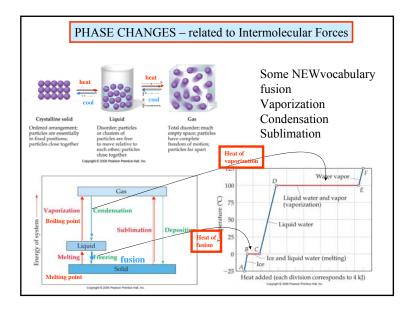
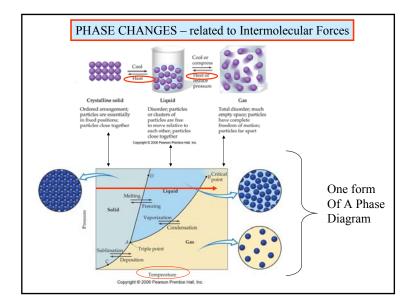
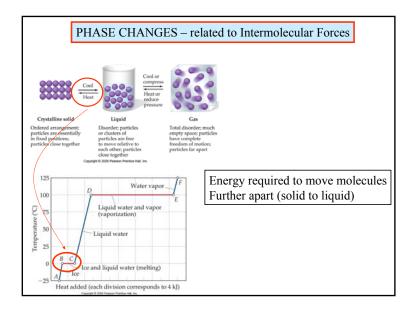
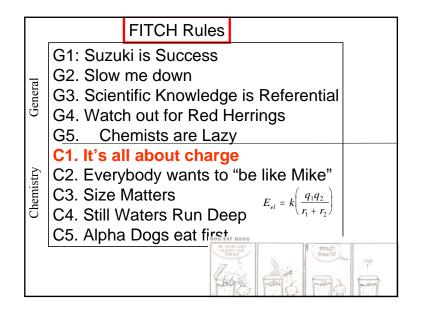


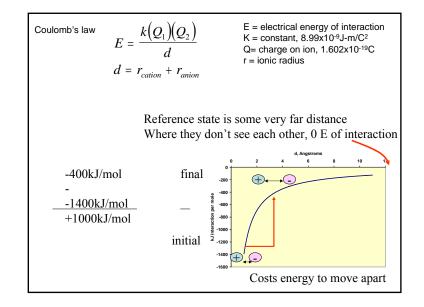
	P	operties and	Measurements
Property		Unit	Reference State
Size		m	size of earth
Volume		cm ³	m
Weight		gram	mass of 1 cm ³ water at specified Temp (and Pressure)
Temperature		°С, К	boiling, freezing of water (specified
1.66053873x10 ⁻²	⁴ g	amu	Pressure) (mass of 1C-12 atom)/12
quantity	mole	atomic	e mass of an element in grams
Pressure		atm, mm Hg	earth's atmosphere at sea level
Energy, General			
	Animal	hp	horse on tread mill
	heat	BTU	1 lb water 1 °F
		calorie	1 g water 1 °C
	Kinetic	J	m, kg, s
	Electros	tatic	1 electrical charge against 1 V
	electron	ic states in atom	Energy of electron in vacuum
	Electron	egativity F	
Heat flow meas	surements		tant pressure, define system vs surroundings nole basis (intensive)

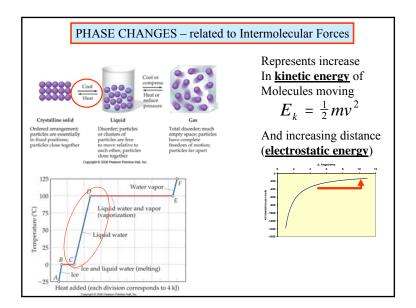

	Intermolecular Forces
1. Evidence for In	ntermolecular Forces
2. Phase Diagrams	s (briefly)
3. Liquid-Vapor E	quilibrium
1. Kinetic the	ory
2. Gas escape	as a way to measure liquid intermolecular forces
4. Boiling points r	elated liquid Intermolecular Forces
1. Dipole-dip	ole
2. Dispersion	
3. H-bonding	
example ap	plication – heat capacity of lakes
5. Solid Intermole	cular Forces
1. Molecular	Solids (Dispersion/ H-bonding)
Network C	ovalent (Covalent) – example glass
Ionic solids	s (Ion/ion)
Metallic so	lids (metal bonding)
6. Structures of Cr	rystals
 Unit Cells 	
2. Common N	Aetal Unit cells
1. Calcul	ate density of lead
Common I	onic Solid Unit cells
1. Calcul	ate density of ionic solid

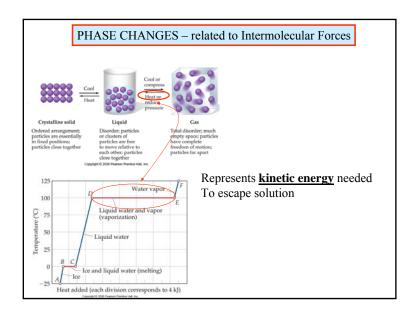


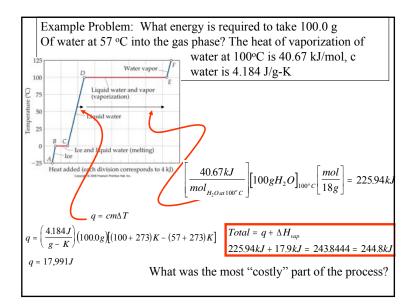

Specif	ric heats	
Material Spec	cific Heats c, (J/g-ºC)	
Pb(s)	0.12803	
Pb(I)	0.16317	
Cu(s)	0.382	
Fe(s)	0.446	
Cl ₂ (g)	0.478	
C(s)	0.71	
CO ₂ (g)	0.843	
NaČI(s)	0.866	
AI(s)	0.89	
C ₆ H ₆ (I)	1.72	Specific heat of
$H_2O(g)$	1.87	Water increases to
C ₂ H ₅ OH(I)	2.43	A dramatically large
$H_2O(I)$	4.18	Value from gas
		To liquid (more
		Condensed – see each
		Other more) phase

