Chords and Arcs

1. Plan

Objectives

1 To use congruent chords, arcs, and central angles
2 To recognize properties of lines through the center of a circle

Examples

Using Theorem 12-4
Using Theorem 12-5
Using Diameters and Chords

Math Background

Theorem 12-8 can be used to prove the theorem of analytic geometry that states that any three noncollinear points determine a unique circle. It also can be used to justify a method of constructing the circle. Construct the perpendicular bisectors of two of the three possible segments. Construct a circle whose center is the point of intersection of the perpendicular bisectors and whose radius is the distance from the center to any of the three points.

More Math Background: p. 660C

Lesson Planning and Resources

See p. 660E for a list of the resources that support this lesson.

Check Skills You'll Need

For intervention, direct students to:

Using $45^{\circ}-45^{\circ}-90^{\circ}$ Triangles

Lesson 8-2: Example 2
Extra Skills, Word Problems, Proof Practice, Ch. 8

Using $30^{\circ}-60^{\circ}-90^{\circ}$ Triangles

Lesson 8-2: Example 4
Extra Skills, Word Problems, Proof Practice, Ch. 8

What You'll Learn

- To use congruent chords, arcs, and central angles
- To recognize properties of lines through the center of a circle

... And Why

To see how an archaeologist finds the center and radius of the rim of a jar, as in Exercise 20

Check Skills You'Il Need

Find the value of each variable. Leave your answer in simplest radical form.
1.

2. 5

3.

1 Using Congruent Chords, Arcs, and Central Angles

A segment whose endpoints are on a circle is called a chord. The diagram shows the related chord and arc, $\overline{P Q}$ and $\overline{P Q}$.

The following theorem is about related central angles, chords, and arcs. It says, for example, that if two central angles in a circle
 are congruent, then so are the two chords and two arcs that the angles intercept.

For: Chords and Arcs Activity Use: Interactive Textbook, 12-2

Theorem 12-4

Within a circle or in congruent circles
(1) Congruent central angles have congruent chords.
(2) Congruent chords have congruent arcs.
(3) Congruent arcs have congruent central angles.

You will prove Theorem 12-4 in Exercises 23, 24, and 35.

In the diagram, $\odot O \cong \odot P$. Given that $\overparen{B C} \cong \widetilde{D F}$, what can you conclude?

By Theorem 12-4, $\angle O \cong \angle P$ and
$\overline{B C} \cong \overline{D F}$.

1. If you are instead given that $\overline{B C} \cong \overline{D F}$, what can you conclude? $\angle O \cong \angle P ; \overline{B C} \cong \overline{D F}$

Chapter 12 Circles

Differentiated Instruction Solutions for All Learners

Special Needs L1

Review with students why congruent arcs must be in the same circle or in congruent circles. Also point out that a chord is related to the minor arc it intercepts.

Below Level L2

Have students draw diagrams for Theorems 12-6, 12-7, and 12-8 that accurately represent the given information.

Theorem 12-5 shows a relationship between two chords and their distances from the center of a circle. You will prove part (2) in Exercise 38.

Key Concepts

Theorem 12-5

Within a circle or in congruent circles
(1) Chords equidistant from the center are congruent.
(2) Congruent chords are equidistant from the center.
$\xrightarrow{\text { Proof }}$

Real-World Connection
Steel beams model congruent chords equidistant from the center to give the illusion of a circle.

Proof of Theorem 12-5, Part (1)
Given: $\odot O, \overline{O E} \cong \overline{O F}$,

$$
\overline{O E} \perp \overline{A B}, \overline{O F} \perp \overline{C D}
$$

Prove: $\overline{A B} \cong \overline{C D}$
Statements

1. $\overline{O A} \cong \overline{O B} \cong \overline{O C} \cong \overline{O D}$
2. $\overline{O E} \cong \overline{O F}, \overline{O E} \perp \overline{A B}, \overline{O F} \perp \overline{C D}$
3. $\angle A E O$ and $\angle C F O$ are right angles.
4. $\triangle A E O \cong \triangle C F O$
5. $\angle A \cong \angle C$
6. $\angle B \cong \angle A, \angle C \cong \angle D$
7. $\angle B \cong \angle D$
8. $\angle A O B \cong \angle C O D$
9. $\overline{A B} \cong \overline{C D}$

