Heat Transfer Equipment 1. Heat Exchangers

© 2007 G.P. Towler / UOP. For educational use in conjunction with Sinnott & Towler *Chemical Engineering Design* only. Do not copy

Chemical Engineering Design

© 2009 Elsevier Ltd. All rights reserved

Heat Exchangers

- Heat Transfer Basics
- Tubular Exchangers
- Heat Exchanger Design
- Compact Heat Exchangers

Three Mechanisms of Heat Transfer

Conduction

$$\mathbf{Q} = \mathbf{A} \mathbf{k} \frac{\mathbf{dT}}{\mathbf{dx}}$$

- Affects wall resistances, which are usually negligible for heat transfer equipment
- Convection

 $\mathbf{Q} = \mathbf{U} \mathbf{A} \Delta \mathbf{T}$

- Usually the governing mechanism in most process applications
- Radiation

 $Q = A \sigma ε (\Delta T^4)$

• Important in fired heaters

Q = heat duty A = area T = absolute temperature k = thermal conductivity U = heat transfer coefficient σ = Stefan Boltzman const. ε = transmission factor

Convective Heat Transfer in a Tube

Dittus-Boelter Equation:

Nu =
$$\frac{h_i d_i}{k}$$
 = 0.023 $\left(\frac{C_p \mu}{k}\right)^{1/3} \left(\frac{\rho v d_i}{\mu}\right)^{0.8}$

(for inside h.t.c. h_i based on inside diameter d_i)

$$h_{i} = 0.023 \frac{k^{2/3}}{d_{i}^{0.2}} C_{p}^{1/3} \mu^{-0.467} (v \rho)^{0.8}$$

Collect variables:

So if we increase

then h_i will:

Fluid thermal conductivity, k Fluid heat capacity, C_p Fluid density, ρ Velocity, v Fluid viscosity, μ Pipe diameter, d_i

Combined Conduction and Convection

• For a flat plate, overall resistance is the sum of the individual resistances

$$\frac{Q}{A} \left(\frac{1}{h_1} + \frac{L}{k} + \frac{1}{h_2} \right) = T_h - T_c$$

Hence overall heat transfer coefficient, U is given by

$$Q = U A (T_h - T_c)$$

$$\frac{1}{U} = \frac{1}{h_1} + \frac{L}{k} + \frac{1}{h_2}$$

© 2007 G.P. Towler / UOP. For educational use in conjunction with Sinnott & Towler *Chemical Engineering Design* only. Do not copy Chemical Engineering Design

(

Cylindrical Geometry (Tubes)

• By convention, U is based on outside diameter

$$Q = UA(T_h - T_c)$$

$$\frac{1}{r_o U} = \frac{1}{r_o h_o} + \frac{\ln(r_o / r_i)}{k} + \frac{1}{r_i h_i}$$

• Add terms for fouling:

$$\frac{1}{r_{o} U} = \frac{1}{r_{o} h_{o}} + \frac{1}{r_{o} f_{o}} + \frac{\ln(r_{o} / r_{i})}{k} + \frac{1}{r_{i} f_{i}} + \frac{1}{r_{i} h_{i}}$$

Outside h.t.c. h_o depends strongly on equipment type: see Chapter 12 for correlations

© 2007 G.P. Towler / UOP. For educational use in conjunction with Sinnott & Towler *Chemical Engineering Design* only. Do not copy

Counter Current Heat Transfer

- $Q = U A \Delta T_m$
- For perfect counter current flow, ΔT_m is the log mean temperature difference:

$$\Delta T_{\rm lm} = \frac{\left(\left(T_{\rm h,in} - T_{\rm c,out}\right) - \left(T_{\rm h,out} - T_{\rm c,in}\right)\right)}{\ln\left(\frac{\left(T_{\rm h,in} - T_{\rm c,out}\right)}{\left(T_{\rm h,out} - T_{\rm c,in}\right)}\right)}$$

• Easiest to remember as:

$$\Delta T_{lm} = \frac{\left(\Delta T_{h} - \Delta T_{c}\right)}{ln\left(\frac{\Delta T_{h}}{\Delta T_{c}}\right)}$$

© 2007 G.P. Towler / UOP. For educational use in conjunction with Sinnott & Towler *Chemical Engineering Design* only. Do not copy

Counter Current Heat Transfer

A useful shortcut to know:

So $\Delta T_{lm} \approx \Delta T_{geom mean}$ if ratio is 3 or less!

