 + x - 1) = 0.

Setting y = x2 - 1 and dividing by 2 on the both sides, (1) becomes

211x+2xy-(x+y)=0

or

x(2y - 1) + y(2x - 1) = 0.

Since f (x) = 2' - 1 and x always have the same sign,

x(2y - 1) > 0.

(1)

(2)

Hence if the terms on the left-hand side of (2) are nonzero, they must
have the same sign, which in turn implies that their sum is not equal to
0.

Therefore (2) is true if and only if x = 0 or y = 0, which leads to solutions
x=-1,0, and 1.

Problem 37
Let a be an irrational number and let n be an integer greater than 1.
Prove that j \ 1

(a+ a2-1 +(a- a2-ll
is an irrational number. /
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Solution 37
Let

N = (a + a2 - 1) + (a - a2 - 1)

and let
b=(a+ a2-1)n.

Then N = b + 1/b. For the sake of contradiction, assume that N is
rational. Then by using the identity

bm+1 +
b+1 = (b

+ b / (m + b"') - (bm_ 1 + b 11

repeatedly for m = 1, 2, ..., we obtain that bm + 1/b' is rational for all
mEN.
In particular,

bn +bn =a+ a2-1+a- a2-1=2a

is rational, in contradiction with the hypothesis.
Therefore our assumption is wrong and N is irrational.

Problem 38
Solve the system of equations

(xl - X2 + x3)2 = x2(x4 + x5 - x2)

(x2 - x3 + x4)2 = x3(x5 + x1 - x3)

(x3 - x4 + x5)2 = x4(x1 + x2 - x4)

(x4 - x5 + x1)2 = x5(x2 + x3 - x5)

(x5 - x1 + x2)2 = x1(x3 + x4 - x1)

for real numbers x1i x2, x3, x4, x5.

Solution 38
Let xk+5 = Xk. Adding the five equations gives

s 5

J(3xk - 4xkxk+l + 2xkxk+2) = 1:(-x2
k + 2xkxk+2)

k=1 k=1

It follows that

1:(xk - xkxk+l) = 0-
k=1
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Multiplying both sides by 2 and completing the squares yields

from which x1 = xz = x3 = X4 = x5. Therefore the solutions to the
system are

(x1,x2,x3,x4,x5) = (a, a, a, a, a)

for a E R.

Problem 39
Let x, y, and z be complex numbers such that x+y+z = 2, xz+yz+zz =
3, and xyz = 4.
Evaluate

1 1 1

xy+z-1 yz+x-1 zx+y- 1

Solution 39
Let S be the desired value. Note that

Likewise,

and

Hence

xy+z-1=xy+1-x-y=(x-1)(y-1).

yz+x-1=(y-1)(x-1)

zx+y-1=(z-1)(x- 1).

1_
S

(x - 1)(y - 1) + (y - 1)(z - 1) + (z - 1)(x - 1)

_ x+y+z-3 - -1

(x - 1)(y - 1)(z - 1) (x - 1)(y - 1)(z - 1)

-1

xyz- (xy+yz+zx)+x+y+z- 1
-1

5-(xy+yz+zx).

But
2(xy + yz + zx) = (x + y + z)z - (x2 + yz + z2) = 1.

Therefore S = -2/9.
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Problem 40 [USSR 1990]
Mr. Fat is going to pick three non-zero real numbers and Mr. Taf is going
to arrange the three numbers as the coefficients of a quadratic equation

x2+-x+-= 0.

Mr. Fat wins the game if and only if the resulting equation has two
distinct rational solutions.
Who has a winning strategy?

Solution 40
Mr. Fat has the winning strategy. A set of three distinct rational nonzero
numbers a, b, and c, such that a + b + c = 0, will do the trick. Let A, B,
and C be any arrangement of a, b, and c, and let f (x) = Ax 2 + Bx + C.
Then

f (1) = A + B + C = a + b + c = 0,

which implies that 1 is a solution.
Since the product of the two solutions is C/A, the other solution is C/A,
and it is different from 1.

Problem 41 [USAMO 1978]
Given that the real numbers a, b, c, d, and e satisfy simultaneously the
relations

a+b+c+d+e=8anda2+b2+c2+d2+e2=16,

determine the maximum and the minimum value of a.

Solution 41, Alternative 1
Since the total of b, c, d, and e is 8 - a, their average is x = (8 - a)/4.
Let

b=x+bl, c=x+c1, d=x+dl, e=x+e1.
Then b1 + c1 + d1 + e1 = 0 and

2

16=a2+4x2+b2+ci+d2+e2>a2+4x2=a2+ (8
_

4
a) (1)

or

0 > 5a2 - 16a = a(5a - 16).

Therefore 0 < a < 16/5, where a = 0 if and only if b = c = d = e = 2
and a=16/5 if and only ifb=c=d=e=6/5.
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Solution 41, Alternative 2
By the RMS-AM inequality, (1) follows from

b2+c2+d2+e2> (b+c+d+e)2 _ (8-a)2
4 4

and the rest of the solution is the same.

Problem 42
Find the real zeros of the polynomial

Pa(x) = (x2 + 1)(x - 1)2 - ax 2,

where a is a given real number.

Solution 42
We have

(x2 + 1)(x2 - 2x + 1) - axe = 0.

Dividing by x2 yields

(+!) (x_2+.)

By setting y = x + 1/x, the last equation becomes

y2-2y-a=0.
It follows that

x+1=1f l+ a,
x

which in turn implies that, if a > 0, then the polynomial Pa(x) has the
real zeros

1+ 1+af a -2,/-l--+a - 2
X1,2 = 2

In addition, if a > 8, then Pa(x) also has the real zeros

1- l+af a-2 I+a-2
X3,4 = 2

Problem 43
Prove that

1 3 2n - 1 1

2 4. . 2n < 3n

for all positive integers n.
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Solution 43
We prove a stronger statement:

1 3 2n-1 1

2 4 2n 3n _+1

We use induction.

For n = 1, the result is evident.
Suppose the statement is true for some positive integer k, i.e.,

1 3 2k - 1 1

2 4 2k < 3k+1'

Then
1 3 2k-1 2k+1 1 2k+1
2 4 2k 2k+2 3k+1 2k+2'

In order for the induction step to pass it suffices to prove that

1 2k+1 1

3k+1 2k+2 < 3k+4'

This reduces to
(2k+1 2 3k+1
2k+2) < 3k+4'

(4k2 + 4k + 1)(3k + 4) < (4k2 + 8k + 4)(3k + 1),

0 < k,

which is evident. Our proof is complete.
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Comment: By using Stirling numbers, the upper bound can be im-
proved to 1/ 7rn for sufficiently large n.

Problem 44 [USAMO Proposal, Gerald Heuer]
Let

P(x) = a0x" + a1xn-1 + ... + an

be a nonzero polynomial with integer coefficients such that

P(r) = P(s) = 0

for some integers r and s, with 0 < r < s.
Prove that ak < -s for some k.
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Solution 44
Write P(x) _ (x - s)xcQ(x) and

where b,,,, 54 0. Since Q has a positive root, by Descartes' rule of signs,
either there must exist some k for which bk > 0 > bk+1, or b,,,. > 0.

If there exists a k for which bk > 0 > bk+1, then

ak+1 = -sbk + bk+1 <- -5-

If b,,,, > 0, then a, = -sb, < -s.
In either case, there is a k such that ak < -s, as desired.

Problem 45
Let m be a given real number. Find all complex numbers x such that

(x) 2 x 2 _ 2

x+ + x-1 -m +m.

Solution 45
Completing the square gives

= 2x2
+ m2 + m

Setting y = 2x2/(x2 - 1), the above equation becomes

y2-y-(m2+m)=0,

(y-m-1)(y+m)=0.
Thus

Q(x) = box' + bix'n'-1 + ... + b,,,,

x x 2 _ 2x2 2(x++x) x2_1+m +m,

.x2-1 x2 - 1

2x
1

x
=

-
1

2

-m or
2x 2

= m +

which leads to solutions

x=f m if m#-2and x=±% m+1 ifm 1.m+2 m-1
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Problem 46
The sequence given by xo = a, xl = b, and

xn+1 = 2 (Xn-1 + I I .

is periodic.

Prove that ab = 1.

Solution 46
Multiplying by 2xn on both sides of the given recursive relation yields

2xnxn+l = xn_lxn + 1

or

2(xnxn+l - 1) = xn_lxn - 1.

Let yn = xn_lxn - 1 for n E N. Since Yn+1 = yn/2, {yn} is a geometric
sequence. If xn is periodic, then so is yn, which implies that yn = 0 for
all n E N. Therefore

ab=xoxl=yi+1=1.

Problem 47
Let a, b, c, and d be real numbers such that

(a2+b2-1)(c2+d2-1)>(ac+bd-1)2.

Prove that

a2+b2>1andc2+d2>1.

Solution 47
For the sake of the contradiction, suppose that one of a2 + b2 or c2 + d2
is less than or equal to 1. Since (ac + bd - 1)2 > 0, a2 + b2 - 1 and
c2 + d2 - 1 must have the same sign. Thus both a2 + b2 and c2 + d2 are
less than 1. Let

x=1-a2-b2andy=1-c2-d2.
Then 0 < x, y < 1. Multiplying by 4 on both sides of the given inequality
gives

4xy > (2ac + 2bd - 2)2 = (2 - 2ac - 2bd)2

= (a2+b2+x+c2+d2+y-2ac-2bd)2
= [(a-c)2+(b-d)2+x+y]2
> (x + y)2 = x2 + 2xy + y2,
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or 0 > x2 - 2xy + y2 = (x - y)2, which is impossible.
Thus our assumption is wrong and both a2 + 62 and c2 + d2 are greater
than 1.

Problem 48
Find all complex numbers z such that

(3z + 1)(4z + 1)(6z + 1)(12z + 1) = 2.

Solution 48
Note that

8(3z + 1)6(4z + 1)4(6z + 1)2(12z + 1) = 768,

(24z + 8)(24z + 6)(24z + 4)(24z + 2) = 768.

Setting u = 24z + 5 and w = u2 yields

(u + 3)(u + 1)(u - 1)(u - 3).= 768,

(u2 - 1)(u2 - 9) = 768,

i.e.

w2 - 10w - 759 = 0,

i.e.

(w - 33)(w + 23) = 0.

Therefore the solutions to the given equation are

z
33-5 and z= 23a-5
24 24

Problem 49
Let x1. x2, , xn,_1, be the zeros different from 1 of the polynomial
P(x)=xn-1,n>2.
Prove that

1 1 1 _n-1
1 - x1 + 1 - X2

+ ... +
1 - xn_1 2
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Solution 49, Alternative 1
For i = 1,2,. .. , n, let ai = 1 - xi. Let

Q(x) = P(1 - x) (1 - x)n - 1
x x

Then
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Q(x) = (-1)"x'-1 + (-1)n-1

(n)
xn-2 +... + (n) x _ (n)

1and as are the nonzero roots of the polynomial Q(x), as/

(1 - ai)n - 1 xi - 1
Q(ai) _ _ = 0.

ai 1 - xi

Thus the desired sum is the sum of.the reciprocals of the roots of poly-
nomial Q(x), that is,

1 1 1

1-x1 + 1-x2 1-xn_1
1 1 1

a1 a2 an-1

a2a3...an + a1a3...an + ... + a1a2...an-1

ala2...a.

By the Vieta's Theorem, the ratio between

S = a2...an + aia3...an + ... + aia2...an-1

and
P = a1...an

is equal to the additive inverse of the ratio between the coefficient of x
and the constant term in Q(x), i.e., the desired value is equal to

S
(n

n-1
P (n) 12

as desired.

Solution 49, Alternative 2
For any polynomial R(x) of degree n-1, whose zeros are x1, x2, ... , xn_1,
the following identity holds:

1 + 1 + ... + 1 = R' (x)
X - X1 X - X2 x - xn_1 R(x)
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R(x) =
xn

- 1 = xn-1 + xn-z + ... + x + 1,x-1
R(1) = n and

R'(1)=(n-1)+(n-2)+ +1= n(n-1)
2

It follows that
1 1 1 R'(1) n- 1

1-x1 + 1-x2
+...+

1-xn-1

Problem 50
Let a and b be given real numbers.
Solve the system of equations

R(1) 2

x - y xz_yz
= a,

z1-x2+y

y - x x2-y2
1-x2+y2

for real numbers x and y.

Solution 50
Letu=x,+yandv=x-y. Then

b

0<x2y2=uv<1, x=u2v, andy=uv.
Adding the two equations and subtracting the two equations in the orig-
inal system yields the new system

u - u uv = (a+b) 1-uv
v + v uv = (a - b) l --u v.

Multiplying the above two equations yields

uv(1 - uv) = (a2 - b2)(1 - uv),

hence uv = a2 - b2. It follows that

u- (a+b) 1-a2+b2 andv= (a - b) 1 -a2+b2
1- az-bz 1+ a2-b2

which in turn implies- that

=(xy)'2 2'2 '

a+b a2-b2 b+a a2-b2
b1-a4- 1-a +b2 J

whenever 0 < a2 - b2 < 1.
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Problem 51
Evaluate

0200

2 5

0) + (2000) + (20800) + ... + (2000)

Solution 51
Let

f (X) = (1 + x)2000 =
2000

k=0

02000)

k
xk.

