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Chapter Overview

In this chapter we study the central idea underlying calculus—the concept of limit.
Calculus is used in modeling numerous real-life phenomena, particularly situations
that involve change or motion. To understand the basic idea of limits let’s consider
two fundamental examples.

To find the area of a polygonal figure we simply divide it into triangles and add the
areas of the triangles, as in the figure to the left. However, it is much more difficult to
find the area of a region with curved sides. One way is to approximate the area by in-
scribing polygons in the region. The figure illustrates how this is done for a circle.

If we let An be the area of the inscribed regular polygon with n sides, then we see
that as n increases An gets closer and closer to the area of the circle. We say that the
area A of the circle is the limit of the areas An and write

If we can find a pattern for the areas An, then we may be able to determine the limit
A exactly. In this chapter we use a similar idea to find areas of regions bounded by
graphs of functions.

In Chapter 2 we learned how to find the average rate of change of a function. For
example, to find average speed we divide the total distance traveled by the total time.
But how can we find instantaneous speed—that is, the speed at a given instant? We
can’t divide the total distance traveled by the total time, because in an instant the to-
tal distance traveled is zero and the total time spent traveling is zero! But we can find
the average rate of change on smaller and smaller intervals, zooming in on the instant
we want. For example, suppose gives the distance a car has traveled at time t. To
find the speed of the car at exactly 2:00 P.M., we first find the average speed on an in-
terval from 2 to a little after 2, that is, on the interval . We know that the
average speed on this interval is . By finding this average speed3f 12 � h 2 � f 12 2 4/h

32, 2 � h 4f 1t 2

area � lim 
nSq  
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for smaller and smaller values of h (letting h go to zero), we zoom in on the instant
we want. We can write

If we find a pattern for the average speed, we can evaluate this limit exactly.
The ideas in this chapter have wide-ranging applications. The concept of “instan-

taneous rate of change” applies to any varying quantity, not just speed. The concept
of “area under the graph of a function” is a very versatile one. Indeed, numerous phe-
nomena, seemingly unrelated to area, can be interpreted as area under the graph of a
function. We explore some of these in Focus on Modeling, page 929.

12.1 Finding Limits Numerically and Graphically

In this section we use tables of values and graphs of functions to answer the question,
What happens to the values of a function f as the variable x approaches the 
number a?

Definition of Limit

We begin by investigating the behavior of the function f defined by

for values of x near 2. The following table gives values of for values of x close
to 2 but not equal to 2.

f 1x 2f 1x 2 � x2 � x � 2

f 1x 2

instantaneous speed � lim 
hS0

f 12 � h 2 � f 12 2
h
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x

1.0 2.000000
1.5 2.750000
1.8 3.440000
1.9 3.710000
1.95 3.852500
1.99 3.970100
1.995 3.985025
1.999 3.997001

f 1x 2 x

3.0 8.000000
2.5 5.750000
2.2 4.640000
2.1 4.310000
2.05 4.152500
2.01 4.030100
2.005 4.015025
2.001 4.003001

f 1x 2

From the table and the graph of f (a parabola) shown in Figure 1 we see that when
x is close to 2 (on either side of 2), is close to 4. In fact, it appears that we can
make the values of as close as we like to 4 by taking x sufficiently close to 2. We
express this by saying “the limit of the function as x approaches
2 is equal to 4.” The notation for this is

lim 
xS2 
1x2 � x � 2 2 � 4

f 1x 2 � x2 � x � 2
f 1x 2 f 1x 2

4
Ï

approaches
4.

2
As x approaches 2,

y=≈- x+2

0

y

x

Figure 1



Roughly speaking, this says that the values of get closer and closer to the num-
ber L as x gets closer and closer to the number a (from either side of a) but x � a.

An alternative notation for is

which is usually read “ approaches L as x approaches a.” This is the notation we
used in Section 3.6 when discussing asymptotes of rational functions.

Notice the phrase “but x � a” in the definition of limit. This means that in finding
the limit of as x approaches a, we never consider x � a. In fact, need not
even be defined when x � a. The only thing that matters is how f is defined near a.

Figure 2 shows the graphs of three functions. Note that in part (c), is not
defined and in part (b), . But in each case, regardless of what happens at a,

.

Figure 2

in all three cases

Estimating Limits Numerically and Graphically

In Section 12.2 we will develop techniques for finding exact values of limits. For now,
we use tables and graphs to estimate limits of functions.

lim
xSa 

f 1x 2 � L

(a)

0

L

a 0

L

a 0

L

a

(b) (c)

y

x x x

y y

limxSa f 1x 2 � L
f 1a 2 � L

f 1a 2f 1x 2f 1x 2
f 1x 2 f 1x 2 � L  as  x � a

limxSa f 1x 2 � L

f 1x 2
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Definition of the Limit of a Function

We write

and say

“the limit of as x approaches a, equals L”

if we can make the values of arbitrarily close to L (as close to L as we
like) by taking x to be sufficiently close to a, but not equal to a.

f 1x 2f 1x 2 ,
lim
xSa 

f 1x 2 � L

In general, we use the following notation.



On the basis of the values in the two tables, we make the guess that

As a graphical verification we use a graphing device to produce Figure 3. We 
see that when x is close to 1, y is close to 0.5. If we use the and 
features to get a closer look, as in Figure 4, we notice that as x gets closer and
closer to 1, y becomes closer and closer to 0.5. This reinforces our conclusion. ■

Example 2 Finding a Limit from a Table

Find .

Solution The table in the margin lists values of the function for several values 
of t near 0. As t approaches 0, the values of the function seem to approach
0.1666666 . . . , and so we guess that

■

What would have happened in Example 2 if we had taken even smaller values of
t? The table in the margin shows the results from one calculator; you can see that
something strange seems to be happening.

If you try these calculations on your own calculator, you might get different val-
ues, but eventually you will get the value 0 if you make t sufficiently small. Does this
mean that the answer is really 0 instead of ? No, the value of the limit is , as we will
show in the next section. The problem is that the calculator gave false values because

is very close to 3 when t is small. (In fact, when t is sufficiently small, a cal-
culator’s value for is 3.000 . . . to as many digits as the calculator is capable
of carrying.)

Something similar happens when we try to graph the function of Example 2 on a
graphing device. Parts (a) and (b) of Figure 5 show quite accurate graphs of this func-

2t2 � 9
2t2 � 9

1
6

1
6

lim
tS0

 
2t2 � 9 � 3

t2 �
1

6

lim
tS0

 
2t2 � 9 � 3

t2

TRACEZOOM

lim 
xS1

x � 1

x2 � 1
� 0.5

Example 1 Estimating a Limit Numerically and Graphically

Guess the value of . Check your work with a graph.

