$11-7$

1. Plan

Objectives

1 To find relationships between the ratios of the areas and volumes of similar solids

Examples

Identifying Similar Solids
2 Finding the Similarity Ratio
3 Using a Similarity Ratio
4 Real-World Connection

\section*{| Protessional |
| :---: |
| Development |
 Math Background}

The surface areas and volumes of similar solids are directly proportional, respectively, to the square and cube of their similarity ratios. The weight of a prism is twice the weight of a similar prism made of the same material when the ratio of corresponding lengths is $\sqrt[3]{2}: 1 \approx 5: 4$.

More Math Background: p. 596D

Lesson Planning and Resources

See p. 596E for a list of the resources that support this lesson.

Check Skills You'll Need

For intervention, direct students to:

Determining Similarity

Lesson 7-2: Example 2
Extra Skills, Word Problems, Proof Practice, Ch. 7

Finding Volumes of Prisms and Cylinders

Lesson 11-4: Examples 1, 3 Extra Skills, Word Problems, Proof Practice, Ch. 11

What You'll Learn

- To find relationships between the ratios of the areas and volumes of similar solids
... And Why
To use similarity ratios to find the weight of an object, as in Example 4

The two similar prisms shown here suggest two important relationships for similar solids.

The ratio of the side lengths is $1: 2$.
The ratio of the surface areas is $22: 88$, or $1: 4$. The ratio of the volumes is $6: 48$, or $1: 8$.

The ratio of the surface areas equals the square of the similarity ratio. The ratio of the volumes equals the cube of the similarity ratio. These two facts apply to all similar solids.

Theorem 11-12 Areas and Volumes of Similar Solids

If the similarity ratio of two similar solids is $a: b$, then
(1) the ratio of their corresponding areas is $a^{2}: b^{2}$, and
(2) the ratio of their volumes is $a^{3}: b^{3}$.

2 ExADPLE Finding the Similarity Ratio

Find the similarity ratio of two cubes with volumes of $729 \mathrm{~cm}^{3}$ and $1331 \mathrm{~cm}^{3}$.

$$
\begin{array}{rlrl}
\frac{a^{3}}{b^{3}} & =\frac{729}{1331} & & \text { The ratio of the volumes is } a^{3}: b^{3} . \\
\frac{a}{b} & =\frac{9}{11} & \text { Take cube roots. }
\end{array}
$$

- The similarity ratio is $9: 11$.
(2) Quick Check 2 Find the similarity ratio of two similar prisms with surface areas $144 \mathrm{~m}^{2}$ and $324 \mathrm{~m}^{2}$. 2: 3
(3) ExANIPLE Using a Similarity Ratio

Paint Cans The lateral areas of two similar paint cans are $1019 \mathrm{~cm}^{2}$ and $425 \mathrm{~cm}^{2}$. The volume of the small can is $1157 \mathrm{~cm}^{3}$. Find the volume of the large can.
First find the similarity ratio $a: b$.

$$
\begin{array}{ll}
\frac{a^{2}}{b^{2}}=\frac{1019}{425} & \text { The ratio of the surface areas is } a^{2}: b^{2} \\
\frac{a}{b}=\frac{\sqrt{1019}}{\sqrt{425}} & \text { Take square roots. }
\end{array}
$$

Vocabulary Tip

The subscripts "large" and "small" let you use the letter V for the volumes of both the large can ($V_{\text {large }}$) and small can ($V_{\text {small }}$).

2. Teach

Guided Instruction

Teaching Tip

Remind students that when the similarity ratio of two similar plane figures is $a: b$, the ratio of their perimeters is $a: b$ and the ratio of their areas is $a^{2}: b^{2}$.

Tactile Learners

Students can build similar rectangular prisms with cubes to investigate the Areas and Volumes of Similar Solids Theorem.

Auditory Learners

Have students suggest ways to remember whether the ratio of surface areas or volumes is the square of or the cube of the similarity ratio.