10. Radii of a circle are congruent.
11. Given
12. Def. of perpendicular segments
13. HL Theorem
14. CPCTC
15. Isosceles Triangle Theorem
16. Transitive Property of Congruence
17. If two $\measuredangle s$ of a \triangle are \cong to two \measuredangle of another \triangle, then the third $\stackrel{\leftrightarrow}{ }$ are \cong.
18. \cong central angles have \cong chords.

You can use Theorem 12-5 to find missing lengths in circles.
(2) $\overline{x A D M P L E}$ Using Theorem 12-5

Multiple Choice What is the value of a in the circle at the right?

Test-Taking Tip

In a circle, the length of the perpendicular segment from the center to a chord is the distance from the center to the chord.
(A) 9
(B) 12.5
(C) 18
(D) 25
$P Q=Q R=12.5$ Given
$P Q+Q R=P R \quad$ Segment Addition Postulate
$25=P R \quad$ Substitute.
$a=P R \quad$ Chords equidistant from the center
of a circle are congruent.
$a=25 \quad$ Substitute.
The correct answer is D.
2 Find the value of x in the circle at the right.
16

2. Teach

Guided Instruction

Visual Learners

On the board, copy the diagram below that summarizes Theorem 12-4.

Ask: Can you conclude that congruent chords have congruent central angles? If so, how? yes; by the Law of Syllogism

Alternative Method

An alternate proof of part 1 of Theorem 12-5 would use the HL Theorem to prove $\triangle A O E \cong \triangle B O E \cong \triangle C O F \cong \triangle D O F$ and then use CPCTC and the Segment Addition Postulate. This method also could be used to prove Theorem 12

Additional Examples

(1) In the diagram, radius $\overline{O X}$ bisects $\angle A O B$. What can you conclude?

$\angle A O X \cong \angle B O X ; \overline{A X} \cong \overline{B X} ;$
$\overline{A X} \cong \overline{B X}$Find $A B$.

14

Advanced Learners L4

Have students write a paragraph to explain why the phrase that is not a diameter is necessary in Theorem 12-7.

English Language Learners ELL

Ask: Is a diameter a chord? Explain. Yes; it is a segment with two endpoints on the circle. Is a radius a chord? Explain. No; it has only 1 point on the circle.

Lesson 12-2 Chords and Arcs

Guided Instruction

Lines Through the Center of a Circle

ㅋxANPLE
 Error Prevention

Because the figures in parts a and b do not show diameters, some students may not understand why Theorems 12-6 and 12-7 apply. Have them reread the section above Theorem 12-6 to reinforce that the theorems apply to lines or segments that contain the center of the circle.

Additional Examples

P and Q are points on $\odot O$. The distance from O to $\overline{P Q}$ is 15 in., and $P Q=16$ in. Find the radius of $\odot O$. 17 in .

Resources

- Daily Notetaking Guide 12-2
- Daily Notetaking Guide 12-2Adapted Instruction

Closure

$\overline{X Y}$ and $\overline{Y Z}$ are perpendicular chords within $\odot C$ that are also equidistant from center C. What is the most precise name for quadrilateral MYNC? Explain.

Square; congruent chords are equidistant from the center, and a diameter that bisects a chord is \perp to the chord.

Key Concepts
$\xrightarrow{\text { Proof }}$

Real-World Connection

The center of the tire is located on the perpendicular bisector of the flat part.

The Converse of the Perpendicular Bisector Theorem from Lesson 5-2 has special applications to a circle and its diameters, chords, and arcs.

Theorem 12-6

In a circle, a diameter that is perpendicular to a chord bisects the chord and its arcs.

Theorem 12-7
In a circle, a diameter that bisects a chord (that is not a diameter) is perpendicular to the chord.