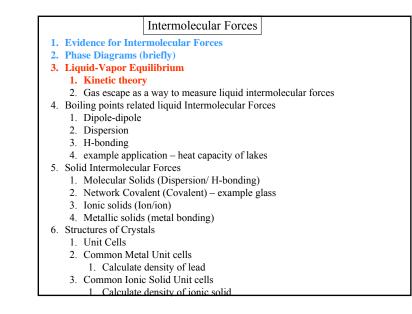

	Intermolecular Forces	
1. Evidence for Intern	olecular Forces	
2. Phase Diagrams (b	oriefly)	
3. Liquid-Vapor Equil	ibrium	
 Kinetic theory 		
Gas escape as a	way to measure liquid inte	rmolecular forces
4. Boiling points relate	ed liquid Intermolecular For	rces
1. Dipole-dipole		
2. Dispersion		
3. H-bonding		
example applic	ation - heat capacity of lake	es
5. Solid Intermolecula	r Forces	
 Molecular Soli 	ds (Dispersion/ H-bonding)	
Network Coval	ent (Covalent) - example g	lass
Ionic solids (Io	n/ion)	
Metallic solids	(metal bonding)	
6. Structures of Crysta	ls	
 Unit Cells 		
Common Meta	l Unit cells	
	lensity of lead	
Common Ionic	Solid Unit cells	

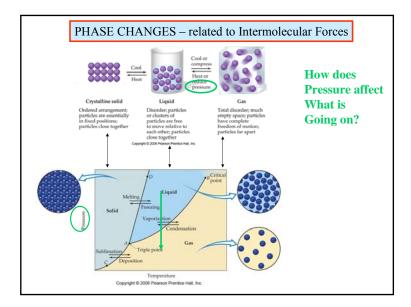


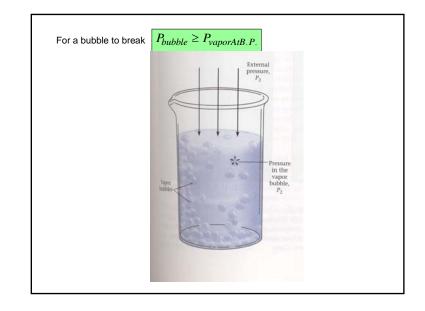

		Cool or Compre	-			
	Crystalline solid	Liquid	kJ / mol		kJ / ma	
Substance		mp(⁰C)	ΔH_{fusion}	bp(⁰C	$\Delta H_{vaporis}$	
Bromine	Br ₂	-7	10.8	59	29.6	What do
Benzene	C_6H_6	5	9.84	80	30.8	you see?
Water	H ₂ O	0	6.00	100	40.7	
Naphthalene		80	19.3	218	43.3	
Mercury	Hg	-39	2.33	357	59.4	
Substance		mp(°C)	ΛIJ	bp(°C	$\Delta H_{vaporizat}$	What do
			ΔH_{fusion}	I.	vaporiza	tion you see?
Mercury	Hg	-39	2.33	357	59.4	
Bromine	Br ₂	-7	10.8	59	29.6	What do
Water	H ₂ O	0	6.00	100	40.7	vou see?
Benzene	C_6H_6	5	9.84	80	30.8	you see:
Naphthalene	C ₁₀ H ₈	80	19.3	218	43.2	$I_{vaporization} > \Delta H_{fusion}$
The heats of fus intermolecular for liquid structures	orces sufficient t	to melt or vapor	ize the ma		nergy requ	ired to break

