11 Solving Equilibrium Problems for Complex Systems

When water is saturated with sparingly soluble BaSO_{4} :

$$
\begin{align*}
& \mathrm{BaSO}_{4}(\mathrm{~s}) \Leftrightarrow \mathrm{Ba}^{2+}+\mathrm{SO}_{4}{ }^{2-} \tag{11-1}\\
& \mathrm{SO}_{4}^{2-}+\mathrm{H}_{3} \mathrm{O}^{+} \Leftrightarrow \mathrm{HSO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \tag{11-2}\\
& 2 \mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} \tag{11-3}
\end{align*}
$$

1. if added $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]: 11-2 \rightarrow$ shifted to the right, $\left[\mathrm{SO}_{4}{ }^{2-}\right] \downarrow$, solubility of $\mathrm{BaSO}_{4} \uparrow$
2. if added acetate ions

$$
\begin{equation*}
\mathrm{Ba}^{2+}+\mathrm{OAc}^{-} \Leftrightarrow \mathrm{BaOAc}^{+} \tag{11-4}
\end{equation*}
$$

$\left[\mathrm{Ba}^{2+}\right] \downarrow$, solubility of $\mathrm{BaSO}_{4} \uparrow$

11A Solving Multiple-Equilibrium Problems by a Systematic Method

a. equilibrium constant expressions
b. mass-balance equations
c. a single charge-balance equation

11A-1 Mass-Balance Equation
Ex. 11-1. Write mass-balance expressions for a 0.0100 M soln of HCl that is in equilibrium with an excess of solid BaSO_{4}.
$\mathrm{BaSO}_{4}(\mathrm{~s}) \Leftrightarrow \mathrm{Ba}^{2+}+\mathrm{SO}_{4}^{2-}$
$\mathrm{SO}_{4}{ }^{2-}+\mathrm{H}_{3} \mathrm{O}^{+} \Leftrightarrow \mathrm{HSO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O}$
$2 \mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}$
$\left[\mathrm{Ba}^{2+}\right]=\left[\mathrm{SO}_{4}{ }^{2-}\right]+\left[\mathrm{HSO}_{4}{ }^{-}\right]$

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\mathrm{C}_{\mathbf{H C l}}+\left[\mathrm{OH}^{-}\right]=0.0100+\left[\mathrm{OH}^{-}\right]
$$

Ex. 11-2. Write mass-balance expressions for the system formed when a 0.010 M $\mathbf{N H}_{3}$ solution is saturated with AgBr .

$$
\begin{gathered}
\mathrm{AgBr}(\mathrm{~s}) \Leftrightarrow \mathrm{Ag}^{+}+\mathrm{Br}^{-} \\
\mathrm{Ag}^{+}+2 \mathrm{NH}_{3} \Leftrightarrow \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+} \\
\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} \\
{\left[\mathrm{Ag}^{+}\right]+\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}\right]=\left[\mathrm{Br}^{-}\right]} \\
\mathrm{C}_{\mathrm{NH}_{3}}=\left[\mathrm{NH}_{3}\right]+\left[\mathrm{NH}_{4}^{+}\right]+2\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}\right]=0.010
\end{gathered}
$$

11A-2 Charge-Balance Equation

no. $\mathrm{mol} / \mathrm{L}$ positive charge $=$ no. $\mathrm{mol} / \mathrm{L}$ negative charge

Ex. 11-3. Write a charge-balance equation for the system in Ex. 2.
$\left[\mathrm{Ag}^{+}\right]+\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}\right]+\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]+\left[\mathrm{NH}_{4}^{+}\right]=\left[\mathrm{OH}^{-}\right]+\left[\mathrm{Br}^{-}\right]$
Ex. 11-4. Neglecting the dissociation of water, write a charge-balance equation for a soln that contains $\mathbf{N a C l}, \mathbf{B a}\left(\mathrm{ClO}_{4}\right)_{2} \& \mathrm{Al}_{\mathbf{2}}\left(\mathrm{SO}_{4}\right)_{3}$. $\left[\mathrm{Na}^{+}\right]+2\left[\mathrm{Ba}^{2+}\right]+3\left[\mathrm{Al}^{3+}\right]=\left[\mathrm{ClO}_{4}^{-}\right]+\left[\mathrm{Cl}^{-}\right]+2\left[\mathrm{SO}_{4}{ }^{2-}\right]$

11A-3 Steps for solving problems involving several equilibria

1. \square
2. \square *Approximations
3.