Let w = (-1 + vi) /2. Then w3 = 1 and w2 +w+ l =0. Hence

2 5

000) + 2000) +... + (2000)
3

(2

2000

=f(1)+wf(w)+w2f(w2)
= 22000 + w (1 + L,))2000 + w2 (1 + w2) 2000

= 22000 + w(-w2)2000 + w2(_w)2000

= 22000 + w2 + w = 22000 - 1.

Thus the desired value is
22000 - 1

3

Problem 52
Let x, y, z be positive real numbers such that x4 + y4 + z4 = 1.
Determine with proof the minimum value of

x3
y

3 z3

1-x8+1-y8+1-z8

Solution 52
For 0 < u < 1, let f(u) = u(1 - u8). Let A be a positive real number.
By the AM-GM inequality,

A(f (u))8 = Au8(1 - u8) . (1 - u8) <
f Au8 +8(1 - u8) 1 9

IL 9 J
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Setting A = 8 in the above inequality yields

or

It follows that

x3 y
3 z3

1-x8+1-y8+1-z8

with equality if and only if

x4 Y
4

z4
4- +

x(1 - x8) y(1 - y8) z(1 - z8)

(x4+y4+24)439
8

>

943

8 '

1x=y=z= 43.

Comment: This is a simple application of the result of problem 33 in
the previous chapter.

Problem 53 [Romania 1990]
Find all real solutions to the equation

2x + 3x + 6x = x2.

Solution 53
For x < 0, the function f (x) = 2x + 3x + 6x - x2 is increasing, so the
equation f (x) = 0 has the unique solution x = -1.
Assume that there is a solution s > 0. Then

s2 = 28 + 3S + 68 > 3,

so s > f , and hence [s] > 1.
But then s > lsj yields

2S > 2isJ = (1 + 1) L,,] > 1 + [s] > 8,

which in turn implies that

6S > 4S = (28)2 > s2.
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So 2S + 33 + 6S > s2, a contradiction.

Therefore x = -1 is the only solution to the equation.

Problem 54
Let {an}n>1 be a sequence such that al = 2 and

an 1

an+1 = +
2 an

for all n E N.
Find an explicit formula for an.

Solution 54
Solving the equation

leads to x = fV12-. Note that

2

an+1+v/'2- a2n+2vf2an+2 an+

an+1-vf2- a2-2V12an+2 an-v2

Therefore,

2^-1
an+vf2- (a, +
an-vf2-

and

(Vr- 2+1)try

v/2- [(vf2- +1)2n+1]
an = (V/2-+

1) 2n - 1

Problem 55
Let x, y, and z be positive real numbers. Prove that

x y

x+ (x+y)(x+z) + y+ (y+z)(y+x)

z

+ z+ (z+x)(z+y) -
Solution 55
Note that

(x+y)(x+z) > xy+ xz.

67
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In fact, squaring both sides of the above inequality yields

x2 + yz > 2x yz,

which is evident by the AM-GM inequality. Thus

x < x Vrx-

xz Vrx- + f+,`'x (x+y)(x+z) x + + _

Likewise,

and

y < VfY_

y+ (y+z)(y+x) x+ f + f
z

z+ (z+x)(z+y) +f+VfZ-
Adding the last three inequalities leads to the desired result.

Problem 56
Find, with proof, all nonzero polynomials f (z) such that

f(z2) + f(z)f(z + 1) = 0.

Solution 56
Let f(z) = azm(z - 1)ng(z), where m and n are non-negative integers

and

9(z) = (z - zl)(z - z2)...(z - zk),

zi 54 0 and zi 1 , for i = 1, 2, ... , k. The given condition becomes

az2m(z - 1)n(z + 1)n(z2 - zl)(z2 - z2)...(z2 - zk)
_ -a2zm+n(z + 1)m(z - 1)n(z - zl)(z - z2) ... (z - zk)

Thus a = -a2, and f is nonzero, so a = -1. Since zi 0 1, 1 - z2 34 0.
Then z2m = zm+n, that is, m = n.
Thus f is of the form

-zm(z - 1)mg(z).

Dividing by z2m(z - 1)n(z + 1)n, the last equation becomes

9(z2) = 9(z)9(z + 1).
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We claim that g(z) - 1. Suppose not; then clearly g must have at least
one complex root r 0. Now

g(r2) = g(r)g(r + 1) = 0,

g(r4) = 0,

g(r8) = 0,

and so on.

Since g cannot have infinitely many roots, all its roots must have absolute
value 1.

Now,

g((r - 1)2) = g(r - 1)g(r) = 0,

so I (r-1)21=1.
Clearly, if

Iri=I(r^1)21=1,
then

rE
1+Vr3-i 1-O-i

2 2
.

But r2 is also a root of g, so the same should be true of r2:

1+Vi 1-\i
r2 E <

2 2

This is absurd. Hence, g cannot have any roots, and g(z) __ 1.

Therefore, the f (z) are all the polynomials of the form -z-(z - 1)"n for
mEN.

Problem 57
Let f : N -> N be a function such that f (n + 1) > f (n) and f (f (n)) = 3n
for all n.

Evaluate f (2001).

Solution 57, Alternative 1
We prove the following lemma.

Lemma For n = 0, 1, 2,...,

1. f(3n)=2.3n;and

2. f (2. 3n) = 3n+1
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Proof: We use induction.

For n = 0, note that f (1) 54 1, otherwise 3 = f (f (1)) = f (1) = 1, which
is impossible. Since f : N -4 N, f (1) > 1. Since f (n + 1) > f (n),
f is increasing. Thus 1 < f (1) < f (f (1)) = 3 or f (1) = 2. Hence
f(2) = f(f(1)) = 3.
Suppose that for some positive integer n > 1,

f (3n) =2.3' and f (2.3') =3n+1

Then,
f (3n+1) = f (f(2 - 3n)) =

2.3n+1

and
f (2 3n+1) = f (f(3n+1)) = 3n+2

as desired. This completes the induction.

There are 3n - 1 integers m such that 3n < m < 2 . 3n and there are
3n - 1 integers m' such that

f(3n)=2.3n<m'<3n+1=f(2.3n).

Since f is an increasing function,

f (3n +.) =2-3 n + m,

for 0 < m < 3n. Therefore

f (2 . 3n + m) = f (f (3n + m)) = 3(3 n + m)

for 0 < m < 3n. Hence

f (2001) = f (2.36 + 543) = 3 (36 + 543) = 3816.

Solution 57, Alternative 2
For integer n, let n(3) = ala2 at denote the base 3 representation of
n.

Using similar inductions as in the first solution, we can prove that

2a2 at if a1 = 1,
f (n)(3) = lag ... ae0 if a1 = 2.

Since 2001(3) = 2202010, f (2001)(3 = 12020100 or

f (2001) = 1 .32 +2-3 4 +2-3 6 + 1 .37 = 3816.
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Problem 58 [China 1999]
Let F be the set of all polynomials f (x) with integers coefficients such
that f (x) = 1 has at least one integer root.
For each integer k > 1, find mk, the least integer greater than 1 for which
there exists an f E F such that f (x) = Mk has exactly k distinct integer
roots.

Solution 58
Suppose that fk E F satisfies the condition that fk(x) = Mk has exactly
k distinct integer roots, and let a be an integer such that fk (a) = 1. Let
gk be the polynomial in F such that

9k(x) = fk(x + a)

for all x.

Now 9k (0) = fk(a) = 1, so the constant term of gk is 1. Now gk(x) = Mk
has exactly k distinct integer roots rl, r2 ,- .. , rk, so we can write

9k(x) - mk = (x - rl)(x - r2) ... (x - rk)gk(x),

where qk(x) is an integer polynomial.

Note that rlr2 rk divides the constant term of gk(x) - mk, which
equals 1 - mk.
Since Mk > 1, 1 - mk cannot be 0,

I1-mkI > Ir1r2...rkl

Now rl, r2i rk are distinct integers, and none of them is 0, so

Irlr2 ... rkl > 11 (-1) 2 .(-2).3 ... (-1)k+l [k/2]1 )

hence

Mk > [k/2]! [k/21! + 1.

This value of mk is attained by

9k(x) _ (- 1) ('-2')(x - 1)(x + 1)(x - 2)(x + 2)

(x + (-1)k [k/21) + [k/2]! [k/21 ! + 1.

Thus,
Mk = [k/2]! [k/2]! + 1.
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Problem 59
Let x1 = 2 and

forn>1.
Prove that
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zxn+1 = xn - xn + 1,

1- 1<1+1+...+1 <1-21.
22--1 x1 x2 xn 2^

Solution 59
Since x1 = 2 and

xn is increasing.

Then xn-100.
Hence

1 1

xn+1 - 1 xn(xn - 1) xn - 1 xn

or

which implies that

xn+1 - 1 = Xn(Xn - 1).

1 1 1

xn xn - 1 xn+1 - 1

1 1 1 1

x1 x2 xn xn+1

Thus it suffices to prove that, for n E N,

1 1 1

1 < xn+1 - 1 < 22 (1)

We use induction to prove (1).

For n = 1, x2 = xi - Si + 1 = 3 and (1) becomes 2 < 3 < 4, which is
true.

Now suppose that (1) is true for some positive integer n = k, i.e.,

22k 1 < xk+1 - 1 <
22k

(2)

Then for n = k + 1, the lower bound of (1) follows from

2k-1 2k-1 2kXk+2 - 1 = xk+1(xk+1 - 1) > 2 2 = 2
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Since xk+1 is an integer, the lower bound of (2) implies that

Xk+1 C
22

and xk+1 - 1 < 22k - 1,

from which it follows that

xk+2 - 1 = xk+1(xk+1 - 1) < 22k (22k - 11 <
22k+1

as desired.

This finishes the induction and we are done.

Problem 60 [Iran 1997]
Suppose that f : R+ R+ is a decreasing function such that for all
x)yER+,

f(x + y) + f(f(x) + f(y)) = f(f(x + f(y)) + f(y + f(x))).

Prove that f(f(x)) = x.

Solution 60
Setting y = x gives

f (2x) + f (2f (x)) = f (2f (x + f (x))).

Replacing x with f (x) yields

f (2f (x)) + f (2f (f (x))) = f (2f (f (x) + f (f (x))))

Subtracting these two equations gives

f(2f(f(x))) - f(2x) = f(2f(f(x) + f(f(x)))) - f(2f(x + f(x))).

If f (f (x)) > x, the left hand side of this equation is negative, so

f(f(x) +f(f(x)) > f(x+f(x))
and

f(x)+f(f(x)) <x+f(x),
a contradiction. A similar contradiction occurs if f (f (x)) < x.
Thus f (f (x)) = x as desired.

Comment: In the original formulation f was meant to be a continous
function. The solution above shows that this condition is not necessary.
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Problem 61 [Nordic Contest 1998]
Find all functions f : Q -> Q such that

f(x + y) + f(x - y) = 2f(x) + 2f(y)

for all x, y e Q.

Solution 61
The only such functions are f (x) = kx2 for rational k. Any such function
works, since

f(x+y) +f(x - y) = k(x+y)2 + k(x - y)2
= kx2 + 2kxy + ky2 + kx2 - 2kxy + ky2

= 2kx2 + 2ky2

= 2f (x) + 2f (y).

Now suppose f is any function satisfying

f(x + y) + f(x - y) = 2f (x) + 2f (y).

Then letting x = y = 0 gives 2f (0) = 4f (0), so f (0) = 0.
We will prove by induction that f (nz) = n2f(Z) for any positive integer
n and any rational number z.
The claim holds for n = 0 and n = 1; let n > 2 and suppose the claim
holds for n - 1 and n - 2.
Then letting x = (n - 1)z, y = z in the given equation we obtain

f (nz) + f ((n - 2)z) = f ((n - 1)z + z) + f ((n - 1)z - z)
= 2f((n - 1)z) + 2f(z)

so

f(nz) = 2f((n - 1)z) + 2f(z) - f((n - 2)z)

= 2(n - 1)2f(z) + 2f(z) - (n - 2)2f(z)

_ (2n2 - 4n + 2 + 2 - n2 + 4n - 4)f (z)

= n2f(z)

and the claim holds by induction.
Letting x = 0 in the given equation gives

f (y) + f (-y) = 2f (0) + 2f (y) = 2f (y)

so f (-y) = f (y) for all rational y; thus f (nz) = n2f(Z) for all integers
n.
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Now let k = f (1); then for any rational number x = p/q,

g2f(x) = f(qx) = f(p) = p2f(1) = kp2

so

f(x) = kp2/q2 = kx2.

Thus the functions f (x) = kx2, k E Q, are the only solutions.

Problem 62 [Korean Mathematics Competition 2000]
Let1<a<1.
Prove that the equation

x3(x + 1) = (x + a)(2x + a)

has four distinct real solutions and find these solutions in explicit form.