Solution Notice that the function is not defined 
when x � 1, but this doesn’t matter because the definition of says that
we consider values of x that are close to a but not equal to a. The following tables
give values of (correct to six decimal places) for values of x that approach 1
(but are not equal to 1).

f 1x 2 limxSa f 1x 2f 1x 2 � 1x � 1 2 / 1x2 � 1 2lim
xS1

 
x � 1

x2 � 1
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t

�1.0 0.16228
�0.5 0.16553
�0.1 0.16662
�0.05 0.16666
�0.01 0.16667

2t2 � 9 � 3

t2

t

�0.0005 0.16800
�0.0001 0.20000
�0.00005 0.00000
�0.00001 0.00000

2t2 � 9 � 3

t2

x � 1

0.5 0.666667
0.9 0.526316
0.99 0.502513
0.999 0.500250
0.9999 0.500025

f 1x 2 x � 1

1.5 0.4000000
1.1 0.476190
1.01 0.497512
1.001 0.499750
1.0001 0.499975

f 1x 2
1

0 2

(1, 0.5)

0.6

0.9 1.1

(1, 0.5)

0.4

Figure 3

Figure 4



tion, and when we use the feature, we can easily estimate that the limit is
about . But if we zoom in too far, as in parts (c) and (d), then we get inaccurate
graphs, again because of problems with subtraction.

Figure 5

Limits That Fail to Exist

Functions do not necessarily approach a finite value at every point. In other words,
it’s possible for a limit not to exist. The next three examples illustrate ways in which
this can happen.

Example 3 A Limit That Fails to Exist (A Function 

with a Jump)

The Heaviside function H is defined by

[This function is named after the electrical engineer Oliver Heaviside (1850–1925)
and can be used to describe an electric current that is switched on at time t � 0.] 
Its graph is shown in Figure 6. Notice the “jump” in the graph at x � 0.

As t approaches 0 from the left, approaches 0. As t approaches 0 from 
the right, approaches 1. There is no single number that approaches as 
t approaches 0. Therefore, does not exist. ■

Example 4 A Limit That Fails to Exist (A Function 

That Oscillates)

Find .

Solution The function is undefined at 0. Evaluating the 
function for some small values of x, we get

Similarly, . On the basis of this information we might be
tempted to guess that

lim
xS0

 sin 
p

x
�
? 0

f 10.001 2 � f 10.0001 2 � 0

f 10.1 2 � sin 10p � 0   f 10.01 2 � sin 100p � 0

f A13B � sin 3p � 0         f A14B � sin 4p � 0

f 11 2 � sin p � 0         f A12B � sin 2p � 0

f 1x 2 � sin1p/x 2lim
xS0

 sin 
p

x

limtS0 
H1t 2 H1t 2H1t 2 H1t 2

H1t 2 � e0 if t � 0

1 if t 	 0

0.1

0.2

(a)  [_5, 5] by [_0.1, 0.3] (b) [_0.1, 0.1] by [_0.1, 0.3]

0.1

0.2

(c) [_10–§, 10–§] by [_0.1, 0.3] (d) [_10–¶, 10–¶] by [_0.1, 0.3]

1
6

TRACE
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but this time our guess is wrong. Note that although for any
integer n, it is also true that for infinitely many values of x that approach
0. (See the graph in Figure 7.)

The broken lines indicate that the values of oscillate between 1 and �1
infinitely often as x approaches 0. Since the values of do not approach a fixed
number as x approaches 0,

■

Example 4 illustrates some of the pitfalls in guessing the value of a limit. It is easy
to guess the wrong value if we use inappropriate values of x, but it is difficult to know
when to stop calculating values. And, as the discussion after Example 2 shows, some-
times calculators and computers give incorrect values. In the next two sections, how-
ever, we will develop foolproof methods for calculating limits.

Example 5 A Limit That Fails to Exist (A Function 

with a Vertical Asymptote)

Find if it exists.

Solution As x becomes close to 0, x 2 also becomes close to 0, and 1/x 2 becomes
very large. (See the table in the margin.) In fact, it appears from the graph of the
function shown in Figure 8 that the values of can be made 
arbitrarily large by taking x close enough to 0. Thus, the values of do not 
approach a number, so does not exist.

Figure 8 ■

y= 1
≈

0

y

x

limx�0 11/x2 2 f 1x 2f 1x 2f 1x 2 � 1/x2

lim
xS0

 
1

x2

lim
x�0

 sin 
p

x
 does not exist

f 1x 2sin1p/x 2

y=ß(π/x)1

1

_1

_1

y

x

f 1x 2 � 1
f 11/n 2 � sin np � 0

886 CHAPTER 12 Limits: A Preview of Calculus

Figure 7

x

�1 1
�0.5 4
�0.2 25
�0.1 100
�0.05 400
�0.01 10,000
�0.001 1,000,000

1

x 2



To indicate the kind of behavior exhibited in Example 5, we use the notation

This does not mean that we are regarding q as a number. Nor does it mean that the
limit exists. It simply expresses the particular way in which the limit does not exist:
1/x 2 can be made as large as we like by taking x close enough to 0. Notice that the
line x � 0 (the y-axis) is a vertical asymptote in the sense we described in Section 3.6.

One-Sided Limits

We noticed in Example 3 that approaches 0 as t approaches 0 from the left and
approaches 1 as t approaches 0 from the right. We indicate this situation sym-

bolically by writing

The symbol “t � 0�” indicates that we consider only values of t that are less than 0.
Likewise, “t � 0�” indicates that we consider only values of t that are greater than 0.

lim
tS0�

 H1t 2 � 0  and  lim
tS0�

 H1t 2 � 1

H1t 2 H1t 2

lim
xS0

 
1

x2 � q
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Definition of a One-Sided Limit

We write

and say the “left-hand limit of as x approaches a” [or the “limit of 
as x approaches a from the left”] is equal to L if we can make the values of

arbitrarily close to L by taking x to be sufficiently close to a and x less
than a.
f 1x 2 f 1x 2f 1x 2limxSa�

 f 1x 2 � L

Notice that this definition differs from the definition of a two-sided limit only in
that we require x to be less than a. Similarly, if we require that x be greater than a, we
get “the right-hand limit of f(x) as x approaches a is equal to L” and we write

Thus, the symbol “x�a�” means that we consider only x � a. These definitions are
illustrated in Figure 9.

x    a_ x    a+

0

L

xa0

Ï ÏL

x a

(a)  lim  Ï=L (b)  lim  Ï=L

y

xx

y

lim
xSa�

 f1x 2 � L

Figure 9



By comparing the definitions of two-sided and one-sided limits, we see that the
following is true.

Thus, if the left-hand and right-hand limits are different, the (two-sided) limit does
not exist. We use this fact in the next two examples.

Example 6 Limits from a Graph

The graph of a function g is shown in Figure 10. Use it to state the values 
(if they exist) of the following:

(a)

(b)

Solution

(a) From the graph we see that the values of approach 3 as x approaches 
2 from the left, but they approach 1 as x approaches 2 from the right. 
Therefore

Since the left- and right-hand limits are different, we conclude that 
does not exist.

