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Prologue

This booklet contains selected problems used in the training and selection pro-
cess of the IMO team that participated in IMO 2015. Many of the problems are
taken from IMO Shortlisted problems. And many other are taken from other
olympiads. We are grateful to the problem setters of those problems. They
helped a lot in our training process. We hope it wouldn’t raise any legal issue
related to copyrights for using those problems since they were by no means used
for any commercial gain. So we apologize in advance if it’s any inconvenience
for anyone. Also, thanks to anyone who contributed to the training process in
any way, including our MOVERs(Math Olympiad Volunteers), who took care
of the participants in the camp.

I am very grateful to Mahi, Sanzeed, Asif and Swad for their time and
contribution. At first, I wanted to create this document all by myself. But
later I realized I don’t have enough time for that. So, I invited Mahi. Later on
I had to invite others too because we both got busy. Whereas it should have
been published in 2015, I couldn’t do it until now. Therefore, it goes without
saying that they had a lot to do with it.

Another point I should mention is that, all problems may not have solution
right now or some might contain typos. Probably in a later version, we will
update it. If there are any typos or errors in solutions or any suggestions, feel
free to email me: billalmasum93@gmail.com

Masum Billal
University Of Dhaka

Department of Computer Science and Engineering
Dhaka

Bangladesh

i

billalmasum93@gmail.com


You can use this document in any form as long as you don’t
benefit commercially. Moreover, one of my primary mo-
tivations to create this document was to encourage other
countries to publish their booklets as well. Because many
countries tend to keep their training problems and materi-
als secret. Therefore, you can share it as much as you want,
and also enable others to share their booklet too.



Bangladesh Mathematical Olympiad

In Bangladesh, students face at least twelve stages of primary, secondary and
higher secondary education. Excluding pre-school studies, one has to study in
classes 1 − 12. Grades 1 to 5 are considered primary, 6 − 10 secondary and
11 − 12 is higher secondary. Mathematical competitions in Bangladesh are
divided into four categories:

1. Primary Students of class 1− 5.

2. Junior Students of class 6− 8.

3. Secondary Students of class 9− 10.

4. Higher Secondary Students of class 11− 12.

It is to be noted that, we treat the participants of secondary and higher sec-
ondary category almost equally. Therefore, most problems posed for these two
categories are about same.

Two contests are held: one on a regional level and the other on a national
level. At first, regional contests are held in different districts, 21 this year.
In a district, a school provides the venue of the regional olympiad. Partic-
ipants who are awarded gets to participate in the national olympiad. The
olympiads take place in a festive manner and the national level olympiad is
known as BdMO(Bangladesh Mathematical Olympiad). Around 40 partici-
pants are chosen as campers of the national math camp, where some exams are
held in order to determine the team for the IMO. Sometimes, there is an exten-
sion camp, where around 20 campers are called for in order to take part in mock
exams of Team Selection Tests. Finally a pool of at most six students is
selected to represent Bangladesh at the International Mathematical Olympiad.
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IMO Contestants of 2015

From right to left in figure (1), the members are:

• Asif E Elahi
2015 Bronze, 2014 HM

• Nayeemul Islam Swad
2015 HM

• Adib Hasan
2015, 14, 13 Bronze, 2012 HM

• Sazid Akhter Turzo
2015 Bronze, 2014 HM

• Sanzeed Anwar
2015 Silver, 2014 HM

• Sabbir Rahman Abir
2015 Bronze
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Figure 1: Bangladesh IMO Team 2015, at the IMO Camp
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Trainer Panel of 2015

This year the following trainers contributed in the math camps by taking classes
and setting problemsets.

1. Dr. Mahbub Majumdar (coach of BdMO and leader of our IMO team)

2. Masum Billal

3. Nur Muhammad Shafiullah

Special thanks to Muhammad Milon(A BIG THANK YOU to him. He cheered
up and entertained everyone throughout his classes when all the campers were
in the ICU called national math camp) and Zadid Hasan.
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Notations

• a divides b is denoted by a|b

• (a, b) = gcd(a, b) is the greatest common divisor of a and b.

• [a, b] = lcm(a, b) is the least common multiple of a and b.

• τ(a) is the number of divisors of a.

• σ(n) is the sum of divisors of n.

• ϕ(n) is the number of positive integers less than or equal to n which are
co-prime to n.

• π(n) is the number of primes less than or equal to n.

• νp(n) = α is the largest positive integer so that pα|n but pα 6 |n.

• Λ(n) is the Van Mangoldt Function.
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Chapter 1

National Olympiad Problems

1.1. Primary Category

Problem 1.1.1. Write down all the prime numbers in the range of 1 to 50.

Solution. 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47

Problem 1.1.2. Four people A,B,C and D have an average monthly income of 10000 taka.
First three of them have an average monthly income of 12000 taka. Average income of first
two of them is 15000 taka. Find the monthly income of B,C and D if A has a monthly
income of 20000 taka.

Solution. Let a, b, c, d denote their respective incomes. Then the given conditions are:

a+ b+ c+ d

4
= 10000⇒ a+ b+ c+ d = 40000(1.1.1)

a+ b+ c

3
= 12000⇒ a+ b+ c = 36000(1.1.2)

a+ b

2
= 15000⇒ a+ b = 30000(1.1.3)

a = 20000(1.1.4)

(3) and (4) ⇒ b = 10000
(2) and (3) ⇒ c = 6000
(1) and (2) ⇒ d = 4000

Problem 1.1.3. In the following figures a rectangular piece of paper ABCD has been
folded several times. First, the side CD was made to fall on the line AD. Point E in
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figure (ii) represents the point C after folding. In the next figure the portion BF was
made to fall on EF . Lastly, the side AG was made to fall on GH. Find the lengths of
GJ, IJ, IE,ED,EH and HF . It is given that AB = 8 and BC = 15.

Solution.

Solution ED = EF = AB = 8

HF = BF = AE = AD − ED = BC − ED = 15− 8 = 7

EH = EF −HF = AB −HF = 8− 7 = 1

GJ = GA = EH = 1

IJ = EH = 1

IE = AE − AI = BF − AI = HF − AI = HF −GJ = 7− 1 = 6

Problem 1.1.4. A circus party has the same number of lions as tigers. You asked to the
owner of the circus the number of lions and tigers. He gave you the following information:

i. An elephant is enough to feed all the tigers and lions in the circus.

ii. Eighteen deers produce the same amount of meat as an elephant does.

iii. A lion eats twice as much as a tiger.

iv. One buffalo is enough to feed a lion and a tiger.

v. A tiger will eat exactly the same amount of meat a deer has.

Find the number of tigers and lions in that circus party.

Solution. Let the number of tigers(and lions)be x.

1. All of 2x animals eat in total 3x(a single tiger’s food).

2. 3x(a single tiger’s food) = an elephant.

3. 3x(a single tiger’s food) = 18 deer.
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4. 3x(a single tiger’s food) = 18(a single tiger’s food)

So, 3x = 18⇒ x = 6.

Problem 1.1.5. Surjo is four years old and he is learning to write numbers. His math
notebook looks like a square grid with 20 rows and 20 columns. He usually writes the
numbers from top to bottom and when one column is finished he starts writing along the
next column. One day he starts writing the numbers from left to right (along the rows).
How many of the numbers will be placed in exactly the same place where it would have
appeared if he had written along the columns?

Solution. Let n be such a number which remained in the position in both of the writing
methods.
Let x and y be the row and column number of n, respectively, 1 ≤ x, y ≤ 20.
Then following the order of the numbers in the vertical writing method,

n = 20(y − 1) + x

Again by the horizontal writing method,

n = 20(x− 1) + y

∴ 20(y − 1) + x = n = 20(x− 1) + y

⇒ x = y

So, x must be equal to y and there are 20 such pairs. So they correspond to 20 possible
values for n.

Problem 1.1.6. In the following figure BKLGNM,CMNHPO and DOPIRQ are regular
hexagons (all six sides of each hexagon are equal and so are the angles). BKLGNM has an
area of 24 square units. What is the area of the rectangle AFJE?
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Solution. Let the center of the hexagon BKLGNM be O and
OB = OG = AF

2
= a. Then

area[BKLGNM ] = 6× area[OBK]
⇒ area[OBK] = 24

6
= 4

⇒
√
3a2

4
= 4

⇒ a = 4
4√3

⇒ AF = 8
4√3

Again, 4OKL equilateral and with side-length a, so, altitude =
√
3a
2

= 2 4
√

3

So, FJ = 6× altitude of 4OKL = 12 4
√

3
∴ area[AFJE] = AF × FJ = 96

1.2. Junior Category

Problem 1.2.1. A small country has a very simple language. People there have only two
letters and all their words have exactly seven letters. Calculate the maximum number of
words people can use in that country.

Solution. There are two possibilities for each letter. So 27 possibilities for the 7 letters. So
they can use at most 27 words.

Problem 1.2.2. In the following figures, the larger circles are identical and so are the smaller
ones. In (i) the circles have a common center and the lines AD and BC divide both the
circles in four equal halves. The larger circle has an area of 100 square meters. Find the
area of the shaded region in figure(ii).
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Solution. area[circleABCD] = 100⇒ area[XDC] = 25

radius of ABCD =

√
area[ABCD]

π
=
√

100/π = 2×radius of small circle

So, area[small circle] = π

(
5

π

)2

= 25
π

∴ area of the shaded region = area[XDC]− area[small circle]
2

= 25−

25

π
2

Problem 1.2.3. A circus party has the same number of lions as tigers. You asked to the
owner of the circus the number of lions and tigers. He gave you the following information:

i. An elephant is enough to feed all the tigers and lions in the circus.

ii. Eighteen deers produce the same amount of meat as an elephant does.

iii. A lion eats twice as much as a tiger.

iv. One buffalo is enough to feed a lion and a tiger.

v. A tiger will eat exactly the same amount of meat a deer has.

Find the number of tigers and lions in that circus party.

Solution. Let the number of tigers(and lions)be x.

1. All of 2x animals eat in total 3x(a single tiger’s food).

2. 3x(a single tiger’s food) = an elephant.

3. 3x(a single tiger’s food) = 18 deer.

4. 3x(a single tiger’s food) = 18(a single tiger’s food)

So, 3x = 18⇒ x = 6.

Problem 1.2.4. In the following figure BKLGNM,CMNHPO and DOPIRQ are regular
hexagons (all six sides of each hexagon are equal and so are the angles). BKLGNM has an
area of 24 square units. What is the area of the rectangle AFJE?

Solution. Let the center of the hexagon BKLGNM be O and

OB = OG =
AF

2
= a. Then

area[BKLGNM ] = 6× area[OBK]
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⇒ area[OBK] =
24

6
= 4

⇒
√

3a2

4
= 4

⇒ a =
4
4
√

3

⇒ AF =
8
4
√

3

Again, 4OKL equilateral and with side-length a, so, altitude =
√

3a

2
= 2 4
√

3

So, FJ = 6× altitude of 4OKL = 12 4
√

3
∴ area[AFJE] = AF × FJ = 96

Problem 1.2.5. In a party, boys shake hands with girls only but each girl shakes hands
with everyone else. If there are total 40 handshakes, find the number (more than one) of
boys and girls in the party.