\rightarrow (never)
4.

\rightarrow (can be made)
5. \square \rightarrow (can be made)
6.

7. Make suitable approximation
8.

.

9. | Were approximations valid ? |
| :---: |
| \downarrow Yes |
| If no \rightarrow |
| Problem solved |

*Approximations can be made only in charge-balance and mass-balance equations, \rightarrow never in equilibrium-constant expressions.

11B Calculating solubilities by the systematic method 11B-1 Solubility calculations

Ex. 11-5. Calculate the molar solubility of $\mathrm{Mg}(\mathrm{OH})_{2}$ in water.

Check of Assumptions:

$$
\left[\mathrm{OH}^{-}\right]=2 \times 1.21 \times 10^{-4}=2.42 \times 10^{-4} \mathrm{M},\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{1.00 \times 10^{-14}}{2.42 \times 10^{-4}}=4.1 \times 10^{-11} \mathrm{M}
$$

The assumption that $4.1 \times 10^{-11} \ll 1.6 \times 10^{-4}$ is certainly valid.

Ex. 11-6. Calculate the solubility of $\mathrm{Fe}(\mathrm{OH})_{3}$ in water. Proceeding by the systematic approach used in Ex. 5 gives.

$$
\begin{array}{lll}
\mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s}) & \Leftrightarrow \mathrm{Fe}^{3+}+3 \mathrm{OH}^{-} & \mathrm{Ksp}=\left[\mathrm{Fe}^{3+}\right]\left[\mathrm{OH}^{-}\right]^{3}=2 \times 10^{-39} \\
2 \mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} & \mathrm{Kw}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.00 \times 10^{-14}
\end{array}
$$

$$
\text { solubility }=\left[\mathrm{Fe}^{3+}\right], \quad\left[\mathrm{OH}^{-}\right]=3\left[\mathrm{Fe}^{3+}\right]+\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

assume that $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \ll 3\left[\mathrm{Fe}^{3+}\right] \rightarrow\left[\mathrm{OH}^{-}\right] \approx 3\left[\mathrm{Fe}^{3+}\right],\left[\mathrm{Fe}^{3+}\right]\left(3\left[\mathrm{Fe}^{3+}\right]\right)^{3}=2 \times 10^{-39}$

$$
\text { solubility }=\left[\mathrm{Fe}^{3+}\right]=\sqrt[4]{\frac{2 \times 10^{-39}}{27}}=9 \times 10^{-11} \mathrm{M}
$$

Step 9. Check of Assumptions:

$$
\begin{aligned}
& {\left[\mathrm{OH}^{-}\right] \approx 3\left[\mathrm{Fe}^{3+}\right]=3 \times 9 \times 10^{-11}=3 \times 10^{-10} \mathrm{M}} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{1.00 \times 10^{-14}}{3 \times 10^{-10}}=3 \times 10^{-5} \mathrm{M} \gg 3\left[\mathrm{Fe}^{3+}\right]}
\end{aligned}
$$

The assumption that $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \ll 3\left[\mathrm{Fe}^{3+}\right]$, was invalid and the provisional values for $\left[\mathrm{Fe}^{3+}\right],\left[\mathrm{OH}^{-}\right]$and $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$are all significantly in error.
assume that $3\left[\mathrm{Fe}^{3+}\right] \ll\left[\mathrm{H}_{3} \mathrm{O}^{+}\right], \quad\left[\mathrm{OH}^{-}\right]=3\left[\mathrm{Fe}^{3+}\right]+\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$\rightarrow\left[\mathrm{OH}^{-}\right]=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1 \times 10^{-7} \rightarrow \quad\left[\mathrm{Fe}^{3+}\right]=\frac{2 \times 10^{-39}}{\left(1 \times 10^{-7}\right)^{3}}=2 \times 10^{-18} \mathrm{M}$
$3\left[\mathrm{Fe}^{3+}\right] \ll\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$or $3 \times 2 \times 10^{-18} \ll 10^{-7}$, the assumption is valid solubility $=\left[\mathrm{Fe}^{3+}\right]=2 \times 10^{-18} \mathrm{M}$