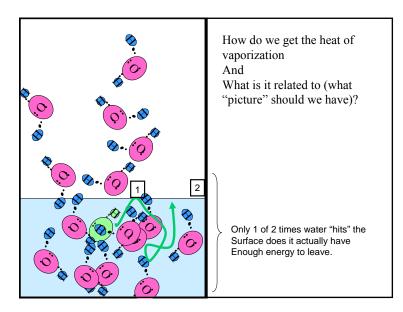


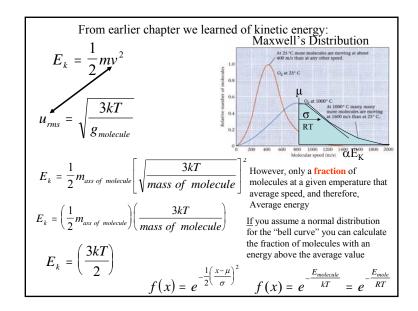


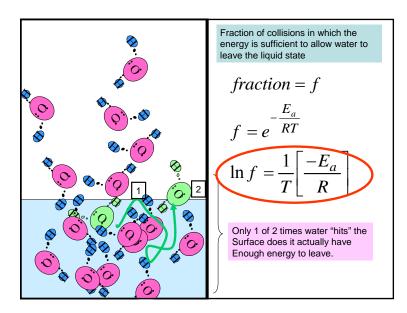


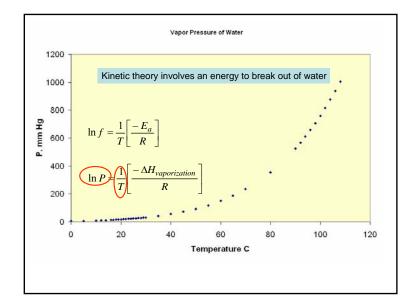


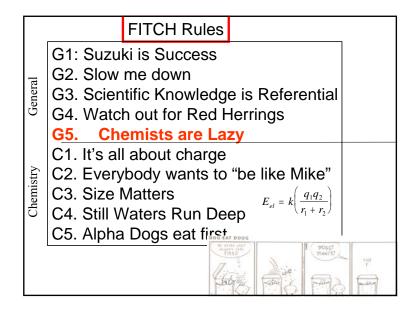


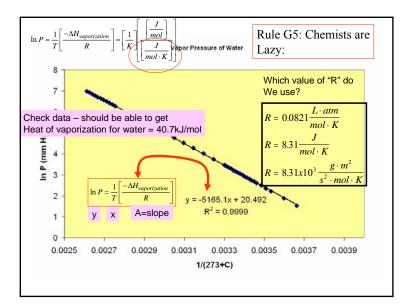


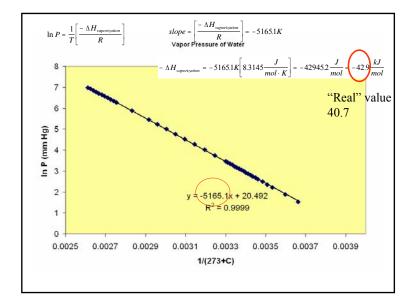


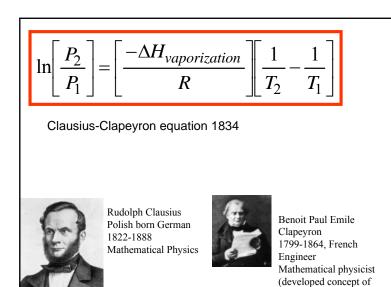


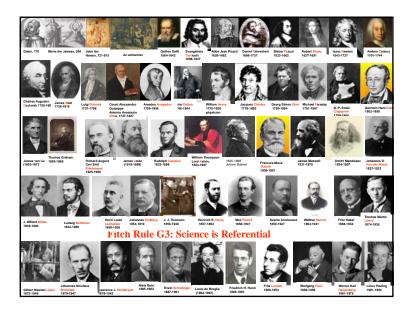


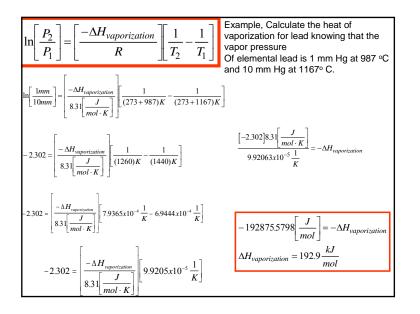


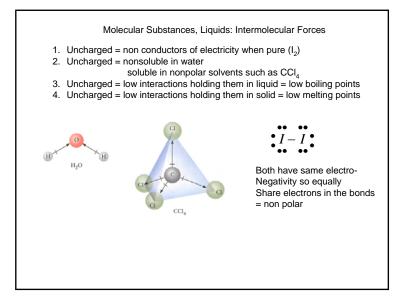


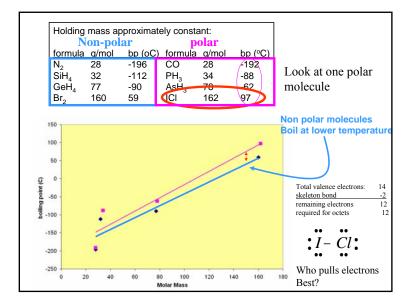


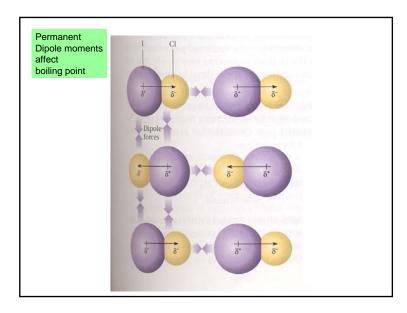


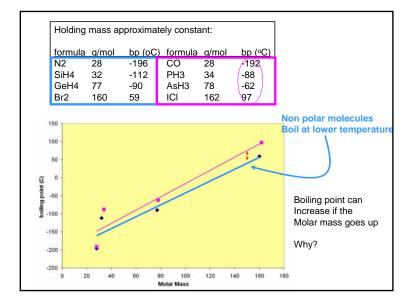


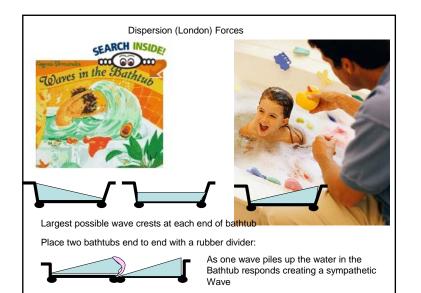


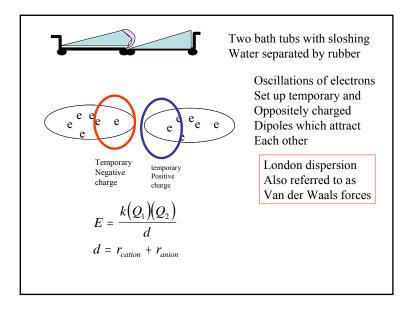


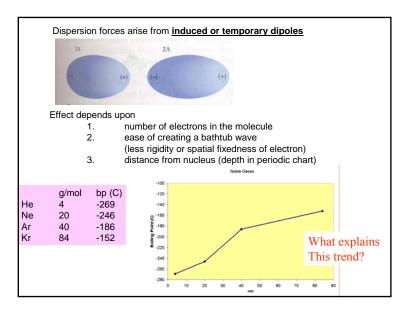


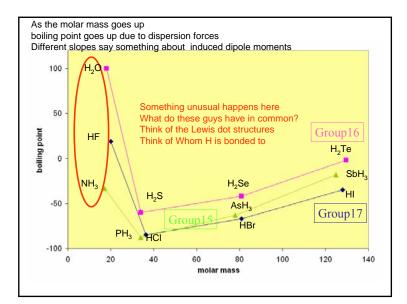

entrony)