ExandPL=
 Connection to Algebra

Students are accustomed to solving an equation for a single variable but not for a ratio. Point out that only the ratio $\frac{a}{b}$ is needed, not a value of a or b.

fowerpoint
 Additional Examples

Are the two solids similar? If so, give the similarity ratio.

no
Find the similarity ratio of two similar cylinders with surface areas of $98 \pi \mathrm{ft}^{2}$ and $2 \pi \mathrm{ft}^{2}$. $7: 1$
(3) Two similar square pyramids have volumes of $48 \mathrm{~cm}^{3}$ and $162 \mathrm{~cm}^{3}$. The surface area of the larger pyramid is $135 \mathrm{~cm}^{2}$. Find the surface area of the smaller pyramid. $60 \mathrm{~cm}^{2}$

English Language Learners ELL
For Example 4, make sure students understand what a paperweight is. It would be helpful to show an example of a paperweight and how one is used.

Advanced Learners L4

After Example 4, have students discuss ways to estimate the weight of the water in a swimming pool, given the shape and dimensions.

Use the similarity ratio to find the volume.

$\frac{V_{\text {large }}}{V_{\text {small }}}=\frac{\sqrt{1019}^{3}}{\sqrt{425}^{3}}$	The ratio of the volumes is $a^{3}: b^{3}$.
$\frac{V_{\text {large }}}{1157}=\frac{\sqrt{1019}^{3}}{\sqrt{425}^{3}}$	Substitute 1157 for $V_{\text {small. }}$.
$V_{\text {large }}=1157 \cdot \frac{\sqrt{1019}^{3}}{\sqrt{425}^{3}}$	Solve for $V_{\text {large }}$.
$V_{\text {large }} \approx 4295$	Use a calculator.

The volume of the large paint can is about $4295 \mathrm{~cm}^{3}$.
Quick Check
The volumes of two similar solids are $128 \mathrm{~m}^{3}$ and $250 \mathrm{~m}^{3}$. The surface area of the larger solid is $250 \mathrm{~m}^{2}$. What is the surface area of the smaller solid? $160 \mathrm{~m}^{2}$

Lesson 11-7 Areas and Volumes of Similar Solids

Teaching Tip

Review the four properties of proportions in Lesson 7-1, especially the Cross-Product Property.

EXAMPLE
 Alternative Method

Ask: How can you find the weight without using a variable or proportion? Sample: The volume and weight of the similar paperweight are 27 times the volume and weight of the original, so multiply the weight of the original by 27.

Additional Examples

(4)A box of detergent shaped like a rectangular prism is 6 in. high and holds 3.25 lb of detergent. How much detergent would a similar box that is 8 in. high hold? Round your answer to the nearest tenth. 7.7 lb

Resources

- Daily Notetaking Guide 11-7

L3

- Daily Notetaking Guide 11-7Adapted Instruction

Closure

The volumes of two similar solids are $81 \mathrm{~m}^{3}$ and $375 \mathrm{~m}^{3}$. The height of the smaller solid is 6 m . The surface area of the larger solid is $325 \mathrm{~m}^{2}$. Find the height of the larger solid and the surface area of the smaller solid. height: 10 m ; surface area: $117 \mathrm{~m}^{2}$

The weights of solid objects made of the same material are proportional to their volumes.
(4) ExADPLE Real-World Connection

Paperweights A marble paperweight shaped like a pyramid weighs 0.15 lb . How much does a similarly shaped marble paperweight weigh if each dimension is three times as large?

The similarity ratio is $1: 3$. The ratio of the volumes, and hence the ratio of the weights, is $1^{3}: 3^{3}$, or $1: 27$.

$$
\begin{aligned}
\frac{1}{27} & =\frac{0.15}{x} & & \text { Let } x=\text { the weight of the larger paperweight. } \\
x & =27(0.15) & & \text { Use the Cross Product Property. } \\
x & =4.05 & &
\end{aligned}
$$

- The larger paperweight weighs about 4 lb .

(v) Quick Check 4
 Find the weight of a marble bead that is similar to the paperweight in Example 4 but has dimensions half as large. 0.01875 lb

EXERCISES

For more exercises, see Extra Skill, Word Problem, and Proof Practice.

Practice and Problem Solving

A Practice by Example
Are the two figures similar? If so, give the similarity ratio.