(b) The graph also shows that

This time the left- and right-hand limits are the same, and so we have

Despite this fact, notice that . ■

Example 7 A Piecewise-Defined Function

Let f be the function defined by

Graph f, and use the graph to find the following:

(a) (b) (c)

Solution The graph of f is shown in Figure 11. From the graph we see that the
values of approach 2 as x approaches 1 from the left, but they approach 3 as x
approaches 1 from the right. Thus, the left- and right-hand limits are not equal. So
we have

(a) (b) (c) does not exist. ■lim 
xS1 

 f 1x 2lim
xS1�

 f 1x 2 � 3lim
xS1�

 f 1x 2 � 2

f 1x 2
lim 
xS1 

 f 1x 2lim
xS1�

 f 1x 2lim
xS1�

 f 1x 2
f  1x 2 � e2x2    if x � 1

4 � x if x 	 1

g15 2 � 2

lim
xS5

 g1x 2 � 2

lim
xS5�

 g1x 2 � 2  and  lim
xS5�

 g1x 2 � 2

limx�2 g1x 2lim
xS2�

 g1x 2 � 3  and  lim
xS2�

 g1x 2 � 1

g1x 2
lim

xS5�
 g1x 2 , lim

xS5�
 g1x 2 , lim

xS5  
g1x 2lim

xS2�
 g1x 2 , lim

xS2�
 g1x 2 , lim

xS2  
g1x 2

lim
xSa

 f 1x 2 � L  if and only if  lim
xSa�

 f 1x 2 � L  and  lim
xSa�

 f 1x 2 � L
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1–6 ■ Complete the table of values (to five decimal places) and
use the table to estimate the value of the limit.

1. lim
xS4

 
2x � 2

x � 4

11. 12.

13. For the function f whose graph is given, state the value of the
given quantity, if it exists. If it does not exist, explain why.

(a) (b) (c)

(d) (e)

14. For the function f whose graph is given, state the value of the
given quantity, if it exists. If it does not exist, explain why.

(a) (b) (c)

(d) (e)

15. For the function g whose graph is given, state the value of the
given quantity, if it exists. If it does not exist, explain why.

(a) (b) (c)

(d) (e) (f)

(g) (h)

2 4

4

2

y

t

lim
tS4

 g1t 2g12 2 lim
tS2

 g1t 2lim
tS2�

 g1t 2lim
tS2�

 g1t 2 lim
tS0

 g1t 2lim
tS0�

 g1t 2lim
tS0�

 g1t 2
0 2 4

4

2

y

x

f 13 2lim
xS3

 f 1x 2 lim
xS3�

 f 1x 2lim
xS3�

 f 1x 2lim
xS0

 f 1x 2
0 2 4

4

2

y

x

f 15 2lim
xS5

 f 1x 2 lim
xS1

 f 1x 2lim
xS1�

 f 1x 2lim
xS1�

 f 1x 2
lim
xS0

 
tan 2x

tan 3x
lim
xS1

 a 1

ln x
�

1

x � 1
b

12.1 Exercises

x 3.9 3.99 3.999 4.001 4.01 4.1

f 1x 2
2. lim

xS2
 

x � 2

x2 � x � 6

x 1.9 1.99 1.999 2.001 2.01 2.1

f 1x 2

x 0.9 0.99 0.999 1.001 1.01 1.1

f 1x 2

x �0.1 �0.01 �0.001 0.001 0.01 0.1

f 1x 2

x �1 �0.5 �0.1 �0.05 �0.01

f 1x 2

x 0.1 0.01 0.001 0.0001 0.00001

f 1x 2

3. lim
xS1

 
x � 1

x3 � 1

4. lim
xS0

 
ex � 1

x

5. lim
xS0

 
sin x

x

6. lim
xS0�

 x ln x

7–12 ■ Use a table of values to estimate the value of the limit.
Then use a graphing device to confirm your result graphically.

7. 8.

9. 10. lim
xS0

 
1x � 9 � 3

x
lim
xS0

 
5x � 3x

x

lim
xS1

 
x3 � 1

x2 � 1
lim

xS�4
 

x � 4

x2 � 7x � 12
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16. State the value of the limit, if it exists, from the given graph
of f. If it does not exist, explain why.

(a) (b) (c)

(d) (e) (f)

17–22 ■ Use a graphing device to determine whether the limit
exists. If the limit exists, estimate its value to two decimal
places.

17. 18.

19. 20.

21. 22.

23–26 ■ Graph the piecewise-defined function and use your
graph to find the values of the limits, if they exist.

23.

(a) (b) (c)

24.

(a) (b) (c) lim
xS0

 f 1x 2lim
xS0�

 f 1x 2lim
xS0�

 f 1x 2f 1x 2 � e2 if x � 0

x � 1 if x 	 0

lim
xS2

 f 1x 2lim
xS2�

 f 1x 2lim
xS2�

 f 1x 2f 1x 2 � e x2 if x 
 2

6 � x if x � 2

lim
xS0

 
1

1 � e1/x
lim
xS0

 cos 
1
x

lim
xS0

 
x2

cos 5x � cos 4x
lim
xS0

 ln1sin2 x 2
lim
xS2

 
x3 � 6x2 � 5x � 1

x3 � x2 � 8x � 12
lim
xS1

 
x3 � x2 � 3x � 5

2x2 � 5x � 3

0 3_2_3 1 2

1

2

_1

_2

y

x

lim
xS2

 f 1x 2lim
xS2�

 f 1x 2lim
xS2�

 f 1x 2 lim
xS�3

 f 1x 2lim
xS1

 f 1x 2lim
xS3

 f 1x 2 25.

(a) (b) (c)

26.

(a) (b) (c)

Discovery • Discussion

27. A Function with Specified Limits Sketch the graph of
an example of a function f that satisfies all of the following
conditions.

How many such functions are there?

28. Graphing Calculator Pitfalls

(a) Evaluate for x � 1, 0.5, 0.1,
0.05, 0.01, and 0.005.

(b) Guess the value of .

(c) Evaluate for successively smaller values of 
x until you finally reach 0 values for . Are you 
still confident that your guess in part (b) is correct? 
Explain why you eventually obtained 0 values.

(d) Graph the function h in the viewing rectangle 3�1, 14
by 30, 14. Then zoom in toward the point where the
graph crosses the y-axis to estimate the limit of as
x approaches 0. Continue to zoom in until you observe
distortions in the graph of h. Compare with your results
in part (c).

h1x 2
h1x 2h1x 2 lim

xS0
 
tan x � x

x3

h1x 2 � 1tan x � x 2/x3

lim
xS2

 f 1x 2 � 1   f 10 2 � 2   f 12 2 � 3

lim
xS0�

 f 1x 2 � 2   lim
xS0�

 f 1x 2 � 0

lim
xS�2

 f 1x 2lim
xS�2�

 f 1x 2lim
xS�2�

 f 1x 2f 1x 2 � e2x � 10 if x 
 �2

�x � 4 if x � �2

lim
xS�1

 f 1x 2lim
xS�1�

 f 1x 2lim
xS�1�

 f 1x 2f 1x 2 � e�x � 3 if x � �1

3 if x 	 �1

12.2 Finding Limits Algebraically

In Section 12.1 we used calculators and graphs to guess the values of limits, but we
saw that such methods don’t always lead to the correct answer. In this section, we use
algebraic methods to find limits exactly.

Limit Laws

We use the following properties of limits, called the Limit Laws, to calculate limits.



These five laws can be stated verbally as follows:

1. The limit of a sum is the sum of the limits.

2. The limit of a difference is the difference of the limits.

3. The limit of a constant times a function is the constant times the limit of the
function.

4. The limit of a product is the product of the limits.

5. The limit of a quotient is the quotient of the limits (provided that the limit 
of the denominator is not 0).

It’s easy to believe that these properties are true. For instance, if is close to 
L and is close to M, it is reasonable to conclude that is close to 
L � M. This gives us an intuitive basis for believing that Law 1 is true.