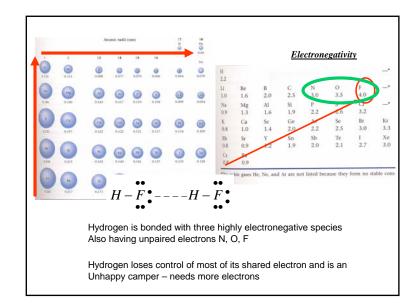

	Intermolecular Forces
1. Evi	dence for Intermolecular Forces
2. Pha	se Diagrams (briefly)
3. Liq	uid-Vapor Equilibrium
1.	Kinetic theory
2.	Gas escape as a way to measure liquid intermolecular forces
4. Boi	ling points related liquid Intermolecular Forces
1.	Dipole-dipole
2.	Dispersion
3.	H-bonding
4.	example application - heat capacity of lakes
5. Sol	id Intermolecular Forces
1.	Molecular Solids (Dispersion/ H-bonding)
2.	Network Covalent (Covalent) – example glass
3.	Ionic solids (Ion/ion)
4.	Metallic solids (metal bonding)
6. Stru	actures of Crystals
1.	Unit Cells
2.	Common Metal Unit cells
	1. Calculate density of lead
3.	Common Ionic Solid Unit cells

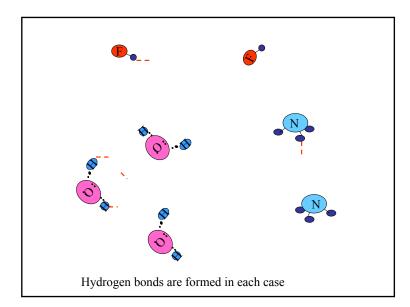

1. Calculate density of ionic solid

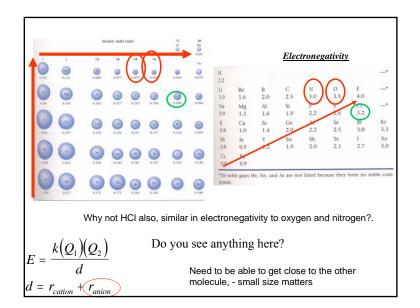


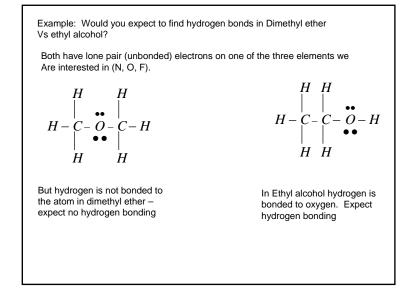


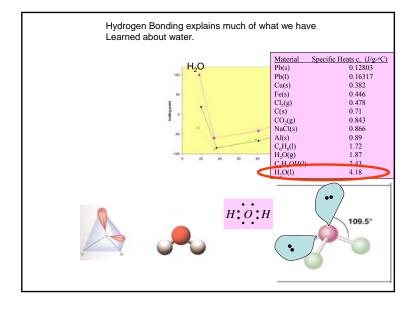


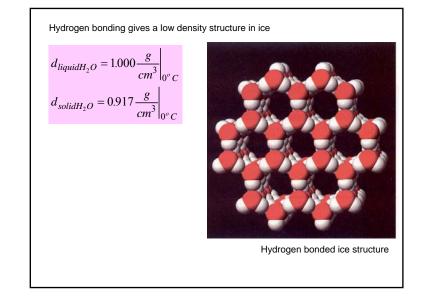


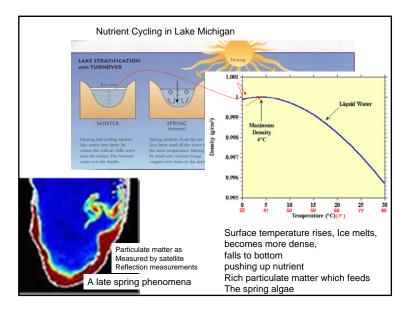


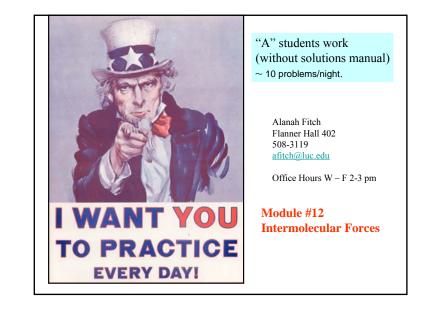


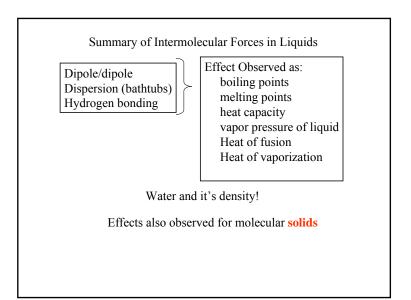


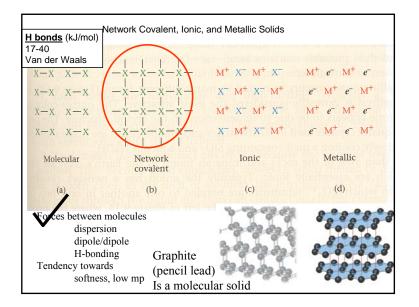


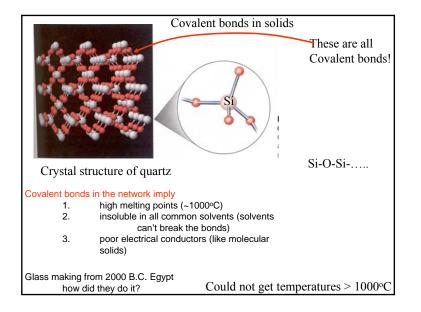


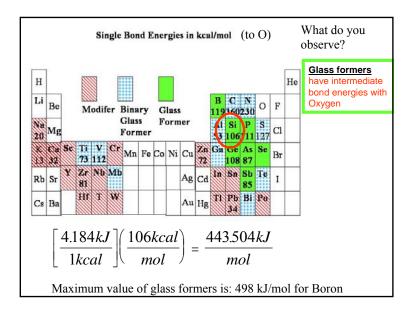


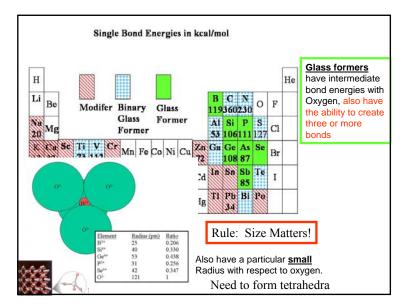


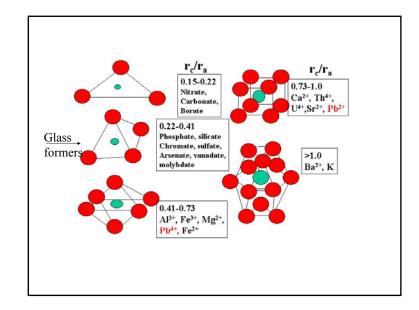




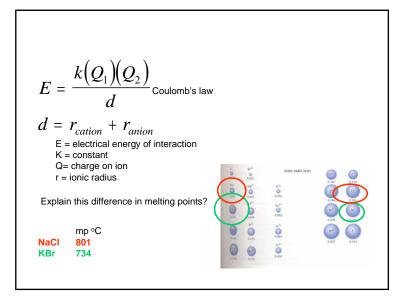


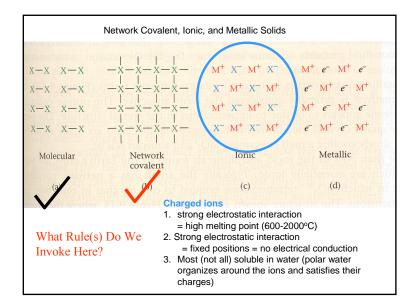