$$
\begin{aligned}
& \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s}) \Leftrightarrow \mathrm{Mg}^{2+}+2 \mathrm{OH}^{-} \quad\left[\mathrm{Mg}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}=\mathrm{Ksp}=7.1 \times 10^{-12} \\
& 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{aq}) \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} \quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=\mathrm{Kw}=1.00 \times 10^{-14} \\
& \text { solubility } \mathrm{Mg}(\mathrm{OH})_{2}=\left[\mathrm{Mg}^{2+}\right], \quad\left[\mathrm{OH}^{-}\right]=2\left[\mathrm{Mg}^{2+}\right]+\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
& \text {assume that }\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \ll\left[\mathrm{Mg}^{2+}\right] \rightarrow\left[\mathrm{OH}^{-}\right] \cong 2\left[\mathrm{Mg}^{2+}\right] \\
& {\left[\mathrm{Mg}^{2+}\right]\left(2\left[\mathrm{Mg}^{2+}\right]\right)^{2}=7.1 \times 10^{-12},\left[\mathrm{Mg}^{2+}\right]^{3}=\frac{7.1 \times 10^{-12}}{4}=1.78 \times 10^{-12}} \\
& {\left[\mathrm{Mg}^{2+}\right]=\text { solubility }=1.21 \times 10^{-4}=1.2 \times 10^{-4} \mathrm{M}}
\end{aligned}
$$

11B-2 The Effect of pH on Solubility

All ppts that contain an anion that is the conjugate base of a weak acid are more soluble at low $\mathbf{~ p H}$ than at high pH .

Solubility Calculations When the pH Is Constant

$$
\begin{align*}
& \text { Ex. 11-7. Calculate the molar solubility of calcium oxalate in a soln that has been } \\
& \text { buffered so that its } \mathrm{pH} \text { is constant and equal to } 4.00 \text {. } \\
& \mathrm{CaC}_{2} \mathrm{O}_{4}(\mathrm{~s}) \Leftrightarrow \mathrm{Ca}^{2+}+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \\
& \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HC}_{2} \mathrm{O}_{4}^{-} \\
& \mathrm{HC}_{2} \mathrm{O}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \\
& 2 \mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} \\
& \text {solubility }=\left[\mathrm{Ca}^{2+}\right] \\
& K s p=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]=1.7 \times \mathbf{1 0}^{-9} \tag{1}\\
& \frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{HC}_{2} \mathrm{O}_{4}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right]}=K_{1}=5.60 \times 10^{-2} \tag{2}\\
& \frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{C}_{2} \mathrm{O}_{4}^{2-}\right]}{\left[\mathrm{HC}_{2} \mathrm{O}_{4}^{-}\right]}=K_{2}=5.42 \times 10^{-5} \tag{3}\\
& \mathrm{Kw}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.00 \times 10^{-14} \\
& {\left[\mathrm{Ca}^{2+}\right]=\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]+\left[\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}\right]+\left[\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right]} \tag{4}\\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.00 \times 10^{-4} ;\left[\mathrm{OH}^{-}\right]=1.00 \times 10^{-10}} \\
& \text { Unknown } \rightarrow\left[\mathrm{Ca}^{2+}\right],\left[\mathrm{C}_{2} \mathbf{O}_{4}{ }^{2-}\right],\left[\mathrm{HC}_{2} \mathbf{O}_{4}\right] \text { and }\left[\mathrm{H}_{2} \mathbf{C}_{2} \mathbf{O}_{4}\right] \\
& {\left[\mathrm{HC}_{2} \mathrm{O}_{4}^{-}\right]=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{C}_{2} \mathrm{O}_{4}^{2-}\right]}{\mathrm{K}_{2}}=\frac{1.00 \times 10^{-4}\left[\mathrm{C}_{2} \mathrm{O}_{4}^{2-}\right]}{5.42 \times 10^{-5}}=1.85\left[\mathrm{C}_{2} \mathrm{O}_{4}^{2-}\right]} \\
& {\left[\begin{array}{l}
{\left[\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right]=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{C}_{2} \mathrm{O}_{4}^{2-}\right] \times 1.85}{\mathrm{~K}_{1}}=\frac{1.85 \times 10^{-4}\left[\mathrm{C}_{2} \mathrm{O}_{4}^{2-}\right]}{5.60 \times 10^{-2}}=3.30 \times 10^{-3}\left[\mathrm{C}_{2} \mathrm{O}_{4}^{2-}\right]} \\
{\left[\mathrm{Ca}^{2+}\right]=\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]+1.85\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]+3.30 \times 10^{-3}\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]=2.85\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]}
\end{array}\right.} \\
& {\left[\mathrm{C}_{2} \mathrm{O}_{4}^{2-}\right]=\frac{\left[\mathrm{Ca}^{2+}\right]}{2.85} ; \frac{\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{Ca}^{2+}\right]}{2.85}=1.7 \times 10^{-9}} \\
& {\left[\mathrm{Ca}^{2+}\right]=\text { solubility }=\sqrt{2.85 \times 1.7 \times 10^{-9}}=7.0 \times 10^{-5} \mathrm{M}}
\end{align*}
$$