Solution 62
Look at the given equation as a quadratic equation in a:

a2 + 3xa + 2x2 - x3 - x4 = 0.

The discriminant of this equation is

9x2 - 8x2 + 4x3 + 4x4 = (x + 2x2)2.

Thus

-3x + (x + 2x2)a= 2

The first choice a = -x+x2 yields the quadratic equation x2 -x-a = 0,
whose solutions are

x _ (1 f 1 ++ 4a)

2

The second choice a = -2x - x2 yields the quadratic equation

x2+2x+a=0,

whose solutions are

The inequalities

1- 1+4a 1+ 1+4a-1- 1-a<-1+ 1-a< 2

show that the four solutions are distinct.



76 4. Solutions to Advanced Problems

Indeed

reduces to

which is equivalent to

-1+ 1-a< 1-/+4a
2

2 1-a<3- 1+4a

6 1+4a<6+8a,

or 3a < 4a2, which is evident.

Problem 63 [Tournament of Towns 19971
Let a, b, and c be positive real numbers such that abc = 1.

Prove that

a+b+l+b+c+l+c+a+1 C1
Solution 63, Alternative 1
Setting x = a + b, y = b + c and z = c + a, the inequality becomes

1

+ +x+1y+1z+1
C

1 1 x

y+1z+1 x+l'

y+z+2 < x

(y + 1)(z + 1) - x + 1'

xy+xz+2x+y+z+2 < xyz+xy+xz+x,

x+y+z+2<xyz,

2(a+b+c)+2 < (a+b)(b+c)(c+a),

2(a+b+c) < a2b+ab2 +b2c+bc2 +c2a+ca2.

By the AM-GM inequality,

(alb + a2c + 1) > 3
3

a4bc = 3a.
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Likewise,

and

(b2c + b 2 a+ 1) > 3b

(c2a + c2b + 1) > 3c.

Therefore we only need to prove that

2(a+b+c) +3 < 3(a+b+c),

3 <a+b+c,
which is evident from AM-GM inequality and abc = 1.

Solution 63, Alternative 2
Let a = a', b = bl, c = ci. Then alblcl = 1. Note that

a, + bi - alb, - albi = (a, - bi)(ai - bi) > O,

which implies that

Therefore,

ai + bi > a,bl(a, + b1).

1 _ 1

a + b + 1 ai + bi + alblcl

1

albl(a, + bi) + alblcl

alblcl

a,bl(a, + bl + cl)

Cl

Likewise,

and

al+bl+cl

1 < al
b+c+1 - al+bl+cl

77

1 < bl

c+a+1 - al+bl+cl
Adding the three inequalities yields the desired result.
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Problem 64 [AIME 1988]
Find all functions f, defined on the set of ordered pairs of positive inte-
gers, satisfying the following properties:

f(x,x) = x, f(x,y) = f(y,x), (x + y)f(x,y) = yf(x,x + y).

Solution 64
We claim that f (x, y) = lcm(x, y), the least common multiple of x and
y. It is clear that

lcm(x, x) = x

lcm(x, y) = lcm(y, x).

lcm(x, xyy) = gcd (x, y)

gcd (x, y) = gcd (x, x + y),

where gcd (u, v) denotes the greatest common divisor of u and v. Then

(x + y)lcm(x, y) _ (x + y) xy
gcd (x, y)

_ x(x + y)
gcd (x, x + y)

= ylcm(x, x + y).

Now we prove that there is only one function satisfying the conditions of
the problem.
For the sake of contradiction, assume that there is another function

g(x, y) also satisfying the given conditions.
Let S be the set of all pairs of positive integers (x, y) such that f (x, y) A
g(x, y), and let (m, n) be such a pair with minimal sum m+n. It is clear
that m A n, otherwise

f (m, n) = f (m, m) = m = g(m, m) = g(m, n).

By symmetry (f (x, y) = f (y, x)), we can assume that n - m > 0.
Note that

nf(m,n-m) = [m+(n-m)]f(m,n-m)
= (n-m)f(m,m+(n-m))

(n-m)f(m,n)
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or

Likewise,

f(m,n-m) = n
nm f(m,n).

g(m,n-m) = n nm g(m,n).

Since f (m, n) g(m, n), f (m, n - m) g(m, n - m).
Thus (m, n - m) E S.
But (m, n - m) has a smaller sum m + (n - m) = n, a contradiction.
Therefore our assumption is wrong and f (x, y) = lcm(x, y) is the only
solution.

Problem 65 [Romania 1990]
Consider n complex numbers zk, such that Zk I < 1, k = 1, 2, ... , n.

Prove that there exist e 1 ,.e2, .. , en E {-1, 1} such that, for any m < n,

lelzl +e2z2 +''' +emzml < 2.

Solution 65
Call a finite sequence of complex numbers each with absolute value not
exceeding 1 a green sequence.

Call a green sequence {zk}'1 happy if it has a friend sequence {ek}nk_1
of is and -is, satisfying the condition of the problem.
We will prove by induction on n that all green sequences are happy.
For n = 2, this claim is obviously true.
Suppose this claim is true when n equals some number m. For the case
of n = m + 1, think of the Zk as points in the complex plane.
For each k, let Bk be the line through the origin and the point corre-
sponding to zk. Among the lines 21, L2, 6, some two are within 60° of
each other; suppose they are f, and f,3, with the leftover one being f,.
The fact that Qa and Qp are within 60° of each other implies that there
exists some number e,3 E {-1, 1} such that z' = za + e,3 z,3 has absolute
value at most 1.
Now the sequence z', z.y, z4, z5, ... , zk+1 is a k-term green sequence, so,
by the induction hypothesis, it must be happy; let e', e7, e4, e5, ... , ek+1
be its friend.
Let ea = 1.
Then the sequence {ei}k+1 is the friend of {zi}k+l. Induction is now
complete.
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Problem 66 [ARML 1997]
Find a triple of rational numbers (a, b, c) such that

V32-1= 3a+ 3b+yc-.

Solution 66
Let xand y = 32. Then y3=2andx= 3y-1. Note that

1=y3-1=(y-1)(y2+y+1),

and

y2+y+1= 3y2+3y+3 _ y3+3y2+3y+1 - (y+1)3
3 3 3

which implies that

or

On the other hand,

x3=y-1= 1 3

y2+y+1 (y+l)3

-'r3
x

y+

3=y3+1=(y+1)(y2-y+1)

from which it follows that

1 _ y2-y+1
y+l 3

Combining (1) and (2), we obtain

Consequently,

x V 9
(34- 32+1)

4 2 1
(a, b, c) =

9' 9' 9

(1)

(2)

is a desired triple.
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Problem 67 [Romania 1984]
Find the minimum of

1 1 1
logxl x2 -

4
+ logx2 x3 -

4
+ ... + logx (ii -

4

where x1i x2, ... , xn are real numbers in the interval (4, 1).

Solution 67
Since log,, x is a decreasing function of x when 0 < a < 1 and, since
(x - 1/2)2 > 0 implies x2 > x - 1/4, we have

log." xk+i - 1 > logxk xk+1 = 2 logx,, xk+1 = 21og xk+l
4 logxk

It follows that

logxl I x2 - 4 I + log, (X3 - 4) + ... + logxn (1 - 4
)

> 2 log x2 + log x3 + ... + log xn + log XI

- log xi log x2 109X,-1 log xn

> 2n

by the AM-GM inequality.
Equalities hold if and only if

x1 = x2 = ... = xn = 1/2.

Problem 68 [AIME 1984]
Determine x2 + y2 + z2 + w2 if

x2
y

2 z2 w2

22-12 +22-32 +22-52 +22-72 =1,

x2 2 z2 W2

42-12 +42
y
-32 +42-52 +42-72 =1,

x2
y2

z2 ,w2

62-12 +62-32 +62-52 +62-72
x2 2 z2 w2

82-12+82-32+82-52+82-72 =1.
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Solution 68
The claim that the given system of equations is satisfied by x2, y2, z2,

and w2 is equivalent to claiming that

x2
y

2 z2 w2

t-12+t-32+t-52+t-72 =1 (1)

is satisfied by t = 4,16, 36, and 64.
Multiplying to clear fractions, we find that for all values of t for which it
is defined (i.e., t 0 1, 9, 25, and 49), (1) is equivalent to the polynomial
equation

P(t) = 0,

where

P(t) = (t - 1)(t - 9)(t - 25)(t - 49)

-x2(t - 9)(t - 25) (t - 49) - y2(t - 1)(t - 25) (t - 49)
-z2(t-1)(t-9)(t-49)-w2(t-1)(t-9)(t-25).

Since deg P(t) = 4, P(t) = 0 has exactly four zeros t = 4, 16, 36, and 64,
i.e.,

P(t) = (t - 4) (t - 16) (t - 36)(t - 64).

Comparing the coefficients of t3 in the two expressions of P(t) yields

1+9+25+49+x2 +y2+z2+w2 = 4+ 16+36+64,

from which it follows that

x2+y2+z2+w2= 36.

Problem 69 [Balkan 1997]
Find all functions f : R -+ R such that

f(xf(x) +f(y)) = (f(x))2 +y

for all x, y E JR.

Solution 69
Let f (0) = a. Setting x = 0 in the given condition yields

f(f(y)) = a2 + y,

for all y c R.
Since the range of a2+y consists of all real numbers, f must be surjective.
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Thus there exists b E R such that f (b) = 0.

Setting x = b in the given condition yields

f(f(y)) = f(bf(b) + f(y)) = (f (b))' + y = y,

for all y E R. It follows that, for all x, y E R,

(f(x))2 +y = f(xf(x) +f(y))
= f[f(f(x))f(x) +f(n)] = f[f(x)f(f(x)) +y]
=f(f(x))2+y=x2+y,

that is,
(f(x))2 = x2 (1)

It is clear that f (x) = x is a function satisfying the given condition.
Suppose that f (x) 54 x. Then there exists some nonzero real number c
such that f (c) = -c. Setting x = cf (c) + f (y) in (1) yields

If (cf (c) + f (y))]2 = [cf (c) + f (y)]2 = [-c2 + f (y)]2,

for all y E R, and, setting x = c in the given condition yields

f(cf(c) +f(y)) = (f(c))2 +y = c2 +y,

for allyeR.
Note that (f (y))2 = y2.
It follows that

[-c2 + f(y)]2
= (c2 + y)2,

or

f (y) = -y,
for all y E R, a function which satisfies the given condition.

Therefore the only functions to satisfy the given condition are f (x) = x
or f (x) = -x, for x E R.

Problem 70
The numbers 1000, 1001, , 2999 have been written on a board.
Each time, one is allowed to erase two numbers, say, a and b, and replace

them by the number 2 min(a, b).

After 1999 such operations, one obtains exactly one number c on the
board.

Prove that c < 1.
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Solution 70
By symmetry, we may assume a < b. Then

2

min(a,b) =
a

We have
1 1 1

a + b )'
2

from which it follows that the sum of the reciprocals of all the numbers
on the board is nondecreasing (i.e., the sum is a monovariant).

At the beginning this sum is

_ 1 1 1 1
S

1000 + 1001 + + 2999 < c'

where 1/c is the sum at the end. Note that, for 1 < k < 999,

1 1 _ 4000 4000 1

+ >2000 - k 2000 + k 20002 - k2 20002 100

Rearranging terms in S yields

C - 1000 (1001 2999) (1002 2998)

1 1 1

(1999 2001 2000

1000 x 1000 +
2000

1,

or c < 1, as desired.

Problem 71 [Bulgaria 1998]
Let al, a2, ... , a,, be real numbers, not all zero.
Prove that the equation

1 +a1x+ l+a2x+ + l+a,, x = n

has at most one nonzero real root.

Solution 71
Notice that fi (x) = 1 -+ ax is concave. Hence

f(x)= 1+a,x++ l+a,-x
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is concave.

Since f'(x) exists, there can be at most one point on the curve y = f (x)
with derivative 0.

Suppose there is more than one nonzero root.
Since x = 0 is also a root, we have three real roots x1 < x2 < X3. Ap-
plying the Mean-Value theorem to f (x) on intervals [x1i x2] and [x2i x3],
we can find two distinct points on the curve with derivative 0, a contra-
diction.

Therefore, our assumption is wrong and there can be at most one nonzero
real root for the equation f (x) = n.

Problem 72 [Turkey 1998]
Let {an} be the sequence of real numbers defined by a1 = t and

an+1 = 4an(1 - an)

forn> 1.
For how many distinct values of t do we have a1998 = 0?

Solution 72, Alternative 1
Let f (x) = 4x(1 - x). Observe that

f-1(0) = 10, 1}, f-1(1) = {1/2},

and I{y: f(y)=x}j =2 for allxE [0,1).
Let An = {x E R : fn(X) = 0}; then

An+1 = {x E 118: f n+1 (x) = 0}

f-1([0, 1]) = [0, 1],

= {xER: fn(f(x))=0}={xER: f(x)EAn}.

We claim that for all n > 1, An C [0, 1], 1 E An, and

IAnI = 2n-1 + 1.