Solution. Let the number of boys in the party be x and the number of girls be y. Then
each boy shakes hands exactly y times and each girl shakes hands y + (x− 1) times. So the
total number of handshakes will be xy + y(y + x− 1) = y(2x+ y − 1) ∴ y(2x+ y − 1) = 40
Now a little checking for y over the factors of 40 shows us that only for y = 5(y > 1) we get
a positive integral value for x(= 8).

Problem 1.2.6. ABCD is a parallelogram, where ∠ACB = 80◦, ∠ACD = 20◦. P is a
point on AC such that, ∠ABP = 20◦ and Q is a point on AB such that ∠ACQ = 30◦. Find
the magnitude of the angle determined by the lines CD and PQ.

Solution. Let PQ meet CD at K and the parallel from P to BC meet AB at F . Let CF
meet BP at G. Since4BCG is equilateral, BG = BC. Since4CBQ is isosceles BQ = BC.
Hence 4BGQ is isosceles,

∠BGQ = 80◦, ∠FGQ = 40◦
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Since ∠QFG = 40◦, 4FQG is isosceles and FQ = QG. Also PF = PG. Hence 4GPQ ∼=
4FPQ,PQ bisects ∠FPG, and ∠QPB = 30◦. Now ∠CKQ = ∠CPQ − ∠KCP =
(∠CPB + ∠BPQ)− ∠KCP = (40◦ + 30◦)− 20◦ = 50◦.

1.3. Secondary Category

Problem 1.3.1. A crime is committed during the hortal. There are four witnesses. The
witnesses are logicians and make the following statements.

• Witness one says exactly one of the witnesses are liar

• Witness one says exactly two of the witnesses are liar

• Witness one says exactly three of the witnesses are liar

• Witness one says exactly four of the witnesses are liar

Assume that each of the statements are true or false. Find the number of liar witnesses.

Solution. All the 4 witnesses provided 4 different kind of informations and any two of them
cannot be true at the same time. So there can be at most 1 truthful. Again all 4 of them
cannot be liar otherwise the 4th person will be truthful. So there are exactly 3 liars.

7



Problem 1.3.2. There were 36 participants in a BdMO event. Some of the participants
shook hand with each other. No two of them shook hands with each more than once. It
was found that no two participants with the same number of handshakes made, had shaken
hands each other. Find the maximum number of handshakes at the party.

Solution. Suppose that the number of participants who shook hands with exactly i other
participants is f(i). Then, due to the given condition, f(i) ≤ 36− i. Now, the total number

of handshakes is
1

2

35∑
i=0

if(i). Thus,

1

2

35∑
i=0

i · f(i) ≤ 1

2

35∑
i=0

i(36− i) = 3885

Thus the maximum number of handshakes at the party is 3885. It’s left to the reader to
find an appropriate construction with 3885 handshakes.

Problem 1.3.3. A tetrahedron is a polyhedron composed of 4 triangular faces. Faces ABC
and BCD of tetrahedron ABCD meet at and angle of π

6
. The area of 4ABC and 4BCD

are 120 and 80 resp. where BC = 10. What is the volume of the tetrahedron? (The volume
of a tetrahedron is one third the area of it’s base times its height)

Solution. Let P and Q be the projection of A on the plane BCD and line BC resp.

Then
(ABC) =

1

2
×BC × AQ =⇒ AQ =

2× 120

10
= 24

Again ∠AQP = 30◦ and ∠APQ = 90◦. So AP = AQ× sin 30◦ =
24

2
= 12

∴ volume of tetrahedron ABCD =
1

3
× (BCD)× AP =

1

3
× 80× 12 = 320.

Problem 1.3.4. Trapezoid ABCD has sides AB = 92, BC = 50, CD = 19, AD = 70.The
side AB is parallel to CD. A circle with center P on AB is drawn tangent to BC and AD.
Given that AP = m

n
where m and n are coprime positive integers. Find m+ n?

Solution. Let the circle touches AC and BD at Q and R resp and AD ∩BC = S.
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Then PQ ⊥ BC and PR ⊥ AD. So

PQ = PR =⇒ PB. sin∠PBQ = PA. sin∠PAR

=⇒ PB

PA
=

sin∠BAS
sin∠ABS

=⇒ AB − PA
PA

=
BS

AS

=⇒ 92

PA
− 1 =

BC

AD

=⇒ 92

PA
= 1 +

50

70
=

12

7

=⇒ PA =
92× 7

12
=

161

3

∴ m+ n = 164.

Problem 1.3.5. In 4ABC, A′, B′, C ′ are on sides BC,CA,AB resp. Also AA′, BB′, CC”

are concurrent at O. Also,
AO

OA′
+
BO

OB′
+
CO

OC ′
= 92. Find

AO

OA′
BO

OB′
CO

OC ′
.

Solution. Let (BOC) = p, (COA) = q and (AOC) = r.

AO

OA′
=

(ABO)

(OBA′)
=

(ACO)

(OCA′)
=

(ABO) + (ACO)

(OBA′) + (OCA′)
=
q + r

p

Similarly
BO

OB′
= r+p

q
and

CO

OC ′
=
p+ q

r
.

Therefore
AO

OA′
+
BO

OB′
+
CO

OC ′
= 92 implies

q + r

p
+
r + p

q
+
p+ q

r
=

∑
cyc q

2r + qr2

pqr
= 92

So
AO

OA′
BO

OB′
CO

OC ′
=

q + r

p
× r + p

q
× p+ q

r

=
(
∑

cyc q
2r + qr2) + 2pqr

pqr
= 92 + 2

= 94

1.4. Higher Secondary Category

Problem 1.4.1. A crime is committed during the hortal. There are four witnesses. The
witnesses are logicians and make the following statements.
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• Witness one says exactly one of the witnesses are liar

• Witness one says exactly two of the witnesses are liar

• Witness one says exactly three of the witnesses are liar

• Witness one says exactly four of the witnesses are liar

Assume that each of the statements are true or false. Find the number of liar witnesses.

Solution. All the 4 witnesses provided 4 different kind of informations and any two of them
cannot be true at the same time. So there can be at most 1 truthful. Again all 4 of them
cannot be liar otherwise the 4th person will be truthful. So there are exactly 3 liars.

Problem 1.4.2. Let N be the number of pairs (m,n) of integers that satisfy the equation
m2 + n2 = m3. Is N finite or infinite. If N is finite, find the cardinality of N .

Solution. m2 + n2 = m3 =⇒ n2 = m2(m − 1). Now if we take m = k2 + 1 where k ∈ N,
then (m,n) = (k2 + 1, k(k2 + 1)) is a valid solution. As there are infinite choices of k, it has
infinite solutions. Hence N is infinite.

Problem 1.4.3. Let n be a positive integer. Consider the polynomial p(x) = x2 + x + 1.
What is the remainder of x3 when divided by x3. For what n ∈ N is x2n + xn + 1 divisible
by p(x)?

Solution.

x3 − 1 = (x− 1)(x2 + x+ 1)

≡ 0 (mod p(x))

x3 ≡ 1 (mod p(x))

Notice that,

x2n + xn + 1 ≡

{
(x3)

2n
3 + (x3)

n
3 + 1 ≡ 1 + 1 + 1 ≡ 3 (mod p(x)) if 3|n

x2 + x+ 1 ≡ 0 (mod p(x)) if 3 - n

The second case is true because {2n, n} ≡ {1, 2} (mod 3).

Problem 1.4.4. There were 36 participants in a BdMO event. Some of the participants
shook hand with each other. No two of them shook hands with each more than once. It
was found that no two participants with the same number of handshakes made, had shaken
hands each other. Find the maximum number of handshakes at the party.

Solution. Same as (1.3.2).
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Problem 1.4.5. A tetrahedron is a polyhedron composed of 4 triangular faces. Faces ABC
and BCD of tetrahedron ABCD meet at and angle of π

6
. The area of 4ABC and 4BCD

are 120 and 80 resp. where BC = 10. What is the volume of the tetrahedron? (The volume
of a tetrahedron is one third the area of it’s base times its height)

Solution. Let P and Q be the projection of A on the plane BCD and line BC respectively.
Then

(ABC) =
1

2
×BC × AQ =⇒ AQ =

2× 120

10
= 24

Again ∠AQP = 30◦ and ∠APQ = 90◦. So AP = AQ× sin 30◦ =
24

2
= 12

∴ volume of tetrahedron ABCD =
1

3
× (BCD)× AP =

1

3
× 80× 12 = 320.

Problem 1.4.6. Trapezoid ABCD has sides AB = 92, BC = 50, CD = 19, AD = 70.The
side AB is parallel to CD. A circle with center P on AB is drawn tangent to BC and AD.
Given that AP = m

n
where m and n are coprime positive integers. Find m+ n?

Solution. Let the circle touches AC and BD at Q and R resp and AD ∩BC = S.
Then PQ ⊥ BC and PR ⊥ AD. So

PQ = PR =⇒ PB. sin∠PBQ = PA. sin∠PAR

=⇒ PB

PA
=

sin∠BAS
sin∠ABS

=⇒ AB − PA
PA

=
BS

AS

=⇒ 92

PA
− 1 =

BC

AD

=⇒ 92

PA
= 1 +

50

70
=

12

7

=⇒ PA =
92× 7

12
=

161

3

∴ m+ n = 164.

Problem 1.4.7. In 4ABC, A′, B′, C ′ are on sides BC,CA,AB resp. Also AA′, BB′, CC”

are concurrent at O. Also,
AO

OA′
+
BO

OB′
+
CO

OC ′
= 92. Find

AO

OA′
BO

OB′
CO

OC ′
.

Solution. Let (BOC) = p, (COA) = q and (AOC) = r.

AO

OA′
=

(ABO)

(OBA′)
=

(ACO)

(OCA′)
=

(ABO) + (ACO)

(OBA′) + (OCA′)
=
q + r

p

Similarly
BO

OB′
= r+p

q
and

CO

OC ′
=
p+ q

r
.
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Therefore
AO

OA′
+
BO

OB′
+
CO

OC ′
= 92 implies

q + r

p
+
r + p

q
+
p+ q

r
=

∑
cyc q

2r + qr2

pqr
= 92

So

AO

OA′
BO

OB′
CO

OC ′
=

q + r

p
× r + p

q
× p+ q

r

=
(
∑

cyc q
2r + qr2) + 2pqr

pqr
= 92 + 2

= 94
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Chapter 2

National Math Camp

2.1. Geometry

Problem 2.1.1. A point P is chosen in the interior of 4ABC so that when lines are drawn
through P parallel to the sides of 4ABC, the resulting smaller triangles t1, t2, t3 in 4ABC
have areas 4, 9 and 49 respectively. Find the area of 4ABC.