Intermolecular Forces 1. Evidence for Intermolecular Forces 2. Phase Diagrams (briefly) 3. Liquid-Vapor Equilibrium 1. Kinetic theory 2. Gas escape as a way to measure liquid intermolecular forces 4. Boiling points related liquid Intermolecular Forces 1. Dipole-dipole 2. Dispersion 3. H-bonding 4. example application – heat capacity of lakes 5. Solid Intermolecular Forces 1. Molecular Solids (Dispersion/ H-bonding) 2. Network Covalent (Covalent) - example glass 3. Ionic solids (Ion/ion) 4. Metallic solids (metal bonding) 6. Structures of Crystals 1. Unit Cells 2. Common Metal Unit cells 1. Calculate density of lead 3. Common Ionic Solid Unit cells 1 Calculate density of ionic solid

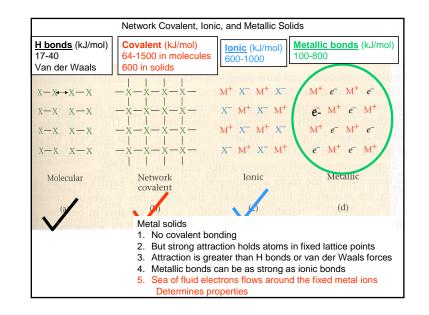

13

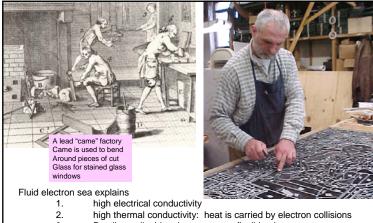


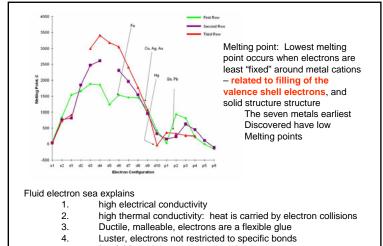
xamined	Bond	Bond Length pm	Enthalpy Single Bond kJ/mol (Average)
	CC	154	348
	CN	147	308
	CO	143	360
	CS	182	272
	CF	135	488
	CCl	177	330
	CBr	194	288
	CI	214	216





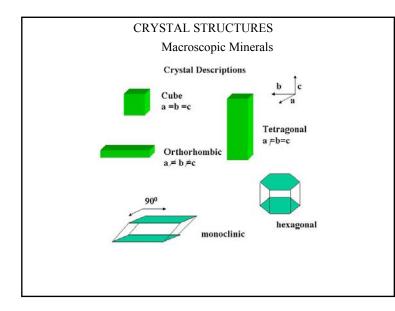

$B.E_{\cdot_{SiO_2}} = \frac{443.504kJ}{mol}$ Why is mp so high when enthalpy of from Hint: naphthalne a large (multimodel)	
$\Delta H_{f(SiO_2)} = \frac{14.22kJ}{mol}$	
Substance mp(°C) ΔH_{fusion} bp(°C $\Delta H_{vaporization}$	
Mercury Hg -39 2.33 357 59.4	
Bromine Br ₂ -7 10.8 59 29.6	
Water H ₂ O 0 6.00 100 40.7	
Benzene C ₆ H ₆ 5 9.84 80 30.8	
Naphthalene $\tilde{C_{10}H_8}$ 80 19.3 218 43.3	
Quartz SiO ₂ 1470 14.22	
Typical fire temp 500-600°C	
Typical chimney fire temp 100	0°C

