

Warm Up

Lesson Presentation

Lesson Quiz

Holt McDougal Geometry

Warm Up Find each value.

- **1.** m∠*BCA* 63.5°
- **2.** *t* 116.5°
- Solve for x.

3.
$$58 - x = 4(x + 7)$$
 6
4. $2(x - 8) = 8$ **12**

Find the measure of an inscribed angle.

Use inscribed angles and their properties to solve problems.

Holt McDougal Geometry

Vocabulary

inscribed angle intercepted arc subtend

Holt McDougal Geometry

String art often begins with pins or nails that are placed around the circumference of a circle. A long piece of string is then wound from one nail to another. The resulting pattern may include hundreds of *inscribed angles*. An **inscribed angle** is an angle whose vertex is on a circle and whose sides contain chords of the circle. An **intercepted arc** consists of endpoints that lie on the sides of an inscribed angle and all the points of the circle between them. A chord or arc **subtends** an angle if its endpoints lie on the sides of the angle.

 $\angle DEF$ is an inscribed angle. \overrightarrow{DF} is the intercepted arc. \overrightarrow{DF} subtends $\angle DEF$.

Holt McDougal Geometry

Example 1A: Finding Measures of Arcs and Inscribed Angles

Find each measure.

m∠*PRU*

m∠PRU =
$$\frac{1}{2}$$
m \widehat{PU} Inscribed ∠ Thm.
= $\frac{1}{2}$ (118°) = 59° Substitute 118 for m \widehat{PU} .

P 27° 5

118°

Holt McDougal Geometry

Example 1B: Finding Measures of Arcs and Inscribed Angles

Find each measure.

m SP

- $m\angle SRP = \frac{1}{2}m\widehat{SP} \quad Inscribed \angle Thm.$ $27^{\circ} = \frac{1}{2}m\widehat{SP} \quad Substitute \ 27 \text{ for } m\angle SRP.$
 - $\widehat{mSP} = 54^{\circ}$ Multiply both sides by 2.

118°

27°

Check It Out! Example 1a

Find each measure. \widehat{mADC} $m\angle ABC = \frac{1}{2}\widehat{mADC}$ Inscribed $\angle Thm.$ $135^{\circ} = \frac{1}{2}\widehat{mADC}$ Substitute 135 for $m\angle ABC$. $270^{\circ} = \widehat{mADC}$ Multiply both sides by 2.

Holt McDougal Geometry

Check It Out! Example 1b

Find each measure.

m∠*DAE*

$$m \angle DAE = \frac{1}{2}m\widehat{DE}$$
 Inscribed $\angle Thm$.

 $=\frac{1}{2}(76^{\circ})=38^{\circ}$ Substitute 76 for mDE.

Holt McDougal Geometry

Corollary 11-4-2

COROLLARY	HYPOTHESIS	CONCLUSION
If inscribed angles of a circle intercept the same arc or are subtended by the same chord or arc, then the angles are congruent.	\mathcal{L}	∠ACB ≅ ∠ADB ≅ ∠AEB (and ∠CAE ≅ ∠CBE)

Example 2: Hobby Application

An art student turns in an abstract design for his art project.

Find m∠DFA.

 $m \angle DFA = m \angle DCF + m \angle CDF \quad Ext \angle Thm.$

$$= m \angle DCF + \frac{1}{2}m\widehat{BC}$$
$$= 33^{\circ} + \frac{1}{2}(164^{\circ})$$

Inscribed ∠ Thm.

Substitute.

 $= 115^{\circ}$

Simplify.

Holt McDougal Geometry

Check It Out! Example 2

Find m∠ABD and m \overrightarrow{BC} in the string art.

 $m \angle ABD = \frac{1}{2}m\widehat{DA} \quad Inscribed \angle Thm.$ $= \frac{1}{2}(86^{\circ}) \quad Substitute.$ $= 43^{\circ}$

$$m \angle CAB = \frac{1}{2}m\widehat{BC} \qquad \text{Inscribed} \angle Thm.$$

$$60^{\circ} = \frac{1}{2}m\widehat{BC} \qquad \text{Substitute.}$$

$$\widehat{BC} = 120^{\circ}$$

Holt McDougal Geometry

Theorem 11-4-3

An inscribed angle subtends a semicircle if and only if the angle is a right angle.

Holt McDougal Geometry

Example 3A: Finding Angle Measures in Inscribed Triangles

Find a.

 $\angle WZY$ is a right angle $\angle WZY$ is inscribed in a semicircle.