Solution. Let the line through P parallel to BC intersect AB,AC at D,E respectively.
Again, let the line through P parallel to CA intersect BC,AB at F,G respectively. Finally,
let the line through P parallel to AB intersect BC,CA at K,L respectively. Assume that
4PKF = t1,4PEL = t2,4PDG = t3.

Now, 4PKF ∼ 4LPE ∼ 4GDP ∼ 4ABC, and AGPL,BDPK,CEPF are all par-
allelograms.

Next,
EC

LE
=
PF

LE
=

√
(KPF )

(PLE)
=

√
4

9
=

2

3
. Similarly

AL

LE
=

7

3
.

So,

AC

LE
=
AL+ LE + EC

LE

=
AL

LE
+
LE

LE
+
EC

LE
= 4

So
(ABC)

(LPE)
=

(
AC

LE

)2

= 16 which implies (ABC) = 144.

Problem 2.1.2. A convex hexagon ABCDEF is inscribed in a circle such that AB = CD =
EF and diagonals AD,BE and CF are concurrent. Let P be the intersection of AD and
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CE. prove that,
CP

PE
=

(
AC

CE

)2

Solution. Let Q be the concurrency point of the diagonals Ad,BE,CF .

Lemma 2.1.1. In ∆ABC, if P is on BC then

BP

PC
=
AB∠BAP
AC∠PAC

We can prove it using sine law on triangles ∆ABP and ∆ACP . Now, note that according
to lemma (2.1.1)

CP

PE
=
CA · sin∠CAD
BF · sin∠DAE

Next, sinceAB = EF , ABEF must be an isosceles trapezoid, which meansAE = BF .Similarly,
DF = CE. Now,

CE

BF
=
CQ

DQ

=
CQ

DQ
· DQ
BQ

=
CQ

DQ
· DE
AB

=
CQ

DQ
· DE
CD

=
CA

DF
· sin∠CAD

sin∠DAE

=
CA

CE
· sin∠CAD

sin∠DAE

From the previous relations we have

CP

PE
=
CA · sin∠CAD
BF · sin∠DAE

=
CA

CE
· CE
BF
· sin∠CAD

sin∠DAE

=

(
CA

CE

)2

Problem 2.1.3. Let ABCD be a convex quadrilateral such that diagonals AC and BD
intersect at right angles, and let E be their intersection. Prove that the reflections of E
across AB,BC,CD,DA are concyclic.
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Solution. Let the reflections of E across AB,BC,CD,DE be P,Q,R, S respectively. Now,
AP = AE = AS, i.e., A is the circumcenter of 4PSE. So, ∠SPE = 1

2
∠SAE = ∠DAE.

Similarly, ∠EPQ = ∠EBC,∠ERQ = ∠ECB,∠ERS = ∠EDA. So

∠SPQ+ ∠SRQ = ∠SPE + ∠EPQ+ ∠ERQ+ ∠ERS

= ∠DAE + ∠EBC + ∠ECB + ∠EDA

= 180◦ − ∠AED + 180◦ − ∠BEC

= 180◦

since ∠AED = ∠BEC = 90◦. So PQRS is cyclic.

Problem 2.1.4. Let O be the circumcenter of a triangle 4ABC and let ` be the line going
through the midpoint of the side BC and which is perpendicular to the bisector of ∠BAC.
Find the value of ∠BAC if the line ` goes through the midpoint of the line segment AO.

Solution. There are two parts in this solution, actually. The first part is to prove that
∠BAC is obtuse. The second part is using this information to get the correct figure and
evaluate the desired angle.

For the first part, note that unless ∠BAC is obtuse, the line ` can’t intersect the segment
AO.

For the second part, let M,L be the midpoints of BC,AO respectively. Then ML is the
line `. Again, let A′ be the midpoint of arc BC that does not contain A. Then AA′ is the
bisector of ∠BAC. Let N be the mispoint of AA′. And let ML intersect AA′ at K. So,
MK ⊥ AA′, ON ⊥ AA′.

Now, clearly L is the center of �AON . So, LA = LN . But LK ⊥ AN . So AK = KN .
This means KL ‖ ON ⇒ LM ‖ NO. Again, ∠LNA = ∠LAN = ∠OAA′ = ∠OA′A ⇒
LN ‖MO. So LMON is a parallelllogram. Now, OM = NL = LA = 1

2
OA = 1

2
OC.

Now, in 4OCM , ∠OMC = 90◦ and OM = 1
2
OC. From these, it is an easy drill to prove

that ∠OCM = 30◦. A little angle chase from there yields ∠BAC = 120◦.

Problem 2.1.5. An old IMO problem: A triangle 4A1A2A3 and a point P0 are given
in the plane. We define

As = As−3∀s ≥ 4

We construct a sequence of points P1, P2, ... such that Pk+1 is the image of Pk under
rotation with center Ak+1 through an angle 120 degree clockwise (for k = 0, 1, 2, ...).

Prove that if P1986 = P0, then the triangle 4A1A2A3 is equilateral.

Solution. A composition of three 120 rotations is a rotation of 120 + 120 + 120 = 360, i.e. a
translation. Thus, ~P0P3 = ~P3P6 = · · · = ~P1983P1986. But P0 = P1986, so the vector is null and
P0 = P3 = · · · = P1986. Since P0 had no restrictions, we can say that any point in the plane
gets mapped to itself after the three rotations. In particular, let’s examine the behavior of
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A0. After the first rotation, A0 remains A0. After the second, it gets mapped to some point
B. Finally, by our previous result, the third rotation takes B to A0 again. Now noting that
∠A0A2B = ∠BA1A0 = 120, and that BA2 = A2A0 and BA1 = A1A0, it is easy to deduce
that A0A1A2 is equilateral.
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2.2. Number Theory

Problem 2.2.1 (Masum Billal). An integer is called square-free if it doesn’t have any divisor
that is a perfect square greater than 1. Prove that aa−1 − 1 is never square-free for a > 2.

Solution (First). Lifting the Exponent Lemma totally kills this problem.

Lemma 2.2.1 (Lifting the Exponent Lemma(LTE)). If p is an odd prime divisor of x − y
where gcd(x, y) = 1, then

νp(x
n − yn) = νp(x− y) + νp(n)

See [2] for details on this topic. Assume p is a prime divisor of a − 1. Then, by the
lemma,

νp(a
a−1 − 1) = νp(a− 1) + νp(a− 1)

= 2νp(a− 1)

≥ 2

Therefore, p2|aa−1− 1 and it’s not square-free. We are left with the case p = 2. It is easy so
we will leave it to the readers.

Solution (Second). This is a better solution that uses nothing.

aa−1 − 1 = (a− 1)(aa−2 + . . .+ a+ 1)

Let m = a− 1. Then, a ≡ 1 (mod m) and

aa−2 + . . .+ a+ 1 ≡ 1a−2 + . . .+ 1 + 1 (mod m)

≡ m ≡ 0 (mod m)

Therefore, aa−1 − 1 is divisible by m2.

Note. The second solution also provides a stronger claim.

Problem 2.2.2. Determine if 22015 + 32015 + 42015 + 52015 is a prime.

Solution. Well, this was a problem so everyone solves at least two(paired with problem
(2.2.4)). No solution provided for this one.

Problem 2.2.3. For a prime p > 3, prove that
(
2p−1
p−1

)
− 1 is divisible by p3.

Solution.
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Theorem 2.2.1 (Wolstenholme’s Theorem). For a prime p > 3,(
ap

bp

)
≡
(
a

b

)
(mod p3)

Set a = 2, b = 1. We have, (
2p

2

)
≡
(

2

1

)
≡ 2 (mod p3)

Remember that,
(
n
k

)
=
n

k

(
n−1
k−1

)
, so (

2p

p

)
= 2

(
2p− 1

p− 1

)
Therefore, p3 divides 2

(
2p−1
p−1

)
− 2 = 2

((
2p−1
p−1

)
− 1
)
. Since (p3, 2) = 1, we can say p3 divides(

2p−1
p−1

)
− 1.

Problem 2.2.4. For integers a, b, prove that apb− abp is divisible by p.

Solution.

Theorem 2.2.2 (Fermat’s Little Theorem). For any prime p and an integer a, p divides
ap − a. Particularly, if p doesn’t divide a i.e. (a, p) = 1,

ap−1 ≡ 1 (mod p)

Write apb−abp = ab(ap−1−bp−1). If one of a or b is divisible by p, we are done. If neither
of them is divisible by p,

ap−1 ≡ 1 ≡ bp−1 (mod p)

Thus, p divides ap−1 − bp−1.

Problem 2.2.5 (Masum Billal). Find the number of positive integers d so that d divides
an − a for all integer a where n is a fixed natural number.

Solution. Let’s assume n > 1.

Lemma 2.2.2. d is square-free.

Proof. Let p be a prime so that p2 divides d. Then setting a = p, we get p2|pn − p or p2|p,
which is a contradiction. Thus, no square of a prime divides d i.e. d is square-free.

Lemma 2.2.3. If n has k distinct prime factors, it has at least 2k divisors.

18



Proof. Let n =
k∏
i=1

peii . Then since ei ≥ 1,

τ(n) =
k∏
i=1

(ei + 1)

≥
k∏
i=1

2

= 2k

Theorem 2.2.3. For a prime p, there are ϕ(p) primitive roots. In particular, a prime p has
a primitive root.

Theorem 2.2.4. If h = ordn(a) and n divides ak − 1, then h divides k.

Lemma 2.2.4. p− 1 divides n− 1.

Proof. Without loss of generality, p must divide an−1− 1 for integer (a, p) = 1. Since we are
free to choose a, we choose a primitive root g of p. Then p divides gn−1 − 1 and p divides
gp−1 − 1. Because ordp(g) = p− 1, we have by theorem (2.2.4) that p− 1 divides n− 1.

Finally, notice that, we only need to find the largest d such that which satisfies this
property since other such integers would be divisors of the max d. From the lemma above,
such d is square-free and has prime factors p for which p− 1 divides n− 1. Therefore, if

l =
∑

p−1|n−1

1

and p1, · · · , pl are the primes such that pi− 1|n− 1 then d = p1 · · · pl. By the first lemma, d
has 2l divisors.

Note. The function C(n) =
∑

p−1|n−1 1 is very interesting. You can study on it if you are
intrigued.

Problem 2.2.6 (Masum Billal). For a positive real number c > 0, call a positive integer n,
c− good if for all positive integer m < n,

m

n
can be written as

m

n
=
a0
b0

+ . . .+
ak
bk

for some non-negative integers k, a0, ..., ak, b0, ..., bk with k <
n

c
, 2bk < n and 0 ≤ ai <

min(bj), 0 ≤ j < k. Show that, for any positive real c there are infinite c− good numbers.
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Solution. Consider a prime p ≥ 3. Then any number can be written in p-base as

m = akp
k + . . .+ a1p+ a0

where 0 ≤ ai ≤ p− 1Therefore, if n = pr with r > k,
m

n
=

ak
pr−k

+ . . .+
a1
pr−1

+
a0
pr

ai < p ≤ min(bj) = pr−k, 2pr−k < pr and k ≤ logpm < logp n <
n

c
since n can be arbitrary

large but c is fixed. Fixing c, since we can choose any odd prime, we have infinite such
c-good number.