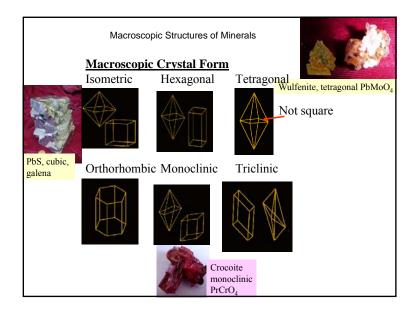


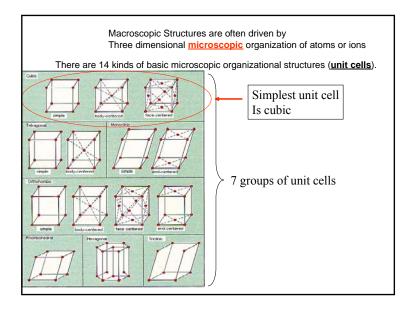


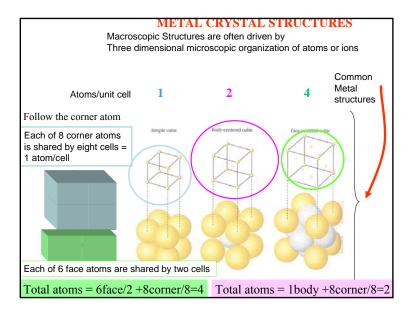
No Clean Socks	<u>Oh Card me PleaSe</u>
$CuSO_{4(s)} \rightarrow Cu_{(aq)}^{2+} + SO_{4(aq)}^{2-}$ $\Delta H^{O} = -66.15kJ$	$CuS_{(s)} \rightarrow Cu^{2+}_{(aq)} + S^{2-}_{(aq)}$ $\Delta H^{O} = -14.5kJ$
$H_2SO_{4(l)} \rightarrow H^+_{(aq)} + HSO^{4(aq)}$ $\Delta H^o = -73.3kJ$	$H_{3}PO_{4(l)} \rightarrow H^{+}_{(aq)} + H_{2}PO^{-}_{3(aq)}$ $\Delta H^{O} = -20.1kJ$
What do you observe? How do you explain it?	
now do you explain it?	

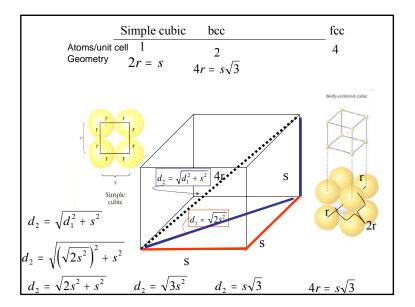
- 3. Ductile, malleable, electrons are a flexible glue
- 4. Luster, electrons not restricted to specific bonds
- 5. Insoluble electrons are not soluble

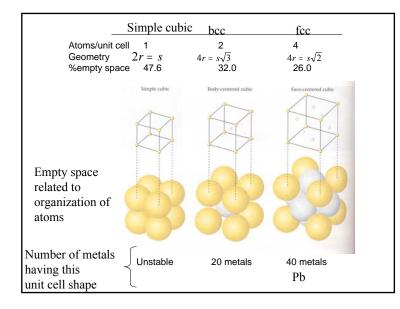


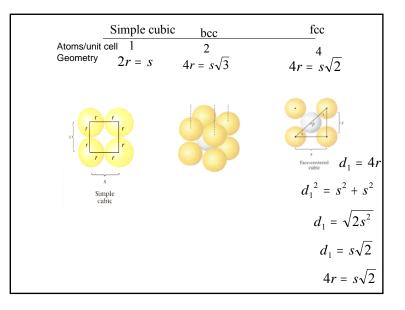

- 5. Insoluble electrons are not soluble
- 6. Can have relatively low melting points

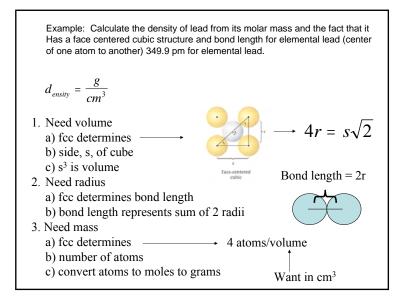

$\begin{array}{ccc} x - x & x - x \\ \end{array}$ Molecular	$ \begin{array}{c c} - x - x - x - x - x - x - x - x - x - $	$X^{-} M^{+} X^{-} M^{+}$ $M^{+} X^{-} M^{+} X^{-}$	
Low Melting Point	High Melting point (~1000 °C)	High Melting Point (600-2000 °C)	Variable Melting Point
Nonconducting of electricity	Nonconducting of electricity	Nonconducting of electricity	Conductor of Electricity
Insoluble in Water	Insoluble in all common solvents	Most are soluble in water	Insoluble
Low Boiling Point			
			High Thermal Conductivity
			Ductile/Malleable
			Luster