If we use Law 4 (Limit of a Product) repeatedly with , we obtain the
following Law 6 for the limit of a power. A similar law holds for roots.

g1x 2 � f 1x 2f 1x 2 � g1x 2g1x 2 f 1x 2
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Limit Laws

Suppose that c is a constant and that the following limits exist:

Then

1. Limit of a Sum

2. Limit of a Difference

3. Limit of a Constant Multiple

4. Limit of a Product

5. Limit of a Quotientlim
x�a

 
f 1x 2
g1x 2 �

lim
x�a 

f 1x 2
lim
x�a 

g1x 2  if lim
x�a  

g1x 2 � 0

lim
x�a
3f 1x 2g1x 2 4 � lim

x�a 
f 1x 2 # lim

x�a 
g1x 2lim

x�a
3cf 1x 2 4 � c lim

x�a  
f 1x 2lim

x�a
3f 1x 2 � g1x 2 4 � lim

x�a 
f 1x 2 � lim

x�a 
g1x 2lim

x�a
3f 1x 2 � g1x 2 4 � lim

x�a 
f 1x 2 � lim

x�a 
g1x 2

lim
x�a 

f 1x 2  and  lim
x�a 

g1x 2

Limit Laws

6. where n is a positive integer Limit of a Power

7. where n is a positive integer Limit of a Root

[If n is even, we assume that .]limx�a f 1x 2 � 0

lim
x�a
1n f 1x 2 � 1n lim

x�a 
f 1x 2lim

x�a
3f 1x 2 4 n � 3 lim

x�a 
f 1x 2 4 n

In words, these laws say:

6. The limit of a power is the power of the limit.

7. The limit of a root is the root of the limit.

Limit of a Sum

Limit of a Difference

Limit of a Constant Multiple

Limit of a Product

Limit of a Quotient

Limit of a Power

Limit of a Root



Example 1 Using the Limit Laws

Use the Limit Laws and the graphs of f and g in Figure 1 to evaluate the following
limits, if they exist.

(a) (b)

(c) (d)

Solution

(a) From the graphs of f and g we see that

Therefore, we have

Limit of a Sum

Limit of a Constant Multiple

(b) We see that . But does not exist because the 
left- and right-hand limits are different:

So we can’t use Law 4 (Limit of a Product). The given limit does not exist,
since the left-hand limit is not equal to the right-hand limit.

(c) The graphs show that

Because the limit of the denominator is 0, we can’t use Law 5 (Limit of a Quo-
tient). The given limit does not exist because the denominator approaches 0
while the numerator approaches a nonzero number.

(d) Since , we use Law 6 to get

Limit of a Power

■

Applying the Limit Laws

In applying the Limit Laws, we need to use four special limits.

 � 23 � 8

 lim
x�1
3f 1x 2 4 3 � 3 lim

x�1 
f 1x 2 4 3limxS1 f 1x 2 � 2

lim
x�2 

f 1x 2 � 1.4  and  lim
x�2  

g1x 2 � 0

lim
x�1� 

g1x 2 � �2   lim
x�1� 

g1x 2 � �1

limxS1 g1x 2limxS1 f 1x 2 � 2

 � 1 � 51�1 2 � �4

 � lim
x��2

f 1x 2 � 5 lim
x��2

g1x 2 lim
x��2
3f 1x 2 � 5g1x 2 4 � lim

x��2
f 1x 2 � lim

x��2
35g1x 2 4

lim
x��2

f 1x 2 � 1  and  lim
x��2

g1x 2 � �1

lim
x�1
3f 1x 2 4 3lim

x�2
 
f 1x 2
g1x 2

lim
x�1
3f 1x 2g1x 2 4lim

x��2
3f 1x 2 � 5g1x 2 4
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g
1

1

y

x

Figure 1

Some Special Units

1.

2.

3. where n is a positive integer

4. where n is a positive integer and a � 0lim
x�a

 1n x � 1n a

lim
x�a 

xn � an

lim
x�a 

x � a

lim
x�a 

c � c



Special Limits 1 and 2 are intuitively obvious—looking at the graphs of y � c and 
y � x will convince you of their validity. Limits 3 and 4 are special cases of Limit
Laws 6 and 7 (Limits of a Power and of a Root).

Example 2 Using the Limit Laws

Evaluate the following limits and justify each step.

(a) (b)

Solution

(a) Limits of a Difference 
and Sum
Limit of a 
Constant Multiple

Special Limits 3, 2, and 1

(b) We start by using Law 5, but its use is fully justified only at the final stage
when we see that the limits of the numerator and denominator exist and the
limit of the denominator is not 0.

Limit of a Quotient

Special Limits 3, 2, and 1

■

If we let , then . In Example 2(a), we found that
. In other words, we would have gotten the correct answer by sub-

stituting 5 for x. Similarly, direct substitution provides the correct answer in part (b).
The functions in Example 2 are a polynomial and a rational function, respectively,
and similar use of the Limit Laws proves that direct substitution always works for
such functions. We state this fact as follows.

limxS5 f 1x 2 � 39
f 15 2 � 39f 1x 2 � 2x2 � 3x � 4

 � � 

1

11

 � 
1�2 2 3 � 21�2 2 2 � 1

5 � 31�2 2
Limits of Sums, Differ-
ences, and Constant
Multiples

 � 
lim

x��2
x3 � 2 lim

x��2
x2 � lim

x��2
1

lim
x��2

5 � 3 lim
x��2

x

 lim
x��2

x3 � 2x2 � 1

5 � 3x
�

lim
x��2
1x3 � 2x2 � 1 2

lim
x��2
15 � 3x 2

 � 39

 � 2152 2 � 315 2 � 4

 � 2 lim
x�5 

x2 � 3 lim
x�5 

x � lim
x�5 

4

 lim
x�5 
12x2 � 3x � 4 2 � lim 

x�5
12x2 2 � lim 

x�5
13x 2 � lim

x�5 
4

lim
x��2

x3 � 2x2 � 1

5 � 3x
lim
x�5 
12x2 � 3x � 4 2
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Limits by Direct Substitution

If f is a polynomial or a rational function and a is in the domain of f, then

lim
x�a 

f 1x 2 � f 1a 2
Functions with this direct substitution property are called continuous at a. You

will learn more about continuous functions when you study calculus.



Example 3 Finding Limits by Direct Substitution

Evaluate the following limits.

(a) (b)

Solution

(a) The function is a polynomial, so we can find the limit
by direct substitution:

(b) The function is a rational function, and x � �1 is
in its domain (because the denominator is not zero for x � �1). Thus, we can
find the limit by direct substitution:

■

Finding Limits Using Algebra and the Limit Laws

As we saw in Example 3, evaluating limits by direct substitution is easy. But not all
limits can be evaluated this way. In fact, most of the situations in which limits are use-
ful requires us to work harder to evaluate the limit. The next three examples illustrate
how we can use algebra to find limits.

Example 4 Finding a Limit by Canceling a Common Factor

Find .