Note. There was one more problem. But I decided to omit it since it was more like an
analytic number theory problem than an elementary one.

2.3. Combinatorics

Problem 2.3.1. In a picnic, let there be 12 student from Class One, 22 students from Class
Two, 32 students from Class Three, 42 students from Class Four and 52 students from Class
Five. A teacher is picking students for a game at random. How many students must he pick
to make sure that there are at least 10 students from the same class?

Solution. Each of class one, two and three contains less than 10 students and 14 students
in total. Now if 19 students are taken from class three and four, then by pigeonhole principle
one of the chosen classes will contain at least 10 students. So taking 14 + 19 = 33 ensures
at least 10 students in some class.

Again if we choose 1 student from class one, 4 student from class two, 9 student from
each of class three, four and five, then there will be 32 students in total with less than 10
students from each class. So taking 32 students is not enough. So the answer is 33.

Problem 2.3.2. In a party, there are n people and their shoes are in n lockers. After the
party, electricity went out and everyone forgot the number of locker his/her shoe was in. So
they take the shoes randomly. What’s the probability that all of them got their own shoes?

Solution. This is a straightforward derangement problem. Derangement of S = {1, 2, · · · , n}
is the number of permutations of S such that no element of S appears in its original position.
Let the ith person has taken the σ(i)th left shoe and π(i)th right shoe where σ and π are
two permutations of {1, 2, .........n}. Now for a fixed permutation σ, we can choose π in n!
ways and exactly Dn of them don’t have any common point with σ where Dn denotes the
derangement number of n objects. So the probability that σ and π don’t have any common

point is
Dn

n!
. The probability remains the same for every choice of σ. So the probability is

Dn

n!
=

1

0!
− 1

1!
+

1

2!
− 1

3!
+ · · ·+ (−1)n

1

n!
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Problem 2.3.3. You have n jewels, but exactly one of them is a fake. You know that the
fake jewel is lighter. With a scale balance, how many measurements are sufficient to find the
fake jewel?

Solution. We prove that for every n, if 3k ≥ n > 3k−1 then we need to do at least k
measurements.
We use strong induction. The base case n = 2 is trivial. Let it is true for every natural
number less than n. Let n = 3k−1 + r where 0 < r ≤ 2.3k−1. If we put different number of
jewels in the sides of the balance and the balance shows that the side with more jewels is
heavier, nothing can be deduced from the result. So suppose in the first measurement, we
have put a jewels in the left pan, a jewels in the right pan and b jewels are left aside.

Now 2a + b = n = 3k−1 + r. So at least one of a and b is grater or equal ot dn
3
e =

d3k−1+r
3
e = 3k−2 + q where 0 < q ≤ 2.3k−2 . If the two sides don’t have equal weight, the

light one contains the fake jewel. Otherwise the rest b jewels contain the fake one. So if we
consider the worst case, we may get at least 3k−2 + q jewels containing the fake one and by
our induction hypothesis, it will take at least k − 1 measurements to find the fake jewel. So
in total (k − 1) + 1 = k measurements.

Now we prove that k measurements are sufficient. We again apply induction.

• If n = 3s+ 1, then we take s jewels in both side.

• If n = 3s+ 2 or 3s+ 3, then we take s+ 1 jewels in both side.

In all 3 cases, we can reduce the number of jewels containing the fake one to s + 1. As
3k ≥ n > 3k−1, we have 3k−1 ≥ s+1 > 3k−2. Now we can do the rest by k−1 measurements.
Therefore, we can do it using k = dlog3 ne measurements.

Problem 2.3.4. There are n ants on a p meter rope, on which each walks on a vm/s speed.
It is known that

• when two ants collide on the rope, they turn around and continue to move the way
they came from at the same speed

• when an ant reaches the end of a rope they fall off from it

Find the greatest amount of time after which every single ant must fall off the rope, and find
the arrangement for which that is possible.

Solution. The key observation is that the problem doesn’t change if we alter it as: when two
ants moving in opposite directions meet, they simply pass through each other and continue
moving at the same speed. Thus instead of rebounding, if the ants pass through each other,
the only difference from the original problem is that the identities of the ants get exchanged,
which is inconsequential. Now the statement is obvious âĂŞ each ant is unaffected by the
others, and so each ant will fall of the stick of length one unit in at most p/v second.
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Problem 2.3.5. We have 2015 points in the plane such that any three are not collinear.
Prove that there is a circle which contains 1007 points in its interior and another 1007 points
in its exterior.

Solution. Let’s say we have already found the circle and it has center O and radius R. 1007
points are strictly outside and 1007 are inside, this means the other point must be on the
boundary. This is quite useful, which tells us to consider the distances of the points from the
center. Call the points P1, ...Pn where n = 2015. Without loss of generality, we can assume
that P1008 lies on the boundary and the points OP1, ..., OP1007 are inside the circle of radius
OP1008. Then OP1009, ..., OP2015 are outside the circle. If OPi is inside the circle then we
must have OPi < OP1008, otherwise OPi > OP1008. This should tell you to sort the distances
somehow. In other words, we need a construction for the center O so that the distances of
Pi are sorted. We are done if we can find O so that all the distances are distinct. In order
to find such a construction, we can think the opposite. When will two distances be equal?
OPi = OPj is possible only if O lies on the perpendicular bisector of PiPj. Since we want all
the distances distinct, we need to take O so that it doesn’t lie on any perpendicular bisector
of PiPj for all i, j. And obviously there are infinite such points. Now, we can sort the points
according to distances i.e. OP1 < OP2 < ... < OP2015. Therefore, we make O center and
draw a circle with radius OP1008 and we are done.

Problem 2.3.6. Can you choose 1983 pairwise distinct integers each less than 100000 such
that no three are in an arithmetic progression?

Solution. We consider the set S so that for x ∈ S, we have x ≤ 100000 and the base-3
representation of x consists of only 0 and 1. We prove that S doesn’t contain 3 numbers in
arithmetical progression.

We assume the contrary. So there exists a, b, c ∈ S so that a + b = 2c and a, b, c are
pairwise different.

Let a = akak−1...........a1(3) ,b = bkbk−1...........b1(3) and c = ckck−1...........c1(3)
Then a + b has ai + bi as their ith digit because ai + bi ≤ 2 for all i. As a 6= b, there

exists some j for which aj 6= bj. Hence aj + bj = 1. But all of the digits of 2c are either 0
or 2, so it’s ith digit cannot be 1. So S doesn’t contain 3 numbers in arithmetical progression.

Now for every n, there are exactly 2n numbers which are less or equal to 3n and have
digits only 0 and 1.

As 312 ≤ 100000, S contains more than 212 digits. As 212 > 1007,we are done.

Problem 2.3.7. Show that for n > 2, there is a set of 2n−1 points in the plane, no three
collinear such that no 2n form a convex 2n-gon.
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Solution. Let S2 be {(0, 0), (1, 1)}. Given Sn, take Tn = {(x+ 2n−1, y +Mn) : (x, y) ∈ Sn},
where Mn is chosen sufficiently large that the gradient of any segment joining a point of Sn
to a point of Tn is greater than that of any segment joining two points of Sn. Then put
Sn+1 = Sn ∪ Tn.

Clearly Sn has 2n − 1 points. The next step is to show that no three are collinear.
Suppose not. Then take k to be the smallest n such that Sk has 3 collinear points. They
cannot all be in Sk−1. Nor can they all be in Tk−1, because then the corresponding points in
Sk−1 would also be collinear. So we may assume that P is in Sk−1 and Q in Tk−1. But now
if R is in Sk−1, then the gradient of PQ exceeds that of PR. Contradiction. Similarly, if R
is in Tk−1, then the gradient of QR equals that of the two corresponding points in Sk−1 and
is therefore less than that of PQ. Contradiction.

Finally, we have to show that Sn does not contain a convex 2n-gon. Suppose it does.
Let k be the smallest n such that Sk contains a convex 2k-gon. Let P be the vertex of
the 2k-gon with the smallest x-coordinate and Q be the vertex with the largest. We must
have P ∈ Sk−1, Q ∈ Tk−1, otherwise all vertices would be in Sk−1 or all vertices would be in
Tk−1, contradicting the minimality of k. Now there must be at least (k − 1) other vertices
below the line PQ, or at least (k − 1) above it. Suppose there are at least (k − 1) below it.
Take them to be P = P0, P1, ..., Pk = Q, in order of increasing x-coordinate. These points
must form a convex polygon, so gradiant of Pi−1Pi < gradiant of PiPi+1. But the greatest
gradient must occur as we move from Sk−1 to Tk−1, so all but Q must belong to Sk−1. Thus
we have k vertices in Sk−1 with increasing x-coordinate and all lying below the line joining
the first and the last. We can now repeat the argument. Eventually, we get 3 vertices in S2.
Contradiction.

The case were we have k-1 vertices above the line PQ is similar. By convexity, all but P
must lie in Tk−1. We now take their translates in Sk−1 and repeat the argument, getting the
same contradiction as before.
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2.4. Mock Exam 1

Problem 2.4.1. Let x, y be integers and p be a prime for which

x2 − 3xy + p2y2 = 12p

Find all triples (x, y, p).

Solution. The equation can be rewritten as x(x − 3y) = p(12 − py2). If p = xd then
d(pd − 3y) = 12 − py2 =⇒ p(d2 + y2) = 3(4 + yd). If p = 3 then d2 − yd + y2 − 4 = 0
so we get that 16 − 3y2 is a perfect square so y = 2 or y = −2 then d ∈ 0, 2 so (x, y, p) ∈
{(0, 2, 3), (6, 2, 3), (0,−2, 3), (6,−2, 3)}. If p isn’t 3 then d, y ≡ 0( mod 3). then 4 ≡ 0(mod
3),contradiction. We approach similarly when x− 3y = pd.

Problem 2.4.2. In a convex quadrilateral ABCD, the diagonals are perpendicular to each
other and they intersect at E. Let P be a point on the side AD which is different from A
such that PE = EC. The circumcircle of triangle BCD intersects the side AD at Q where
Q is also different from A. The circle, passing through A and tangent to line EP at P ,
intersects the line segment AC at R. If the points B,R,Q are concurrent then show that
∠BCD = 90◦.

Solution. Let �ARD meet BD at F . The power of E with respect to (ARFD) is ER ·
AE = EF · ED. The power of E with respect to (ARP ) is ER · AE = EP 2 = EC2. So
EF · ED = EC2 yields that �FCD is tangent to CE or in other words ∠ECF = ∠EDC.
Also we have ∠ADE = ∠ERF . Since ∠QDB + ∠BDC = ∠FRC + ∠RCF , we have
∠RBC = ∠RFC. This yields BCFR is deltoid. (If you cannot see this easily, take reflection
of B with respect to RC. Call it B′ . Since ∠RBC = ∠RB′C = ∠RFC, B′ is on BD,
F = B′.) So ∠BCR = ∠RCF = ∠BDC. Since ∠BEC = 90◦, ∠BCD = 90◦.