11B-3 The Effect of Undissociated Solutes on Precipitation Calculations
$\mathrm{AgCl}(s) \Leftrightarrow \operatorname{AgCl}(a q) \frac{[\mathrm{AgCl}(a q)]}{[\mathrm{AgCl}(s)]}=K, \quad[\mathrm{AgCl}(a q)]=\mathrm{K}[\mathrm{AgCl}(s)]=\mathrm{K}_{\mathrm{s}}=3.6 \times 10^{-7}$
$\mathrm{AgCl}(\mathrm{aq}) \Leftrightarrow \mathrm{Ag}^{+}+\mathrm{Cl}^{-} \frac{\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]}{\left[\mathrm{AgCl}^{(a q)}\right]}=K_{d}=5.0 \times 10^{-4}$

$$
\mathrm{K}_{\mathrm{sp}}=\mathrm{K}_{\mathrm{d}} \mathrm{~K}_{\mathrm{s}}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]
$$

Ex. 11-8. Calculate the solubility of AgCl in distilled water.

$$
\begin{aligned}
& \text { solubility }=\mathrm{S}=[\mathrm{AgCl}(a q)]+\left[\mathrm{Ag}^{+}\right] \\
& {\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]=\mathrm{K}_{\text {sp }}=1.82 \times 10^{-10}} \\
& {\left[\mathrm{Ag}^{+}\right]=\sqrt{1.82 \times 10^{-10}}=1.35 \times 10^{-5} \mathrm{M}} \\
& \mathrm{~S}=[\mathrm{AgCl}(a q)]+\left[\mathrm{Ag}^{+}\right]=1.35 \times 10^{-5}+3.6 \times 10^{-7}=1.38 \times 10^{-5} \mathrm{M}
\end{aligned}
$$

11B-4 The solubility of Precipitates in the presence of complexing agent

-Complex Formation with a common ion

$$
\mathrm{AgCl}(\mathrm{~s})+\mathrm{Cl}^{-} \Leftrightarrow \mathrm{AgCl}_{2}^{-} \stackrel{\mathrm{Cl}^{-}}{\longleftrightarrow} \mathrm{AgCl}_{3}^{2-}
$$

$$
\begin{aligned}
& \text { Ex. 11-9 Derive an equation that describes the effect of the analytical concentration } \\
& \text { of } \mathrm{KCl} \text { on the solubility of AgCl in an aqueous solution. Calculate the } \\
& \text { concentration of } \mathrm{KCl} \text { at which the solubility is a minimum. } \\
& \text { solubility }=\mathrm{S}=[\mathrm{AgCl}(\mathrm{aq})]+\left[\mathrm{Ag}^{+}\right]+\left[\mathrm{AgCl}_{2}^{-}\right]+\left[\mathrm{AgCl}_{3}^{2-}\right] \\
& \mathrm{AgCl}(s) \Leftrightarrow \mathrm{AgCl}(a q) \quad\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]=\mathrm{K}_{\text {sp }}=1.82 \times 10^{-10} \\
& \mathrm{AgCl}(\mathrm{aq}) \Leftrightarrow \mathrm{Ag}^{+}+\mathrm{Cl}^{-} \\
& \\
& \\
& \\
& \left.\mathrm{AgCl}(s)+\mathrm{Cl}^{-} \Leftrightarrow \mathrm{AgCl}_{2}^{-}\right]\left[\mathrm{Cl}^{-}\right] \\
& {\left[\mathrm{AgCl}_{2}(a q)\right]}
\end{aligned} \frac{\left[\mathrm{AgCl}_{2}^{-}\right]}{\left[\mathrm{AgCl}_{d}(a q)\right]\left[\mathrm{Cl}^{-}\right]}=3.9 \times 10^{-4}=K_{2}=2.0 \times 10^{-5} .
$$