© 2007 G.P. Towler / UOP. For educational use in conjunction with Sinnott & Towler *Chemical Engineering Design* only. Do not copy

Counter-current Flow in Real Exchangers

- Most real heat exchangers do not have pure countercurrent flow
- We apply a correction factor for this in design

 $Q = U A F \Delta T_{Im}$

- F is usually > 0.8 unless the design is poor (see later)
- F is sometimes called F_t

© 2007 G.P. Towler / UOP. For educational use in conjunction with Sinnott & Towler *Chemical Engineering Design* only. Do not copy

Heat Exchangers

- Heat Transfer Basics
- Tubular Exchangers
- Heat Exchanger Design
- Compact Heat Exchangers

Shell and Tube Heat Exchangers

© 2007 G.P. Towler / UOP. For educational use in conjunction with Sinnott & Towler *Chemical Engineering Design* only. Do not copy

Shell and Tube Heat Exchangers

CROSS-VIEW OF FLOATING TUBE SHEET EXCHANGER

Source: Perry's Chemical Engineers Handbook, McGraw-Hill

© 2007 G.P. Towler / UOP. For educational use in conjunction with Sinnott & Towler *Chemical Engineering Design* only. Do not copy

Shell and Tube Exchangers

© 2007 G.P. Towler / UOP. For educational use in conjunction with Sinnott & Towler *Chemical Engineering Design* only. Do not copy

Chemical Engineering Design

© 2009 Elsevier Ltd. All rights reserved

S&T Exchanger Construction

Welding the shell

Baffle assembly

Inserting tubes

Tubesheet

Source: Bos-Hatten Inc.: www.Bos-Hatten.com

© 2007 G.P. Towler / UOP. For educational use in conjunction with Sinnott & Towler *Chemical Engineering Design* only. Do not copy

Tube Bundles

© 2007 G.P. Towler / UOP. For educational use in conjunction with Sinnott & Towler *Chemical Engineering Design* only. Do not copy Chemical Engineering Design

© 2009 Elsevier Ltd. All rights reserved

Heat Exchanger Design

- Heat exchange design must:
 - Provide required area
 - Contain process pressure
 - Prevent leaks from shell to tubes or tubes to shell
 - Allow for thermal expansion
 - Allow for cleaning if fouling occurs
 - Allow for phase change (some cases)
 - Have reasonable pressure drop
- S&T heat exchangers are built to standards set by the Thermal Exchanger Manufacturers Association (TEMA)

TEMA Nomenclature: Front Heads

D

В

- A Type
 - Easy to open for tubeside access
 - Extra tube side joint
 - В Туре
 - Must break piping connections to open exchanger
 - Single tube side joint
 - С Туре
 - Channel to tubesheet joint eliminated
 - Bundle integral with front head
- N Type
 - Fixed tubesheet with removable cover plate
- D Type
 - Special closures for high pressure applications

TEMA Nomenclature: Shells

- E Type
 - Most common configuration without phase change
- F Type
 - Counter current flow obtained. Baffle leakage problems.
- G Type
 - Lower pressure drop
- Н Туре
 - Horizontal thermosyphon reboilers
- J Type
 - Older reboiler designs
- K Type
 - Phase separation integral to exchanger
- X Type
 - Lowest pressure drop, low F factor

© 2007 G.P. Towler / UOP. For educational use in conjunction with Sinnott & Towler *Chemical Engineering Design* only. Do not copy

Х

TEMA Nomenclature: Rear Heads

Μ

Ρ

- L Type
 - Same as A type front head

- M Type
 - Same as B type front head
- N Type
 - Same as N type front head
- P & W Types
 - Rarely used
- S Type
 - Floating head with backing ring
- T Type
 - Floating head pulls through shell
- U Type
 - Removable bundle without floating head

Selection of Exchanger Type: Examples

1) Feed preheater	2) Crude preheat train	
Low pressure	Low pressure	
Tubeside - Steam	Tubeside – Vacuum Residue	
Shellside – Naphtha	Shellside – Crude oil	
3) Reboiler	4) Sterilizer Preheat	
Medium pressure	Low pressure	
Tubeside - Steam	Tubeside - Milk	

© 2007 G.P. Towler / UOP. For educational use in conjunction with Sinnott & Towler *Chemical Engineering Design* only. Do not copy

Shellside - Kerosene

Chemical Engineering Design

Shellside - Steam

Lmtd Correction Factors

E Shell - 1 Shell Pass: Similar correlations exist for other shell arrangements

© 2007 G.P. Towler / UOP. For educational use in conjunction with Sinnott & Towler *Chemical Engineering Design* only. Do not copy

Temperature Cross

- When T_{h, out} < T_{c, out} we have a "temperature cross"
- Temperature cross causes problems if exchanger is not counter-current and gives low F factors
- If T_{c,out} T_{h,out} > 5% of Lmtd then F < 0.8 and it is usually best to split the exchanger into multiple shells in series
- Number of shells can be estimated by stepping off on T-H diagram

