Bellringer
 12/3/19 - Reproduction

- 2. Identify the type of reproduction that \quad results in genetically identical offspring.
- \qquad results in genetically different offspring:
- \qquad has 1 parent
- 3. Why is it important for cells to reproduce? List at least two reasons.

Bellringer 12/4/19
 Chromosomes

1. Each chromosome joins two identical copies called \qquad , that are joined at the \qquad -
Draw a picture to accompany this statement!
2. How many chromosomes are in the karyotype below? See pic below.

Bellringer 12/6/19

 Mitosis

Identify the stage of mitosis

- A. The chromosomes line up in the middle
- B. The sister chromatids pull apart
- C. The chromosomes become visible
- D. Two daughter nuclei are present

Bellringer 12/5/19
Cell Cycle

1. A cell spends most of its time in which stage of the cell cycle?
2. When in the cell cycle is DNA synthesized (copied)?

EXAM REVIEW GUIDE OUT

1. How are sister chromatids and homologous chromosomes different?
2. Draw a picture to show the difference.
3. Explain why not all humans have 23 homologous pairs of chromosomes. (hint: think about the sex chromosomes).

Bellringer

What is the human diploid and haploid number of chromosomes? Give a type of cell where that number of chromosomes would be found.

Fill in the blanks using the following words: Interphase, S Phase, Chromosomes, Chromatin, sister chromatids, Chromosomes
The genetic material called, contains DNA and other proteins. It condenses in Prophase _ $\begin{aligned} & \text { is form made up of two }\end{aligned}$
information found on them. The copy of gententica material was made during the \qquad of

Repair and Growth

Cell reproduction enables your body to produce new skin cells that replace dead cells at your skin's surface.

Reproduction

OWhile the production of new cells can result in growth and repair within organisms, cell division also has an essential role in the reproduction of entire organisms
O2 methods of Reproduction
-Asexual reproduction
Sexual reproduction

Asexual Reproduction video clip

Reproduction and Growth

OWhether reproduction is sexual or asexual, all multicellular organisms depend on cell division for growth.

Let's make a foldable!

-Follow my close instructions on how to make The Cell Cycle Foldable.
(1) 路
2)

-1. The Cell Cycle -Put your name at the bottom
2. Interphase
-3. The Mitotic Phase - Prophase
4. The Mitotic Phase - Metaphase
5. The Mitotic Phase - Anaphase
2. The Mitotic Phase - Telophase
-7. Cytokinesis
-8. Important Vocabulary

Think about it...
OAt this moment, millions of cells in your body are dividing, each forming two new cells
OHowever, the vast majority of your cells (about 200 trillion) aren't dividing but are going about other cell activities-
Obuilding proteins Obreaking down food -consuming energy eand so on

OHow does cell division fit into the life of

Chromosomes

-As a cell prepares to divide, its chromatin fibers condense, becoming visible as the compact structures called chromosomes.
-Each chromosome may contain many hundreds of genes

Chromosomes

OThe number of chromosomes in a eukaryotic cell depends on the species
OFor example, human body cells generally each have 46 chromosomes, gorilla 48, mouse 40, fruit fly 12.


```
4884848 &8, 48
```


Trivia: How often do cells divide?
OHow often a cell Types of Muscle Cells divides depends on the type of cell.
OSome cells divide once a day.
-Some divide more often; others, less often.
-Some highly specialized cells, such as mature muscle cells, do not divide at all.

Interphase

- The cell is busy making new molecules and organelles.
- Cell has duplicated its DNA.
- Can't see chromosomes yet -still loosely packed chromatin fibers.
- The presence of the nucleolus indicates that the cell is still producing ribosomes.
G_{2} OF INTERPHASE
Centrosomes Chromatin (with centriole pairs) (duplicated)

Cytokinesis in Animals

Animal cells
\circ first sign of cytokinesis is the appearance of an indentation around the middle of the cell

- Pinching apart of cell.
- two new nuclei are forming at the ends of the cell, cytokinesis results in two new cells.
 my cleavage

How do cancer cells differ from normal cells?

Tumors and Cancer

- The timing of cell division is critical to normal growth and development.
- "control system" made of proteins in cell directs sequence of events in cell cycle.
- control system malfunction = cells reproduce at wrong time or in wrong place.
- Out-of-control cell reproduction can produce a mass of cells called a tumor.

Benign Tumor

Benign tumor: an abnormal mass of essentially normal cells

- Depending on location in the body, benign tumors can cause health problems
- usually they can be completely removed by surgery
- cells of benign tumors always remain at their original site in the body.

Malignant Tumor

- Malignant Tumor: more problematic than benign, masses of cells that result from the reproduction of cancer cells

Cancer

- A malignant tumor displaces normal tissue as it grows.
- If a malignant tumor is not killed or removed, it can spread into surrounding tissues.
- More alarming still, cells may split off from the tumor and travel to other parts of the body, where they can form new tumors.
- The spread of cancer cells beyond their original site is called metastasis

Cancer

- Many different biochemical changes can affect the cell cycle and result in cancer.
- Thus, there is no single "cure," but rather multiple approaches to controlling or halting the progress of the disease.