$\left[\mathrm{Cl}^{-}\right]=\mathrm{c}_{\mathrm{KCl}}+\left[\mathrm{Ag}^{+}\right]-\left[\mathrm{AgCl}_{2}^{-}\right]-2\left[\mathrm{AgCl}_{3}^{2-}\right]$
Assumption: $\mathrm{c}_{\mathrm{KCl}} \gg\left[\mathrm{Ag}^{+}\right]-\left[\mathrm{AgCl}_{2}^{-}\right]-2\left[\mathrm{AgCl}_{3}^{2-}\right] \Rightarrow \quad\left[\mathrm{Cl}^{-}\right]=\mathrm{c}_{\mathrm{KCl}}$

$$
\frac{\left[\mathrm{AgCl}_{3}^{2-}\right]}{\left[\mathrm{Cl}^{-}\right]^{2}}=K_{2} K_{3}=2.0 \times 10^{-5} \times 1=2.0 \times 10^{-5}
$$

$[\mathrm{AgCl}(a q)]=\frac{K_{S P}}{K_{d}}=\frac{1.82 \times 10^{-10}}{3.9 \times 10^{-4}}=4.7 \times 10^{-7}$

$$
S=\frac{K_{S p}}{K_{d}}+\frac{K_{s p}}{\left[\mathrm{Cl}^{-}\right]}+K_{2}\left[\mathrm{Cl}^{-}\right]+K_{2} K_{3}\left[\mathrm{Cl}^{-}\right]^{2}=\frac{K_{S P}}{K_{d}}+\frac{K_{s p}}{c_{K C l}}+K_{2} c_{K C l}+K_{2} K_{3} c_{K C l}^{2}
$$

$$
\frac{d S}{d c_{K C l}}=0=+\frac{K_{s p}}{c_{K C l}^{2}}+K_{2}+2 K_{2} K_{3} c_{K C l} \Rightarrow 2 K_{2} K_{3} c_{K C l}^{3}+c_{K C l}^{2} K_{2}-K_{s p}=0
$$

$$
\left(4.0 \times 10^{-5}\right) c_{K C l}^{3}+\left(2.0 \times 10^{-5}\right) c_{K C l}^{2}-1.82 \times 10^{-10}=0 \Rightarrow \mathrm{c}_{\mathrm{KCl}}=0.0030=\left[\mathrm{Cl}^{-}\right]
$$

Check: $\left[\mathrm{Ag}^{+}\right]=\left(1.82 \times 10^{-10}\right) / 0.0030=6.1 \times 10^{-8} \mathrm{M} \quad \ll \mathrm{c}_{\mathrm{KCl}}$

$$
\begin{gathered}
{\left[\mathrm{AgCl}_{2}^{-}\right]=2.0 \times 10^{-5} \times 0.0030=6.0 \times 10^{-8} \mathrm{M} \ll \mathrm{c}_{\text {KС1 }}} \\
{\left[\mathrm{AgCl}_{3}^{-}\right]=2.0 \times 10^{-5} \times 0.0030^{2}=1.8 \times 10^{-10} \mathrm{M} \ll \mathrm{c}_{\text {KС1 }}} \\
\mathrm{S}=64.7 \times 10^{-7}+6.1 \times 10^{-8}+6.0 \times 10^{-8}+1.8 \times 10^{-10}=5.9 \times 10^{-7} \mathrm{M}
\end{gathered}
$$