Problem 2.4.3. We want to place 2012 pockets, including variously colored balls, into k
boxes such that

i) For any box, all pockets in this box must include a ball with the same color or ii) For
any box, all pockets in this box must include a ball having a color which is not included in
any other pocket in this box

Find the smallest value of k for which we can always do this placement whatever the
number of balls in the pockets and whatever the colors of balls.

Solution. The answer is 62. We can assume no pocket has two same color ball. It does not

change the problem at all. We will use induction, assume the answer is k for
k(k + 1)

2
≤

n <
(k + 1)(k + 2)

2
. Let 1, 2, , s be different colors. Let a1, a2, ..., as be number of balls of

different colors. Assume a1 ≥ a2 ≥ ... ≥ as. If a pocket has color-p ball, we will say this
pocket is type-p.(A type-p pocket can also type-q.) If a1 ≥ k+ 1, we will put type-1 pockets
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into same box. Now we have
(k + 1)(k + 2)

2
a1 ≤

k(k + 1)

2
and by induction we can put the

other pockets into (k − 1) boxes. So assume a1 < k + 1. Put all type-1 pockets in different
boxes. Now start to put remaining type-2 pockets with (ii) statement. If we cannot put all
type-2 pockets, this means a2 ≥ a1. Because if we cant add type-2 to a box, it means existing
type-1 is also type-2, it means every box has color-2 ball. So we conclude we can place all
type-2 pockets. Same strategy for type-3,...,type-m and we are done. The example for 62:
a1 = 63, a2 = 62, ..., a59 = 5, a60 = 3, a61 = 2, a62 = 1. (All pockets contain only one ball)
Proof: Assume we can place pockets into 61 boxes. We have 63 type-1 pocket by pigeonhole
principle we have 2 type-1 pocket in the same box. This box cannot contain another type
pocket. After that we have 60 boxes and 62 type-2 pockets. Similarly we can find another
box which only has type-2. Then we need at least 62 boxes, contradiction.

25



2.5. Mock Exam 2

Problem 2.5.1. Determine all triples of positive integers (k,m, n) so that 2k + 3m + 1 = 6n.

Solution. It is easy to observe that a ≥ 3, c ≥ 3 =⇒ 8|2a − 6c =⇒ 8|3b + 1 which is
impossible since all possible residues of 3b modulo 8 are 1, 3.

For a ≥ 3, c = 2 we have 2a + 3b = 35 =⇒ (a, b) = (3, 3), (5, 1)
For a ≥ 3, c = 1 there’s no solution.
For a = 2 there’s no solution and for a = 1 the only is (1, 1, 1)
Thus (a, b, c) = (1, 1, 1), (3, 3, 2), (5, 1, 2).

Problem 2.5.2. Let Γ be the circumcircle of a triangle ∆ABC. Let ` be a line tangent to
Γ at point A.Let D,E be interior points of the sides AB,AC respectively, which satisfy the

condition
BD

DA
=
AE

EC
. Let F,G be the two points of intersection of line DE and circle Γ.

Let H be the point of intersection of the line ` and the line parallel to AC and going through
point D. Let I be the point of intersection of the line ` and the line parallel to AB and
going through E. Prove that the four points F,G,H, I lie on the circumference of a circle
which is tangent to line BC.

Solution. Let HD ∩ BC = P . So,
BP

PC
=
BD

DA
=
AE

EC
=⇒ EP ‖ AB =⇒ P ∈ EI. Now,

]CPI = ]CBA = ]IAC =⇒ EI.EP = EA.EC = EF.EG =⇒ I ∈ �PFG. Similarly,
H ∈ �PFG. ∴ FGHIP cyclic. Now, ]CPI = ]PBA = ]PHI =⇒ CP, i.e., BC touches
�FGHI at P .

Problem 2.5.3. Let n be a positive integer. For every pair of students enrolled in a certain
school having n students, either the pair are mutual friends or not mutual friends. Let N
be the smallest possible sum, a + b, of positive integers a and b satisfying the following two
conditions concerning students in this school.

1. It is possible to divide students into a teams in such a way that any pair of students
belonging to the same team are mutual friends

2. It is possible to divide students into b teams in such a a way that any pair of students
belonging to the same team are not mutual friends.

Assume that every student will belong to one and only one team when the students are
divided into teams that satisfy the conditions above. A team may consist of only one
student, in which case this team is assumed to satisfy both of the conditions: that any pair
of students in this team are mutual friends; are not mutual friends. Determine in terms of
n the maximum possible value that N can take.

Solution. We can prove by induction on n that N ≤ n + 1. This is trivial for n = 1.
Consider a graph G with |V (G)| = n + 1, and a vertex v ∈ V (G) with degG v = d. Also
consider the graph G′ = G− v, with |V (G′)| = n.

26



Say a(G′) > n−d; then there cannot exist a vertex vi in each of the a(G′) cliques so that
vvi is not an edge in G, since degG v = n− d. We can then add v to one of these cliques, so
a(G) = a(G′). Since we may take {v} as an independent set, we have b(G) ≤ b(G′) + 1, and
so a(G) + b(G) ≤ a(G′) + b(G′) + 1 ≤ (n+ 1) + 1 (by the induction step).

Say b(G′) > d; then there cannot exist a vertex vi in each of the b(G′) independent sets
so that vvi is an edge in G, since degG v = d. We can then add v to one of these independent
sets, so b(G) = b(G′). Since we may take {v} as a clique, we have a(G) ≤ a(G′) + 1, and so
a(G) + b(G) ≤ a(G′) + b(G′) + 1 ≤ (n+ 1) + 1 (by the induction step).

We are left with a(G′) ≤ n − d and b(G′) ≤ d, but then we may take {v} as both a
clique and an independent set, so we have a(G) ≤ a(G′) + 1 and b(G) ≤ b(G′) + 1, and so
a(G) + b(G) ≤ a(G′) + b(G′) + 2 ≤ n+ 2 = (n+ 1) + 1.

Since easily it can be seen that for G = Kn we have a(G) = 1 and b(G) = n, therefore
N = n+ 1, it follows this is the best bound, i.e. maxN = n+ 1.
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Chapter 3

Extension Camp

3.1. Exam One

Problem 3.1.1. Find the number of k tuples (a1, ..., ak) with 1 ≤ ai ≤ n so that their
greatest common divisor with n is 1 i.e. (a1, ..., ak, n) = 1.

Solution. We consider the case when n = pm for some prime p and natural number m.
We call a k − tuple n good if it satisfies the given condition. Then if {a1, a2...ak} is not a
good k − tuple, all of a1, a2...ak must be divisible by p. So there are pm

p
= pm−1 choices for

every ai. So there are pm−1.pm−1.........pm−1 = pk(m−1) not good k − tuples. So the number
of good k − tuples is

(pm)k − pk(m−1) = pmk(1− 1

pk
)

Now we solve it for any general n. Let the answer is f(n). Let d be any divisor ofn. If
gcd(a1, a2...ak, n) = d,

gcd
(a1
d
, ......

ak
d
,
n

d

)
= 1

So there are exactly f(n
d
) k − tuples with gcd(a1, a2...ak, n) = d. On the other hand, the

number of k − tuples is nk in total. Therefore,∑
d|n

(n
d

)
= nk

Let F be the summation function of f . We have F(n) = nk which is a multiplicative
function. We use the following theorem.

28



Theorem 3.1.1 (Reverse Multiplicativity Theorem). If F (n) =
∑
d|n
f(n) is the summation

function of f , then f is multiplicative if F is multiplicative

Here F is the summation function of f . So f must be a multiplicative function. Let

n =
r∏
i=1

peii . Then

f(n) = f

(
r∏
i=1

peii

)

=
r∏
i=1

f(peii )

=
r∏
i=1

peik
(

1− 1

pki

)
= nk

r∏
i=1

(
1− 1

pki

)
Problem 3.1.2. Let 1 ≤ k ≤ n. Consider all sequences of positive integers with sum n. If
the term k appears F(n, k) times, find F(n, k) in terms of n and k.

Solution. Let Xn be the set of sequences with sum n. For a set A of sequences, let f(A)
denote the total number of appearances of k’s in the elements of A. We have F(n, k) =
f(Xn).
Now we show that Xn = 2n−1. To prove this we consider n points in a row.There are n− 1
free spaces among them. So we can partition the n points in 2n−1 ways and there is a
bijection between the set of sequences with sum n and the set of partitions of n points. So
we have Xn = 2n−1.
We partition Xn into n disjoint subsets Y1,n, Y2,n.....Yn,n where every sequence in Yi,n has it’s
first element i. Let (i, a2, .......am) ∈ Yi,n for some 1 ≤ i ≤ n. Then (a2, a3........am) ∈ Xn−i.
Now f(Yi,n) = f(Xn−i) if i 6= k and f(Yi,n) = f(Xn−i) + 2n−i if i = k. So

f(Xn) = f(Y1,n) + .......f(Yn,n)

= f(Xn−1) + ......f(Xn−k) + 2n−k−1 + f(Xn−k−1) + .........+ f(Xk,k)

= f(Xn−1) + ............+ f(Xk,k) + 2n−k−1

Similarly f(Xn−1) = f(Xn−2) + ............+ f(Xk) + 2n−k−2

Combining these two equations we get

f(Xn) = 2f(Xn−1) + 2n−k−1 + 2n−k−2

f(Xn)

2n
=
f(Xn−1)

2n−1
+

3

2k+2
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Therefore by induction
f(Xn)

2n
=
f(Xk)

2k
+

3(n− k)

2k+2

∴ f(Xn) = 2n−k−2(3n− 3k + 4)

Problem 3.1.3. A lattice point is a point with integer coordinates. There is a block in
every lattice point. Decide if there are 100 lattice points P1, ..., P100 so that

• Pi is visible to Pi+1 for 1 ≤ i < 99.

• P1 is visible to P100.

• Pi is not visible to Pj is |j − i| > 1.

Hint. The following theorem is necessary, and it is a very useful one.

Theorem 3.1.2. The segment with endpoints P (x, y) and Q(a, b) has (|x − a|, |y − b|) + 1
lattice points on it including P and Q.

To prove it, we need the following facts.

Theorem 3.1.3. A point P (x, y) is visible from origin if and only if (x, y) = 1.

Proof. The if part is easy. If P is visible then we must have (x, y) = 1. If not, assume that
g = (x, y) and g > 1. Consider the segment joining origin and P . Since P is visible from
O, there is no other lattice point between O and P by definition. But note that (x

g
, y
g
) is a

lattice point since g divides both x and y. Moreover, this point lies on OP , between O and
P , a contradiction.

