Warm Up

Lesson Presentation

Lesson Quiz

12-4 Inscribed Angles

Warm Up Find each value.

1. $\mathrm{m} \angle B C A 63.5^{\circ}$
2. $t 116.5^{\circ}$

Solve for \boldsymbol{x}.

$$
\begin{aligned}
& \text { 3. } 58-x=4(x+7) 6 \\
& \text { 4. } 2(x-8)=812
\end{aligned}
$$

12-4 Inscribed Angles

Objectives

Find the measure of an inscribed angle. Use inscribed angles and their properties to solve problems.

12-4 Inscribed Angles

Vocabulary

inscribed angle intercepted arc subtend

String art often begins with pins or nails that are placed around the circumference of a circle. A long piece of string is then wound from one nail to another. The resulting pattern may include hundreds of inscribed angles.

An inscribed angle is an angle whose vertex is on a circle and whose sides contain chords of the circle. An intercepted arc consists of endpoints that lie on the sides of an inscribed angle and all the points of the circle between them. A chord or arc subtends an angle if its endpoints lie on the sides of the angle.

12-4 Inscribed Angles

$\angle D E F$ is an inscribed angle.
$\overparen{D F}$ is the intercepted arc.
$\overparen{D F}$ subtends $\angle D E F$.

Theorem 11-4-1 Inscribed Angle Theorem

The measure of an inscribed angle is half the measure of its intercepted arc.

$$
\mathrm{m} \angle A B C=\frac{1}{2} \mathrm{~m} \overparen{A C}
$$

Case 1

Case 2

12-4 Inscribed Angles

Example 1A: Finding Measures of Arcs and Inscribed Angles

Find each measure. $\mathbf{m} \angle P R U$ $\mathrm{m} \angle P R U=\frac{1}{2} \mathrm{~m} \overparen{P U} \quad$ Inscribed \angle Thm.

$=\frac{1}{2}\left(118^{\circ}\right)=59^{\circ}$ Substitute 118 for m PU.

12-4 Inscribed Angles

Example 1B: Finding Measures of Arcs and Inscribed Angles

Find each measure.

mSP

$\mathrm{m} \angle S R P=\frac{1}{2} \mathrm{~m} \overparen{S P} \quad$ Inscribed \angle Thm .

$27^{\circ}=\frac{1}{2} m \overparen{S P} \quad$ Substitute 27 for $m \angle S R P$.
$\mathrm{m} \overparen{S P}=54^{\circ} \quad$ Multiply both sides by 2 .

12-4 Inscribed Angles

Check It Out! Example 1a

Find each measure. m $\overline{A D C}$
$\mathrm{m} \angle A B C=\frac{1}{2} \mathrm{~m} \widehat{A D C}$ Inscribed \angle Thm.
$135^{\circ}=\frac{1}{2} \mathrm{~m} \widehat{A D C}$ Substitute 135 for $m \angle A B C$.

$270^{\circ}=\mathrm{m} \widehat{A D C} \quad$ Multiply both sides by 2.

12-4 Inscribed Angles

Check It Out! Example 1b

Find each measure. m $\angle D A E$
$\mathrm{m} \angle D A E=\frac{1}{2} \mathrm{~m} \overparen{D E} \quad$ Inscribed \angle Thm .

$$
=\frac{1}{2}\left(76^{\circ}\right)=38^{\circ} \quad \text { Substitute } 76 \text { for } m \overparen{D E} .
$$

12-4 Inscribed Angles

Corollary 11-4-2

COROLLARY

If inscribed angles of a circle intercept the same arc or are subtended by the same chord or arc, then the angles are congruent.
CONCLUSION

12-4 Inscribed Angles

Example 2: Hobby Application

An art student turns in an abstract design for his art project.

Find m $\angle D F A$.

 $\mathrm{m} \angle D F A=\mathrm{m} \angle D C F+\mathrm{m} \angle C D F \quad E x t \angle T h m$.
$=\mathrm{m} \angle D C F+\frac{1}{2} \mathrm{~m} \overparen{B C} \quad$ Inscribed \angle Thm .
$=33^{\circ}+\frac{1}{2}\left(164^{\circ}\right) \quad$ Substitute.
$=115^{\circ}$
Simplify.

12-4 Inscribed Angles

Check It Out! Example 2

Find $m \angle A B D$ and $m B C$ in the string art.

$$
\begin{aligned}
\mathrm{m} \angle A B D & =\frac{1}{2} \mathrm{~m} \overparen{D A} & \text { Inscribed } \angle \text { Thm. } \\
& =\frac{1}{2}\left(86^{\circ}\right) & \text { Substitute. } \\
& =43^{\circ} &
\end{aligned}
$$

$$
\mathrm{m} \angle C A B=\frac{1}{2} \mathrm{~m} \overparen{B C} \quad \text { Inscribed } \angle T h m \text {. }
$$

$60^{\circ}=\frac{1}{2} \mathrm{~m} \overparen{B C} \quad$ Substitute.
$\mathrm{m} \overparen{B C}=120^{\circ}$

12-4 Inscribed Angles

Theorem 11-4-3

An inscribed angle subtends a semicircle if and only if the angle is a right angle.

12-4 Inscribed Angles

Example 3A: Finding Angle Measures in Inscribed

 Triangles
Find a.