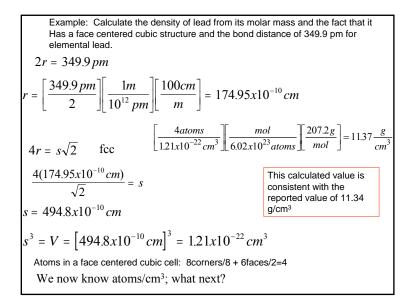

		Intermolecular Forces
1.	Evi	dence for Intermolecular Forces
2.	Pha	se Diagrams (briefly)
3.	Liq	uid-Vapor Equilibrium
	1.	Kinetic theory
	2.	Gas escape as a way to measure liquid intermolecular forces
4.	Boi	ling points related liquid Intermolecular Forces
	1.	Dipole-dipole
	2.	Dispersion
	3.	H-bonding
	4.	example application – heat capacity of lakes
5.	Sol	id Intermolecular Forces
	1.	Molecular Solids (Dispersion/ H-bonding)
	2.	Network Covalent (Covalent) – example glass
	3.	Ionic solids (Ion/ion)
	4.	Metallic solids (metal bonding)
6.	Str	uctures of Crystals
	1.	Unit Cells
	2.	Common Metal Unit cells
		1. Calculate density of lead


- 3. Common Ionic Solid Unit cells
- 1. Calculate density of ionic solid

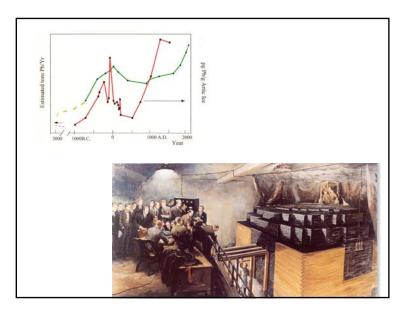




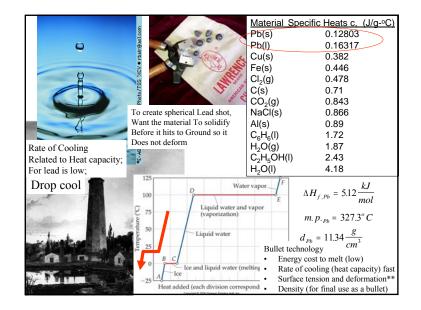


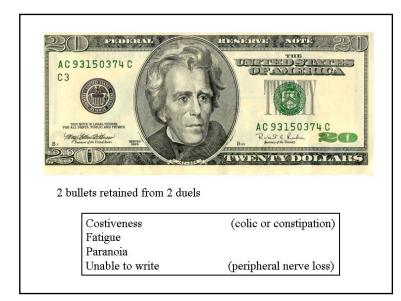

Example: Calculate the density of lead from its molar mass and the fact that it Has a face centered cubic structure and bond length for elemental lead (center of one atom to another) 349.9 pm for elemental lead.

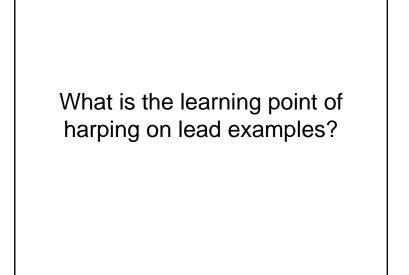
Complicated example from some textbook.

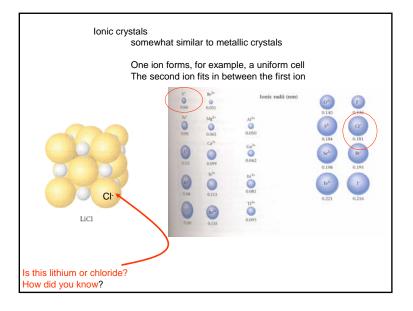

What do we know?

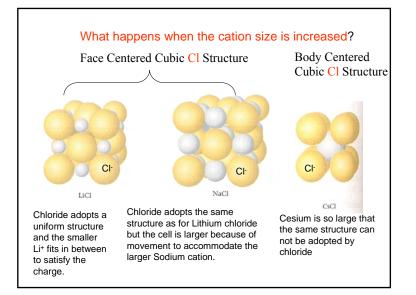
What do we need to know?