Theorem 12-8

In a circle, the perpendicular bisector of a chord contains the center of the circle.

Proof of Theorem 12-7

Given: $\odot T$ with diameter $\overline{Q R}$ bisecting $\overline{S U}$ at V.
Prove: $\overline{Q R} \perp \overline{S U}$

Proof: $T S=T U$ because the radii of a circle are congruent. $V S=V U$ by the definition of bisect. Thus, T and V are equidistant from S and U. By the Converse of the Perpendicular Bisector Theorem, T and V are on the perpendicular bisector of $\overline{S U}$. Since two points determine one line, $\overline{T V}$ is the perpendicular bisector of $\overline{S U}$. Another name for $\overline{T V}$ is $\overline{Q R}$. Thus, $\overline{Q R} \perp \overline{S U}$.

You will prove Theorems 12-6 and 12-8 in Exercises 25 and 36, respectively.
(3) EXADUPLE Using Diameters and Chords

Algebra Find each missing length to the nearest tenth.
a.

b.

$$
\begin{aligned}
L N & =\frac{1}{2}(14)=7 \\
r^{2} & =3^{2}+7^{2} \\
r & \approx 7.6
\end{aligned}
$$

$$
r^{2}=3^{2}+7^{2} \quad \text { Use the Pythagorean Theorem. }
$$

$\overline{B C} \perp \overline{A C}$
$y^{2}+11^{2}=15^{2}$
$y^{2}=104$
$y \approx 10.2$ Find the square root of each side.

Use the circle at the right.
a. Find the length of the chord. about 11
b. Find the distance from the midpoint of the chord to the midpoint of its minor arc. 2.8

EXERCISES
For more exercises, see Extra Skill, Word Problem, and Proof Practice.

Practice and Problem Solving

a. $\overline{C E}$
b. $\overline{D E}$
c. $\angle C E B$
d. $\angle D E A$

Practice by Example

Example 2 (page 671)

1. $\overline{B C} \cong \overline{Y Z} ; \overline{B C} \cong \overline{Y Z}$
2. $\overline{E T} \cong \overline{G H} \cong \overline{J N} \cong$ $\overline{M L} ; \overline{E T} \cong \overline{G H} \cong \overline{J N} \cong$ $\overline{M L} ; \angle T F E \cong \angle H F G ;$ $\angle J K N \cong \angle M K L$
(page 672)
3. Answers may vary. Samples are given.

In Exercises 1 and 2, the circles are congruent. What can you conclude?

1. B

Find the value of \boldsymbol{x}.
3. 14

4. 2

6. 50

Use the diagram at the right to complete Exercises 9 and 10.
9. Given that $\overline{A B}$ is a diameter of the circle and $\overline{A B} \perp \overline{C D}$, then $\mathbf{a} . \underline{?} \cong \mathbf{b}$. ? and \mathbf{c}. ? \cong d. ? . See left.
10. Given that $\overline{A B}$ is the perpendicular bisector of $\overline{C D}$, then $\overline{A B}$ contains ?. the center of the circle

Algebra Find the value of \boldsymbol{x} to the nearest tenth
11. 6

12. 5.4

13.

Lesson 12-2 Chords and Arcs

3. Practice

Assignment Guide

1 A B $1-8,17,23,24,27$, 29-32, 35

Test Prep
Mixed Review

Homework Quick Check

To check students' understanding of key skills and concepts, go over Exercises 8, 12, 24, 29, 30.

Exercises 12, 14 Students may find it helpful to draw and label the third side of the triangle, using the fact that all radii are congruent.

Error Prevention!

Exercises 17-19 Students may confuse the measure of an arc with arc length. Remind them that the letter m signals the measure of the arc.

Technology Tip

Exercise 19 Review with students how to use the $\sin ^{-1}$ calculator function key.

Tactile Learners

Exercise 20 Have students use a compass and straightedge and the concepts in this exercise to find the center of a circle circumscribed about three noncollinear points. This method also can be used in Exercise 30.