For n = 1, we have

A1= Ix GRI f(x)=0}= [0, 11,

and the claims hold.
Now suppose n > 1 and An C [0, 1], 1 E An, and An I = 2n-1 + 1. Then

x c An+1 = f (x) E An C [0, 1] = x c [0, 1],

so An+1 C [0, 1].
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Since f (0) = f (1) = 0, we have f'+1(1) = 0 for all n > 1, so 1 E A,,,+1
Now we have

jAn+1 j l{x : f (x) E A,,}l

I{x : f (x) = all
aEA,

l{x: f(x)=1}I+ Ifx : f (x) =all
aEA
aE[0,1)

Thus the claim holds by induction.
Finally, a1998 = 0 if and only if f 1997(t) = 0, so there are 21996 + 1 such
values of t.

Solution 72, Alternative 2
As in the previous solution, observe that if f (x) E [0, 1] then x E [0, 1],
so if a1998 = 0 we must have t E [0, 1].

Now choose 0 E [0, 7r/2] such that sin 0 = V.

Observe that for any 0 E R,

f (sine ¢) = 4 sin20(l - sine 0) = 4 sin 2 O cost 0 = sin 2 20;

since a1 = sine 0, it follows that

a2 = sin2 20, a3 = sin 2 40, ... , a1998 = sin 2 219970.

Therefore

a1998 = 0 sin 219970 = 0 0= k7r
21997

for some k E Z.

Thus the values of t which give a1998 = 0 are

sin2(kir/21997)

k E Z, giving 21996 + 1 such values of t.
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Problem 73 [IMO 1997 short list]

(a) Do there exist functions f : R -* ]I8 and g : R -> R such that

f(g(x)) = x2 and g(f(x)) = x3

for allxER?

(b) Do there exist functions f : R --> R and g : R -* R such that

f(g(x)) = x2 and g(f(x)) = x4

for all xEll?

Solution 73

(a) The conditions imply that f (x3) = f (g(f (x))) = [f (x)]2, whence

x E {-1 0 1} x3 = x = f (X) = [ f (x)]2 = f (X) E {0, 11.

Thus, there exist different a, b E {-1, 0, 1} such that f (a) = f (b).

But then a3 = g(f(a)) = g(f(b)) = b3, a contradiction.

Therefore, the desired functions f and g do not exist.

(b) Let
Ixl'n 1x1 if Jxi > 1

g(x) = Ixj-Inlyl if 0 < JxJ < 1
0 ifx=0.

Note that g is even and jai = JbI whenever g(a) = g(b); thus, we
are allowed to define f as an even function such that

f (x) = y2, where y is such that g(fy) = x.

We claim that the functions f, g described above satisfy the condi-
tions of the problem.

It is clear from the definition of f that f (g(x)) = x2.

Now let y = Of (x)

Then g(y) = x and

g(f(x)) = g(y2)

(y2)

(y2)In(y2) = y41ny = (ylny)4

_ -In(y2) = (y-Inyl\)4
ify>1
if0<y<1

1
0 ify=0

=
[g(y)]4
X4
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Problem 74 [Weichao Wu]
Let0<a1 <a2 ... <an,0<b1 <b2 <bn be real numbers such that

n n

a

i=1 i=1

Suppose that there exists 1 < k < n such that bi < a, for 1 < i < k and
bi>a,fori>k.
Prove that

a1a2...an > b1b2.. bn.

Solution 74, Alternative 1
We define two new sequences. For z = 1, 2, ... , n, let

ai = ak and bi =
b,ak
ai

Then

or

Therefore

ai - bi=ak - bak
= a-k(ai-b,)a, ai

(a' - b,) - (ai _ bi) = (ak - ai)(ai - bi)

ai
>0.

flak

Applying the AM-GM inequality yields

b1b2 ... bnakn _ (bib2 ... bn '- < bi + b2 + . + bn < ak
aia2...an )n n

from which the desired result follows.

Solution 74, Alternative 2
W e define two new sequences. For i = 1 , 2, ... , n, let

ai=ak andbi=bi+ak-a, > 0.

Then
bi+b2+ +b'<nak.

Note that, for cy(x - Y) (Y + c) > 0,

-> x+c x>yandc>0;
Y y+c

(1)
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Setting x = ai, y = bi, and c = ak - ai, the above inequality implies that
ai/bi > ati/b?, for i = 1, 2, ... , n. Thus,

ala2...an > a' a' ...a' (2)

blb2...bn

Using (1) and the AM-GM inequality yields

r _ bi+b2+...+b' 1(ala2 ... a' - ak ? > (blb2 ... bn) "
n

or

aia2 ... an > bib2 ... bn

It is clear that the desired result follows from (2) and (3).

(3)

Problem 75
Given eight non-zero real numbers al, a2, , a8, prove that at least one
of the following six numbers: alai + a2a4, alas + a2a6, ala7 + a2a8,
a3a5 + a4a6, a3a7 + a4a8, a5a7 + a6a8 is non-negative.

Solution 75 [Moscow Olympiad 1978]
First, we introduce some basic knowledge of vector operations.

Let u = [a, b] and v = [m, n] be two vectors.
Define their dot product u v = am + bn.
It is easy to check that

(i) m2+n2 = IvI2, that is, the dot product of vector with itself
is the square of the magnitude of v and v v > 0 with equality if
and only if v = [0, 0];

(ii)

(iii) u. (v + w) = u v + u w, where w is a vector;

(iv) (cu) v = c(u v), where c is a scalar.

When vectors u and v are placed tail-by-tail at the origin 0, let A and
B be the tips of u and v, respectively. Then AI = v - u.
Let LAOB =0.
Applying the law of cosines to triangle AOB yields

Iv - u12 = AB2
= OA2 + OB2 - 20A OB cos B
= 1u12 + IV12 - 2jul ivI cos8.
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It follows that

(v-u) (v-u)= v-2lullvlcosO,

or

cos 0 =
lullvl

Consequently, if 0 < 0 < 90°, u v > 0.
Consider vectors vi = [al, a2], v2 = [a3i a4], v3 = [a5, as], and v4 =
[a7, a8].

Note that the numbers ala3 +a2a4i ala5 +a2a6, ala7+a2a8, a3a5+a4a6,
a3a7 + a4a8, a5a7 + a6a8 are all the dot products of distinct vectors v;
and vj.
Since there are four vectors, when placed tail-by-tail at the origin, at
least two of them form a non-obtuse angle, which in turn implies the
desired result.

Problem 76 [IMO 1996 short list]
Let a, b and c be positive real numbers such that abc = 1.
Prove that

a5+b5+ab + b5+c5+be + c5+a5+ca C
1.

Solution 76
We have

a5 + b5 > a2 b2 (a + b),

because

(a3 - b3)(a2 - b2) > 0,

with equality if and only if a = b. Hence

ab ab

a5 + b5 + ab a2b2 (a + b) + ab
1

ab(a + b) + 1
abc

ab(a + b + c)
c

a+b+c

ca

Likewise,

be a

b5+c5+bc - a + b + c
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and
ca b

c5+a5+ca - a+b+c'
Adding the last three inequalities leads to the desired result.
Equality holds if and only if a = b = c = 1.

Comment: Please compare the solution to this problem with the
second solution of problem 13 in this chapter.

Problem 77 [Czech-Slovak match 1997]
Find all functions f : R -> ]l8 such that the equality

f(f(x) + y) = f(x2 - y) + 4f(x)y

holds for all pairs of real numbers (x, y).

Solution 77
Clearly, f (x) = x2 satisfies the functional equation.
Now assume that there is a nonzero value a such that f (a) a2.

z_
Let y = x 2f (x) in the functional equation to find that

f
(f (x

)

2

+x2) = f (f(x)+x2) +2f(x)(xz -f(x))

or 0 = 2f (x)(x2 - f (x)). Thus, for each x, either f (x) = 0 or f (x) = x2.
In both cases, f (0) = 0.
Setting x = a, it follows from above that either f (a) = 0 or f (a) = 0 or
f (a) = a2.
The latter is false, so f (a) = 0.
Now, let x = 0 and then x = a in the functional equation to find that

f (y) = f (-y), f (y) = f (a2 - y)

and so
f (y) = f (-y) = f (a2 + y);

that is, the function is periodic with nonzero period a2.
Let y = a2 in the original functional equation to obtain

f (f (x)) = f (f (x) + a2) = f (x2 - a2) + 4a2f (x) = f (x2) + 4a2f (x)

However, putting y = 0 in the functional equation gives f (f (x)) = f (x2)
for all x.
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Thus, 4a2f(X) = 0 for all x. Since a is nonzero, f (x) = 0 for all x.
Therefore, either f(x) = x2 or f(x) = 0.

Problem 78 [Kvant]
Solve the system of equations:

3x-yx+ =3
x2 + y2
x+3yy-x2+y2=0.

Solution 78, Alternative 1
Multiplying the second equation by i and adding it to the first equation
yields

x+yi+ (3x - y) - (x + 3y)i -3
x2 + y2 ,

or
x+ya+3(x-yi) - i(x - yi)

= 3.
x2 + y2 x2 + y2

Let z = x + yi. Then
1_ x-yi
z x2 + y2

Thus the last equation becomes

z+3-i=3
z

or

Hence

z2-3z+(3-i)=0.

Z= 3f -3+4i 3±(1+2a)
2 = 2

that is, (x, y) = (2, 1) or (x, y)

Solution 78, Alternative 2
Multiplying the first equation by y, the second by x, and adding up yields

2xy + (3x - y)y - (x + 3y)x = 3y,x2 + y2

or 2xy - 1 = 3y. It follows that y 0 and

3y + 1
2y
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Substituting this into the second equation of the given system gives

y

(,
2y 1 12 + y2 - 13 2y 1 I - 3y = 0,

or

4y4-3y2-1=0.

It follows that y2 = 1 and that the solutions to the system are (2, 1) and
(1, -1).

Problem 79 [China 1995]

Mr. Fat and Mr. Taf play a game with a polynomial of degree at least 4:

x2n + _x2n-1 + _x2n-2 + ... + -x + 1.

They fill in real numbers to empty spaces in turn.

If the resulting polynomial has no real root, Mr. Fat wins; otherwise, Mr.
Taf wins.

If Mr. Fat goes first, who has a winning strategy?

Solution 79

Mr. Taf has a winning strategy.

We say a blank space is odd (even) if it is the coefficient of an odd (even)
power of x.

First Mr. Taf will fill in arbitrary real numbers into one of the remaining
even spaces, if there are any.

Since there are only n - 1 even spaces, there will be at least one odd
space left after 2n - 3 plays, that is, the given polynomial becomes

p(x) = q(x) +_xs +_x2t-1

where s and 2t - 1 are distinct positive integers and q(x) is a fixed
polynomial.

We claim that there is a real number a such that

p(x) = q(x) + axs + -x 2t-1

will always have a real root regardless of the coefficient of x2t-i

Then Mr. Taf can simply fill in a in front of xs and win the game.
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Now we prove our claim. Let b be the coefficient of x2t-1 in p(x). Note
that

1

22t_1 p(2) + p(-1)

= 22t
1-1

q(2) +
2s-2t+la + b + [q(-1) + (-1)sa - b]

1

= 22t-1 q(2) + q(-1) + a[2-2t+1 +

Since s 54 2t - 1, 2s-2t+1 + (_1)s O 0.

Thus

a=- 2s-2t+1 + (_1)s

is well defined such that a is independent of b and

1

22t_1 p(2) + p(-1) = 0.

It follows that either p(-1) = p(2) = 0 or p(-1.) and p(2) have different
signs, which implies that there is a real root of p(x) in between -1 and
2.

In either case, p(x) has a real root regardless of the coefficient of x2t-1

as claimed.

Our proof is thus complete.

Problem 80 [IMO 1997 short list]
Find all positive integers k for which the following statement is true: if
F(x) is a polynomial with integer coefficients satisfying the condition

0<F(c)<k for c=0,1,...,k+1,

then F(0) = F(1) F(k + 1).

Solution 80
The statement is true if and only if k > 4.
We start by proving that it does hold for each k > 4.
Consider any polynomial F(x) with integer coefficients satisfying the
inequality 0 < F(c) < k for each c E 10, 1, ... , k + 1}.

Note first that F(k + 1) = F(0), since F(k + 1) - F(0) is a multiple of
k + 1 not exceeding k in absolute value.
Hence

F(x) - F(0) = x(x - k - 1)G(x),
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where G(x) is a polynomial with integer coefficients.

Consequently,

k > IF(c) - F(O) I = c(k + 1 - c)IG(c)I (1)

for each c E { 1, 2, ... , k}.

The equality c(k + 1 - c) > k holds for each c {2, 3, ... , k - 1}, as it is
equivalent to (c - 1)(k - c) > 0.
Note that the set {2, 3,... , k - 1} is not empty if k > 3, and for any c in
this set, (1) implies that JG(c)j < 1.
Since G(c) is an integer, G(c) = 0.