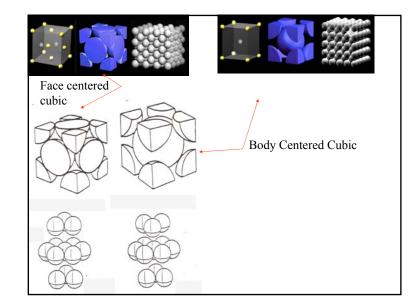


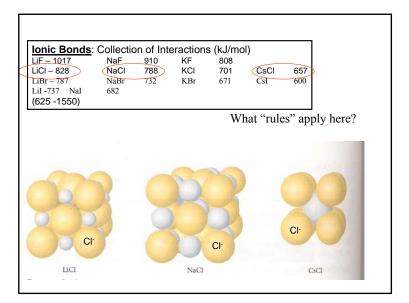


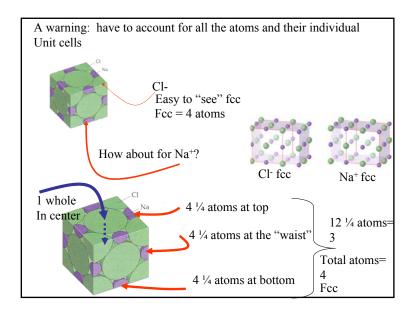


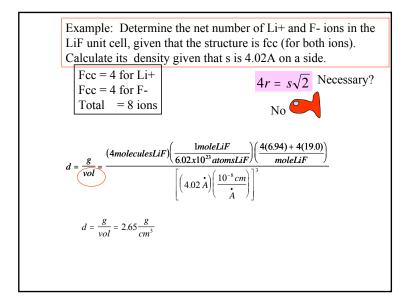


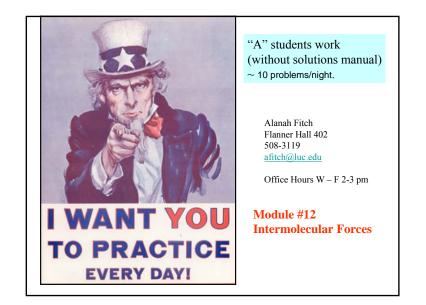





Uses of lead: summary to date: Lead - useful material for environmental transport studies (isotopes) Lead - Lead acetate - used to "sweeten" wines; <u>easily</u> made from lead and wine Lead - lead azide (firing ranges) (Electron transfer reactions; low melting points) Lead - soldering (radiators, cars, electronics)
Lead - Lead acetate – used to "sweeten" wines; <u>easily</u> made from lead and wine Lead – lead azide (firing ranges) (Electron transfer reactions; low melting points)
Lead – lead azide (firing ranges) (Electron transfer reactions; low melting points)
(Electron transfer reactions; low melting points)
Lead – soldering (radiators, cars, electronics)
(Low vapor pressure) Lead – malleable metal (roofs, downspots, stained glass)
(Metallic bonding, heat capacity)
Lead - Glasses and glazes (pottery) <u>Low energy requirements</u> (Group 4 covalent network with extra electron pair = "spaghetti"
Lead - Solvent for other metals: purifying silver (Greek/Roman production)
(Group 4 covalent network with extra electron pair = "spaghetti"
Lead - Density of solid = good Xray shield Lead – low melting point, high density = bullets (<u>low energy requirements</u>)
Toxicity of lead: summary to date: Similar ionic size to Ca ²⁺ Covalent and lonic bonding
Same charge as Ca ²⁺
Electrostatic attraction of lead to calcium binding sites will be similar
Difference: has s ² electrons – distorts binding in biomolecule







 Evidence for Intermolecular Forces Phase Diagrams (briefly) Liquid-Vapor Equilibrium Kinetic theory Gas escape as a way to measure liquid intermolecular forces Boiling points related liquid Intermolecular Forces Dipole-dipole 	Ionic Bonds: Collection of See also Table 8.2 Interactions (kJ/mol) LiF - 1017 NaF 910 KF 808 LiCI - 828 NaCl 788 KCl 701 CsCl 657 LiBr - 787 NaBr 732 KBr 671 CsI 600 Lid - 737 NaI 682 Environmental/Geology
 Liquid-Vapor Equilibrium Kinetic theory Gas escape as a way to measure liquid intermolecular forces Boiling points related liquid Intermolecular Forces 	Interactions (kJ/mol) See also Fable 8.2 LiF - 1017 NaF 910 KF 808 LiG - 828 NaCl 788 KCl 701 CsCl 657 LiBr - 787 NaBr 732 KBr 671 Csl 600 Lil - 737 NaI 682 52 53 53 54
 Kinetic theory Gas escape as a way to measure liquid intermolecular forces Boiling points related liquid Intermolecular Forces 	LiF - 1017 NaF 910 KF 808 LiCl - 828 NaCl 788 KCl 701 CsCl 657 LiBr - 787 NaBr 732 KBr 671 CsI 600 Lil - 737 NaI 682
 Gas escape as a way to measure liquid intermolecular forces Boiling points related liquid Intermolecular Forces 	LiCl - 828 NaCl 788 KCl 701 CsCl 657 LiBr - 787 NaBr 732 KBr 671 CsI 600 LiI - 737 NaI 682
4. Boiling points related liquid Intermolecular Forces	LiBr – 787 NaBr 732 KBr 671 CsI 600 LiI - 737 NaI 682
4. Boiling points related liquid Intermolecular Forces	
	(625 -1550) Environmental/Geology
2. Dispersion	
3. H-bonding	Covalent Bonds (kJ/mol) <u>Network forming covalent bonds (kJ/m</u>
4. example application – heat capacity of lakes	74-1000 Organic Chemistry See also Table 8.4 Annu String B-O 498
5. Solid Intermolecular Forces	Also bio P-O 464 Ceramics
1. Molecular Solids (Dispersion/ H-bonding)	Metallic bonds (k.l/mol) Ge-O 451
 Network Covalent (Covalent) – example glass 	Si-O 443 Geology
3. Ionic solids (Ion/ion)	
4. Metallic solids (metal bonding)	Other Interactions (kJ/mol)
	H bonding: 17 to 40
6. Structures of Crystals 7. Summary slides 1. Unit Cells 7. Summary slides	Dispersion: 0.02 to 40
2. Common Metal Unit cells	Dipole-dipole: 0-20
	Self Assembled
 Calculate density of lead Common Ionic Solid Unit cells 	Biology
5. Common tonic Solid Unit cells 1. Calculate density of jonic solid	

Summary Slide
Vapor pressure over a solution is related to the energy required to escape the solution: this ideal leads to the following equation
$\ln\left[\frac{P_2}{P_1}\right] = \left[\frac{-\Delta H_{vaporization}}{R}\right]\left[\frac{1}{T_2} - \frac{1}{T_1}\right]$

Summary Slide	
The boiling point melting point vapor pressure over a solid are affected by intermolecular forces acting in	ı liquids
Forces are: dipole/dipole dispersion (induced dipole/induced di hydrogen bonding: hydrogen bondin H-O; and H-N where FON ha	ng occurs with H-F;
Intermolecular forces operating in solids are: the above covalent bonding ionic bonding metallic bonding	Because the type of bond is different the trends change when a material goes from solid to liquid to gas

Relative interaction for ionic bonding can be calculated from
Coulomb's law
$E = \frac{k(Q_1)(Q_2)}{d}$
$d = r_{cation} + d_{anion}$
Organization of molecules (or atoms) within a solid follow <u>14</u> different structural types
<u>3 are most common for metals</u> : simple cubic, face centered cubic and body-centered cubic
The structure of the cell affects empty volume and
therefore, the melting point, density,
and stability of the material
Ionic crystal structures are similar except cations occupy the space that was "empty" in metals