1. no

Example 1

for

Help
(page 646)
elp

5. two cubes, one with $3-\mathrm{cm}$ edges, the other with $4.5-\mathrm{cm}$ edges yes; $2: 3$
6. a cylinder and a square prism each with 3 -in. radii and 1-in. heights no

Example 2
(page 647)

Each pair of figures is similar. Use the given information to find the similarity ratio of the smaller figure to the larger figure.
7. $5: 6$

$V=250 \pi \mathrm{ft}^{3} \quad V=432 \pi \mathrm{ft}^{3}$
8.

$$
V=216 \text { in. }^{3} \quad V=343 \text { in. } .^{3}
$$

$$
\text { S.A. }=18 \mathrm{~m}^{2} \quad \text { S.A. }=32 \mathrm{~m}^{2}
$$

10. $2: 5$

S.A. $=20 \pi \mathrm{yd}^{2} \quad$ S.A. $=125 \pi \mathrm{yd}^{2}$

Example 3 (page 647)

Example 4 (page 648)

19a. It is 64 times the smaller prism.
b. It is 64 times the smaller prism.

B
Apply Your Skills

Real-World Connection
The time scale of an atomic clock is based on vibrations of atoms and molecules.

The surface areas of two similar figures are given. The volume of the larger figure is given. Find the volume of the smaller figure.
11. S.A. $=18$ in. 2
12. S.A. $=192 \mathrm{~m}^{2}$
13. S.A. $=52 \mathrm{ft}^{2}$
S.A. $=98$ in. ${ }^{2}$
$V=343$ in. 3
27 in. ${ }^{3}$
S.A. $=1728 \mathrm{~m}^{2}$
$V=4860 \mathrm{~m}^{3}$
$180 \mathrm{~m}^{3}$
S.A. $=208 \mathrm{ft}^{2}$
$V=192 \mathrm{ft}^{3}$
$24 \mathrm{ft}^{3}$

The volumes of two similar figures are given. The surface area of the smaller figure is given. Find the surface area of the larger figure.
14. $V=27 \mathrm{in} .^{3}$
15. $V=5 \mathrm{~m}^{3}$
$V=125$ in. 3
S.A. $=63$ in. ${ }^{2}$
175 in. ${ }^{2}$
$V=40 \mathrm{~m}^{3}$
S.A. $=4 \mathrm{~m}^{2}$
$16 \mathrm{~m}^{2}$
16. $V=54 \mathrm{yd}^{3}$
$V=128 \mathrm{yd}^{3}$
S.A. $=18 \mathrm{yd}^{2}$
$32 \mathrm{yd}^{2}$
17. Packaging There are 750 toothpicks in a regular-sized box. If a jumbo box is made by doubling all the dimensions of the regular-sized box, how many toothpicks will the jumbo box hold? 6000 toothpicks
18. Packaging A cylinder 4 in . in diameter and 6 in . high holds 1 lb of oatmeal. To the nearest ounce, how much oatmeal will a similar 10-in.-high cylinder hold? (Hint: $1 \mathrm{lb}=16 \mathrm{oz}$) 74 oz
19. A regular pentagonal solid prism has $9-\mathrm{cm}$ base edges. A larger, similar solid prism of the same material has $36-\mathrm{cm}$ base edges. How does each indicated measurement for the larger prism compare to the same measurement for the smaller prism? a-b. See left.
a. the volume
b. the weight
20. Two similar prisms have heights 4 cm and 10 cm .
a. What is their similarity ratio? $2: 5$
b. What is the ratio of their surface areas? 4:25
c. What is the ratio of their volumes? $8: 125$
21. Atomic Clock A company announced that it had developed the technology to reduce the size of its atomic clock, which is used in electronic devices that transmit data. The company claims that the smaller clock will be similar to the existing clock made of the same material. It will be $\frac{1}{10}$ the size of its existing atomic clocks and $\frac{1}{100}$ the weight. Do these ratios make sense? Explain. See margin.
22. Is there a value of x for which the rectangular prisms below are similar? Explain. Yes; 60; $\frac{80}{60}=\frac{40}{30}=\frac{60}{45}=\frac{4}{3}$.

23. The volume of a spherical balloon with radius 3.1 cm is about $125 \mathrm{~cm}^{3}$. Estimate the volume of a similar balloon with radius 6 cm . about $1000 \mathrm{~cm}^{3}$
21. No; explanations may vary. Sample: If "size" refers to the vol., then the new clock should be at $\frac{1}{10}$ the weight.

3. Practice

Assignment Guide

1 A B 1-34	
C Challenge	$35-37$
Test Prep	$38-42$
Mixed Review	$43-50$

Homework Quick Check

To check students' understanding of key skills and concepts, go over Exercises 2, 18, 22, 25, 29.

Error Prevention!

