
11.1 Introduction
In this chapter, you will learn how to run processes in the background or foreground, as well as how to make a
process switch between the background and foreground. You will also be taught how to control processes by
sending them signals using the kill command. In addition, different techniques for monitoring the resources
that a process is using will be presented. Finally, you will see how to control the priority of processes to affect
how much computing resources the processes will use.

11.2 Process Control
As mentioned in a previous chapter, running a command results in something called a process. In the Linux
operating system, processes are executed with the privileges of the user who executes the command. This
allows for processes to be limited to certain capabilities based upon the user identity. For example, typically a
regular user cannot control another user's processes.

Although there are exceptions, generally the operating system will differentiate users based upon whether they
are the administrator, also called the root user, or not. Non-root users are referred to as regular users. Users
who have logged into the root account can control any user processes, including stopping any user process.

11.3 Process (ps) Command
The ps command can be used to list processes. Keep in mind that the ps command supports three styles of
options:

 Traditional UNIX style short options that use a single hyphen in front of a character
 GNU style long options that use two hyphens in front of a word
 BSD style options that use no hyphens and single character options

sysadmin@localhost:~$ ps

 PID TTY TIME CMD

 80 ? 00:00:00 bash

 94 ? 00:00:00 ps

The ps command will display the processes that are running in the current terminal by default. The output
includes the following columns of information:

 PID: The process identifier, which is unique to the process. This information is useful to control

the process by its ID number.

 TTY: The name of the terminal or pseudo-terminal where the process is running. This information

is useful to distinguish between different processes that have the same name.

 TIME: The total amount of processor time used by the process. Typically, this information isn't

used by regular users.

 CMD: The command that started the process.

When the ps command is run with a BSD style option then an additional column called STAT is displayed, which

conveys the state of the processes. There are several states that a process can be in: D (Uninterruptible

Sleep), R (Running), S (Interruptible Sleep), T (Stopped), and Z (Zombie).

When using a BSD style option, the CMD column is replaced with the COMMAND column, which shows not just

the command, but also its options and arguments.

To see all of the current user's processes, use the BSD option x:

sysadmin@localhost:~$ ps x

 PID TTY STAT TIME COMMAND

 80 ? S 0:00 -bash

 95 ? R+ 0:00 ps x

Instead of viewing just the processes running in the current terminal, users may want to view every process

running on the system. With traditional (non-BSD) options, the -e option will display every process. Typically,

the -f option is also used as it provides full details of the command, including options and arguments:

sysadmin@localhost:~$ ps -ef

UID PID PPID C STIME TTY TIME CMD

root 1 0 0 17:16 ? 00:00:00 /sbin??? /init

syslog 33 1 0 17:16 ? 00:00:00 /usr/sbin/rsyslogd

root 38 1 0 17:16 ? 00:00:00 /usr/sbin/cron

root 40 1 0 17:16 ? 00:00:00 /usr/sbin/sshd

bind 57 1 0 17:16 ? 00:00:00 /usr/sbin/named -u bind

root 70 1 0 17:16 ? 00:00:00 /bin/login -f

sysadmin 80 70 0 17:16 ? 00:00:00 -bash

sysadmin 96 80 0 17:26 ? 00:00:00 ps -ef

11.4 Foreground Processes
So far, the commands that have been presented in this course have been executing in what is known as
the foreground. For simple commands that run quickly and then exit, using foreground execution is appropriate.
A foreground process is one that prevents the user from using the shell until the process is complete.

When one process starts another, the first process is referred to as the parent process and the new process is
called a child process. So, another way of thinking of a foreground process is that when run in the foreground, a
child process doesn't allow any further commands to be executed in the parent process until the child process
ends.

You do not need to add anything to a command in order to make that command execute in the foreground, as
that is the default behavior.

11.5 Executing Multiple Commands
Before discussing background processes, consider how multiple commands can be executed on a single
command line.