Thus

F(x) - F(0) = x(x - 2)(x - 3)...(x - k + 1)(x - k - 1)H(x), (2)

where H(x) is a polynomial with integer coefficients.
To complete the proof of our claim, it remains to show that H(1) _
H(k) = 0.
Note that for c = 1 and c = k, (2) implies that

k > IF(c) - F(0)j = (k - 2)! . k . IH(c)j,

Fork > 4, (k - 2)! > 1.
Hence H(c) = 0.

We established that the statement in the question holds for any k > 4.
But the proof also provides information for the smaller values of k as
well.

More exactly, if F(x) satisfies the given condition then 0 and k + 1 are
roots of F(x) and F(0) for any k > 1; and if k > 3 then 2 must also be
a root of F(x) - F(0).
Taking this into account, it is not hard to find the following counterex-
amples:

F(x) = x(2 - x) for k = 1,

F(x) = x(3 - x) for k = 2,

F(x) = x(4 - x)(x - 2)2 for k = 3.
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Problem 81 [Korean Mathematics Competition 2001]
The Fibonacci sequence Fn is given by

Fi=F2=1,Fn+2=Fn+i+F,,. (nEN).

Prove that

for alln>2.
Solution 81
Note that

F2n3
3

+2 + F2n_2 3F2n - 9 - 2F2n

F2n+2 - 3F2n = F2.+1 - 2F2n = F2n-1 - F2n = -F2n-2,

whence
3F2n - F2n+2 - F2n-2 = 0 (1)

for alln>2.
Setting a = 3F2n, b = -F2n+2, and c = -F2n_2 in the algebraic identity

a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-be-ca)

gives

27F23.. - F32.+2 - F32,,-2 - 9F2n+2F2nF2n-2 = 0.

Applying (1) twice gives

F2n+2F2n-2 - F2n = (3F2n - F2.-2)F2n-2 - F2n
= F2n(3F2n-2 - F2n) - F2n-2 = F2nF2n-4 - F2n-2

F6F2 - F4 = -1.

The desired result follows from

9F2n+2F2nF2n-2 - 9F2n = 9F2n(F2n+2F2n-2 - F 22n) _ -9F2n.
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Problem 82 [Romania 1998]
Find all functions u : R -* R for which there exists a strictly monotonic
function f : R --+ R such that

f(x + y) = f(x)u(y) + f(y)

for all x, y E R.

Solution 82
The solutions are u(x) = ax, a E R+.
To see that these work, take f (x) = x for a = 1.
If a # 1, take f (x) = a' - 1; then

f(x + y) = a"y - 1 = (a' - 1)ay + ay - 1 = f(x)u(y) + f(y)

for all x, y E R.
Now suppose u : R - R, f : R --+ R are functions for which f is strictly
monotonic and f (x + y) = f (x)u(y) + f (y) for all x, y E R.
We must show that u is of the form u(x) = a' for some a E ][8+. First,
letting y = 0, we obtain f (x) = f (x)u(0) + f (0) for all x E R.
Thus, u(0) 1 would imply f (x) = f (0)/(1 - u(0)) for all x, which
would contradict the fact that f is strictly monotonic, so we must have
u(0) = 1 and f (0) = 0.
Then f (x) 0 0 for all x A 0.
Next, we have

f(x)u(y) + f(y) = f(x + y) = f(x) + f(y)u(x),

or

f(x)(u(y) - 1) = f(y)(u(x) - 1)

for all x, y E R. That is,

u(x) - 1 _ u(y) - 1
f(x) f(Y)

for allxy00.
It follows that there exists C E R such that

u(x)-1 _G
f(x)

for all x 0.

Thus, u(x) = 1+Cf (x) for x 0 0; since u(0) = 1, f (0) = 0, this equation
also holds for x = 0.
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If C = 0, then u(x) = 1 for all x, and we are done.
Otherwise, observe

1+Cf(x+y)
1 +Cf (x)u(y) +Cf (y)
u(y) + C f (x)UM
u(x)u(y)

for all x, y E R.

Thus u(nx) = u(x)" for all n E Z, x E R.
Since u(x) = 1 + C f (x) for all x, u is strictly monotonic, and u(-x) _
1/u(x)forallx,sou(x)>0forallxasu(0)=1.
Let a = u(1) > 0; then u(n) = a" for all n E N, and

u(p/q) = (u(p))1/1 = aplq

for allpE7L,gEN,sou(x)=ax for allxEQ.
Since u is monotonic and the rationals are dense in R, we have u(x) = ax
for allxER.
Thus all solutions are of the form u(x) = ax, a E R+.

Problem 83 [China 1986]
Let Z1, z2, ... , zn be complex numbers such that

IZiI+IZ2I+...+IznH = 1.

Prove that there exists a subset S of {z1, Z2.... , z } such that

I2z
zES

6

Solution 83, Alternative 1
Let fl, 22, and Q3 be three rays from origin that form angles of 60°, 180°,
and 300°, respectively, with the positive x-axis.
For i = 1, 2, 3, let Ri denote the region between Li and Li+1 (here P4 = f1),
including the ray L. Then

1 = Izkl + E zkl + E Izkl.
zkER.i ZkEIZ2 zkE7Z3

By the Pigeonhole Principle, at least one of the above sums is not less
than 1/3.
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Say it's R3 (otherwise, we apply a rotation, which does not effect the
magnitude of a complex number). Let Zk = xk + iyk. Then for Zk E R3,
Xk = IxkI > Izkl/2.
Consequently,

1: Zk
zk ER3

E Xk
Zk ER3

1 1 1 1> 2 zkl>-2 36
zk ER3

as desired.

Solution 83, Alternative 2
We prove a stronger statement: there is subset S of {z1i z2, ... , zn} such
that

Ez
zES

4

For 1 < k < n, let Zk = xk + iyk. Then

1 = Iz11+Iz21+...+lznl

C (Ix11+Iy11)+(ix21+1y21)+...+(Ixnl +Iynl)

>IxkI+1: lxkI+1: lykl+1: lykl-
xk>0 xk<O Yk>0 Yk<O

By the Pigeonhole Principle, at least one of the above sums is not less
than 1/4. By symmetry, we may assume that

4 <_ Ixkl
xk>0

Consequently,

E Zk
xk>O

1

4

Comment: Using advanced mathematics, the lower bound can be
further improved to 1/7f.

Problem 84 [Czech-Slovak Match 1998]
A polynomial P(x) of degree n > 5 with integer coefficients and n distinct
integer roots is given.

Find all integer roots of P(P(x)) given that 0 is a root of P(x).
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Solution 84
The roots of P(x) are clearly integer roots of P(P(x)); we claim there
are no other integer roots.
We prove our claim by contradiction. Suppose, on the contrary, that
P(P(k)) = 0 for some integer k such that P(k) 0.

Let
P(x) = a(x - rl)(x - r2) (X - r3)...(x - rn),

where a,rl,r2i...,rn are integers,

ri = 0 < Ir2l < Ir3l < ... < Irnl.

Since P(k) 54 0, we must have I k - riI > 1 for all i.
Since the ri are all distinct, at most two of I k - r2 I , I k - r3I , I k - r4I equal
1, so

Ia(k-r2)...(k-r,,,-1)I > allk-r2llk-r3llk-r4I > 2,

and P(k)j > 2I k(k - rn,)I.
Also note that P(k) = ri0 for some io, so P(k)I < Irnl.
Now we consider the following two cases:

1. IkI > rnl. Then IP(k)I > 2Ik(k - rn)I > 2IkI > Irnl, a contradic-
tion.

2. IkI < Irnl, that is, 1 < IkI < Irnl - 1. Let a, b, c be real numbers,
a < b. For x E [a, b], the function

f(x) = x(c - x)

reaches its minimum value at an endpoint x = a or x = b, or at
both endpoints.

Thus

Ik(k - rn)I = Ikllrn - kI > IkI(Irnl -kI) > Irnl -1.

It follows that

Irnl > IP(k)I > 2Ik(k - rn)I >- 2(Irnl -1),

which implies that Irnl < 2. Since n > 5, this is only possible if

P(x) = (x + 2)(x + 1)x(x - 1)(x - 2).

But then it is impossible to have k ri and IkI < Irnl, a contra-
diction.
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Thus our assumption was incorrect, and the integer roots of P(P(x)) are
exactly all the integer roots of P(x).

Problem 85 [Belarus 19991
Two real sequences x1i x2, ... , and y1i y2i .... are defined in the following
way:

XI = y1 = V .-, xn+1 = xn + 1 + xn,

and
yn

Yn+1 = 1+ l+y2
for all n > 1. Prove that 2 < XnYn < 3 for all n > 1.

Solution 85, Alternative 1
Let zn = 1/yn and note that the recursion for yn is equivalent to

zn+1 = Zn + 1 + zn.

Also note that z2 = f = xi i since the xis and zis satisfy the same
recursion, this means that Zn = xn_1 for all n > 1.

Thus,
XnXnxnyn= -=

Zn xn-1

Note that
1 +n-n_ 1 > xn-1

Thus Xn > 2xn_1 and XnYn > 2, which is the lower bound of the desired
inequality.

Since xns are increasing for n > 1, we have

2 2 1xn_1 > x1 = 3 >
3'

which implies that

2xn_1 > V1 + xn-1'

Thus 3xn_1 > xn, which leads to the upper bound of the desired inequal-
ity.

Solution 85, Alternative 2
Setting xn = cot On for 0 < On < 90° yields

(Xn+1 On)= COt On + 1 + COt2 en = COt On + CSC On = cot
2
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Since 01 = 30°, we have in general 0, = 20
1 . Similar calculation shows

that

It follows that
2

xnyn = I - tang On
.

Since tan On 54 0, tang On is positive and xnyn > 2.

And since for n > 1 we have Bn < 30°, we also have

tan2on <
1

so that xnyn < 3.

Comment: From the closed forms for xn and yn in the second solution,
we can see the relationship

yn

used in the first solution.

1

xn-1

Problem 86 [China 1995]
For a polynomial P(x), define the difference of P(x) on the interval [a, b]
([a, b), (a, b), (a, b]) as P(b) - P(a).
Prove that it is possible to dissect the interval [0, 1] into a finite number
of intervals and color them red and blue alternately such that, for every
quadratic polynomial P(x), the total difference of P(x) on red intervals
is equal to that of P(x) on blue intervals.
What about cubic polynomials?

Solution 86
For an interval i, let / P denote the difference of polynomial P on i.
For a positive real number c and a set S C_ IR, let S + c denote the set
obtained by shifting S in the positive direction by c.
We prove a more general result.

Lemma
Let t be a positive real number, and let k be a positive integer. It is
always possible to dissect interval Ik = [0, 2kf] into a finite number of
intervals and color them red and blue alternatively such that, for every
polynomial P(x) with deg P < k, the total difference of P(x) on the red
intervals is equal to that on the blue intervals.

yn = tan(2Bn) _
2 tan 0n

1 - tan 2 Bn
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Proof

We induct on k.

For k = 1, we can just use intervals [0, 1] and (2, 21]. It is easy to see
that a linear or constant polynomial has the same difference on the two
intervals.

Suppose that the statement is true for k = n, where n is a positive
integer; that is, there exists a set Rn of red disjoint intervals and a set
Bn of blue disjoint intervals such that Rn f1 B, = 0, R, U Bn = In, and,
for any polynomials P(x) with deg P < n, the total differences of P on
Rn is equal to that of P on B.
Now consider polynomial f (x) with deg f < n + 1. Define

g(x) = f(x + 2n1) and h(x) = f(x) - g(x).

Then deg h < n. By the induction hypothesis,

Obh = > Orh,
bEB, rER,

or

Abf + E Or9 _ E Arf + E Obg
bEBn rER,

It follows that
obf =

bEBn+l

where

rERn rEBn

rER'ri}1

Rn+1 = Rn U (Bn + 2n1),
and Bn+1 = Bn U (Rn + 2n1).

(If R'+1 and both contain the number 2n1, that number may be
removed from one of them.)
It is clear that Bn+1 and R'+1 form a dissection of In+1 and, for any
polynomial f with deg f < n + 1, the total difference of f on B'n+1 is
equal to that of f on Rn+1
The only possible trouble left is that the colors in B'+1 U Rn+1 might not
be alternating (which can happen at the end of the In and the beginning
of In + 2n1).
But note that if intervals i1 = [a1i b1] and i2 = [b1, c1] are in the same
color, then

Ai1f + -22f = 23f7
where i3 = [a1i c1].
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Thus, in Bn+1 URn+1, we can simply put consecutive same color intervals
into one bigger interval of the same color.
Thus, there exists a dissection

In+1 = Bn+1 U Rn+1

such that, for every polynomial f (x) with deg f < n + 1,

obf = > orf.
bEB,.+l rER,.+i

This completes the induction and the proof of the lemma.
Setting first f = a and then f = a in the lemma, it is clear that the
answer to each of the given questions is "yes."

Problem 87 [USSR 1990]
Given a cubic equation

x3+-x2+-x+_=0,
Mr. Fat and Mr. Taf are playing the following game.
In one move, Mr. Fat chooses a real number and Mr. Taf puts it in one
of the empty spaces.
After three moves the game is over.
Mr. Fat wins the game if the final equation has three distinct integer
roots.