Exercises 7-10 Students may forget to take the square or cube root to find the similarity ratio. Suggest that they write the measurement units as part of the ratio.

Exercise 22 Do this exercise as a class to help correct the common misconception that similar prisms must be shown in the same orientation.

Connection to Biology

Exercise 35 The Areas and Volumes of Similar Solids Theorem has dramatic implications for the scale and size of animals. Recommend that interested students read J.B.S. Haldane's classic essay On Being the Right Size.

4. Assess \& Reteach

For Exercises 1 and 2, are the two solids similar? If so, give the similarity ratio of the smaller figure to the larger figure.

10 in. no
2.

yes; 2 : 3
3. Find the similarity ratio of two spheres with volumes of $20 \pi \mathrm{~m}^{3}$ and $160 \pi \mathrm{~m}^{3}$. $1: 2$
4. The volumes of two similar solids are $54 \mathrm{ft}^{3}$ and $250 \mathrm{ft}^{3}$. The surface area of the smaller solid is $45 \mathrm{ft}^{2}$. Find the surface area of the larger solid. $125 \mathrm{ft}^{2}$
5. A solid chocolate rabbit is 6 in. high and weighs 0.25 lb . A similar chocolate rabbit is 12 in . high. How much does it weigh? 2 lb

Alternative Assessment

Assign students to groups of three or four. Have each student find one set of possible dimensions for two similar rectangular prisms whose volumes are $288 \mathrm{~cm}^{3}$ and $972 \mathrm{~cm}^{3}$, draw the prisms, and list the similarity ratio, ratio of surface areas, and ratio of volumes. Students then should compare their drawings to see the number of different figures that are represented.
24. Critical Thinking A carpenter is making a blanket chest based on an antique chest. Both chests have the shape of a rectangular prism. The length, width, and height of the new chest will all be 4 in. greater than the respective dimensions of the antique. Will the chests be similar? Explain. See left.
25. Writing Explain why all spheres are similar. See left.
26. Two similar pyramids have lateral area $8 \mathrm{ft}^{2}$ and $18 \mathrm{ft}^{2}$. The volume of the smaller pyramid is $32 \mathrm{ft}^{3}$. Find the volume of the larger pyramid. $108 \mathrm{ft}^{3}$
27. The volumes of two spheres are $729 \mathrm{in}^{3}{ }^{3}$ and $27 \mathrm{in} .^{3}$.
a. Find the ratio of their radii. $3: 1$
b. Find the ratio of their surface areas. $9: 1$
28. The volumes of two similar pyramids are $1331 \mathrm{~cm}^{3}$ and $2744 \mathrm{~cm}^{3}$.
a. Find the ratio of their heights. $11: 14$
b. Find the ratio of their surface areas. 121: 196
29. A clown's face on a balloon is 4 in. high when the balloon holds 108 in. ${ }^{3}$ of air. GPS How much air must the balloon hold for the face to be 8 in. high? 864 in. 3

Copy and complete the table for the similar solids.

	Similarity Ratio	Ratio of Surface Areas	Ratio of Volumes	1: 4; $1: 8$
30.	1:2	$\square: \square$	$\square: \square$	
31.	$3: 5$	$\square: \square$	$\square: \square$	9: 25; 27 : 125
32.	$\square: \square$	49 : 81	$\square: \square$	7: 9; 343 : 729
33.	$\square: \square$	$\square: \square$	125 : 512	5: 8; $25: 64$

34. Literature In Gulliver's Travels by Jonathan Swift, Gulliver first traveled to Lilliput. The Lilliputian average height was one twelfth of Gulliver's height.
a. How many Lilliputian coats could be made from the material in Gulliver's coat? (Hint: Use the ratio of surface areas.) 144 coats
b. How many Lilliputian meals would be needed to make a meal for Gulliver? (Hint: Use the ratio of volumes.) 1728 meals
35. Indirect Reasoning Some stories say that Paul Bunyan was ten times as tall as the average human. Assume that Paul Bunyan's bone structure was proportional to that of ordinary people.
a. Strength of bones is proportional to the area of their cross section. How many times as strong as the average person's bones would Paul Bunyan's bones be? 100 times
b. Weights of objects made of like material are proportional to their volumes. How many times the average person's weight would Paul Bunyan's
 weight be? 1000 times
c. Human leg bones can support about 6 times the average person's weight. Use your answers to parts (a) and (b) to explain why Paul Bunyan could not exist with a bone structure that was proportional to that of ordinary people.
36. Square pyramids A and B are similar. In pyramid A, each base edge is 12 cm . In pyramid B, each base edge is 3 cm and the volume is $6 \mathrm{~cm}^{3}$.
a. Find the volume of pyramid $A .384 \mathrm{~cm}^{3}$
b. Find the ratio of the surface area of A to the surface area of B. $16: 1$
c. Find the surface area of each pyramid. pyramid A: $384 \mathrm{~cm}^{2}$; pyramid B: $24 \mathrm{~cm}^{2}$