- Note: Real exchangers can have non-constant Cp
 - Size & duty of HX in series is not necessarily the same
 - Large number of shells in series approximates pure counter-current exchange

- Most simulators show an error if there is a low F factor
- For example, in UniSim Design the exchanger shows up yellow

• Details of the example are in Ch 4

© 2007 G.P. Towler / UOP. For educational use in conjunction with Sinnott & Towler *Chemical Engineering Design* only. Do not copy

E-100		_ _ X
Performance	Overall Performance Duty 5.199e+06 kJ/h	
Details	Heat Leak 0.000e-01 kJ/h	
FIOIS	Heat Loss U.UUUe-U1 kJ/h UA 2.82e+05 kJ/C-h	
i ables Cables	Min. Approach 56.929 C	
Setup Ever Men	LMTD 18.44 C	
Enor Msg	Detailed Performance	
	UA Curvature Error 0.0000 kJ/C-h	
	Hot Pinch Temp 96.9288 C	
	Cold Pinch Temp 40.0000 C	
	Uncorrected LMTD 92.194 C	
Design Rating	Worksheet Performance Dynamics UniSim STE	
Datas 1	Ft Correction Factor Is Low.	Update 🔲 Ignored

• Opening the exchanger shows the low F factor

© 2007 G.P. Towler / UOP. For educational use in conjunction with Sinnott & Towler *Chemical Engineering Design* only. Do not copy

• Can use the "plots" tab to plot temperature against heat flow and visualize the temperature cross

© 2007 G.P. Towler / UOP. For educational use in conjunction with Sinnott & Towler *Chemical Engineering Design* only. Do not copy

• Stepping off between profiles suggests we need three exchangers and gives target inlet and outlet temperatures

© 2007 G.P. Towler / UOP. For educational use in conjunction with Sinnott & Towler *Chemical Engineering Design* only. Do not copy

New design with temperature cross eliminated

🤹 Feed-effluent.usc - UniSim Design R360.1	
<u>F</u> ile <u>E</u> dit <u>S</u> imulation Flowsheet <u>P</u> FD <u>Iools</u> <u>W</u> indow <u>H</u> elp	
D 🖙 🖬 🎒 🕂 🏛 🛤 隆 💳 🌫 🜮 💁 🐨 🎍	Environment: Case (Main) Mode: Steady State
© PFD - Case (Main)	
田園記 田閣 ♀A۶ 物 ■	Default Colour Scheme
PFD 1	ان <u>۔</u> ب
consider reduction for this Unit	ing UA. This message will only appear once per session 🔺 Op unless Trace Verbose is turned on.
	 ▲I▼

© 2007 G.P. Towler / UOP. For educational use in conjunction with Sinnott & Towler *Chemical Engineering Design* only. Do not copy

Profiles for the New Exchangers

Tube PitchImage: State of the state o

- Triangular or square pitch, each with two orientations
- TEMA minimum pitch is 1.25 x tube outside diameter
- Sometimes use larger pitch for easier cleaning (but bigger shell, lower shellside h.t.c.)

FEATURE	USE PATTERN:
lower ΔP on shellside	square (effective only at low Re number)
shellside fouling	square - easier cleaning
horizontal shellside	square - prevent vapor blanketing
boiling	
decrease shell size	fit 15% more tubes if triangular pitch used

© 2007 G.P. Towler / UOP. For educational use in conjunction with Sinnott & Towler *Chemical Engineering Design* only. Do not copy

Baffle Types & Shell Flow Patterns

© 2007 G.P. Towler / UOP. For educational use in conjunction with Sinnott & Towler *Chemical Engineering Design* only. Do not copy

Selection of Sides

Process Fluid	Side Selection	Reason
Fouling fluid		
Viscous fluid		
Suspended solids		
Highest T		
Highest pressure		
Cooling water		
Corrosive fluid		
Much larger flow		
Condensing fluid		

Heat Exchangers

- Heat Transfer Basics
- Tubular Exchangers
- Heat Exchanger Design
- Compact Heat Exchangers

Heat Exchanger Design

© 2007 G.P. Towler / UOP. For educational use in conjunction with Sinnott & Towler *Chemical Engineering Design* only. Do not copy