Solution Let . We can’t find the limit by substituting 
x � 1 because isn’t defined. Nor can we apply Law 5 (Limit of a Quotient) 
because the limit of the denominator is 0. Instead, we need to do some preliminary
algebra. We factor the denominator as a difference of squares:

The numerator and denominator have a common factor of x � 1. When we take the
limit as x approaches 1, we have x � 1 and so x � 1 � 0. Therefore, we can cancel
the common factor and compute the limit as follows:

Factor

Cancel

Let x � 1

This calculation confirms algebraically the answer we got numerically and
graphically in Example 1 in Section 12.1. ■

 � 
1

1 � 1
�

1

2

 � lim
x�1 

 
1

x � 1

 lim
x�1

 
x � 1

x2 � 1
� lim

x�1
 

x � 11x � 1 2 1x � 1 2

x � 1

x2 � 1
�

x � 11x � 1 2 1x � 1 2
f 11 2f 1x 2 � 1x � 1 2 / 1x2 � 1 2lim

x�1
 

x � 1

x2 � 1

lim
x��1

x2 � 5x

x4 � 2
�
1�1 2 2 � 51�1 21�1 2 4 � 2

� � 

4

3

f 1x 2 � 1x2 � 5x 2 / 1x4 � 2 2lim
x�3  

12x3 � 10x � 12 2 � 213 2 3 � 1013 2 � 8 � 16

f 1x 2 � 2x3 � 10x � 12

lim
x��1

x2 � 5x

x4 � 2
lim
x�3
12x3 � 10x � 8 2
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Sir Isaac Newton (1642–1727) is
universally regarded as one of the
giants of physics and mathematics.
He is well known for discovering
the laws of motion and gravity and
for inventing the calculus, but he
also proved the Binomial Theorem
and the laws of optics, and devel-
oped methods for solving poly-
nomial equations to any desired
accuracy. He was born on Christ-
mas Day, a few months after the
death of his father. After an un-
happy childhood, he entered Cam-
bridge University, where he learned
mathematics by studying the writ-
ings of Euclid and Descartes.

During the plague years of
1665 and 1666, when the univer-
sity was closed, Newton thought
and wrote about ideas that, once
published, instantly revolutionized
the sciences. Imbued with a patho-
logical fear of criticism, he pub-
lished these writings only after
many years of encouragement
from Edmund Halley (who discov-
ered the now-famous comet) and
other colleagues.

Newton’s works brought him
enormous fame and prestige. Even
poets were moved to praise;
Alexander Pope wrote:

Nature and Nature’s Laws
lay hid in Night.

God said, “Let Newton be”
and all was Light.

(continued)
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Example 5 Finding a Limit by Simplifying

Evaluate .

Solution We can’t use direct substitution to evaluate this limit, because the limit
of the denominator is 0. So we first simplify the limit algebraically.

Expand

Simplify

Cancel h

Let h � 0 ■

Example 6 Finding a Limit by Rationalizing

Find .

Solution We can’t apply Law 5 (Limit of a Quotient) immediately, since the
limit of the denominator is 0. Here the preliminary algebra consists of rationalizing
the numerator:

Rationalize numerator

This calculation confirms the guess that we made in Example 2 in Section 12.1. ■

Using Left- and Right-Hand Limits

Some limits are best calculated by first finding the left- and right-hand limits. The 
following theorem is a reminder of what we discovered in Section 12.1. It says that 
a two-sided limit exists if and only if both of the one-sided limits exist and are 
equal.

When computing one-sided limits, we use the fact that the Limit Laws also hold
for one-sided limits.

 � lim
t�0

 
1

2t2 � 9 � 3
�

1

2lim
t�0
1t2 � 9 2 � 3

�
1

3 � 3
�

1

6

 � lim
t�0

 
1t2 � 9 2 � 9

t2A2t2 � 9 � 3B � lim
t�0

 
t2

t2A2t2 � 9 � 3B
 lim
t�0

 
2t2 � 9 � 3

t2 � lim
t�0

 
2t2 � 9 � 3

t2
# 2t2 � 9 � 3

2t2 � 9 � 3

lim
t�0

 
2t2 � 9 � 3

t2

 � 6

 � lim
h�0
16 � h 2 � lim

h�0
 
6h � h2

h

 lim
h�0

 
13 � h 2 2 � 9

h
� lim

h�0
 
19 � 6h � h2 2 � 9

h

lim
h�0

 
13 � h 2 2 � 9

h
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lim
x�a

f 1x 2 � L  if and only if  lim
x�a�

f 1x 2 � L � lim
x�a�

f 1x 2

Newton was far more modest
about his accomplishments. He
said, “I seem to have been only like
a boy playing on the seashore . . .
while the great ocean of truth lay
all undiscovered before me.” New-
ton was knighted by Queen Anne
in 1705 and was buried with great
honor in Westminster Abbey.



Example 7 Comparing Right and Left Limits

Show that .

Solution Recall that

Since for x � 0, we have

For x � 0, we have and so

Therefore

■

Example 8 Comparing Right and Left Limits

Prove that does not exist.

Solution Since for x � 0 and for x � 0, we have

Since the right-hand and left-hand limits exist and are different, it follows that
does not exist. The graph of the function is shown in

Figure 3 and supports the limits that we found. ■

Example 9 The Limit of a Piecewise-Defined Function

Let

if x � 4

if x � 4

Determine whether exists.

Solution Since for x � 4, we have

lim
x�4�

f1x 2 � lim
x�4�
1x � 4 � 14 � 4 � 0

f 1x 2 � 1x � 4

lim
x�4 

f 1x 2
f 1x 2 � e2x � 4

8 � 2x

f 1x 2 � 0 x 0 /xlimx�0 0 x 0 /x

 lim
x�0�

 
0 x 0
x

� lim
x�0�

 
�x
x

� lim
x�0�

 1�1 2 � �1

 lim
x�0�

 
0 x 0
x

� lim
x�0�

 
x
x

� lim
x�0�

 1 � 1

0 x 0 � �x0 x 0 � x

lim
x�0

 
0 x 0
x

lim
x�0

 0 x 0 � 0

lim
x�0�

 0 x 0 � lim
x�0�

 1�x 2 � 0

0 x 0 � �x

lim
x�0�

 0 x 0 � lim
x�0�

x � 0

0 x 0 � x

0 x 0 � e x     if x 	 0

�x  if x � 0

lim
x�0
0 x 0 � 0
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0

y=|x|

y

x

Figure 2

1

_1
0

y=
|x|
x

y

x

Figure 3

The result of Example 7 looks plausible
from Figure 2.



Since for x � 4, we have

The right- and left-hand limits are equal. Thus, the limit exists and

The graph of f is shown in Figure 4. ■

12.2 Exercises

lim
x�4 

f 1x 2 � 0

lim
x�4� 

f 1x 2 � lim
x�4�
18 � 2x 2 � 8 � 2 # 4 � 0

f 1x 2 � 8 � 2x
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40

y

x

Figure 4

1. Suppose that

Find the value of the given limit. If the limit does not exist,
explain why.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

2. The graphs of f and g are given. Use them to evaluate each
limit, if it exists. If the limit does not exist, explain why.