Let’s prove the only if part now. Assume that (x, y) = 1. We need to show there is no
other lattice point on OP . For the sake of contradiction, assume that Q(a, b) lies between O

and P . Then, the slope of O and Q is
b

a
. Again, the slope between O and P is

y

x
. According

to theorem (??), we have
b

a
=
y

x
. We have, ay = bx and 0 < a < x, 0 < b < y. The equation

also says that x|ya. Since (x, y) = 1, x|a, which gives us a ≥ x, contradiction. So, there is
no other lattice point on this segment.

Theorem 3.1.4. Two points P (x, y) and Q(a, b) are visible from one another if and only if
(x− a, y − b) = 1.

Proof. It actually follows from the theorem above. Just notice that, if we translate a segment
to an integer distance, the number of lattice points and all properties of that line is preserved,
except that it will be below or above the previous line since it has been translated. See (3.1)
for better understanding. So we can translate the point Q(a, b) to (0, 0) without loss of
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generality. Then the translated new P (which is now A)has coordinates (x−a, y− b).1 After
the translation, note that, P is visible to Q if and only if A is visible to origin. Then using
the previous theorem, we get that A is visible from origin if and only if (x− a, y − b) = 1.

−4.−3.−2.−1. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18.

−5.
−4.
−3.
−2.
−1.

1.

2.

3.

4.

5.

6.

0

P

Q

O

A

Figure 3.1: Translation preserves the number of lattice points on a segment, and the slope

Let’s try to find the number of lattice points on a lattice segment. Problem Find the
number of lattice points the segment PQ contains.

Proof of the main theorem. First we will modify the figure as we need, kinda like the previous
one. Let’s translate (x, y) to (0, 0), so (a, b) is translated to (x − a, y − b) = (m,n). Now,
reflect this line with respect to Y axis and then translate by (m, 0). The endpoints are
(0, n) and (m, 0) now but the number of lattice points is same. If m = 0, the result is
trivial since the only lattice points are (0, 0), · · · , (0, n). Similarly, if n = 0, the points are
(0, 0), · · · , (m, 0). Both of them support our claim.

Without loss of generality, we can assume m,n > 0. Now, the number of lattice points
on the segment is actually the number of nonnegative integer solutions that satisfies the
equation of this segment:

x

a
+
y

b
= 1

⇐⇒ bx+ ay = ab

1we should use absolute value here, but the result is same
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Let g = (a, b) and a = gu, b = gv with (u, v) = 1. Then

vx+ uy = guv

v(gu− x) = uy

u(gv − y) = vx

From these equations, we get v divides uy. But (u, v) = 1 so v divides y. Similarly, u divides
x. Assume that y = vk and x = ul, we have k + l = g. The number of nonnegative integer
solutions to this equation is g + 1. So, our claim is proved.

Now, try to use Chinese Remainder Theorem.

Note. We can find n such points explicitly as well. Coordinates of such points may have
coordinates involving factorials.

Problem 3.1.4. Two students A and B are playing the following game: Each of them writes
down on a sheet of paper a positive integer and gives the sheet to the referee. The referee
writes down on a blackboard two integers, one of which is the sum of the integers written by
the players. After that, the referee asks student A," Can you tell the integer written by the
other student?". If A answers "the referee puts the same question to student B. If B answers
"no," the referee puts the question back to A, and so on. Assume that both students are
intelligent and truthful. Prove that after a finite number of questions, one of the students
will answer "yes."

Solution. Let the two numbers on blackboard be X < Y . Also use A and B to represent
the number from students A and B, respectively.

i. Suppose no "yes" in round 1. A knows B < X, otherwise B would have said "yes" and
solve A = Y −B. Similarly B knows A < X.

ii. Suppose no "yes" in round 2. If B saw Y −B >= X, he would have known A could not
be Y −B since he knew A < X and then he would have said "yes’ by solving A = X−B.
Hence, A knows Y −B < X, or B > Y −X. Similarly B knows A > Y −X.

iii. Suppose no "yes" in round 3. A knows B < 2X − Y . B knows A < 2X − Y .

Each round without "yes" will tighten A’s knowledge on B, also B’s knowledge on A. Here
knowledge means both upper bound and lower bound. Let us call the series of upper bounds
xn and lower bounds yn. We see that xn+1 = X − yn and yn+1 = Y − xn. Obviously xn are
strictly decreasing and yn are strictly increasing. So in a finite number of rounds, A or B
have to answer yes. The stopping rule is one of the following four:

i. X − A < xn ≤ Y − A, A say yes and solve B = X − A.

ii. X − A ≤ yn < Y − A, A say yes and solve B = Y − A.

32



iii. X −B < xn ≤ Y −B, B say yes and solve A = X −B.

iv. X −B ≤ yn < Y −B, B say yes and solve A = Y −B.

Problem 3.1.5 (Masum Billal). Define two sequences F0 = 0, F1 = 1, G0 = u,G1 = v and

Fn = aFn−1 + bFn−2

Gn = aGn−1 + bGn−2

where a, b, u, v are integers. Prove that,

Sm,n =
Gm+n+1 −Gm+1Fn+1

GmFn

is an integer independent of m or n for natural m,n.

Hint.

Gm+n+1 = Gm+1Fn+1 + bGmFn

Gm+n = Gm+1Fn + bGmFn−1

You can use induction or prove it combinatorially. The official solution was the combinatorial
proof and that’s what I had in mind when I posed this in the camp after some examples of
Counting In Two Ways. But some campers used induction and it was quite easy with
that approach. But if anyone is still interested in the combinatorial proof, they can consult
with [1]. Be aware that there maybe typos or errors in the paper, but the result should be
correct.

33



3.2. Geometry

Problem 3.2.1. (a) Let ABC be an acute triangle with altitude AD from A to BC. Let P
be a point on AD. Line PB meets AC at E and PC meets AB at F . Suppose that AEDF
is the inscribed quadrilateral. Prove that PA/PD = (tanB + tanC)cot(A/2).
(b) Let ABC be an acute triangle with orthocenter H and P be a point moving on line
AH. The line perpendicular to AC at C cuts BP at M and the line perpendicular to AB
at B cuts CP at N . Let K be the projection of A on line MN . Prove that the value of
∠BKC + ∠MAN does not depend on the point P .

Solution. (a)Let EF ∩BC = K,AD ∩ EF = M and
⊙

AFDE ∩BC = L.
Now using Ceva and Menelau’s theorem in 4ABC,we can derive that BK

CK
= BD

CD
. So

B,C,D,K are in harmonic order. Then AB,AC,AD,AK is a harmonic pencil and EF
imtersects these 4 lines at F,E,M,K resp. Which implies F,E,M,K are in harmonic
order.Again ∠KDM = 90◦. So ∠FDM = ∠EDM . AS AFDLE is cyclic and ∠ADL = 90◦

we have ∠AFL = ∠AEL = 90◦ and ∠FDA = ∠EDA ⇒ ∠ALF = ∠AEL. So ∠FAL =
∠EAL and ∠LAC = ∠A

2
.

Now,

AE

CE
=
LE.cotA

2

LE.cotC
=
cotA

2

cotC

AP

DP
=
AB.sin∠ABP
DB.sin∠DBP

=
sin∠ABE
sin∠CBE

· AB
BD

=
AE
CE
AB
CB

.secB

=
AE

CE
· CB
AB
· secB

=
cotA

2
.sinA

cotC.sinC
.secB

Therefore,
AP

DP
=
A

2
· sin(B + C)

cosB.cosC

=
A

2
· sinB.cosC + sinC.cosB

cosB.cosC

=
A

2
· sinB.cosC + sinC.cosB

cosB.cosC

=
A

2
· (tanB + tanC)
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(b) Easy to see that ABKN and ACKM are cyclic. So

∠BKC = ∠BKA+ ∠CKA

= ∠BNA+ ∠CNA

= 90◦ − ∠A+ 90◦ − ∠A

= 180◦ − 2∠A

So ∠BKC + ∠MAN = 180◦ − 2∠A+ ∠A = 180◦ − ∠A

Problem 3.2.2. Let 4ABC be an acute triangle inscribed in circle O. Two points P,Q lie
on segments AB,AC and do not coincide with the vertices of 4ABC. The circumcircle of
4APQ intersects O at M at a point different from A. The point N is the point symmetric
to M about the line PQ. Prove that
(a) (AQP ) + (BPN) + (CNQ) < (ABC) where (X) is the area of triangle X.

(b) If the point N lies on BC, then MN passes through a certain fixed point.

Solution. (a) If N lies inside 4ABC,then the result is obvious. So we assume N is outside
4ABC.
Let PQ ∩ BC = T,∠MTQ = ∠NTQ = x,∠BTQ = y and U, V be the feet of perpendic-
ular from N to BC and PQ resp. Easy to see that M,Q,N are collinear Now ∠MBP =
∠MBA = ∠MCA = ∠MCQ and ∠MPB = 180◦ − ∠MPA = 180◦ − ∠MQA = ∠MQC.
So 4MPB ∼ 4MQC which implies 4MPQ ∼ 4MBC. Again M is the Miquel point of
BPQC. So TCQM are cyclic with ∠MTQ = x and ∠CTQ = y.

∴
BC

PQ
=
MC

MQ
=
sin(x+ y)

sinx

And

NU

NV
=
sin(x− y)

sinx
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Now

(NBC)

(NPQ)
=

1
2
NU.BC

1
2
.NV.PQ

=
NU

NV

BC

PQ

=
sin(x− y)

sinx

sin(x+ y)

sinx

=
cos2y − cos2x

sin2x

=
cos2y − 1 + 2sin2x

2sin2x

=
cos2y − 1

2sin2x
+ 1

≤ 1

So

(NBC) ≤ (NPQ)⇒ (ABNC)− (NBP )− (NQC)− (APQ) ≥ (NBC)

⇒ (NBP ) + (NOC) + (APQ) ≤ (ABNC)− (NBC) = (ABC)

(b) LetMN ∩
⊙

ABC = D. As N lies on BC, ∠BTP = ∠MTP . So PB = PM = PN .
Let S be the projection of P on BC. Now ∠BPS = ∠BPN

2
= ∠BMN = ∠BMD = ∠BAD.

So AD ‖ PS which implies AD ⊥ BC. So D is a fixed point and MN passes through it.

Problem 3.2.3. For a sequence x1, x2, ..., xn of real numbers. We define the price as
max1in|x1 + x2 + + xi|. Given n real numbers, Dada and Gadha want to arrange them
into a sequence with a low price. Diligent Dada checks all possible ways and finds the min-
imum possible price D. Greedy Gadha, on the other hand, chooses x1 such that |x1| is as
small as possible; among the remaining numbers, he chooses x2 such that |x1 +x2| is as small
as possible and so on. Thus in the ith step, he chooses xi among the remaining numbers so
as to minimize the value of |x1 + x2 + + xi|. In each step, if several numbers provide the
same value, Gadha chooses one at random. Finally, he gets a sequence with price G. Find
the least possible constant c such that for every positive integer n, for every collection of n
real numbers, and for every possible sequence that Gadha might obtain, the resulting values
satisfy G ≤ cD.