Fig. 11-2 The Effect of [$\left.\mathrm{Cl}^{-}\right]$ on the solubility of AgCl . The solid curve shows the total concentration of dissolved AgCl . The broken lines show the concentration of the various silver-containing species.

$$
\begin{aligned}
& \mathrm{Zn}^{2+}+2 \mathrm{OH}^{-} \Leftrightarrow \mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{~s}) \\
& \mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{OH}^{-} \Leftrightarrow \mathrm{Zn}(\mathrm{OH})_{4}{ }^{2-}
\end{aligned}
$$

11C Separation of Ions by Control of the Concentration of the Precipitating Agent

11C-1 Calculation of the Feasibility of Separations

Ex. 11-10 $\mathrm{Can} \mathrm{Fe}^{3+}$ and Mg^{2+} be separated quantitatively as hydroxide from a solution that is 0.10 M in each cation? If the separation is possible, what range of $\left[\mathrm{OH}^{-}\right]$is permissible?
$\left[\mathrm{Fe}^{3+}\right]\left[\mathrm{OH}^{-}\right]^{3}=2 \times 10^{-39} \quad$ Quantitative separation: (1) $99.9 \% \mathrm{Fe}^{3+}$ will $\left[\mathrm{Mg}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}=7.1 \times 10^{-12}$ be precipitated and (2) Mg^{2+} not precipitated. quantitative: $>99 \%$ precipitation $\Rightarrow<0.1 \%$ remained $\Rightarrow\left[\mathrm{Fe}^{3+}\right] \ll 1.0 \times 10^{-4} \mathrm{M}$

1. $\left(1.0 \times 10^{-4}\right)\left[\mathrm{OH}^{-}\right]^{3}=2 \times 10^{-39} \Rightarrow\left[\mathrm{OH}^{-}\right]=\sqrt[3]{\frac{2 \times 10^{-39}}{1.0 \times 10^{-4}}}=3 \times 10^{-12} \mathrm{M}$
2. $0.1\left[\mathrm{OH}^{-}\right]^{2}=7.1 \times 10^{-12} \Rightarrow\left[\mathrm{OH}^{-}\right]=\sqrt{\frac{7.1 \times 10^{-12}}{0.1}}=8.4 \times 10^{-6} \mathrm{M}$

\therefore By maintaining $[\mathrm{OH}]$ between $3 \times 10^{-12} \mathrm{M}$ and $8.4 \times 10^{-6} \mathrm{M}$. In practice,

 [OH^{-}] is kept as low as practical-often about $10^{-10} \mathrm{M}$
11C-2 Sulfide Separations

Solubility differences: \rightarrow control $\mathrm{pH} \rightarrow$ control active reagent conc.
reagents in which the anion is the conjugate base of a weak acid
Ex: S^{2-} (conjugate base of $\mathrm{H}_{2} \mathrm{~S}$), OH^{-}(conjugate base of $\mathrm{H}_{2} \mathrm{O}$) and the anions of several organic weak acids.

$$
\begin{aligned}
& \text { MS :(Ksp: } 10^{-10} \sim 10^{-50} \text { or small) } \\
& {\left[\mathrm{S}^{2-}\right]: 0.1 \sim 10^{-22} \mathrm{M}} \\
& \mathrm{MS}(\mathrm{~s}) \Leftrightarrow \mathrm{M}^{2+}+\mathrm{S}^{2-}, \\
& \mathrm{H}_{2} \mathrm{~S}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HS}^{-}, \\
& \\
& \left.\mathrm{HS}^{-}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{M}_{3}+[\mathrm{H}]=\mathrm{H} \mathrm{H}^{+}+\mathrm{O}^{+}\right]\left[\mathrm{SS}^{-}\right] \\
& {\left[\mathrm{H}_{2} \mathrm{~S}\right]}
\end{aligned}, \quad \frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{S}^{2-}\right]}{\left[\mathrm{HS}^{-}\right]}=K_{1}=K_{2}=1.6 \times 10^{-8} \times 10^{-14} .
$$