Exercises 30-32 Discuss these exercises as a class. Have students suggest different solution methods, such as using the Pythagorean Theorem or showing that $A C B D$ is a rhombus.

Exercise 33 Show students how they can substitute $x=2$ into $x^{2}+y^{2}=25$ to find the positive and negative y-coordinates for the chord.
20. She can draw 2 chords, and their \perp bisectors, of the partial circle. The intersection pt. of the \perp bisectors will be the center and she can then measure the radius.
24. a. All radii of a circle are \cong.
b. $\overline{A B} \cong \overline{C D}$
c. Given
d. SSS
e. $\angle A E B \cong \angle C E D$
f. \cong central \measuredangle s have \cong arcs.
36. X is equidist. from W and Y, since $\overline{X W}$ and $\overline{X Y}$ are radii. So X is on the \perp bis. of $\overline{W Y}$ by the Conv. of the \perp Bis. Thm. But ℓ is the \perp bis. of $\overline{W Y}$, so ℓ contains X.

Apply Your Skills
Find $\boldsymbol{m} \widehat{A B}$. (Hint: You will need to use trigonometry in Exercise 19.)
19.

20. Archaeology An archaeologist found several jar fragments including a large piece of the circular rim. How can she find the center and radius of the rim to help her reconstruct the jar? See margin.
21. Geometry in 3 Dimensions In the figure at the right, sphere O with radius 13 cm is intersected by a plane 5 cm from center O. Find the radius of cross section $\odot A$ 12 cm
22. Geometry in 3 Dimensions A plane intersects a sphere that has radius 10 in. forming cross section $\odot B$ with radius 8 in . How far is the plane from the center of the sphere? 6 in .

23. Complete this proof of Theorem 12-4, Part (1).

Given: $\odot P$ with $\angle K P M \cong \angle L P N$
Prove: $\overline{K M} \cong \overline{L N}$ a-c. $\overline{P L} ; \overline{P M} ;$ All radii of a circle are \cong.
Proof: $\overline{K P} \cong \mathbf{a} . \underline{?} \cong \mathbf{b} . \underline{?} \cong \overline{N P}$ because c. \quad ?.
$\triangle K P M \cong$ d. ? by e. ? . $\overline{K M} \cong \overline{L N}$ by f. ?.
d-f. $\triangle L P N ;$ SAS; CPCTC

24. Complete this proof of Theorem 12-4, Part (2).

Given: $\odot E$ with congruent chords $\overline{A B}$ and $\overline{C D}$
Prove: $\widehat{A B} \cong \widehat{C D}$ See margin.

Proof 25. Prove Theorem 12-6. See back of book.
Given: $\odot O$ with diameter $\overline{E D} \perp \overline{A B}$ at C
Prove: $\overline{A C} \cong \overline{B C}$ and $\overline{A D} \cong \widehat{B D}$
(Hint: Begin by drawing $\overline{O A}$ and $\overline{O B}$.)

26. Two concentric circles have radii of 4 cm and 8 cm . A segment tangent to the smaller circle is a chord of the larger circle. What is the length of the segment? about 13.9 cm
27. Error Analysis Scott looks at this figure and concludes that $\overline{S T} \cong \overline{P R}$. What is wrong with Scott's conclusion?
28. Open-Ended Use a circular object such as a can or a
 saucer to draw a circle. Construct the center of the circle.
29. Writing Theorems 12-4 and 12-5 both begin with the phrase "Within a circle or in congruent circles." Explain why "congruent" is essential for both theorems.
Circles can have \cong chords or \cong central $\stackrel{s}{ }$ without having both.