Normally, users only type one command per command line, but by using the ;(semicolon character) as a

delimiter between commands, a user can type multiple commands on one command line. Rarely is it really
necessary to run two or more commands from one command line, but sometimes it can be useful.

When commands are separated by the semicolon, the command to the left of the semicolon executes; when it
finishes, the command to the right of the semicolon executes. Another way of describing this is to say that the
commands execute in sequence. For example:

sysadmin@localhost:~$ echo Hello;sleep 5; echo World

Hello

World

Note: The sleep command will pause for 5 seconds before continuing to the next command.

Recall that an alias is a feature that allows a user to create nicknames for commands or command lines. Having
an alias that runs multiple commands can be very useful and to accomplish this, the user would use

the ; between each of the commands when creating the alias. For example, to create an alias

called welcome which outputs the current user, the date, and the current directory listing, execute the following
command:

sysadmin@localhost:~$ alias welcome="whoami;date;ls"

Now the alias welcome will execute whoami, date, and ls in series like so:

sysadmin@localhost:~$ welcome

sysadmin

Mon Sep 8 22:03:34 UTC 2014

Desktop Documents Downloads Music Pictures Public Templates Videos test

A real-life scenario involving multiple commands occurs when an administrator needs to take down and restart
the network connection remotely. If the user typed the one command to bring down the network and then
executed it, then the network connection would be terminated and the user wouldn't be able to bring the network
back up again. Instead, the user could type the command to take down the network, followed by a semicolon,
then the command to bring up the network. After pressing the Enter key, both commands would execute, one
right after the other.

11.6 Background Processes
When a command may take some time to execute, it may be better to have that command execute in the
"background". When executed in the background, a child process releases control back to the parent process
(the shell, in this case) immediately, allowing the user to execute other commands. To have a command execute
as a background process, add the & (ampersand character) after the command

To have multiple commands run in the background on one command line, place an ampersand after each
command in that command line. In the next example, all three commands start nearly simultaneously and
release control back to the shell, so the user does not have to wait for any of the commands to finish before
executing another command (although the user might need to press Enter again to get a prompt):

sysadmin@localhost:~$ echo Hello&sleep 5&echo World&

[1] 103

[2] 104

[3] 105

Hello

sysadmin@localhost:~$ World

[1] Done echo Hello

[2]- Done sleep 5

[3]+ Done echo World

sysadmin@localhost:~$

There is an additional difference in executing commands in the background. After each command starts
executing, it outputs [job number] followed by a space and then the process identification number (PID). These
numbers are used for controlling the process, as you will see later.

After each background command finishes executing, it displays the job number, sometimes followed by a - or

a + character, the word Done and then the command line itself. The meaning of the - and + will soon be

explained.

While there are still background processes being run in the terminal, they can be displayed by using
the jobs command. It is important to point out that the jobs command will only show background processes in
the current terminal. If background processes are running in another terminal, they will not be shown by running

the jobs command in the current terminal. The following is an example of using the jobs command:

sysadmin@localhost:~$ sleep 1000 &

[1] 106

sysadmin@localhost:~$ sleep 2000 &

[2] 107

sysadmin@localhost:~$ jobs

[1]- Running sleep 1000 &

[2]+ Running sleep 2000 &

11.7 Moving Processes
If the sleep command from the previous page is run without the ampersand, the terminal would not be available
for 1000 seconds:

sysadmin@localhost:~$ sleep 1000

To make the terminal available again, the administrator would have to use CTRL+Z:

^Z

[1]+ Stopped sleep 1000

Now the terminal is back, but the sleep command has been paused. To put the paused command in the

background, execute the bg command. The bg command resumes jobs without bringing them to the foreground.