(a) (b)

(c) (d)

(e) (f)

3–8 ■ Evaluate the limit and justify each step by indicating the
appropriate Limit Law(s).

3. 4.

5. 6.

7. 8. lim
u��2

2u4 � 3u � 6lim
t��2
1t � 1 2 91t2 � 1 2 lim

x�1
a x4 � x2 � 6

x4 � 2x � 3
b 2

lim
x��1

 
x � 2

x2 � 4x � 3

lim
x�3
1x3 � 2 2 1x2 � 5x 2lim

x�4
15x2 � 2x � 3 2

1

y=Ï
1

0 1

y=˝
1

y

x x

y

lim
x�1
23 � f 1x 2lim

x�2 
x 

3f 1x 2
lim

x��1
 
f 1x 2
g1x 2lim

x�0 
3f 1x 2g1x 2 4

lim
x�1 
3f 1x 2 � g1x 2 4lim

x�2 
3f 1x 2 � g1x 2 4

lim
x�a

 
2f 1x 2

h1x 2 � f 1x 2lim
x�a

 
f 1x 2
g1x 2

lim 
x�a

g1x 2
f 1x 2lim

x�a 
 
f 1x 2
h1x 2

lim
x�a

 
1

f 1x 2lim
xSa

 13 h1x 2
lim
x�a 
3f 1x 2 4 2lim

x�a 
3f 1x 2 � h1x 2 4

lim
x�a 

f 1x 2 � �3   lim
x�a 

g1x 2 � 0   lim
x�a 

h1x 2 � 8
9–20 ■ Evaluate the limit, if it exists.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21–24 ■ Find the limit and use a graphing device to confirm
your result graphically.

21. 22.

23. 24.

25. (a) Estimate the value of

by graphing the function .

(b) Make a table of values of for x close to 0 and guess
the value of the limit.

(c) Use the Limit Laws to prove that your guess is correct.

26. (a) Use a graph of

to estimate the value of to two decimal
places.

limxS0 f 1x 2
f 1x 2 �

23 � x � 13
x

f 1x 2f 1x 2 � x/ A11 � 3x � 1Blim
x�0

 
x

21 � 3x � 1

lim
x�1

 
x8 � 1

x5 � x
lim

x��1

x2 � x � 2

x3 � x

lim
x�0

 
14 � x 2 3 � 64

x
lim
x�1

 
x2 � 1

1x � 1

lim
t�0
a 1

t
�

1

t2 � t
blim

x��4
 

1

4
�

1
x

4 � x

lim
h�0

 
13 � h 2�1 � 3�1

h
lim
x�7

 
1x � 2 � 3

x � 7

lim
x�2

 
x4 � 16

x � 2
lim
h�0

 
12 � h 2 3 � 8

h

lim
h�0

 
11 � h � 1

h
lim

t��3
 

t2 � 9

2t2 � 7t � 3

lim
x�1

 
x3 � 1

x2 � 1
lim
x�2

 
x2 � x � 6

x � 2

lim
x��4 

 
x2 � 5x � 4

x2 � 3x � 4
lim
x�2

 
x2 � x � 6

x � 2
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(b) Use a table of values of to estimate the limit to
four decimal places.

(c) Use the Limit Laws to find the exact value of the limit.

27–32 ■ Find the limit, if it exists. If the limit does not exist,
explain why.

27. 28.

29. 30.

31. 32.

33. Let

(a) Find .

(b) Does exist?

(c) Sketch the graph of f.

34. Let

(a) Evaluate each limit, if it exists.

(i) (iv)

(ii) (v)

(iii) (vi)

(b) Sketch the graph of h.

lim
x�2 

h1x 2lim
x�1 

h1x 2 lim
x�2�

h1x 2lim
x�0 

h1x 2 lim
x�2�

h1x 2lim
x�0�  

h1x 2
h1x 2 � • x      if x � 0

x2       if 0 � x 
 2

8 � x  if x � 2

limx�2 f 1x 2limxS2� f 1x 2  and limxS2� f 1x 2
f1x 2 � e x � 1        if x � 2

x2 � 4x � 6  if x 	 2

lim
x�0�
a 1

x
�

10 x 0 blim
x�0�
a 1

x
�

10 x 0 b
lim

x�1.5
 
2x2 � 3x0 2x � 3 0lim

x�2
 
0 x � 2 0
x � 2

lim
x��4�

0 x � 4 0
x � 4

lim
x��4

0 x � 4 0

f 1x 2 Discovery • Discussion

35. Cancellation and Limits

(a) What is wrong with the following equation?

(b) In view of part (a), explain why the equation

is correct.

36. The Lorentz Contraction In the theory of relativity, the
Lorentz contraction formula

expresses the length L of an object as a function of its 
velocity √ with respect to an observer, where L0 is the
length of the object at rest and c is the speed of light. Find

L and interpret the result. Why is a left-hand limit
necessary?

37. Limits of Sums and Products

(a) Show by means of an example that
may exist even though neither

exists.

(b) Show by means of an example that
may exist even though neither

exists.limx�a f 1x 2  nor limx�a g1x 2limx�a 3f 1x 2g1x 2 4
limx�a f 1x 2  nor limx�a g1x 2limx�a 3f 1x 2 � g1x 2 4

lim√Sc�

L � L021 � √ 2/c2

lim
x�2

 
x2 � x � 6

x � 2
� lim

x�2 
1x � 3 2

x2 � x � 6

x � 2
� x � 3

12.3 Tangent Lines and Derivatives

In this section we see how limits arise when we attempt to find the tangent line to a
curve or the instantaneous rate of change of a function.

The Tangent Problem

A tangent line is a line that just touches a curve. For instance, Figure 1 shows the
parabola y � x 2 and the tangent line t that touches the parabola at the point .
We will be able to find an equation of the tangent line t as soon as we know its slope
m. The difficulty is that we know only one point, P, on t, whereas we need two points
to compute the slope. But observe that we can compute an approximation to m by

P11, 1 20

y=≈

t

P (1, 1)

y

x

Figure 1



choosing a nearby point on the parabola (as in Figure 2) and computing the
slope mPQ of the secant line PQ.

We choose x � 1 so that Q � P. Then

Now we let x approach 1, so Q approaches P along the parabola. Figure 3 shows how
the corresponding secant lines rotate about P and approach the tangent line t.

Figure 3

The slope of the tangent line is the limit of the slopes of the secant lines:

So, using the method of Section 12.2, we have

Now that we know the slope of the tangent line is m � 2, we can use the point-slope
form of the equation of a line to find its equation:

y � 1 � 21x � 1 2  or  y � 2x � 1

 � lim
x�1 
1x � 1 2 � 1 � 1 � 2

 m � lim
x�1

 
x2 � 1

x � 1
� lim

x�1
 
1x � 1 2 1x � 1 2

x � 1

m � lim
Q�P 

mPQ

Q approaches P from the right

P

0

Q

t

Q approaches P from the left

P

0

Q
t

P

0

Q

t

P

0

Q

t

P

0

Q

t

P

0
Q

t

y

x

y

x

y

x

y

x

y

x

y

x

mPQ �
x2 � 1

x � 1

Q1x, x2 2
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0

y=≈

tQÓx, ≈Ô

P (1, 1)

y

x

Figure 2

The point-slope form for the equation
of a line through the point with
slope m is

(See Section 1.10.)

y � y1 � m1x � x1 2
1x1, y1 2



We sometimes refer to the slope of the tangent line to a curve at a point as the slope
of the curve at the point. The idea is that if we zoom in far enough toward the point,
the curve looks almost like a straight line. Figure 4 illustrates this procedure for the
curve y � x 2. The more we zoom in, the more the parabola looks like a line. In other
words, the curve becomes almost indistinguishable from its tangent line.