 $m \angle WZY = 90^{\circ}$

5*a* + 20 = 90

5*a* = 70

a = 14

Def of rt. \angle

Substitute 5a + 20 for $m \angle WZY$.

- Subtract 20 from both sides.
- Divide both sides by 5.

Example 3B: Finding Angle Measures in Inscribed Triangles

10.5°

Find m∠*LJM*.

$$m \angle LJM = m \angle LKM$$

$$5b - 7 = 3b$$

 $2b - 7 = 0$
 $2b = 7$
 $b = 3.5$
 $m \angle LJM = 5(3.5) - 7 = 100$

 $m \angle LJM$ and $m \angle LKM$ both intercept LM. Substitute the given values. Subtract 3b from both sides. Add 7 to both sides. Divide both sides by 2. Substitute 3.5 for b.

 $(5b - 7)^{\circ}$

Holt McDougal Geometry

Copyright © by Holt Mc Dougal. All Rights Reserved.

3b°

Check It Out! Example 3a

Find z.

 $\angle ABC$ is a right angle $\angle ABC$ is inscribed in a semicircle.

Def of rt. \angle

m∠*ABC* = 90°

Substitute.

- 8z 6 = 90
 - 8*z* = 96
- A
- *z* = 12

- Add 6 to both sides.
- Divide both sides by 8.

Check It Out! Example 3b

Find m∠*EDF*.

 $m \angle EDF = m \angle EGF$ 2x + 3 = 75 - 2x4x = 72

x = 18

- $m\angle EGF$ and $m\angle EDF$ both intercept \widehat{EF} .
- Substitute the given values.
- Add 2x and subtract 3 from both sides.
- Divide both sides by 4.

$$m \angle EDF = 2(18) + 3 = 39^{\circ}$$

Holt McDougal Geometry

Theorem 11-4-4			
THEOREM	HYPOTHESIS	CONCLUSION	
If a quadrilateral is inscribed in a circle, then its opposite angles are supplementary.	$A \\ BCD is inscribed in \odot E.$	∠A and ∠C are supplementary. ∠B and ∠D are supplementary.	

Example 4: Finding Angle Measures in Inscribed Quadrilaterals

Find the angle measures of *GHJK*.

Step 1 Find the value of *b*.

 $m \angle G + m \angle J = 180^{\circ}$ GHJK is inscribed in a \odot . 3b + 25 + 6b + 20 = 180 Substitute the given values. 9b + 45 = 180 Simplify. 9b = 135 Subtract 45 from both sides. b = 15 Divide both sides by 9.

Example 4 Continued

Step 2 Find the measure of each angle.

$$m \angle G = 3(15) + 25 = 70^{\circ}$$

$$m \angle J = 6(15) + 20 = 110^{\circ}$$

 $m \angle K = 10(15) - 69 = 81^{\circ}$

$$m \angle H + m \angle K = 180^{\circ}$$

$$m \angle H + 81^{\circ} = 180^{\circ}$$

m∠*H* = 99°

Substitute 15 for b in each expression.

 \angle H and \angle K are supp.

Substitute 81 for $m \angle K$.

Subtract 81 from both sides

Holt McDougal Geometry

Check It Out! Example 4

Find the angle measures of JKLM.

Step 1 Find the value of *b*.

 $m \angle M + m \angle K = 180^{\circ}$ JKLM is inscribed in a \odot .

4x - 13 + 33 + 6x = 180 Substitute the given values.

$$10x + 20 = 180$$
 Simplify.

10x = 160 Subtract 20 from both sides.

x = 16 Divide both sides by 10.

Holt McDougal Geometry

Check It Out! Example 4 Continued

Find the angle measures of *JKLM*.

Step 2 Find the measure of each angle.

$$m \angle M = 4(16) - 13 = 51^{\circ}$$
$$m \angle K = 33 + 6(16) = 129^{\circ}$$
$$m \angle L = \frac{9(16)}{2} = 72^{\circ}$$
$$m \angle J = 360^{\circ} - 252^{\circ} = 108^{\circ}$$

Lesson Quiz: Part I

Find each measure.

- **1.** ∠*RUS* 25°
- **2.** *a* **3**

Lesson Quiz: Part II

3. A manufacturer designs a circular ornament with lines of glitter as shown. Find m∠KJN.
 130°

4. Find the angle measures of *ABCD*. $m \angle A = 95^{\circ}$ $m \angle B = 85^{\circ}$ $m \angle C = 85^{\circ}$ $m \angle D = 95^{\circ}$

Holt McDougal Geometry