Solution. We claim that c = 2. As mentioned above, us 1,−1, 2,−2 as a construction.
Now we will prove that G ≤ 2D. Suppose George’s sequence goes like x1, x2, ..., xn. Now,
since by definition, Dave’s price is the minimum possible price, then G ≤ 2D iff G ≤
2 · price for any permutation. And since G ≥ |x1 + x2 + · · ·+ xi| for any 1 ≤ i ≤ n, we have
that if for every i,

|x1 + x2 + · · ·+ xi| ≤ 2 · price for any permutation
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then we’re good to go.
Lemma 1: If |a| > 2|b| then |a+b| > |b|. Proof: From triangle inequality |a+b|+|−b| ≥ |a|

so |a+ b| ≥ |a| − |b| > |b|. 2 Lemma 2: If ab < 0 then |a+ b| ≤ max{|a|, |b|} Proof: WLOG
|a| < |b|. So we have to show that |a+ b| ≤ |b|. Squaring both sides yields a2 + 2ab+ b2 ≤ b2

iff a2 + 2ab ≤ 0.
Let our arbitrary permutation be y1, y2, ..., yn and let the price be P = |y1 + y2 + · · ·+ yp|

for some 1 ≤ p ≤ n. Let S0 = 0 and Si = y1 + y2 + · · · + yi. First of all, we can prove that
|xj| ≤ 2P . Assume that |xj| > 2P , and we have yi = xj for some i. Then

2P ≥ |Si|+ |Si−1| ≥ |Si − Si−1| = |xj|

contradiction. Then we can use induction.
Base case: We prove that |x1| ≤ 2P . Already done. Inductive step: Assume that

|x1 + · · · + xk| ≤ 2P . We want to prove that |x1 + · · · + xk+1| ≤ 2P . Now let’s not forget
the definition of G. We certainly know that |x1 + x2 + · · ·+ xk+1| ≤ |x1 + x2 + · · ·+ xk + xj|
for some j > k. Let’s select an xj such that xj(x1 + x2 + · · ·+ xk) < 0. Then we’re done by
lemma 2. If we cannot find an xj like that, that means x1 + x2 + · · · + xk, xk+1, xk+2, ..., xn
all have the same sign. But that means

|x1 + · · ·+ xk+1| ≤ |x1 + · · ·+ xn| ≤ P ≤ 2P

So by induction we are done.
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3.3. Number Theory

Problem 3.3.1. Let n ≥ 2 be an integer, and let An be the set

An = {2n − 2k | k ∈ Z, 0 ≤ k < n}.

Determine the largest positive integer that cannot be written as the sum of one or more (not
necessarily distinct) elements of An .

Solution. Note that some odd a can be written as the sum of some elements of An iff
so can be a − 2n + 1 because 2n − 1 is the only odd number in the set. Let Tn be the
answer for n. It follows that Tn must be odd. Also, if a can be written as the sum of
some elements of An, 2a can be written as the sum of some elements of An+1. It follows
that all numbers > 2Tn + 2n+1 − 1 can be written as the sum of some elements of An+1. I
claim that 2Tn + 2n+1 − 1 cannot be written as the sum of some elements of An+1. Suppose
2Tn + 2n+1 − 1 = t(2n+1 − 1) + q, where the representation of q doesn’t contain 2n+1 − 1.

Note that q must be even, and thus, t odd. This implies Tn =
t+ 1

2
(2(2n − 2n−1) + 2n) +

q

2
.

Note that
q

2
can be written as the sum of some elements of An (just divide its representation

in An+1 by 2), so Tn can be written as the sum of some elements of An. Contradiction.
Thus, we get that Tn+1 = 2Tn+2n+1−1. From here, we easily get that Tn = (n−1)2n+1.

Problem 3.3.2. Determine all pairs (x, y) of positive integers such that

3
√

7x2 − 13xy + 7y2 = |x− y|+ 1.

Solution. let x ≥ y than we have
7x2 − 13xy + 7y2 = (x− y + 1)3

now let x− y = a and hence we get
7a2 + x(x− a) = (a+ 1)3 =⇒ x2 − ax− a3 + 4a2 − 3a− 1 = 0
now as x, y are positive int. so discriminant of above quadratic in x must be perfect

square.
hence D = 4a3 − 15a2 + 12a+ 4 = (4a+ 1)(a− 2)2 = m2 so 4a+ 1 = k2. and thus
x = k2−1±k(k2−9)

8
and y = x− k2−1

4
= k2−1±k(k2−9)

8
− k2−1

4

so we get family of solution for different values of k.

Problem 3.3.3. Let n > 1 be a given integer. Prove that infinitely many terms of the
sequence (ak)k≥1, defined by

ak =

⌊
nk

k

⌋
,

are odd. (For a real number x, bxc denotes the largest integer not exceeding x.)
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Solution. If n is odd just choose nu for u > 1. It is easy to see that this produces odd
integers.

If n− 1 is odd and n− 1 6= 1, consider a prime factor p of n− 1. Now consider pl, where
l > 1,

bn
pl

pl
c =

np
l − 1

pl

This is an integer because vp(np
l−1) = vp(p

l) + vp(n−1) ≥ l by LTE, and it is obviously
odd.

Now consider n = 2. In this case, I claim k = 3 · 22j, for arbitrary j 6= 0 works. Indeed

b2
3(22j)

3(22j)
c = b2

3(22j)−2j

3
c

.
Observe that 3(22j)− 2j is always even, so then this quotient becomes

23(22j)−2j − 1

3

, which is clearly odd, so we are done.
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3.4. Combinatorics

Problem 3.4.1. There are n cars, numbered from 1 to n and a row with n parking spots,
numbered from 1 to n. Each car i has its favorite parking spot ai. When it is its time to
park, it goes to its favorite parking spot. If it is free, it parks and if it is taken, it advances
until the next free parking spot and parks there. If it cannot find a parking spot this way, it
leaves and never comes back. First car 1 tries to park, then car number 2 tries to park and
so on until car number n. Find the number of lists of favorite spots a1, ..., an such that all
the cars park. Note, different cars may have the same favorite spot.

Solution. We call an n − tuple (a1, a2. . . . an) good if all of the cars can park according to
their choices where 1 ≤ ai ≤ n+ 1 for all i.

We consider n + 1 parking spots around a circle and number them from 1 to n + 1 in
counterclockeise direction. Suppose every car has a parking choice and if the parking spot
is occupied by some other car when it’s his time to park, he moves counterclockwisely and
parks in the next free spot. As the parking spots are situated sround a circle, all of the cars
wil be able to park and there will be exacty one empty parking spot.

Now we call an n− tuple k empty, if after parking, the kth spot is left empty where all
the elements of the n− tuple are integers between 1 and n + 1. Let f(k) be the number of
k empty tuples. By symmetry,f(k) = f(n + 1) for all k and

∑n+1
i=1 f(i) = (n + 1)n which

implies f(n+ 1) = (n+ 1)n−1.

Again if (x1, x2. . . . xn) is an n + 1 empty tuple, obviously none of the xi’s is equal to
n+1. It’s easy to see that (x1, x2. . . . xn) is an n− tuple as the (n+1)th spot remains empty
and none of the cars has to cross the (n+ 1)th spot to find their parking spot. Again all of
the good n− tuples are (n+ 1) empty.

So number of good n− tuples = f(n+ 1) = (n+ 1)n−1.

Problem 3.4.2. Given a 2007-gon, find the smallest integer k such that among any k vertices
of the polygon there are 4 vertices with the property that the convex quadrilateral they form
share 3 sides with the polygon.

Solution. Note that,among any k vertices,there exist a convex quadrilateral sharing 3
sides with polygon if and only if it contains 3 consecutive vertices of the polygon. Let
A1A2......A2007 be the polygon. If we take the vertices Ai where i ≡ 1, 2, 3(mod4) and
1 ≤ 2006,then there are 1505 points in total with no 4 consecutive points. So we must have
k ≥ 1506. We prove that k = 1506.
Suppose we can choose a set X of 1506 points in such a way that there are no4 consecutive
points. WLOG X contains the point A1.
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Let Bi = {A4(i−1)+1, A4(i−1)+2, A4(i−1)+3, A4(i−1)+4} where i = 1, 2, ........501.Then X can con-
tain at most 1503 points from A1, A2..........A2004 and all of A2005, A2006, A2007 can’t be in X
as X contains 1.So |X| ≤ 1505,a contradiction.

So the minimum value of k is 1506.

Problem 3.4.3. The entries of a 2 × n matrix are positive real numbers. The sum of the
numbers in each of the n columns sum to 1. Show that we can select one number in each
column such that the sum of the selected numbers in each row is at most

n+ 1

4
.

Solution. We denote the numbers from the first row by a1, a2, ..., an in increasing order:
a1 ≤ a2 ≤ ... ≤ an. Then, the corresponding numbers from the second row are obviously
1− a1, 1− a2, ..., 1− an.

Now, let k be the largest index satisfying a1 + a2 + ... + ak ≤
n+ 1

4
. Then, of course,

a1 + a2 + ... + ak+1 >
n+ 1

4
(else, k wouldn’t be the largest index). Now, we are going to

prove that (1− ak+1) + (1− ak+2) + ...+ (1− an) ≤ n+ 1

4
.

In fact, the arithmetic mean of the numbers ak+1, ak+2, ..., an is surely greater or equal
than the number ak+1 (the smallest of the numbers ak+1, ak+2, ..., an). In other words,

ak+1 + ak+2 + ...+ an
n− k

≥ ak+1.
On the other hand, the arithmetic mean of the numbers a1, a2, ..., ak+1 is surely smaller

or equal than the number ak+1 (the greatest of the numbers a1, a2, ..., ak+1). In other words,
a1 + a2 + ...+ ak+1

k + 1
≤ ak+1.

Thus,
ak+1 + ak+2 + ...+ an

n− k
≥ ak+1 ≥

a1 + a2 + ...+ ak+1

k + 1
,

and thus

ak+1 + ak+2 + ...+ an ≥ (n− k) · a1 + a2 + ...+ ak+1

k + 1
≥ (n− k) ·

(
n+ 1

4

)
k + 1

(since n− k ≥ 0 and a1 + a2 + ...+ ak+1 >
n+ 1

4
). In other words,

ak+1 + ak+2 + ...+ an ≥ (n− k) ·

(
n+ 1

4

)
k + 1

=
(n+ 1) (n− k)

4 (k + 1)
.

Hence,
(1− ak+1) + (1− ak+2) + ... + (1− an) = (n− k)− (ak+1 + ak+2 + ...+ an) ≤ (n− k)−

(n+ 1) (n− k)

4 (k + 1)
.