sysadmin@localhost:~$ bg

[1]+ sleep 1000 &

A command that has been paused or sent to the background can then be returned to the foreground using

the fg command. To bring the sleep command back to the foreground, locking up the terminal again, use

the fg command:

sysadmin@localhost:~$ fg

sleep 1000

Suppose we have two paused processes:

sysadmin@localhost:~$ sleep 1000

^Z

[1]+ Stopped sleep 1000

sysadmin@localhost:~$ sleep 2000

^Z

[2]+ Stopped sleep 2000

sysadmin@localhost:~$ jobs

[1]- Stopped sleep 1000

[2]+ Stopped sleep 2000

Both bg and fg can take the job number as an argument to specify which process should be resumed. The

following commands will resume sleep 1000 in the background and resume sleep 2000 in the foreground
respectively:

sysadmin@localhost:~$ bg 1

[1]- sleep 1000 &

sysadmin@localhost:~$ fg 2

sleep 2000

It is also possible to use the name of the name of the command as an argument:

sysadmin@localhost:~$ sleep 1000

^Z

[1]+ Stopped sleep 1000

sysadmin@localhost:~$ bg sleep

[1]+ sleep 1000 &

Given multiple tasks, and only one terminal to use with them, the fg and bg commands provide an administrator
with the ability to manually multi-task.

11.8 Sending a Signal
A signal is a message that is sent to a process to tell the process to take some sort of action, such as stop,
restart, or pause. Signals are very useful in controlling the actions of a process.

Some signals can be sent to processes by simple keyboard combinations. For example, to have a foreground
process paused, send a Terminal Stop signal by pressing CTRL+Z. A Terminal Stop pauses the program, but
does not completely stop the program. To completely stop a foreground process, send the Interrupt signal by
pressing CTRL+C.

There are many different signals, each of them have a symbolic name and a numeric identifier. For
example, CTRL+C is assigned the symbolic name SIGINT and the numeric identifier of 2.

To see a list of all of the signals available for your system, execute the kill –l command:

sysadmin@localhost:~$ kill -l

 1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL 5) SIGTRAP

 6) SIGABRT 7) SIGBUS 8) SIGFPE 9) SIGKILL 10) SIGUSR1

11) SIGSEGV 12) SIGUSR2 13) SIGPIPE 14) SIGALRM 15) SIGTERM

16) SIGSTKFLT 17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP

21) SIGTTIN 22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ

26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO 30) SIGPWR

31) SIGSYS 34) SIGRTMIN 35) SIGRTMIN+1 36) SIGRTMIN+2 37) SIGRTMIN+3

38) SIGRTMIN+4 39) SIGRTMIN+5 40) SIGRTMIN+6 41) SIGRTMIN+7 42) SIGRTMIN+8

43) SIGRTMIN+9 44) SIGRTMIN+10 45) SIGRTMIN+11 46) SIGRTMIN+12 47) SIGRTMIN+13

48) SIGRTMIN+14 49) SIGRTMIN+15 50) SIGRTMAX-14 51) SIGRTMAX-13 52) SIGRTMAX-12

53) SIGRTMAX-11 54) SIGRTMAX-10 55) SIGRTMAX-9 56) SIGRTMAX-8 57) SIGRTMAX-7

58) SIGRTMAX-6 59) SIGRTMAX-5 60) SIGRTMAX-4 61) SIGRTMAX-3 62) SIGRTMAX-2

63) SIGRTMAX-1 64) SIGRTMAX

These signals can have unique meanings that are specific to a certain command (as the programmer who
created the command can adjust the behavior of the program), but generally they allow for processes to be
stopped and resumed, for processes to reconfigure themselves or to end a process. All the signals with a
number greater than 31 are for controlling real-time processes, a topic which is beyond the scope of this course.
Some of the more common signals are summarized in the following table:

Number Full Name Short Name Purpose

Number Full Name Short Name Purpose

1 SIGHUP HUP Hang up usually ends process

2 SIGINT INT Interrupt usually ends process

3 SIGQUIT QUIT Quit usually ends process

9 SIGKILL KILL Kill forcefully ends process

15 SIGTERM TERM Terminate usually ends process

18 SIGCONT CONT Continue resumes a stopped process

19 SIGSTOP STOP Stop forcefully stops a process

20 SIGTSTP TSTP Terminal Stop usually stops a process

There are several commands that will allow you to specify a signal to send to process; the kill command is the

most typically used. The kill command accepts three different ways to specify the signal:

 The signal number used as an option: -2

 The short name of the signal used as an option: -INT

 The full name of the signal used as an option: -SIGINT

All three options shown above indicate the Interrupt signal.