Approximate Heat Transfer Coefficients

More examples (in metric units) in Chapter 12

Fluid		h (Btu/(hr.ft².F))		
		Shell-side	Tube-side	
<u>Liquids</u>				
Water solutions, 50% water or mor	'e	300	300	
Alcohols, organic solvents		200	200	
Light Hydrocarbons (naphtha, gasoline)		190	190	
Medium Hydrocarbons (kerosene,	diesel)	130	120	
Heavy oils (gas oils, crude oil)		30	20	
<u>Vapors</u>				
Air, 10 psig		10	10	
Hydrogen, 50 psig		100	100	
Hydrogen, 300 psig		300	300	
Hydrogen, 500 psig		400	400	
Hydrocarbon vapor, 50 psig	60	60		
Noncondensible gas, 2 psig		5	5	

Note: Coefficients are based on 3/4 inch diameter tubes. For Tube side flows, correct by multiplying by 0.75/Actual OD. Estimated accuracy is 25%. For 50% hydrogen in vapor, reduce h to 2/3 of pure H₂ value.

Approximate Fouling Factors

Fluid	f (Btu/(hr.ft ² .F))	
River water	300	
Sea water	1000	
Cooling tower water	400	
Town water (soft)	700	
Town water (hard)	300	
Flue gas	800	
Steam	1000	
Steam condensate	1000	
Light & medium hydrocarbons	400	
Heavy oils	150	
Boiling organics	400	
Aqueous salt solutions	600	
Fermentation broths	300	

Hydraulics & Pressure Drop

- Heat exchanger design is a trade off between better heat transfer (high velocity, low diameter) and pressure drop
- In early stages of design, we usually allow for a "typical" pressure drop:
 - 5 psi shell-side
 - 10 psi tube-side
 - But we have to calculate Δp rigorously where it is critical to performance, e.g. thermosyphon reboilers
- In detailed design, use correlations or simulation programs to more rigorously optimize if pressure drop is important to process performance – see Chapter 12 for examples

Example: S&T HX Design

• What size of exchanger is needed to heat 375,000 lb/h of naphtha from 150F to 300F using medium pressure steam at 360F?

• We can now use correlations to confirm design and check hydraulics

© 2007 G.P. Towler / UOP. For educational use in conjunction with Sinnott & Towler *Chemical Engineering Design* only. Do not copy

Heat Exchangers

- Heat Transfer Basics
- Tubular Exchangers
- Heat Exchanger Design
- Compact Heat Exchangers

Hairpin Exchangers

- When small duties are required, hairpin exchangers are specified:
 - cheaper than very small shell and tube
 - highly effective (single pass, true countercurrent)
 - $75 \rightarrow 1500 \text{ ft}^2 \text{ surface area}$
 - 4 \rightarrow 16" shell diameter, 20 ft long

This design is used for double-pipe and multi-tube exchangers.

© 2007 G.P. Towler / UOP. For educational use in conjunction with Sinnott & Towler *Chemical Engineering Design* only. Do not copy

Plate & Frame Exchangers

Gasket

Source: Alfa-Laval, www.AlfaLaval.com

© 2007 G.P. Towler / UOP. For educational use in conjunction with Sinnott & Towler *Chemical Engineering Design* only. Do not copy

Plate & Frame Exchangers

- Advantages
 - Close to counter-current heat transfer, so high F factor allows temperature cross and close temperature approach
 - Easy to add area
 - Compact size
 - Relatively inexpensive for high alloy
 - Can be designed for quick cleaning in place

• Disadvantages

- Lots of gaskets
- Lower design pressure, temperature
- External leakage if gaskets fail
- Applications
 - Food processing, brewing, biochemicals, etc.
- Design method: see Chapter 12

Source: Alfa-Laval, <u>www.AlfaLaval.com</u>

© 2007 G.P. Towler / UOP. For educational use in conjunction with Sinnott & Towler *Chemical Engineering Design* only. Do not copy

Plate & Frame Exchangers

Source: Alfa-Laval, www.AlfaLaval.com

© 2007 G.P. Towler / UOP. For educational use in conjunction with Sinnott & Towler *Chemical Engineering Design* only. Do not copy

Chemical Engineering Design

© 2009 Elsevier Ltd. All rights reserved

Welded Plate Heat Exchangers

Source: Alfa-Laval Packinox

- Advantages
 - Higher thermal efficiency
 - Single unit can replace multiple shell & tube units
 - Closer approach to hot inlet temperature
 - Low pressure drop
 - Little chance of vibration problems
 - Excellent distribution of two phase flows
- Disadvantages
 - Single alloy material for plates
 - Difficult to clean
 - Few manufacturers at large scale (Alfa Laval Packinox)
 - Used in large scale clean services that need close temperature approach

Questions ?

© 2007 G.P. Towler / UOP. For educational use in conjunction with Sinnott & Towler *Chemical Engineering Design* only. Do not copy

Chemical Engineering Design

© 2009 Elsevier Ltd. All rights reserved