$\angle W Z Y$ is a right angle $\angle W Z Y$ is inscribed in a semicircle.
$\mathrm{m} \angle W Z Y=90^{\circ}$
$5 a+20=90$
$5 a=70$
$a=14$

Def of rt. \angle
Substitute $5 a+20$ for $m \angle W Z Y$.
Subtract 20 from both sides.
Divide both sides by 5 .

12-4 Inscribed Angles

Example 3B: Finding Angle Measures in Inscribed
Triangles

Find $\mathbf{m} \angle L J M$.

$$
\begin{aligned}
\mathrm{m} \angle L J M & =\mathrm{m} \angle L K M \\
5 b-7 & =3 b \\
2 b-7 & =0
\end{aligned}
$$

$$
2 b=7
$$

$$
b=3.5
$$

$$
m \angle L J M=5(3.5)-7=10.5^{\circ}
$$

$m \angle L J M$ and $m \angle L K M$ both intercept $\widehat{L M}$.
Substitute the given values.
Subtract 3b from both sides.
Add 7 to both sides.
Divide both sides by 2.
Substitute 3.5 for b.

12-4 Inscribed Angles

Check It Out! Example 3a

Find z.

$\angle A B C$ is a right angle $\angle A B C$ is inscribed in a semicircle.

$$
\begin{aligned}
\mathrm{m} \angle A B C & =90^{\circ} & & \text { Def of rt. } \angle \\
8 z-6 & =90 & & \text { Substitute. } \\
8 z & =96 & & \text { Add } 6 \text { to both sides. } \\
z & =12 & & \text { Divide both sides by } 8 .
\end{aligned}
$$

12-4 Inscribed Angles

Check It Out! Example 3b

Find $m \angle E D F$.

$$
\begin{array}{rlrl}
\mathrm{m} \angle E D F & =\mathrm{m} \angle E G F & & m \angle E G F \text { and } m \angle E D F \\
2 x+3 & =75-2 x & & \text { both intercept EF. } \\
4 x & =72 & & \text { Substitute the given values. } \\
x & =18 & & \text { Add } 2 x \text { and subtract } 3 \text { from } \\
\text { both sides. }
\end{array}
$$

$\mathrm{m} \angle E D F=2(18)+3=39^{\circ}$

12-4 Inscribed Angles

Theorem 11-4-4

THEOREM
If a quadrilateral is inscribed in a circle, then its opposite angles are supplementary.

HYPOTHESIS

$A B C D$ is inscribed in $\odot E$.

CONCLUSION

$\angle A$ and $\angle C$ are supplementary. $\angle B$ and $\angle D$ are supplementary.

12-4 Inscribed Angles

Example 4: Finding Angle Measures in Inscribed Quadrilaterals

Find the angle measures of
GHJK.
Step 1 Find the value of b.

$$
\mathrm{m} \angle G+\mathrm{m} \angle J=180^{\circ} \text { GHJK is inscribed in a } \odot .
$$

$3 b+25+6 b+20=180$ Substitute the given values. $9 b+45=180$ Simplify. $9 b=135$ Subtract 45 from both sides. $b=15$ Divide both sides by 9 .

12-4 Inscribed Angles

Example 4 Continued

Step 2 Find the measure of each angle.

$$
\begin{aligned}
\mathrm{m} \angle \mathrm{G}=3(15)+25=70^{\circ} & \text { Substitute } 15 \text { for } b \\
\mathrm{~m} \angle J=6(15)+20=110^{\circ} & \text { in each expression. } \\
\mathrm{m} \angle K=10(15)-69=81^{\circ} & \\
\mathrm{m} \angle H+\mathrm{m} \angle K=180^{\circ} & \angle H \text { and } \angle K \text { are supp. } \\
\mathrm{m} \angle H+81^{\circ}=180^{\circ} & \text { Substitute } 81 \text { for } m \angle K . \\
\mathrm{m} \angle H=99^{\circ} & \text { Subtract } 81 \text { from both sides }
\end{aligned}
$$

12-4 Inscribed Angles

Check It Out! Example 4

Find the angle measures of JKLM.

Step 1 Find the value of b.

$\mathrm{m} \angle M+\mathrm{m} \angle K=180^{\circ} J K L M$ is inscribed in a \odot.
$4 x-13+33+6 x=180$ Substitute the given values.

$$
\begin{aligned}
10 x+20 & =180 \text { Simplify. } \\
10 x & =160 \text { Subtract } 20 \text { from both sides. } \\
x & =16 \quad \text { Divide both sides by } 10 .
\end{aligned}
$$

12-4 Inscribed Angles

Check It Out! Example 4 Continued

Find the angle measures of JKLM.

Step 2 Find the measure of each angle.

$$
\begin{aligned}
\mathrm{m} \angle M=4(16)-13=51^{\circ} \\
\mathrm{m} \angle K=33+6(16)=129^{\circ} \\
m \angle L=\frac{9(16)}{2}=72^{\circ}
\end{aligned}
$$

$$
\mathrm{m} \angle \mathrm{~J}=360^{\circ}-252^{\circ}=108^{\circ}
$$

12-4 Inscribed Angles

Lesson Quiz: Part I

Find each measure.

1. $\angle R U S 25^{\circ}$
2. $a 3$

12-4 Inscribed Angles

Lesson Quiz: Part II

3. A manufacturer designs a circular ornament with lines of glitter as shown. Find $\mathrm{m} \angle K J N$. 130°