Who has a winning strategy?

Solution 87
Mr. Fat has a winning strategy.
Let the polynomial be x3 + axe + bx + c. Mr. Fat can pick 0 first. We
consider the following cases:

(a) Mr. Taf chooses a = 0, yielding the polynomial equation

x3+bx+c=0.
Mr. Fat then picks the number -(mnp)2, where m, n, and p are
three positive integers such that

m2 + n2 = p2.

If Mr. Taf chooses b = -(mnp)2, then Mr. Fat will choose c = 0.
The given polynomial becomes

x(x - mnp) (x + mnp).
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If Mr. Taf chooses c = -(mnp)2, then Mr. Fat will choose

b = m2n2 - n2p2 - p2m2.

The given polynomial becomes

(x + m2)(x + n2)(x - p2).

(b) Mr. Taf chooses b = 0, yielding the equation

x3+ax2+c=0.

Mr. Fat then picks the number

m2(m+ 1)2(m2 +m+ 1)3,

where m is an integer greater than 1.

If Mr. Taf chooses

a = m2(m + 1)2(m2 + in + 1)3,

then Mr. Fat can choose

c = -m8(m + 1)8(m2 + m + 1)6.

The polynomial becomes

(x - mp) [x + (m + 1)P1 [x + m(m + 1)p],

where
p = m2(m + 1)2(m2 +m+ 1)2.

If Mr. Taf chooses

c=m2(m+1)2(m2+m+1)3,

then Mr. Fat can choose

a=-(m2+m+1)2.

The polynomial becomes

(x + mq) [x - (m + 1)q] [x - m(m + 1)q],

where
q=m2+m+1.
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(c) Mr. Taf chooses c = 0.

Then the problem reduces to problem 40 of the previous chapter.
Mr. Fat needs only to pick two integers a and b such that

ab(a - 1)(b - 1) yc- 0

and a + b = -1.

The polynomial becomes either x(x - 1)(x - a) or x(x - 1)(x - b).

Our proof is complete.

Below is an example of what Mr. Fat and Mr. Taf could do:

F T F T F Roots
0 a -3600 b 0 -60,0,60

" c -481 -16,-9,25
" b 4.9.7 a -2 3 .7 -8.27.49,

-4-27-49,
8.9.49

c -49 -14,21,42
,, c 2 a -3 -3,0,1

,,

b -3 0, 1, 2

Problem 88 [Romania 1996]
Let n > 2 be an integer and let f : 1[82 -> R be a function such that for
any regular n-gon A1A2 ... An,

f(A1)+f(A2)+...+f(A.) =0.

Prove that f is the zero function.

Solution 88
We identify 1182 with the complex plane and let ( = e2,rz/n,

Then the condition is that for any z E C and any positive real t,

n

f(z + W) = 0.

j=1

In particular, for each of k = 1, . . . , n, we obtain

f(z_(k+(')=0.
j=1
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Summing over k, we have

EEf(z-(1-(m)(k)=0.
m=1 k=1

For m = n the inner sum is n f (z); for other in, the inner sum again runs
over a regular polygon, hence is 0.
Thus f (z) = 0 for all z c C.

Problem 89 [IMO 1997 short list]
Let p be a prime number and let f (x) be a polynomial of degree d with
integer coefficients such that:

(i) f (0) = 0, f (1) = 1;

(ii) for every positive integer n, the remainder upon division of f (n)
by p is either 0 or 1.

Prove that d > p - 1.

Solution 89, Alternative 1
For the sake of the contradiction, assume that d < p - 2.
Then by Lagrange's interpolation formula the polynomial f (x) is
determined by its values at 0, 1, ..., p - 2; that is,

f(x)
p-2

f(k)x...(x - k + 1)(x - k - 1)...(x - p + 2)

k=0
k..

p-2

f (k)
k=0

k!(-1)p-k (p - k - 2)!

n n

Setting x = p - 1 gives

AP-1) =
p-2

f(k)(p - 1)(p -
2)...(p - k)

k

It follows that

(_1)p k!
k=0

f (k)
(-1)kktE ( J)p-kk!

k=0 J

p-2
(-1)p f (k) (mod p).

k=0

S(f) := f (0) + f (1) + . . + f (p - 1) - 0 (mode). (1)
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On the other hand, (ii) implies that S(f) - 7 (mod p), where j denotes
the number of those k E {0, 1, ... , p - 1} for which f (k) - 1 (mod p).

But (i) implies that 1 < 7 < p - 1.
So S(f) A 0 (mod p), which contradicts M.
Thus our original assumption was wrong, and our proof is complete.

Solution 89, Alternative 2
Again, we approach the problem indirectly.
Assume that d < p - 2, and let

f (x) = ap_2xp-2 + ... + alx + a0.

Then

where Si =

S(f) _
k=o

P-1

P-1 p-1 p-2

1 a
p-2 P-1 p-2

k=0 i=0 i=0 k=0 i-0
aiSi,

k=0

We claim that Si - 0 (mod p) for all i = 0, 1, ... , p - 2.
We use strong induction on i to prove our claim.

The statement is true for i = 0 as So = p.
Now suppose that So - Si - Si-1 - 0 (mod p) for some 1 < i <
p - 2. Note that

p p-1 p-1
0_pi+i =Eki+1 -Eki+1 _E[(k+1)i+i-ki+i]

k=1 k=0 k=0

E(1)k3 =(i+1)S+
k=0i=0

(i + 1)Si (mod p)

(i±1)5
i

-0

Since 0 < i + 1 < p, it follows that Si - 0 (mod p). This completes the
induction and the proof of the claim. Therefore,

p-2

S(f) = aiSi - 0 (mod p).
i=o

The rest is the same as in the first solution.
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Problem 90
Let n be a given positive integer.

Consider the sequence ao, a1, , a,,, with ao = 2 and

ak_1
ak = ak-i +

z

,

n

for k = 1, 2, , n.

Prove that
1- 1 <a,,,<1.

n

Solution 90, Alternative 1
W e prove a stronger statement: For k = 1 , 2, ... , n,

n+1 n
2n-k+2 <ak < 2n-k

We use induction to prove both inequalities.

We first prove the upper bound. For k = 1, it is easy to check that

_1 1 2n+1 n
ai

+
_

<4n 4n2 2n - 1

Suppose that
n

ak < 2n - k'
for some positive integer k < n. Then

ak+i

<

as

ak

Ti
(n + ak)

2n1 k Cn + 2nn k

n(2n - k + 1)
(2n - k)2

n
2n-k-1'

(2n-k+1)(2n-k-1)=(2n-k)z-1 <(2n-k)2.
Thus our induction step is complete. In particular, for k = n - 1,

109

(1)

a y = ak+i < 2n - (n- 1) - 1 1,
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as desired.

Now we prove the upper bound. For k = 1, it is easy to check that

_ 2n+1 n+1
a1

4n > -2n+ 1

Suppose that
n+1

ak> 2n-k+2'
for some positive integer k < n. Then

It follows that

n+1
ak+1 - 2n - k + 1

n + 1 (n + 1)2
(2n-k+1)(2n-k+2) +n(2n-k+2)2

n+1 (n+l 2n-k+21
2n-k+2)2 n 2n-k+1

_ n+1 1 1

- - )
> 0.2n-k+2)2 n 2n-k+1

This complete the induction step. In particular, for n = k - 1, we obtain

an-ak+1>
n+1 _n+1=I- 1 >1-

2n-(n-1)+1 n+2 n+2 n

as desired.

Solution 90, Alternative 2
Rewriting the given condition as

1 _ 1 n 1

ak ak_1 ak-1(n + ak-1) ak-1
ak-1 +

n

yields
1 1 1

ak_1 ak n+ak_i
for k = 1,2,...,n.
It is clear that aks are increasing.
Thus

1
an > an-1 > ... > ao = 2.

1

n + ak-1

(2)
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Thus (2) implies that
1 1 1

ak-1 ak n

for k = 1, 2, ... , n.
Telescoping summation gives

1 - 1 <1
ao an

or
1 1->--1=2-1=1,

an ao

that is, an < 1, which gives the desired upper bound.

Since an < 1, and, since aks are increasing, 2 = ao < ak < an < 1 for
k=1,2,...,n.
Then (2) implies

ak_1 ak n+ak_i > n+

for k = 1, 2, ... , n.

Telescoping sum gives

or

that is,

1 1 n
ao an n + 1

1 1 n n+2
an < ao n+l n+1'

n+1 1 1

an >
_

n+2 1 n+2 > l n'
which is the desired lower bound.

Problem 91 [IMO 1996 short list]
Let a1, a2, ... , an be nonnegative real numbers, not all zero.

(a) Prove that xn - aixn-i - - an_ix - an = 0 has precisely one
positive real root R.

(b) Let A = > 1 aj and B= 1 jai.

Prove that AA < RB.
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Solution 91

(a) Consider the function

4. Solutions to Advanced Problems

1.+ a2 anf(x)= x
-2+...+Xn.

Note that f decreases from oo to 0 as x increases from 0 to oo.

Hence there unique real number R such that f (R) = 1, that is,
there exists a unique positive real root R of the given polynomial.

(b) Let cj = aj/A.

Then cjs are non-negative and E cj = 1.

Since - In x is a convex function on the interval (0, oo), by Jensen's
inequality,

c3 l -1nRj -1n l =-ln(f(R))=0.

It follows that
n

or

j=1

-lnA+jlnR) > 0

n n

1: cj In A < E jcj In R.
j=1 j=1

Substituting c.7 = aj/A, we obtain the desired inequality.

Comment: Please compare the solution of (a) with that of the problem
15 in the last chapter.

Problem 92
Prove that there exists a polynomial P(x, y) with real coefficients such
that P(x, y) > 0 for all real numbers x and y, which cannot be written
as the sum of squares of polynomials with real coefficients.

Solution 92
We claim that

P(x, y) = (x2 + y2 - 1)x2y2 +
1

27
is a polynomial satisfying the given conditions.
First we prove that P(x, y) > 0 for all real numbers x and y.
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If x2 + y2 - 1 > 0, then it is clear that P(x, y) > 0; if x2 + y2 - 1 < 0,
then applying the AM-GM inequality gives

(1-x2-y2)x2y2 < 1-x2-y2+x2+y2 3
1

( 3 ) 27'

or

(x2 +Y 2 - 1)x2y2 > -
127*

It follows that P(x, y) > 0.
We are left to prove that P(x, y) cannot be written as the sum of squares
of polynomials with real coefficients.

For the sake of contradiction, assume that

n
P(x, Y) = Q, (X, y)2.

i=1

Since deg P = 6, deg Qi < 3.
Thus

Qi(x,y) = Atix3 + Bix2y + Cxy2 + Diy3

+Eix2 + Fixy + Giy2 + Hix + Iiy + JJ.

Comparing the coefficients, in P(x, y) and En 1 Qi(x, y)2, of terms x6
and y6 gives

or Ai = Di = 0 for all i.
Then, comparing those of x4 and y4 gives

n n

Ei Gi =0,
i=1 i=1

or Ei = Gi = 0 for all i.
Next, comparing those of x2 and y2 gives

n

I2=0,

or Hi=12=0 for all i.
Thus,

Qi(x, y) = Bix2y + Cixy2 + Fixy + Ji.
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But, finally, comparing the coefficients of the term x2y2, we have

n

F2 _ -1

which is impossible for real numbers F.

Thus our assumption is wrong, and our proof is complete.

Problem 93 [IMO 1996 short list]
For each positive integer n, show that there exists a positive integer k
such that

k = .f(x)(x + 1)2n +
g(x)(x2n + 1)

for some polynomials f, g with integer coefficients, and find the smallest
such k as a function of n.

Solution 93
First we show that such a k exists.
Note that x + 1 divides 1 - x2n. Then for some polynomial a(x) with
integer coefficients, we have

(1 + x)a(x) = 1 - x2n = 2 - (1 + x2n)

or

2 = (1 + x)a(x) + (1 + x2n).

Raising both sides to the (2n) th power, we obtain

22n
= (1 + x)2n(a(x))2n + (1 + x2n)b(x),

where b(x) is a polynomial with integer coefficients.

This shows that a k satisfying the condition of the problem exists. Let
ko be the minimum such k.

Let 2n = 2' q, where r is a positive integer and q is an odd integer.
We claim that ko = 29.

First we prove that 29 divides ko. Let t = 2'. Note that x2n + 1 =
(xt + 1)Q(x), where

Q(x) = xt(q-1) - xt(q-2) + ... - xt + 1.

The roots of xt + 1 are

C (2m - 1)7rl ((2m 1=
cos J + i sin t J , m = 1, 2, ... , t;
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that is,
R(x) = xt + 1 = (x - wl)(x - w2)...(x - wt).

Let f (x) and g(x) be polynomials with integer coefficients such that

ko = f(x)(x + 1)2n+ g(x)(x2n + 1)

= f (x)(x + 1)2n + g(x)Q(x)(xt + 1).

It follows that

f (w,,,)(wm, + 1)'ti = ko, 1 < m < t. (1)

Since r is positive, t is even. So

2=R(-1) = (1+wi)(1+w2)...(1+wt).