Surgical Removal of Malignant Tumor

Cancer Treatment

- Radiation Therapy

- the parts of the body with cancerous tumors are exposed to high-energy radiation- which disrupts cell division.
- Because cancer cells divide more often than most normal cells, they are more likely to be dividing at any given time.
- So radiation can often destroy cancer cells with minimal damage to normal cells (who spend 90\% of time in interphase-not dividing).

The Anatomy of Cancer

Cancer Treatment

- Chemotherapy
- involves treating the patient with drugs that disrupt cell division.
- These drugs work in a variety of ways.
- Some, called antimitotic drugs, prevent cell division by interfering with the mitotic spindle.
- One antimitotic drug prevents the spindle from forming in the first place
- Another drug "freezes" the spindle after it forms, keeping it from functioning.

The cancer gene we all have...

Homologous Chromosomes

ALL cells of a single organism have same number and types of chromosomes.
Cells from different male or female individuals of a single species have the same number and types of chromosomes.

Genes on Homologous Chromosomes
Each homologous chromosome in a pair carries the same sequence of genes controlling the same inherited characteristics (height, eye color).

- However, the two genes may be different versions.
- Ex. Gene = eye color, versions of eye color = blue, brown, green. .
- Ex. Gene $=$ height, versions $=$ short, tall

Haploid Cells

- Haploid: (half) cell with a single set of chromosomes - For humans, the haploid number (abbreviated n) is 23. - haploid cells are produced through the process of meiosis
- Each gamete has a single set of chromosomes, one from each homologous pair.

Haploid and Diploid cells

- Zygote: fertilized egg, diploid cell.
- has two homologous sets of chromosomes, one set from each parent.
- develops into a sexually mature adult with trillions of cells produced by mitosis.
- fertilization restores the diploid chromosome number, and the zygote's 46 chromosomes are passed on to all the other diploid body cells

Sexual Reproduction Life Cycle Diagram

- \#23 Use the following words to match the \# to what is taking place in the cell.

Anaphase \quad Fertilization Haploid Egg \quad Haploid Sperm
Zygote
Telophase/cytokinesis Diploid DAD cell \quad Diploid MOM cell

Meiosis Versus Mitosis

- MEIOSIS is different from MITOSIS in 2 major ways.
- $1^{\text {st }}$ major difference
- Meiosis produces 4 new offspring cells, each with one set of chromosomes- $1 / 2$ the \# of chromosomes as parent cell
- Mitosis produces $\mathbf{2}$ offspring cells, each with the same number of chromosomes as the parent cell.
$-2^{\text {nd }}$ major difference
- Meiosis involves the swapping of genetic material between homologous chromosomes- crossing over

The Two Meiotic Divisions

- Meiosis consists of two distinct parts-

\circ Meiosis I

- homologous chromosomes with sister chromatids, separate from one another
Meiosis II
- sister chromatids are separated much as they are in mitosis.
- However, the resulting cells are
haploid, NOT diploid.

Prophase I

- Meiosis adds 2 new steps to the mitosis routine.
- 1) Tetrads:
- Homologous chromosomes to stick together along their length
- Homologous chromosomes are paired, and consist of four chromatids, referred to as tetrads - The tetrads attach to the spindle.
- 2) Crossing Over:

Sister chromatids in the tetrads exchange some genetic material in the process known as crossing over.

Metaphase I

Tetrads move to the middle of the cell and line up across the spindle.

Anaphase II:

The sister chromatids separate and move to opposite poles.

Telophase II and Cytokinesis:

- The chromatids, now considered individual chromosomes, arrive at the poles.
Cytokinesis splits the cells one more time.
The process of meiosis is completed, producing four haploid daughter cells as a final result.

	Table 10.1	
	Comparison of Meiosis I with	Mitosis
	Meiosis I	Mitosis
	Prophase I	Prophase
	Pairing of homologous chromosomes	No pairing of chromosomes
	Metaphase I	Metaphase
	Bivalents at metaphase plate	Duplicated chromosomes at metaphase plate
	Anaphase I	Anaphase
	Homologues of each bivalent separate and duplicated chromosomes move to poles.	Sister chromatids separate, becoming daughter chromosomes that move to the poles.
	Telophase I	Telophase
	Two haploid daughter cells	Two daughter cells, identical to the parent cell

,		
	Table 10.2	
	Comparison of Meiosis II	th Mitosis
	Meiosis II	Mitosis
	Prophase II	Prophase
	No pairing of chromosomes	No pairing of chromosomes
	Metaphase II	Metaphase
	Haploid number of duplicated chromosomes at metaphase plate	Diploid number of duplicated chromosomes at metaphase plate
	Anaphase II	Anaphase
	Sister chromatids separate, becoming daughter chromosomes that move to the poles.	Sister chromatids separate, becoming daughter chromosomes that move to the poles.
	Telophase II	Telophase
	Four haploid daughter cells, not genetically identical	Two daughter cells, genetically identical to the parent cell

Assortment and Probability

- With haploid number, you can calculate the number of possible combinations in the gametes.
- $\underline{2}^{n}=\#$ of possible combinations $\circ n$ is the haploid number.

Genetic Variation

3 Chromosomal factors that contribute to genetic variation

- 1. Crossing over
- 2. Independent Assortment - The number of different chromosome combinations in gametes
- 3. Fertilization

Mitosis vs. Meiosis
Ohttp://www.sumanasinc.com/webcontent/ animations/biology.html
Ohttp://www.pbs.org/wgbh/nova/body/how-cellsdivide.html