Figure 4

Zooming in toward the point on the parabola y � x 2

If we have a general curve C with equation and we want to find the tan-
gent line to C at the point , then we consider a nearby point ,
where x � a, and compute the slope of the secant line PQ:

Then we let Q approach P along the curve C by letting x approach a. If mPQ

approaches a number m, then we define the tangent t to be the line through P with
slope m. (This amounts to saying that the tangent line is the limiting position of the
secant line PQ as Q approaches P. See Figure 5.)

Figure 5

0

P

t
Q

Q

Q

0 a x

PÓa, f(a)Ô
Ï- f(a)

x-a

QÓx, ÏÔ

y

x

y

x

mPQ �
f 1x 2 � f 1a 2

x � a

Q1x, f 1x 22P1a, f 1a 22 y � f 1x 211, 1 2

(1, 1)

2

0 2

(1, 1)

1.5

0.5 1.5

(1, 1)

1.1

0.9 1.1
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Definition of a Tangent Line

The tangent line to the curve at the point is the line
through P with slope

provided that this limit exists.

m � lim
x�a

 
f 1x 2 � f 1a 2

x � a

P1a, f 1a 22y � f 1x 2



Example 1 Finding a Tangent Line to a Hyperbola

Find an equation of the tangent line to the hyperbola y � 3/x at the point .

Solution Let . Then the slope of the tangent line at is

Definition of m

Cancel x � 3

Let x � 3

Therefore, an equation of the tangent at the point is

which simplifies to

The hyperbola and its tangent are shown in Figure 6. ■

There is another expression for the slope of a tangent line that is sometimes easier
to use. Let h � x � a. Then x � a � h, so the slope of the secant line PQ is

See Figure 7 where the case h � 0 is illustrated and Q is to the right of P. If it hap-
pened that h � 0, however, Q would be to the left of P.

Notice that as x approaches a, h approaches 0 (because h � x � a), and so the ex-
pression for the slope of the tangent line becomes

0 a a+h

PÓa, f(a)Ô
f(a+h)-f(a)

h

QÓa+h, f(a+h)Ô

t
y

x

mPQ �
f 1a � h 2 � f 1a 2

h

x � 3y � 6 � 0

y � 1 � � 
1
3  
1x � 3 213, 1 2 � � 

1

3

 � lim
x�3
a� 

1
x
b

Multiply numerator
and denominator by x � lim

x�3
 

3 � x

x1x � 3 2
f 1x 2 �

3
x � lim 

x�3

3
x

� 1

x � 3

 m � lim 
x�3

f 1x 2 � f 13 2
x � 3

13, 1 2f 1x 2 � 3/x

13, 1 2
SECTION 12.3 Tangent Lines and Derivatives 901

0

(3, 1)

x+3y-6=0 y=3
x

y

x

Figure 6

Figure 7

m � lim
h�0

 
f 1a � h 2 � f 1a 2

h



Example 2 Finding a Tangent Line

Find an equation of the tangent line to the curve y � x 3 � 2x � 3 at the 
point .

Solution If , then the slope of the tangent line where 
a � 1 is

Definition of m

Expand numerator

Simplify

Cancel h

Let h � 0

So an equation of the tangent line at is

■

Derivatives

We have seen that the slope of the tangent line to the curve at the point
can be written as

It turns out that this expression arises in many other contexts as well, such as finding
velocities and other rates of change. Because this type of limit occurs so widely, it is
given a special name and notation.

lim
h�0

 
f 1a � h 2 � f 1a 2

h

1a, f 1a 22 y � f 1x 2

y � 2 � 11x � 1 2  or  y � x � 1

11, 2 2� 1

� lim
h�0 
11 � 3h � h2 2� lim

h�0
 
h � 3h2 � h3

h

� lim
h�0

 
1 � 3h � 3h2 � h3 � 2 � 2h � 3 � 2

h

f 1x 2 � x3 � 2x � 3� lim
h�0

 
3 11 � h 2 3 � 211 � h 2 � 3 4 � 313 � 211 2 � 3 4

h

m � lim
h�0

 
f 11 � h 2 � f 11 2

h

f 1x 2 � x3 � 2x � 3

11, 2 2
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Definition of a Derivative

The derivative of a function f at a number a, denoted by , is

if this limit exists.

f¿ 1a 2 � lim
h�0

 
f 1a � h 2 � f 1a 2

h

f¿ 1a 2

Newton and Limits

In 1687 Isaac Newton (see page
894) published his masterpiece
Principia Mathematica. In this
work, the greatest scientific treatise
ever written, Newton set forth his
version of calculus and used it to
investigate mechanics, fluid dy-
namics, and wave motion, and to
explain the motion of planets and
comets.

The beginnings of calculus are
found in the calculations of areas
and volumes by ancient Greek
scholars such as Eudoxus and
Archimedes. Although aspects of
the idea of a limit are implicit in
their “method of exhaustion,” Eu-
doxus and Archimedes never ex-
plicitly formulated the concept of 
a limit. Likewise, mathematicians
such as Cavalieri, Ferinat, and Bar-
row, the immediate precursors of
Newton in the development of cal-
culus, did not actually use limits. It
was Isaac Newton who first talked
explicitly about limits. He ex-
plained that the main idea behind
limits is that quantities “approach
nearer than by any given differ-
ence.” Newton stated that the limit
was the basic concept in calculus
but it was left to later mathemati-
cians like Cauchy to clarify these
ideas.



Example 3 Finding a Derivative at a Point

Find the derivative of the function at the number 2.

Solution According to the definition of a derivative, with a � 2, we have

Definition of 

Expand

Simplify

Cancel h

Let h � 0 ■

We see from the definition of a derivative that the number is the same as the
slope of the tangent line to the curve at the point . So the result of
Example 2 shows that the slope of the tangent line to the parabola y � 5x 2 � 3x � 1
at the point is .

Example 4 Finding a Derivative

Let .

(a) Find .

(b) Find .