If the user doesn't specify a signal with an option, then the kill command sends the Terminate SIGTERM signal.

When sending a signal, specify one or more processes to send the signal to. There are numerous techniques to
specify the process or processes. The more common techniques include:

 Specifying the process identifier (PID)

 Using the % (percent sign) prefix to the job number

 Using the -p option along with the process identifier (PID)

For example, first imagine a scenario where a user is running some process in the background and that user

wants to send a signal to the process. For this demonstration, the sleep command is run in the background:

sysadmin@localhost:~$ sleep 5000&

[1] 2901

A couple of items are noteworthy from the output of starting this process in the background. First, notice the job

number in square brackets: [1]. Second, notice the process identifier (PID) which is 2901. To send the

Terminate signal, to this process, you can use any of the following commands:

 kill 2901

 kill %1

 kill -p 2901

As indicated earlier, the Terminate signal normally will end a process. Sometimes a process will trap the
Terminate signal, so it may not end that process. Trapping occurs when a process behaves differently from the
norm when it receives a signal; this can be the result of how the programmer created the code for the command.

A user could try to use other signals, like SIGQUIT or SIGINT, to try to end a process, but these signals can

also be trapped. The only signal that will end a process and can't be trapped is SIGKILL. So, if other signals

have failed to end a process, use the SIGKILL signal to force the process to end.

Users should not normally use the SIGKILL signal as the initial attempt to try to end a process because this

forces the process to end immediately and will not allow the process the opportunity to "clean up" after itself.
Processes often perform critical operations, such as deleting temporary files, when they exit naturally.

The following examples show how to send the "force kill" signal to a process:

 kill -9 2901

 kill -KILL %1

 kill -SIGKILL -p 2901

There are other commands that send processes signals, such as the killall and pkill commands, which

are useful to stop many processes at once; typically the kill command is a good choice for sending signals to a
single process.

Like the kill command, both the killall and pkill commands accept the three ways to specify a particular

signal. Unlike the kill command, these other commands can be used to terminate all processes of a particular

user with the -u option. For example, killall -u bob would stop all of the process owned by the user "bob".

The killall and pkill commands also accept the name of the process instead of a process or job ID. Just be
careful as this may end up stopping more process than you had expected. An example of stopping a process
using the process name:

sysadmin@localhost:~$ kill sleep

-bash: kill: sleep: arguments must be process or job IDs

sysadmin@localhost:~$ killall sleep

[1]+ Terminated sleep 5000

11.9 HUP Signal
When a user logs off the system, all processes that are owned by that user are automatically sent the Hang-up

signal SIGHUP. Typically, this signal causes those processes to end.

In some cases, a user may want to execute a command that won't automatically exit when it is sent
a HUP signal. To have a process ignore a Hang-up signal, start the process with the nohup command.

For example, consider a scenario where a user has a script named myjob.sh that needs continue to run all

night long. The user should start that script in the background of the terminal by executing:

sysadmin@localhost:~$ nohup myjob.sh &

After executing the script, the user could proceed to logout. The next time the user logs in, the output of the
script, if any, would be contained in the nohup.out file in that user's home directory.

11.10 Process Priority
When a process runs, it needs to have access to the CPU to perform actions. Not all processes have the same
access to the CPU. For example, a system process typically has a higher priority when accessing the CPU.

The Linux kernel dynamically adjusts the priority of processes to try to make the operating system seem
responsive to the user and efficient at performing tasks. A user can influence the priority that will be assigned to
a process by setting a value of something called niceness.