Solubility $=\left[M^{2+}\right]$
The $\left[\mathrm{H}_{2} \mathrm{~S}\right]$ in a saturated soln is $\approx 0.1 \mathrm{M}$

$$
\left[\mathrm{S}^{2-}\right]+\left[\mathrm{HS}^{-}\right]+\left[\mathrm{H}_{2} \mathrm{~S}\right]=0.1
$$

assuming that $\left(\left[\mathrm{S}^{2-}\right]+\left[\mathrm{HS}^{-}\right]\right) \ll\left[\mathrm{H}_{2} \mathrm{~S}\right] \Rightarrow\left[\mathbf{H}_{\mathbf{2}} \mathrm{S}\right] \cong \mathbf{0 . 1 0} \mathbf{M}$

$$
\mathrm{H}_{2} \mathrm{~S}+2 \mathrm{H}_{2} \mathrm{O} \Leftrightarrow 2 \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{S}^{2-}
$$

$$
\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}\left[\mathrm{~S}^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{~S}\right]}=K_{1} K_{2}=1.2 \times 10^{-21}
$$

$$
\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}\left[\mathrm{~S}^{2-}\right]}{0.10}=1.2 \times 10^{-21}
$$

$$
\left[\mathrm{S}^{2-}\right]=\frac{1.2 \times 10^{-22}}{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}}
$$

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\sqrt{\frac{1.2 \times 10^{-22}}{\left[\mathrm{~S}^{2-}\right]}}
$$

$$
\mathrm{K}_{\mathrm{sp}}=\frac{\left[\mathrm{M}^{2+}\right] \times 1.2 \times 10^{-22}}{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}}
$$

$$
\left[\mathbf{M}^{2+}\right]=\text { solubility }=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2} K_{s p}}{1.2 \times 10^{-22}}
$$

pH
Fig. 11-3 $\left[\mathrm{H}_{2} \mathrm{~S}\right]$ as a function of pH in a saturated $\mathrm{H}_{2} \mathrm{~S}$ solution.

Ex.11-11. CdS is less soluble than $\mathrm{Tl}_{2} \mathrm{~S}$. Find the conditions under which Cd^{2+} and Tl^{+}can, in theory, be separated quantitatively with $\mathrm{H}_{2} \mathrm{~S}$ from a solution that is 0.1 M in each cation.

$$
\begin{array}{ll}
\mathrm{CdS}(\mathrm{~s}) \Leftrightarrow \mathrm{Cd}^{2+}+\mathrm{S}^{2-}, \quad\left[\mathrm{Cd}^{2^{+}}\right]\left[\mathrm{S}^{2-}\right]=1 \times 10^{-27} \\
\mathrm{Tl} l_{2} \mathrm{~S}(\mathrm{~s}) \Leftrightarrow 2 \mathrm{Tl}^{+}+\mathrm{S}^{2-}, \quad\left[\mathrm{Tl}^{+}\right]^{2}\left[\mathrm{~S}^{2-}\right]=6 \times 10^{-22}
\end{array}
$$

Consider a separation to be quantitative when all but 1 part in 1000 of the Cd^{2+} has been removed, or, when the conc. of the cation has been reduced to $1.00 \times$ $10^{-4} \mathrm{M}$

$$
\begin{aligned}
& 10^{-4}\left[\mathrm{~S}^{2-}\right]>1 \times 10^{-27}, \quad\left[\mathrm{~S}^{2-}\right]>\mathbf{1} \times \mathbf{1 0}^{-23} \\
& (0.1)^{2}\left[\mathrm{~S}^{2-}\right]<6 \times 10^{-22}, \quad\left[\mathrm{~S}^{2-}\right]<\mathbf{6} \times \mathbf{1 0}^{-20} \quad(\mathrm{Min}) \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}<\frac{1.2 \times 10^{-22}}{1 \times 10^{-23}}=12, \quad\left[\mathbf{H}_{3} \mathbf{O}^{+}\right]<\underline{\mathbf{3 . 5} \mathbf{M}} \quad \text { (Max) }}
\end{aligned}
$$

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}>\frac{1.2 \times 10^{-22}}{6 \times 10^{-20}}=2.0 \times 10^{-3} \quad, \quad\left[\mathbf{H}_{3} \mathbf{O}^{+}\right]>\underline{\mathbf{0 . 0 4 5 \mathbf { M }}} \quad(\mathrm{Min})
$$