Since f (wl) f (w2) . f (Wt) is a symmetric polynomial in w1i w2, ... , wt
with integer coefficients, it can be expressed as a polynomial with integer
coefficients in the elementary symmetric functions in W1, W2.... I Wt

and therefore
F = f(wl)f(w2)...f(wt)

is an integer.

Taking the product over m = 1, 2, ... , t, (1) gives 22n F = ko or 22' 'gF =
k2' . It follows that 2g divides ko.

It now suffices to prove that ko < 2g.

Note that Q(-1) = 1.
It follows that

Q(x) = (x + 1)c(x) + 1,

where c(x) is a polynomial with integer coefficients.

Hence
(x + 1)2",(c(x))2, = (Q(x) - 1)2n

= Q(x)d(x) + 1, (2)

for some polynomial d(x) with integer coefficients.

Also observe that, for any fixed m,

{2j-1WM : j = 1 2, ... , t} = 1W1, W27 ... 7Wt

Thus
(1 + W,,,,)(1 + W3,) ... (1 +w2, t-1) = R(-1) = 2,

and writing

(1+W,,,,)(1-Wm.+wn-... +w2ri-2),
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we find that for some polynomial h(x), independent of m, with integer
coefficients such that

(1 +w,)th(w,) = 2.

But then (x + 1)h(x) - 2 is divisible by xt + 1 and hence we can write

(x + 1)h(x) = 2 + (xt + 1)u(x),

for some polynomial u(x) with integer coefficients.

Raising both sides to the power q we obtain

(x + 1)2n(h(x))q = 2q + (xt + 1)v(x), (3)

where v(x) is a polynomial with integer coefficients.

Using (2) and (3) we obtain

(x +
1)2n(c(x))2n(xt

+ 1)v(x)

= Q(x)d(x)(xt + 1)v(x) + (xt + 1)v(x)

= Q(x)d(x)(xt + 1)v(x) + (x + 1)2n(h(x))q - 2q,

that is,
21 = fl(x)(x + 1)2n +

gl(x)(x2n + 1),

where fl (x) and gl (x) are polynomials with integer coefficients.

Hence ko < 2q, as desired.

Our proof is thus complete.

Problem 94 [USAMO 1998 proposal, Kiran Kedlaya]
Let x be a positive real number.

(a) Prove that

(b) Prove that

°O (n - 1)! _ 1

n(x +1) (x+n)-x'

00 (n - 1)! 00
1

n=1
n(x + 1)...(x -+n)

k=1
(x + k) 2
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Solution 94
We use infinite telescoping sums to solve the problem.

(a) Equivalently, we have to show that

°O n!x _E
n(x + 1)...(x + n)

Note that
x 1 1

It follows that

n(x+n) n x+n

n!x

n(x + ... (x + n)

_ (n - 1)! n!

(x + 1) (x + (x + n)'

and this telescoping summation yields the desired result.

(b) Let

f(x) _

00

n=

(n - 1)!
+ 1)...(x + n)'

Then, by (a), f (x) < 1.
x

In particular, f (x) converges to 0 as x approaches oo, so we can
write f as an infinite telescoping series

f (x) _ )[f (x + k - 1) - f (x + k)].
k=1

On the other hand, the result in (a) gives

00 (n - 1)! 1
f(x - 1) - f(x) _

n(x + 1)...(x + n - 1)

1
00 (n - 1)!

X
E (x + 1) (x + n)

1

(1)
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Substituting the last equation to (1) gives

f(x) =

as desired.

Problem 95 [Romania 1996]
Let n > 3 be an integer, and let

XCS={1,2,...,n3}

be a set of 3n2 elements.
Prove that one can find nine distinct numbers a2, bi, c2 (i = 1, 2, 3) in X
such that the system

alx+bly+clz = 0
a2x + b2y + c2z = 0
a3x+b3y+c3z = 0

has a solution (xo, yo, zo) in nonzero integers.

Solution 95
Label the elements of X in increasing order x1 < ... < X3n2, and put

X1 = {xl, ... , xn2 },

X2 = {xn2+1 , ... , x2n2 },

X3 = {x2n2+1,...,x3n2}.

Define the function f : X1 X X2 X X3 -+ S x S as follows:

f(a,b,c) = (b - a, c - b).

The domain of f contains n6 elements.
The range of f, on the other hand, is contained in the subset of S x S
of pairs whose sum is at most n3, a set of cardinality

n3-1
n3(n3 - 1) ns1= 2 2

k=1

By the Pigeonhole Principle, some three triples (a2, b2, cx) (i = 1, 2, 3)
map to the same pair, in which case x = b1 - c1i y = c1 - a1, z = a1 - bl
is a solution in nonzero integers.
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Note that ai cannot equal bj since Xl and X2 are disjoint, and that
al = a2 implies that the triples (al, bl, cl) and (a2, b2, c2) are identical,
a contradiction.
Hence the nine numbers chosen are indeed distinct.

Problem 96 [Xuanguo Huang]
Let n > 3 be an integer and let Xi, x2i , xn be positive real numbers.
Suppose that

Prove that

1

xl+ x2+ + xn>(n-1) 1
+

1 +...+ 1

xl x2 xn

Solution 96
By symmetry, we may assume that xl < x2 < < xn. We have the
following lemma.

Lemma For l < i < j < n,

VT > xj
1+xi - 1+xj

Proof Since n > 3, and, since
n

we have

or

= 1.

= 1,

1 1 _ 2+xi+xj
1 > 1+xi + l+xj (1+xi)(1+xi)

1+xi+xj+xixj > 2+xi+xj.
It follows that xixj > 1. Thus

xi xj xi(1 + xj) - xj(1 + xi)

1 + xi 1 + xj (1 + xi) (1 + xj)

( xi - x3)(1 - xixj)

(1 + xi)(1 + xi)

> 0,
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as desired.

By the lemma, we have

x1 > x2 >...> xn
1+x1-1+x2_ _1+xn

and, since
1 1 1

> ... >
x1

x2
xn'

it follows by the Chebyshev Inequality

z=1

1
n

xi < xi

VT 1 + xi xi 1 + xi
i=1 i=1

By the Cauchy-Schwartz Inequality, we have

xi 1 + xi n2

i=1 1 + xi x=1 "/x

or

Multiplying by

n

i=1 1

n
1

1+xi
i=1

n n
xi 1

+ xx >n2.+ xi u xi
'=1 ti=1

on both sides of (2) and applying (1) gives

n n

x- >
n

1

Z

= 1. (1)

(2)

which in turn implies the desired inequality.
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Problem 97
Let x1, x2, ... , x, be distinct real numbers.
Define the polynomials

P(x) = (x - x1)(x - x2). .(x - xn)

and

Q(x) = P(x)
( 1 1 -L-)
x-x1 x-x2 x - xn

Let Y1, Y2, ... , yn_1 be the roots of Q.
Show that

inlxi-x31 < nlyi - yjI

Solution 97
By symmetry, we may assume that

121

d nlya - yjI = y2-Yi
i:xj

Let sk = y1 - xk, for k = 1, 2.... , n.

By symmetry, we may also assume that s1 < s2 < < sn, i.e., x1 >
X2 > ... > xn.

For the sake of contradiction, assume that

d< minlxi-xjl =minx. -xj =mins -si
i#j i<j i<j

Since P has no double roots, it shares none with Q.
Then

or

P(yi)
1

+
1 +...+ 1

=Q(yl)=0,
yi - Xi Yi-x2 Yi -'xn

1 + 1 +...+ 1 =0.
Yi - X1 Yi - X2 Yi - xn

In particular, setting i = 1 and i = 2 gives

n

k=1 k=1

1 =0._
-Sk Sk + d

(1)

(2)

We claim that there is a k such that Sk(Sk + d) < 0, otherwise, we have

1 1

Sk +d Sk
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for all k, which in turn implies that

n n 1

k=1 Sk + d k=1 Sk

which contradicts (2).

Let j be the number of ks such that sk (sk+d) < 0, that is, sk < 0 < sk+d.
A simple but critical fact is that sk + d and Sk+j have the same sign. In
fact, suppose that

S1 < ... < Si < Si+1 < ... < Si+j < 0 < Si+j+l < ... < Sni

then

s1+d< <si+d<0<si+1+d< <Sn+d.
Then Sk+j > 0 if and only if k > i + 1, that is Sk + d > 0.
From (1), we obtain sk + d < Sk+j, and, since Sk + d and Sk+j have the
same sign, we obtain

1 1

Sk + d Sk+j

for all k = 1, 2, , n - j. Therefore,

or

Also note that

n-j n-j 1

k=1 Sk+j k=1 Sk + d'

n n-j 1

<
k=j+1 sk k1 sk + d

E 1 <0< E 1

k=1 Sk k=n-j+1 Sk + d

Adding (3) and (4) yields

n n 1

k=1 Sk k=1 Sk + d

(3)

(4)

which contradicts (2).
Thus our assumption is wrong and our proof is complete.



4. Solutions to Advanced Problems 123

Problem 98 [Romania 1998]
Show that for any positive integer n, the polynomial

P X) = (x2 + x)2' + 1

cannot be written as the product of two non-constant polynomials with
integer coefficients.

Solution 98
Note that f(x) = g(h(x)), where h(x) = x2 + x and g(y) = y2" + 1.

Since

g(y+1) = (y+1)2 + 1 =yen +
k=1

(2m)k)
+2,

and ( ,) is even for 1 < k < 2n - 1, g is irreducible, by Eisenstein's
criterion.

Now let p be a non-constant factor of f, and let r be a root of p.
Then g(h(r)) = f (r) = 0, so s := h(r) is a root of g.
Since s = r2 + r E Q(r), we have Q(s) C Q(r), so

deg p > deg(Q(r)/Q) > deg(Q(s)/Q) = deg g = 2n.

Thus every factor of f has degree at least 2n.
Therefore, if f is reducible, we can write f (x) = A(x)B(x) where A and
B have degree 2n.

Next, observe that

f(x) = (x2+x)2"+1
x2ii}l +

x2n
+ 1 - (x2 + x + 1)2n (mod 2).

Since x2 + x + 1 is irreducible in Z2 [x], by unique factorization we must
have

A(x) - B(x) (x2 + x + 1)2 -' x2 + x2 1 + 1 (mod 2).

Thus, if we write

A(x) = a2 x2" +
... + ao,

B(x) = b2..x2n

+ . . + bo,

then a2.., a2n-1, ao, b2., bo are odd and all the other coefficients
are even. Since f is monic, we may assume without loss of generality
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that a2n = b2n = 1; also, aobo = f (0) = 1, but ao > 0, bo > 0 as f has
no real roots, so ao = bo = 1.
Therefore,

([x2n+2"-'] + [X2'-'
])(g(x)h(x))

2"

E a,b2n+2n-1
=2n-1

2i-1

+ E aib2n-1-i
i=o

1

+a2n-1b2n + aob2n-1 +a2n-1bo

2(a2n-1 + b2n-1) - 0 (mod 4)

as a2n-1 + is even.

But

1([x2n+2"-'] + [x2n 1])(f(x)) = ( 22

n

_1 =2 22
n

_1
_ 11)

and (2?n, 11) is odd by Lucas's theorem, so

([x2n+2n-1] + [X2'-']) (f(x)) = 2 (mod 4),

a contradiction.
Hence f is irreducible.

Problem 99 [Iran 1998]
Let fl, f2, f3 : R -* R be functions such that

aifi + a2f2 +a3f3

is monotonic for all ai, a2i a3 E R.

Prove that there exist c1i c2, c3 E R, not all zero, such that

Cifl(x) + C2f2(x) + c3f3(x) = 0

for all xER.

Solution 99, Alternative 1
We establish the following lemma.

Lemma: Let f, g : R --> R be functions such that f is nonconstant and
a f + bg is monotonic for all a, b E R. Then there exists c E R such that
g - c f is a constant function.

Proof Let s, t be two real numbers such that f (s) f (t).
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Let
g(s) - g(t)
f(s) - f(t)

Let hl = g - d1f for some dl E R.
Then hl is monotonic. But

hi(s) - hi(t) = g(s) - g(t) - di(f(s) - f(t)) = (f(s) - f(t))(u - d1).

Since f (s) - f (t) 0 is fixed, the monotonicity of h1 depends only on
the sign of u - d1.

Since f is nonconstant, there exist x1i x2 E R such that f (x1) f (x2).
Let

9(x1) - 9(x2)
C f(xl) - f(x2)

and h = g - cf.
Then r = h(xi) = h(x2) and the monotonicity of h1 = g - d1 f, for each
d1, depends only on the sign of c - dl.

We claim that h = g - c f is a constant function.
We prove our claim by contradiction.

Suppose, on the contrary, that there exists x3 E R such that h(x3) ,-E r.

Since f (xi) 0 f (X2), at least one of f (xi) f (X3) and f (X2) 0 f (X3) is
true.