Chapter 12 Circles
38. All radii of $\odot 0$ are \cong, so $\triangle A O B \cong \triangle C O D$ by SSS. $\angle A \cong \angle C$ by CPCTC. Also, $\angle O E A \cong \angle O F C$ since both are rt. $\angle \mathrm{s}$. Thus, $\triangle O E A \cong \triangle O F C$ by AAS, and $\overline{O E} \cong \overline{O F}$ by СРСТС.
39. 1. $\odot \boldsymbol{A}$ with $\overline{C E} \perp \overline{B D}$ (Given) 2. $\overline{C F} \cong \overline{C F}$ (Refl. Prop. of \cong) 3. $\overline{B F} \cong \overline{F D}$ (diameter \perp to a chord bisects the chord.) 4. $\angle C F B$ and
$\angle C F D$ are rt. $\triangle s$ (Def. of
म). 5. $\triangle C F B \cong \triangle C F D$
(SAS) $6 . \overline{B C} \cong \overline{C D}$
(СРСТС) 7. $\overline{B C} \cong \overline{D C}$
(\cong chords have \cong arcs.)
nline Homework Help
Visit: PHSchool.com Web Code: aue-1202
35.1. $\odot P$ with $\overline{Q S} \cong \overline{R T}$ (Given) 2. $m \overline{Q S}=$ $m \angle Q P S$ and $m \widehat{R T}=$ $m \angle R P T$ (Arc measure $=$ central \angle measure.) 3. $m \overline{Q S}=m \overline{R T}$
(Def. of \cong) 4. $\angle Q P S \cong$ $\angle R P T$ (Subst.)
30. $A B=8$ in., $C D=6$ in. How long is a radius? 5 in.
31. $A B=24 \mathrm{~cm}$, radius $=13 \mathrm{~cm}$. How long is $\overline{C D}$? 10 cm
32. radius $=13 \mathrm{ft}, C D=24 \mathrm{ft}$. How long is $\overline{A B}$? 10 ft

33. Multiple Choice In the diagram at the right, the endpoints of the chord are the points where the line $x=2$ intersects the circle $x^{2}+y^{2}=25$. What is the length of the chord? C
(A) 4.6
(B) 8.0
(C) 9.2
(D) 10.0

34. Critical Thinking The diameter of a circle is 20 cm . Two chords parallel to the diameter are 6 cm and 16 cm long. What are the possible distances between the chords to the nearest tenth of a centimeter? $3.5 \mathrm{~cm}, 15.5 \mathrm{~cm}$

Proof 35. Prove Theorem 12-4, Part (3).
Given: $\odot P$ with $\widehat{Q S} \cong \widetilde{R T}$
Prove: $\angle Q P S \cong \angle R P T \quad$ See left.

36. Prove Theorem 12-8.

Given: ℓ is the \perp bisector of $\overline{W Y}$.
Prove: ℓ contains the center of $\odot X$. See margin p. 674.

Proof 37. $\overline{P Q}$ and $\overline{P R}$ are chords of $\odot C$. Prove that if C is on the bisector of $\angle Q P R$, then $P Q=P R$. See back of book.
c Challenge Proof 38. Prove Theorem 12-5, Part (2).

Given: $\odot O$ with $\overline{A B} \cong \overline{C D}$
39. Given: $\odot A$ with $\overline{C E} \perp \overline{B D}$

Prove: $\overparen{B C} \cong \overparen{D C}$
Prove: $\overline{O E} \cong \overline{O F}$ 38-39. See margin.

40. Dairy The diameter of the base of a cylindrical milk tank is 59 in . The length of the tank is 470 in . You estimate that the depth of the milk in the tank is 20 in . Find the number of gallons of milk in the tank to the nearest gallon. $\left(1 \mathrm{gal}=231 \mathrm{in}^{3}{ }^{3}\right) 1661 \mathrm{gal}$

Proof 41. If two circles are concentric and a chord of the larger circle is tangent to the smaller circle, prove that the point of tangency is the midpoint of the chord. See margin.

The cylinders used on milk tank trucks lie on the lateral surface and have a vertical base at each end.

Lesson 12-2 Chords and Arcs

Qnline lesson quiz, PHSchool.com, Web Code: aua-1202

So P is the midpt. of the chord.

4. Assess \& Reteach

Lesson Quiz

For Exercises 1-5, use the diagram of $\odot L$ below.