Chapter 11 Surface Area and Volume

37b. Let $r=$ radius, $\ell=$ slant height of small cone. $3 \ell+5 r: 4 \ell+$ $4 r ; 3 \ell+5 r: \ell+r$

A frustum of a cone is defined on page 636.
37. The cone is cut by a plane parallel to its base. The small cone on top is similar to the large cone. The ratio of the slant heights of the cones is $1: 2$. Find the ratio indicated.
a. the surface area of the large cone to that of the small cone; the volume of the large cone to that of the small cone $4: 1 ; 8: 1$

b. the surface area of the frustum to that of the large cone; to that of the small cone See left.
c. the volume of the frustum to that of the large cone; to that of the small cone 7:8;7:1
38. The slant heights of two similar pyramids are in the ratio $1: 5$. The volume of the smaller pyramid is $60 \mathrm{~m}^{3}$. What is the volume in cubic meters of the larger pyramid? 7500
39. A lawn chair weighs 8 lb . A child's lawn chair has dimensions exactly one half those of the larger chair. How many pounds does the child's chair weigh? 1
40. A model of a historical home has dimensions that are one fifteenth the dimensions of the actual home. The area of a window in the model is $2 \mathrm{~cm}^{2}$. What is the area in square centimeters of the corresponding window in the actual home? 450
41. The volumes of two similar rectangular prisms are $64 \mathrm{~cm}^{3}$ and $1000 \mathrm{~cm}^{3}$. The surface area of the smaller figure is $112 \mathrm{~cm}^{2}$. What is the surface area in square centimeters of the larger figure? 700
42. The surface areas of two similar cylinders are $54 \mathrm{ft}^{2}$ and $96 \mathrm{ft}^{2}$. The volume of the smaller cylinder is $216 \mathrm{ft}^{3}$. What is the volume in cubic feet of the larger cylinder? 512

Test Prep

A sheet of blank grids is available in the Test-Taking Strategies with Transparencies booklet. Give this sheet to students for practice with filling in the grids.

Resources

For additional practice with a variety of test item formats:

- Standardized Test Prep, p. 657
- Test-Taking Strategies, p. 652
- Test-Taking Strategies with Transparencies

Mixed Review

43. Sports Equipment The circumference of a regulation basketball is between 75 cm and 78 cm . What are the smallest and the largest surface areas that a basketball can have? Give your answers to the nearest whole unit. $1790 \mathrm{~cm}^{2}$ and $1937 \mathrm{~cm}^{2}$

Find the volume and surface area of each sphere to the nearest tenth.

44. diameter $=6$ in.
113.1 in. $^{3} ; 113.1$ in. 2
45. circumference $=2.5 \pi \mathrm{~m}$
46. radius $=6$ in. $8.2 \mathrm{~m}^{3} ; 19.6 \mathrm{~m}^{2}$
904.8 in. ${ }^{3}$; 452.4 in. ${ }^{2}$

Lesson 7-4
47. The altitude to the hypotenuse of a right triangle $A B C$ divides the hypotenuse into $12-\mathrm{mm}$ and $16-\mathrm{mm}$ segments. Find the length of each of the following.
a. the altitude to the hypotenuse $8 \sqrt{3} \mathrm{~mm}$
b. the shorter leg of $\triangle A B C 4 \sqrt{ } 21 \mathrm{~mm}$
c. the longer leg of $\triangle A B C 8 \sqrt{7} \mathrm{~mm}$

Lesson 7-1 x^{2} Algebra Solve each proportion.
48. $\frac{25}{16}=\frac{x}{16} 25$
49. $\frac{21}{x}=\frac{8}{5} 13.125$
50. $\frac{3}{8}=\frac{n}{n+4} 2.4$