The higher you set the niceness value, the lower the priority that will be assigned to a process. The default
value of niceness for processes is zero; most user processes run at this nice value. Only a user with
administrative (root) access can set negative niceness values or alter the niceness of an existing process to be a
lower niceness value.

To set the initial niceness of a command, use the nice command as a prefix to the command to execute. For

example, to execute the cat /dev/zero > /dev/null command at the lowest priority possible, execute the
following command:

sysadmin@localhost:~$ nice -n 19 cat /dev/zero > /dev/null

If a user logs in as the root user, they could also execute the cat /dev/zero > /dev/null command with the
highest priority possible by executing the following command:

root@localhost:~# nice -n -20 cat /dev/zero > /dev/null

To adjust the niceness of an existing process, use the renice command. This can be useful when the system
becomes less responsive after running a CPU intensive command. A user could make the system more
responsive again by making that process run "nicer".

To accomplish this, the user would need to discover the process identifier for the process by using

the ps command and then use renice to adjust the priority back to normal. For example:

sysadmin@localhost:~$ su -

Password:

root@localhost:~# nice -n -20 cat /dev/zero > /dev/null &

[1] 121

root@localhost:~# ps

 PID TTY TIME CMD

 1 ? 00:00:00 init

 70 ? 00:00:00 login

 108 ? 00:00:00 su

 109 ? 00:00:00 bash

 121 ? 00:00:04 cat

 122 ? 00:00:00 ps

root@localhost:~# renice -n 0 -p 121

121 (process ID) old priority -20, new priority 0

Note: The su command demonstrated above allows a regular user to temporarily become the root user. The

user is required to enter the root account password, when prompted.

11.11 Monitoring Processes
While the ps command can display active processes, the top command provides the ability to monitor
processes in real-time, as well as manage the processes. For example, the following graphic will demonstrate

using the top command to monitor currently running processes, including three cat commands:

Tasks: 13 total, 4 running, 9 sleeping, 0 stopped, 0 zombie

%Cpu(s): 0.3 us, 37.2 sy, 0.2 ni, 62.1 id, 0.0 wa, 0.1 hi, 0.0 si, 0.0 st

KiB Mem: 16438128 total, 13108516 used, 3329612 free, 4276 buffers

KiB Swap: 0 total, 0 used, 0 free. 9808716 cached Mem

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

 164 root 20 0 4364 696 616 R 87.4 0.1 1:23.32 cat

 165 root 30 10 4364 696 620 R 9.3 0.1 0:49.13 cat

 166 root 39 19 4364 772 696 R 1.7 0.1 0:41.75 cat

 1 root 20 0 17960 2972 2724 S 0.0 0.0 0:00.02 init

 33 syslog 20 0 255844 2728 2296 S 0.0 0.0 0:00.03 rsyslogd

 38 root 20 0 23656 2288 2076 S 0.0 0.0 0:00.00 cron

 40 root 20 0 61364 3124 2444 S 0.0 0.0 0:00.00 sshd

 57 bind 20 0 689640 29580 5328 S 0.0 0.2 0:00.13 named

 70 root 20 0 63132 2900 2452 S 0.0 0.0 0:00.00 login

 80 sysadmin 20 0 18176 3384 2896 S 0.0 0.0 0:00.04 bash

 151 root 20 0 46628 2708 2360 S 0.0 0.0 0:00.01 su

 152 root 20 0 18180 3388 2896 S 0.0 0.0 0:00.01 bash

 167 root 20 0 19860 2452 2124 R 0.0 0.0 0:00.00 top

Note that the cat command with the lowest niceness (NI column) is using the highest percentage CPU

(%CPU column) while the cat command with the highest niceness is using the lowest percentage CPU.

The top command has numerous features; for example, it can be manipulated in an interactive manner.

Pressing the h key while the top command is running will result in it displaying a "help" screen:

Help for Interactive Commands - procps-ng version 3.3.9

Window 1:Def: Cumulative mode Off. System: Delay 3.0 secs; Secure mode Off.