.Without loss of generality, suppose that f (xi) 0 f(X3)

Let
9(XI) - 9(x3)

C f(xi)
-

f(x3)

Then the monotonicity of h1 also depends only on the sign of c' - d1.
Since h(x3) # r = h(xi),

9(xi) - 9(x3)c
54

f(xi) - f(x3)

hence c - d1 0 c' - dl.
So there exists some d1 such that h1 is both strictly increasing and de-
creasing, which is impossible.

Therefore our assumption is false and h is a constant function.

Now we prove our main result.

If fl, f2, f3 are all constant functions, the result is trivial.
Without loss of generality, suppose that f1 is nonconstant.
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For a3 = 0, we apply the lemma to f1 and f2, so f2 = cf1 +d; for a2 = 0,
we apply the lemma to f1 and f3, so f3 = c' fl + d'.
Here c, c', d, d' are constant.
We have

(c'd-cd')fl+d'f2-df3 = (c'd-cd')fl+d'(cf1+d)-d(c fl+d') = 0.

If (c'd - cd', d', -d) j4 (0, 0, 0), then let

(c1ic2,c3) = (c'd-cd',d',-d)

and we are done.
Otherwise, d = d' = 0 and f2i f3 are constant multiples of fl.
Then the problem is again trivial.

Solution 99, Alternative 2
Define the vector

v(x) = (f1(x),f2(x),f3(x))

forxeR.
If the v(x) span a proper subspace of 1183, we can find a vector (Cl, c2, c3)
orthogonal to that subspace, and then c1 fl (X) + c2 f2 (X) + c3 f3 (X) = 0
for all x R.

So suppose the v(x) span all of R3.
Then there exist x1 < x2 < X3 E R such that v(x1), v(x2), v(x3) are
linearly independent, and so the 3 x 3 matrix A with Ai3 = fj(xi) has
linearly independent rows.
But then A is invertible, and its columns also span R3.
This means we can find c1, c2i C3 such that

3

Ci(ff,(x1), fi(x2), fi(x3)) = (0, 1, 0),
i=1

and the function cifi+c2f2+c3f3 is then not monotonic, a contradiction.
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Problem 100 [USAMO 1999 proposal, Richard Stong]
Let x1i x2, ..., x,,, be variables, and let y1, y2, ... , y2^_1 be the sums of
nonempty subsets of xi.
Let pk(xl,... , xn) be the kth elementary symmetric polynomial in
the yj (the sum of every product-of k distinct yi's).
For which k and n is every coefficient of pk (as a polynomial in xl, ... , xn)
even?

For example, if n = 2, then y1i y2, y3 are x1, x2, x1 + x2 and

p1 = yl + Y2 + Y3 = 2x1 + 2x2i

P2 = Y1Y2 + Y2Y3 + Y3Y1 = xi + x2 + 3x1x2,

P3 = YiY Y3 = XiX2 + xlx2

Solution 100
We say a polynomial pk is even if every coefficient of pk is even.
Otherwise, we say Pk is not even.

For any fixed positive integer n, we say a nonnegative integer k is bad
for n if k = 2n - 2j for some nonnegative integer j.
We will show by induction on n that pk(xl, x2i , xn) is not even if and
only if k is bad for n.
For n = 1, pl(x1) = xl is not even and k = 1 is bad for n = 1 as
k=1=21-2°=2n-2°.
Suppose that the claim is true for a certain n.
We now consider pk (x1i X2.... , xn+l)
Let ok(y1iY2, ... , ys) be the kth elementary symmetric polynomial.
We have the following useful, but easy to prove, facts:

1. Qk(y1,Y2,"',Ys) 0) =Qk(Y1,Y2,ys);

2. For all1<r<s,

Qk(yl,...,ys) =

3.

o"i

i+j=k

yi, ,yr)Qj(yr+l,"',ys)]i

9k(x+y1,x+y2,...,x+Ys)
qT, (x + yi l) (x + yi 2) ... (x + y ik )

k

1: 1: .YS1 ys2 ..
. , Srxk-r

r=O S1<32< <S,sl ... Srl Al
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k /S - r k-rIk -r0r(y1,...,ys) x .

r=0

Hence

pk(xl,x2,...,xn+1)

[pi(xl,...,xn)

i+j=k

Qj (xn+1, xl + xn+1, ... x1 + x2 + ... + xn+1)1

-r(2nE Pi(xl, ... xn)pr(x1, ... xn)xn+1'
i+j=k r=0 r

By the induction hypothesis, every term of pr(xl, x2 , xn) is even un-
less r = 2" - 2t, for some 0 < t < n.
For such r, note that

jr 2t

\j-r/
is even unless j - r = 0 or j - r = 2t.
Therefore, taking coefficients modulo 2,

pk(x1, x2, ... , xn+1

pi (x1, x2, ... , xn)Pj (x1, x2, ... Xn)
i+j=k

n
2t+ pk-2^ (xl, x2, ... , xn)p2^-2t (x1, x2, . xn)x .

t=0

By the induction hypothesis, the terms in the first sum are even unless
k-2n=2n-2" forsome0<u<n, that isk=2n+l-2"
In the second sum, every term appears twice except the term

Pk/2(x1) x2,...,xn)2,

for k even.

By the induction hypothesis, this term is even unless k/2 = 2n - 2", for
some 0 < v < n, that is k = 2n+1 - 2v+1

It follows that Pk (XI, x2i xn+l) is even unless k = 2n+1 - 2' for some
0<w<n+1, i.e., kisbadforn+1:
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Furthermore, note that the odd coefficients in

Pk (x1, x2, .. ' , xn+1)

occur for different powers of xn+1

Therefore, the condition that k is bad for n + 1 is also sufficient for

pk(x1, x2i ... , xn+1)

to be odd.
Our induction is complete.

Problem 101 [Russia 2000]
Prove that there exist 10 distinct real numbers a1, a2i ..., alo such that
the equation

(x - a,) (x - a2)...(x - alo) = (x + al)(x + a2)...(x + alo)

has exactly 5 different real roots.

Solution 101
We show that {a1, a2, ... , alo} _ {7, 6, ... , -2} is a group of numbers
satisfying the conditions given in the problem.

The given equality becomes

(x - 2)(x - 1)x(x + 1)(x + 2)g(x2) = 0,

where

g(u) = 2[((7+6+.-.+3)U2+

If g(u) = has no real solutions, then g(x2) = 0 has no real solutions.
If ul and u2 are real solutions of g(u) = 0, then U1 +U2 < 0 and ulu2 > 0,
that is, both ul and u2 are negative.
It follows again that g(x2) = 0 has no real solutions.
Our proof is complete.
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Arithmetic-Geometric Mean Inequality (AM-GM Inequality)
If a1, a2, ... , an are n nonnegative numbers, then

1(a,+a2+...+a.)
n

(ala2...a..)

with equality if and only if a1 = a2 =

Binomial Coefficient

= an.

The coefficient of xk in the expansion of (x + 1)n is

n _ n!

k) k!(n - k)!

Cauchy-Schwarz Inequality

F o r any real numbers al, a2, ... , an, and b1, b2, ... , bn

(al + a2 + ... + an)(bi + b2 + _ + bn) > (alb, + a2b2 + ... + anbn)2

with equality if and only if ai and bi are proportional, i = 1, 2, ... , n.

Chebyshev Inequality

1. Let x1, x2 .... xn and y1, y2, ... , yn be two sequences of real num-
bers, such that x1 < x2 <_ <_ xn and yl < Y2 < ... < yn.
Then

1 (xl+x2+ +xn)(yl+y2+ +yn) < xlyl+x2y2+ +xnyn.

2. Let x1i x2 ... , xn and y1, y2, , yn be two sequences of real num-
bers, such that x1 > x2 >_ > xn and yi > Y2 > > yn
Then

( X



132 Glossary

De Moivre's Formula

For any angle a and for any integer n,

(cos a + i sin a)' = cos na + z sin no.

Elementary Symmetric Polynomials (Functions)

Given indeterminates xl, ..., xn, the elementary symmetric functions
s1,. .. , sn, are defined by the relation (in another indeterminate t)

(t+xl) (t+xn) =to+slti-1+...+sn_1t+sn.
That is, sk is the sum of the products of the x, taken k at a time. It
is a basic result that every symmetric polynomial in x1, ... , xn can be
(uniquely) expressed as a polynomial in the si, and vice versa.

Fibonacci Numbers

Sequence defined recursively by F1 = F2 = 1, Fn+2 = Fn+l + Fn, for all
nEN.

Jensen's Inequality

If f is concave up on an interval [a, b] and A1, A2, ..., A, are nonnegative
numbers with sum equal to 1, then

Alf (xi) + A2f (x2) + ... + Anf (xn) > f (A1x1 + A2x2 + ... + Anxn)

for any xl, x2, ... , xn in the interval [a, b]. If the function is concave
down, the inequality is reversed.

Lagrange's Interpolation Formula

Let xo, x1, . . . , xn be distinct real numbers, and let yo, yl, ... , y, be ar-
bitrary real numbers. Then there exists a unique polynomial P(x) of
degree at most n such that P(xi) = yi, z = 0, 1, . . . , n. This is the
polynomial given by

P(x) = yi,

(x - x0) ...(x - xi-1)(x - xi+l)...(x - xn)

i=0
(xi - x0) ...(xi - xi-1)(xi - xa+1)...(xi - xn)

Law of Cosines

Let ABC be a triangle. Then

BC2 = AB2 + AC2 - 2AB AC cos A.
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Lucas' Theorem

Let p be a prime; let a and b be two positive integers such that

a = akpk +ak_lpk-i + ... alp+ao, b = bkpk +bk_lpk-1 + ... bip+ bo,

where 0 < ai, bi < p are integers for i = 0, 1, ... , k. Then

Cab) \bk/
(bk-1)

\b1)
(aobo)

(mod p).

Pigeonhole Principle

If n objects are distributed among k < n boxes, some box contains at
least two objects.

Root Mean Square-Arithmetic Mean Inequality (RMS-AM In-
equality)

For positive numbers x1, x2, ... , xn,

xi+x2+...+X2 XI +X2 +''' +Xk
n n

More generally, let a1, a2, ... , an be any positive numbers for which a1 +
a2 + + an = 1. For positive numbers x1, x2, ... , xn we define

M_ = min{x1, x2, ... , xk },
M. = max{xiix2,...,xk},

a1 a2 aM = x1 x2 ... xn
Mt = (aix' + a2x2 + ... + akxk)1/t

where t is a non-zero real number. Then

M-O<MS<Mt<_M.

for s < t.
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Triangle Inequality

Let z = a + bi be a complex number. Define the absolute value of z to
be

z _ a2 + b2.

Let a and 3 be two complex numbers. The inequality

la+01 :5 lal+101

is called the triangle inequality.

Let a = al +a2i and 3 = Ni +132ti, where al, a2i i3 , /32 are real numbers.

Then a + = (al + al) + (a2 + /32)i.
Vectors u = [ai, a2], v = [N1, /32], and w = [al + X31, a2 + /32] form a
triangle with sides lengths Iah, 1,31, and ja +,31.

The triangle inequality restates the fact that the length of any side of a
triangle is less than the sum of the lengths of the other two sides.

Vieta's Theorem

Let x1, x2, ... , xn be the roots of polynomial

P(x) = anxn + an_1xn-1 + ... + a1x + a0.

where an 0 0 and a0, a , , . . . , an E C. Let sk be the sum of the products
of the xi taken k at a time. Then

sk=(-1)kan-k

a n

that is,

x1+x2+ +xn
an-1=- i

an

X1X2 + +xixj +xn-1xn
an-2

= i
an

xix2 ... xn = (-1)n a0
.

an

Trigonometric Identities

sin2 a + cos2 a= 1,

sin a
tan x =

cos a
1

cot x =
tan a
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addition and subtraction formulas:

sin(a±b) =sinacosb±cosasinb,
cos(a±b) =cosacosbT- sinasinb,

tan(a ± b) =
tan a ± tan b

1T- tan a tan b

double-angle formulas:

sin 2a = 2 sina cos a,

cos 2a = cost a - sin 2 a = 2 cost a - 1 = 1 - 2 sine a,
2 tan a

tan 2a =
1 - tang a'

triple-angle formulas:

sin3a=3sina-4sin3a,
cos 3a = 4 cos3 a - 3 cos a,

3 tan a - tan3 a
tan 3a =

half-angle formulas:

1-3tan2a '

2 tan 2
sin a = ,1+tang z

1 - tan2 a
cos a = ,

1+tang2
2 tan 2

tan a = '
1 - tang 2

sum-to-product formulas:

sin a + sin b = 2 sin a l b cos a 2 b,

cosa+cosb=2cosa2bcosa2 b

tan a + tan b =
sin(a + b)
cos a cos b'

difference-to-product formulas:

sina-sinb=2sina2 bcosa2b,
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cosa-cosb=-2sina2 bsina2 b

tan a - tan b
sin(a - b)=
cos a cos b'

product-to-sum formulas:

2 sin a cos b = sin(a + b) + sin(a - b),
2 cosa cos b = cos(a + b) + cos(a - b),
2 sin a sin b = - cos(a + b) + cos(a - b).
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