1. If $\overline{Y M}$ and $\overline{Z N}$ are congruent chords, what can you conclude?
$\overline{Y M} \cong \overline{Z N} ; \angle Y L M \cong \angle Z L N$
2. If $\overline{Y M}$ and $\overline{Z N}$ are congruent chords, explain why you cannot conclude that $L V=L C$. You do not know whether $\overline{L V}$ and $\overline{L C}$ are perpendicular to the chords.
3. Suppose that $\overline{Y M}$ has length 12 in., and its distance from point L is 5 in . Find the radius of $\odot L$ to the nearest tenth. 7.8 in .

For Exercises 4 and 5, suppose that $\overline{L V} \perp \overline{Y M}, Y V=11 \mathrm{~cm}$, and $\odot L$ has a diameter of 26 cm .
4. Find YM. 22 cm
5. Find $L V$ to the nearest tenth. 6.9 cm

Alternative Assessment

Have students use only pictures and mathematical symbols to express each theorem in this lesson. Then have each student exchange their work with a partner who writes a paragraph below the picture evaluating the presentation for accuracy and clarity. Use the drawings and paragraphs to assess students' understanding.

41. Let O be the center of

 the circles, and P be the pt. of tangency of the larger circle's chord to the smaller circle. Then $\overline{O P}$ is \perp to the chord, and therefore bisects it.
Resources

For additional practice with a variety of test item formats:

- Standardized Test Prep, p. 711
- Test-Taking Strategies, p. 706
- Test-Taking Strategies with Transparencies

Multiple Choice

Short Response
42. The diameter of a circle is 25 cm and a chord of the same circle is 16 cm . To the nearest tenth, what is the distance of the chord from the center of the circle? B
A. 9.0 cm
B. 9.6 cm
C. 18.0 cm
D. 19.2 cm
43. In the figure at the right, what is the value of x to the nearest tenth? G
F. 3.0
G. 6.2
H. 6.8
J. 9.0

44. A $9-\mathrm{cm}$ chord is 11 cm from the center of a circle.

What is the radius of the circle? B
A. 9.0 cm
B. 11.9 cm
C. 13.0 cm
D. 14.2 cm
45. The radius of a circle is 10.8 ft . The length of a chord is 12 ft . What is the approximate distance of the chord from the center of the circle? H
F. 1.2 ft
G. 4.7 ft
H. 9.0 ft
J. 12.4 ft
46. What can you NOT conclude from the diagram at the right? D
A. $c=d$
B. $a=b$
C. $c^{2}+e^{2}=b^{2}$
D. $e=d$

47. $\odot A$ and $\odot B$ intersect at points C and D. Each circle has radius 6 in. and $A B=8 \mathrm{in}$. What is $C D$? J
F. 4.5 in.
G. 6 in.
H. 8 in.
J. 8.9 in.
48. Circles M and N are congruent with radii measuring $13 \mathrm{~cm} . \overline{P Q}$ is a chord of both circles and $P Q=18 \mathrm{~cm}$. To the nearest tenth, find $M N$. Justify your answer. See margin.

Mixed Review

Lesson 8-5

Lesson 7-5

Assume that lines that appear to be tangent are tangent. O is the center of each circle. Find the value of \boldsymbol{x} to the nearest tenth.
49.

50. 5.5

51. From the top of a building you look down at an object on the ground. If your eyes are 50 feet above the ground and the angle of depression is 50°, how far is the object on the ground from the base of the building? about 42 ft
2. The legs of a right triangle are 10 in . and 24 in . long. Find the lengths, to the nearest tenth, of the segments into which the bisector of the right angle divides the hypotenuse. 18.4 in . and 7.6 in .
48. [2] $\overline{P N}$ is a radius of $\odot N$. Thus, $P N=13 \mathrm{~cm}$. $P X=\frac{1}{2} P Q=9$, $\triangle P N X$ is a rt. Δ, so
$N X \approx 9.38 \mathrm{~cm}$. Thus, $M N=18.8 \mathrm{~cm}$, to the nearest tenth.
[1] incorrect length OR incorrect explanation