 Z,B,E,e Global: 'Z' colors; 'B' bold; 'E'/'e' summary/task memory scale

 l,t,m Toggle Summary: 'l' load avg; 't' task/cpu stats; 'm' memory info

 0,1,2,3,I Toggle: '0' zeros; '1/2/3' cpus or numa node views; 'I' Irix mode

 f,F,X Fields: 'f'/'F' add/remove/order/sort; 'X' increase fixed-width

 L,&,<,> . Locate: 'L'/'&' find/again; Move sort column: '<'/'>' left/right

 R,H,V,J . Toggle: 'R' Sort; 'H' Threads; 'V' Forest view; 'J' Num justify

 c,i,S,j . Toggle: 'c' Cmd name/line; 'i' Idle; 'S' Time; 'j' Str justify

 x,y . Toggle highlights: 'x' sort field; 'y' running tasks

 z,b . Toggle: 'z' color/mono; 'b' bold/reverse (only if 'x' or 'y')

 u,U,o,O . Filter by: 'u'/'U' effective/any user; 'o'/'O' other criteria

 n,#,^O . Set: 'n'/'#' max tasks displayed; Show: Ctrl+'O' other filter(s)

 C,... . Toggle scroll coordinates msg for: up,down,left,right,home,end

 k,r Manipulate tasks: 'k' kill; 'r' renice

 d or s Set update interval

 W,Y Write configuration file 'W'; Inspect other output 'Y'

 q Quit

 (commands shown with '.' require a visible task display window)

Press 'h' or '?' for help with Windows,

Type 'q' or <Esc> to continue

The k and r keys are used to manage tasks or processes within the top program.

Pressing the k key will allow a user to "kill" or send a signal to a process. After pressing k, top will prompt for a
PID and then for a signal to send to that process.

Pressing the r key will allow a user to "renice" a process by prompting for the PID and then the new niceness
value.

11.12 Monitoring the System
There are also a couple of commands that can be used to monitor the overall state of the system:

the uptime and free commands.

The uptime command shows the current time and the amount of time the system has been running,

followed by the number of users who are currently logged in and the load averages during the past one, five and
fifteen minute intervals.

The numbers reported for the load averages are based upon how many CPU cores are available. Think of each
processor as having 100% resources (CPU time) available. One processor = 100%, four processors = 400%.

The uptime command is reporting the amount of resources used, but it is dividing by 100. So 1.00 is actually
100% of the CPU time being used, 2.00 is 200% and so on.

If a system has only one CPU core, then a value of 1.00 indicates that the system was fully loaded with tasks. If
the system has two CPU cores, then a value of 1.00 would indicate a 50% load (1.00/2.00). An uptime reading
of 1.00 (or 100%) usage on a 4 core CPU would imply that 1.00/4.00 (or 1/4 (or 25%)) of the CPU's total
computational resources are being used.

To get a good idea of how busy a system is, use the uptime command:

sysadmin@localhost:~$ uptime

18:24:58 up 5 days, 10:43, 1 user, load average: 0.08, 0.03, 0.05

To get an idea of how your system is using memory, the free command is helpful. This command displays not
only the values for the random access memory (RAM) but also for swap, which is space on the hard disk that is
used as memory for idle processes when the random access memory starts to become scarce.

The free command reports the total amount of memory, as well as how much is currently used and how

much is free to be used. The output also breaks down the use of memory for buffers and caches:

sysadmin@localhost:~$ free

 total used free shared buffers cached

Mem: 16438128 13106024 3332104 3200 4276 9808896

-/+ buffers/cache: 3292852 13145276

Swap: 0 0 0

If logged into the Gnome desktop environment, the user can use the gnome-system-monitor. This tool (pictured
below) is analogous to the Task Manager in Microsoft Windows. It provides four tabs to view information about
the System, Processes, Resources and File Systems.

This graphical tool allows users to select a process and send a signal to it to terminate it, as well as view all

current processes updated in real-time.

Note: The K desktop environment (KDE) has a similar command called ksysguard.