Thus, in order to show that (1− ak+1) + (1− ak+2) + ... + (1− an) ≤ n+ 1

4
, it will be
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enough to prove that (n− k)− (n+ 1) (n− k)

4 (k + 1)
≤ n+ 1

4
.

This, however, is straightforward

(n− k)− (n+ 1) (n− k)

4 (k + 1)
≤ n+ 1

4

Therefore,

n− k ≤ n+ 1

4
+

(n+ 1) (n− k)

4 (k + 1)

≤ n+ 1

4

(
1 +

n− k
k + 1

)
≤ n+ 1

4
· n+ 1

k + 1

≤
(
n+ 1

2

)2

· 1

k + 1

(n− k) (k + 1) ≤
(
n+ 1

2

)2

But this is clear from AM-GM: (n− k) (k + 1) ≤
(

(n− k) + (k + 1)

2

)2

=

(
n+ 1

2

)2

.

So we have proved the inequality (1− ak+1)+(1− ak+2)+...+(1− an) ≤ n+ 1

4
. Together

with a1 + a2 + ...+ ak ≤
n+ 1

4
, this shows that if we choose the numbers a1, a2, ..., ak from

the first row and the numbers 1 − ak+1, 1 − ak+2, ..., 1 − an from the second row, then the

sum of the chosen numbers in each row is ≤ n+ 1

4
. And the problem is solved.
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3.5. Mock Exam 1

Problem 3.5.1. Let ABC be a triangle. The points K,L and M lie on the segments
BC,CA and AB respectively such that the lines AK,BL and CM intersect in a common
point. Prove that it is possible to choose two of the triangles ALM,BMK and CKL whose
inradius sum up to at least the inradius of the triangle ABC.

Solution. Denote a =
BK

CK
, b =

CL

AL
, c =

CM

AM
By Ceva’s theorem, abc = 1, so we may,

without loss of generality, assume that a ≥ 1. Then at least one of the numbers b or c is not
greater than 1. Therefore at least one of the pairs (ab), (b, c) has its first component not less
than 1 and the second one not greater than 1. Without loss of generality, assume that 1 ≤ a
and b ≤ 1. Therefore, we obtain bc ≤ 1 and 1 ≤ ca, or equivalently

AM

MB
≤ LA

CL
and

MB

AM
≤ BKKC .

The first inequality implies that the line passing through M and parallel to BC intersects
the segment AL at a point X (see Figure 1). Therefore the inradius of the triangle ALM
is not less than the inradius r1 of triangle AMX. Similarly, the line passing through M
and parallel to AC intersects the segment BK at a point Y , so the inradius of the triangle
BMK is not less than the inradius r2 of the triangle BMY . Thus, to complete our solution,
it is enough to show that r1 + r2 ≥ r, where r is the inradius of the triangle ABC. We prove
that in fact r1 + r2 = r.

Since MX ‖ BC, the dilation with centre A that takes M to B takes the incircle of the
triangle AMX to the incircle of the triangle ABC. Therefore

r1
r

=
AM

AB
and similarly

r2
r

=
BM

AB

Adding these equalities gives r1 + r2 = r, as required.

Problem 3.5.2. We have 2m sheets of paper with the number 1 written on each of them.
We perform the following operation. In every step, we choose two distinct sheets. If the two
numbers on the two sheets are a and b, then we erase the numbers and write the number
a + b on both sheets. Prove that after m2m−1 steps that the sum of the numbers on all of
the sheets is at least 4m.

Solution. consider an operation that we erase a, b and write a+ b instead of them. let S be
the sum of other sheets(other than a, b) then the sum of all the sheets is 2a+2b+S. without
loss of generality we can erase a, b and replace them by 2a, 2b; the sum of the sheets after
this operation is also 2a+2b+S so we can do this operation instead of the original operation
(because only the sum of the sheets is important for us). thus after m2m−1 operations the
numbers 2k1 , 2k2 , · · · , 2k2m are written on the sheets where

∑2m

i=1 ki = m2m so using AM-GM
inequality we get 2k1 + 2k2 + · · ·+ 2k2m ≥ 2m

√
2
∑2m

i=1 ki = 4m
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Problem 3.5.3. Find all triples (p, x, y) consisting of a prime number p and two positive
integers x and y such that xp−1 + y and x+ yp−1 are both powers of p.

Solution. Set xp−1 + y = pa, x+ yp−1 = pb. If p = 2, then x+ y = 2a = 2b, so x+ y is any
power of 2. Now assume p > 2. Notice that both a, b ≥ 1 since x, y are positive integers.
Now by Fermat, the second number is either congruent to x or x+1 modulo p, depending on
if p|y. If p|y, we get that p|x, and if p doesn’t divide y, then x ≡ −1 (mod p) which implies
that y ≡ −1 (mod p) too. So we have two cases.

Case 1: x ≡ y ≡ 0 (mod p). Set vp(x) = m and vp(y) = n. Since m,n ≥ 1 and p > 2, we
can’t have both m(p − 1) = n and n(p − 1) = m. WLOG suppose m(p − 1) 6= n. Then we
have vp(xp−1 + y) = min(m(p− 1), n), so xp−1 + y = pmin(m(p−1),n). But we have

min(xp−1, y) ≥ min(pm(p−1), pn) = pmin(m(p−1),n)

which is a contradiction. So there are no solutions in this case. Case 2: x ≡ y ≡ −1 (mod p).
Set k = min(a, b). It is easy to see that x 6= y, since if x = y then x would divide a power of
p, which we ruled out. Claim: x + 1 and y + 1 are multiples of pk−1. Proof: We prove this
for x+ 1; the proof for y + 1 is similar. We have y = pa − xp−1, so

x+ (pa − xp−1)p−1 = pb

Taken modulo pk, the equation above becomes pk|x + (−xp−1)p−1 = x + x(p−1)
2 (since p is

odd). Since p doesn’t divide x, this reduces to pk|1 + xp(p−2). This is vp(xp(p−2) + 1) ≥ k;
LTE reduces this to vp(x+ 1) ≥ k − 1, which is what we wanted to show so we have proved
the claim.

Note that xp−1 + y, x+ yp−1 > 1p−1 + p− 1 = p, so we get that a, b ≥ 2 and thus k ≥ 2.
Now, since pk−1|x+ 1 and pk−1|y + 1, we get x, y ≥ pk−1 − 1, and thus

(pk−1 − 1)p−1 + pk−1 − 1 ≤ pk

Claim: The above inequality must be false if p ≥ 5. Proof: This is quite boring and simple.
We have (pk−1−1)p−1+pk−1−1 = (pk−1−1)[(pk−1−1)p−2+1] > (pk−1−1)[(pk−1−1)2+1] ≥
(pk−1 − 1)[pk−1 + 2] which is equal to p2k−2 + pk−1 − 2. Now p2k−2 ≥ pk and pk−1 > 2, so
p2k−2 + pk−1 − 2 > pk as desired.

Thus p = 3, so (3k−1 − 1)2 + 3k−1 − 1 ≤ 3k. Claim: The above inequality must be
false if k ≥ 3. Proof: This is also pretty simple. The LHS of the above is 32k−2 − 3k−1 =
3k−1(3k−1 − 1) ≥ 3k−1(8) > 3k.

Thus p = 3 and k = 2, so we have one of x2+y and x+y2 equal to 9. The only solution of
x2 +y = 9 with 3|x+1 and 3|y+1 is (x, y) = (2, 5); in this case we do have 2+52 = 27 = 33.
If x+ y2 = 9, we get (x, y) = (5, 2).

So the only solutions are (2, x, y), (3, 2, 5) and (3, 5, 2), where x+ y is any power of 2.
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3.6. Mock Exam 2

Problem 3.6.1. Let Ω and O be the circumcircle and the circumcentre of an acute-angled
triangle ABC with AB > BC. The angle bisector of ∠ABC intersects Ω at M 6= B. Let
Γ be the circle with diameter BM . The angle bisectors of ∠AOB and ∠BOC intersect Γ
at points P and Q, respectively. The point R is chosen on the line PQ so that BR = MR.
Prove that BR ‖ AC

Solution. Let X = Γ ∪ MO, and let D,E be the midpoints of BC and AB respectively.
Let T be the midpoint of BM . Since BM is a diameter of Γ =⇒ MOX ⊥ BX =⇒ BX
‖ AC. Observe that E, T,D are the midpoints of chords of Ω with center O . =⇒ OE ⊥
BE , OT ⊥ BT and BD ⊥ OD. Therefore, E,O, T,D and B are cyclic

From the above result ∠EOR=∠EBT=∠TBC=∠TOD =⇒ T lies on the external angle
bisector of POQ. On the other hand, T ε perpendicular bisector of PQ. Hence P,O, T,Q
are cyclic. Hence R is the radical center of �(POTQ), �(BXEOTD) and Γ. =⇒ B,X,R
are collinear. So, BR ‖ AC and we are done

Problem 3.6.2. Define the function f : (0, 1)→ (0, 1) by

f(x) =

{
x+ 1

2
if x < 1

2

x2 if x ≥ 1
2

Let a and b be two real numbers such that 0 < a < b < 1. We define the sequences an and
bn by a0 = a, b0 = b, and an = f(an−1), bn = f(bn−1) for n > 0. Show that there exists a
positive integer n such that

(an − an−1)(bn − bn−1) < 0.

Solution. Suppose that the conclusion is false, and let g(n) = bn−an. If ai, bi <
1

2
, we have

g(i+ 1) = bi+1 − ai+1 =

(
bi +

1

2

)
−
(
ai +

1

2

)
= g(i)

If ai, bi ≥
1

2
, we have

g(i+ 1) = b2i − a2i = (bi − ai)(bi + ai) = g(i)(bi − ai + 2ai) ≥ g(i)(g(i) + 1) ≥ g(i)(g(0) + 1)

Because ai, bi ≥
1

2
for infinitely many i, we have that for any n ∈ N, we find k such that

g(k) ≥ g(0)(g(0) + 1)n. As g(0)(g(0) + 1)n doesn’t have any upperbound, we have reached
a contradiction.

Problem 3.6.3. Let n points be given inside a rectangle R such that no two of them lie
on a line parallel to one of the sides of R. The rectangle R is to be dissected into smaller
rectangles with sides parallel to the sides of R in such a way that none of these rectangles
contains any of the given points in its interior. Prove that we have to dissect R into at least
n+ 1 smaller rectangles.
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Solution. Notice that there must be at least n line segments inside the big rectangle.

Lemma 3.6.1. Each vertical/horizontal line segment inside the big rectangle must "stop"
at 2 horizontal/vertical segments.

Proof. The only way a line segment does not "stop" at two other horizontal segments is if
two perpendicular segments "stop" when they meet. However, this is not possible as there
is no way to "rectangulate" the region if this happens, so the lemma is true.

Thus, for each vertical/horizontal segment, there are 2 corners. The total number of
corners is then at least 4n plus the four corners on the big rectangle for a total of 4n + 4.
However, each rectangle has 4 corners for a total of at least n+ 1 rectangles, as desired.
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