Solution

(a) We use the definition of the derivative at a:

Definition of derivative

Rationalize numerator

Difference of squares

Simplify numerator � lim
h�0

 
h

hA1a � h � 1aB
 � lim

h�0
 
1a � h 2 � a

hA1a � h � 1aB
 � lim

h�0
 
1a � h � 1a

h
# 1a � h � 1a

1a � h � 1a

f 1x 2 � 1x � lim
h�0

 
1a � h � 1a

h

 f¿ 1a 2 � lim
h� 0

 
f 1a � h 2 � f 1a 2

h

f¿ 11 2 , f¿ 14 2 , and f¿ 19 2f¿ 1a 2f 1x 2 � 1x

f¿ 12 2 � 2312, 25 2 1a, f 1a 22y � f 1x 2 f¿ 1a 2
 � 23

 � lim
h�0
123 � 5h 2 � lim

h�0
 
23h � 5h2

h

 � lim
h�0

 
20 � 20h � 5h2 � 6 � 3h � 1 � 25

h

f 1x 2 � 5x 2 � 3x � 1 � lim 
h�0

3512 � h 2 2 � 312 � h 2 � 1 4 � 3512 2 2 � 312 2 � 1 4
h

f ¿ 12 2 f¿ 12 2 � lim 
h�0

f 12 � h 2 � f 12 2
h

f 1x 2 � 5x2 � 3x � 1
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Cancel h

Let h � 0

(b) Substituting a � 1, a � 4, and a � 9 into the result of part (a), we get

These values of the derivative are the slopes of the tangent lines shown in 
Figure 8.

■

Instantaneous Rates of Change

In Section 2.3 we defined the average rate of change of a function f between the num-
bers a and x as

Suppose we consider the average rate of change over smaller and smaller intervals by
letting x approach a. The limit of these average rates of change is called the instanta-
neous rate of change.

average rate of change �
change in y

change in x
�

f 1x 2 � f 1a 2
x � a

941

1

0

y=œ∑x

y

x
Figure 8

f¿ 11 2 �
1

2 11
�

1

2
   f¿ 14 2 �

1

2 14
�

1

4
   f¿ 19 2 �

1

2 19
�

1

6

 � 
1

1a � 1a
�

1

2 1a

 � lim
h�0

 
1

1a � h � 1a
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Instantaneous Rate of Change

If , the instantaneous rate of change of y with respect to x at x �
a is the limit of the average rates of change as x approaches a:

instantaneous rate of change � lim
x�a

 
f 1x 2 � f 1a 2

x � a
� f¿ 1a 2

y � f 1x 2

Notice that we now have two ways of interpreting the derivative:

■ is the slope of the tangent line to at x � a
■ is the instantaneous rate of change of y with respect to x at x � a

In the special case where x � t � time and s � f 1t2� displacement 1directed dis-
tance2 at time t of an object traveling in a straight line, the instantaneous rate of
change is called the instantaneous velocity.

f¿ 1a 2 y � f 1x 2f¿ 1a 2



Example 5 Instantaneous Velocity 

of a Falling Object

If an object is dropped from a height of 3000 ft, its distance above the ground (in
feet) after t seconds is given by . Find the object’s instanta-
neous velocity after 4 seconds.

Solution After 4 s have elapsed, the height is ft. The instantaneous
velocity is

Definition of 

Simplify

Factor numerator

Cancel t � 4

/s Let t � 4

The negative sign indicates that the height is decreasing at a rate of 128 ft/s. ■

Example 6 Estimating an Instantaneous 

Rate of Change

Let be the population of the United States at time t. The table in the margin
gives approximate values of this function by providing midyear population esti-
mates from 1996 to 2004. Interpret and estimate the value of .

Solution The derivative means the rate of change of P with respect to t
when t � 2000, that is, the rate of increase of the population in 2000.

According to the definition of a derivative, we have

So we compute and tabulate values of the difference quotient (the average rates of
change) as shown in the table in the margin. We see that P�(2000) lies somewhere
between 3,038,500 and 2,874,500. (Here we are making the reasonable assumption
that the population didn’t fluctuate wildly between 1996 and 2004.) We estimate
that the rate of increase of the U.S. population in 2000 was the average of these two
numbers, namely

/year ■P¿ 12000 2 � 2.96 million people

P¿ 12000 2 � lim
t�2000

P1t 2 � P12000 2
t � 2000

P¿ 12000 2 P¿ 12000 2P1t 2

� �1614 � 4 2 � �128 ft

� lim
t�4

 �1614 � t 2� lim
t�4

 
1614 � t 2 14 � t 2

t � 4

� lim
t�4

 
256 � 16t2

t � 4

h1t 2 � 3000 � 16t2� lim
t�4

 
3000 � 16t2 � 2744

t � 4

h¿ 14 2h¿ 14 2 � lim
t�4

 
h1t 2 � h14 2

t � 4

h14 2 � 2744

h1t 2 � 3000 � 16t2

SECTION 12.3 Tangent Lines and Derivatives 905

h(t)

t

1996 269,667,000
1998 276,115,000
2000 282,192,000
2002 287,941,000
2004 293,655,000

P 1t 2

t

1996 3,131,250
1998 3,038,500
2002 2,874,500
2004 2,865,750

P 1t 2 � P 12000 2
t � 2000

Here we have estimated the derivative
by averaging the slopes of two secant
lines. Another method is to plot the
population function and estimate 
the slope of the tangent line when 
t � 2000.
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1–6 ■ Find the slope of the tangent line to the graph of f at the
given point.

1.

2.

3.

4.

5.

6.

7–12 ■ Find an equation of the tangent line to the curve at the
given point. Graph the curve and the tangent line.

7.

8.

9.

10.

11.

12.

13–18 ■ Find the derivative of the function at the 
given number.

13. at 2

14. at �1

15. at 1

16. at 1

17. at 4

18. at 4

19–22 ■ Find , where a is in the domain of f.

19.

20.

21.

22. f 1x 2 � 1x � 2

f 1x 2 �
x

x � 1

f 1x 2 � � 

1

x2

f 1x 2 � x2 � 2x

f¿ 1a 2
G1x 2 � 1 � 21x

F1x 2 �
1

1x

g1x 2 � 2x2 � x3

g1x 2 � x4

f 1x 2 � 2 � 3x � x2

f 1x 2 � 1 � 3x2

y � 11 � 2x at 14, 3 2y � 1x � 3 at 11, 2 2y �
1

x2 at 1�1, 1 2
y �

x

x � 1
 at 12, 2 2y � 2x � x3 at 11, 1 2y � x � x2 at 1�1, 0 2

f 1x 2 �
6

x � 1
 at 12, 2 2f 1x 2 � 2x3 at 12, 16 2f 1x 2 � 1 � 2x � 3x2 at 11, 0 2f 1x 2 � 4x2 � 3x at 1�1, 7 2f 1x 2 � 5 � 2x at 1�3, 11 2f 1x 2 � 3x � 4 at 11, 7 2

23. (a) If , find .

(b) Find equations of the tangent lines to the graph of 
f at the points whose x-coordinates are 0, 1, and 2.

(c) Graph f and the three tangent lines.

24. (a) If , find .

(b) Find equations of the tangent lines to the graph 
of g at the points whose x-coordinates are �1, 0,
and 1.

(c) Graph g and the three tangent lines.

Applications

25. Velocity of a Ball If a ball is thrown into the air 
with a velocity of 40 ft/s, its height (in feet) after t
seconds is given by y � 40t � 16t 2. Find the velocity 
when t � 2.

26. Velocity on the Moon If an arrow is shot upward on the
moon with a velocity of 58 m/s, its height (in meters) after t
seconds is given by H � 58t � 0.83t 2.

(a) Find the velocity of the arrow after one second.

(b) Find the velocity of the arrow when t � a.

(c) At what time t will the arrow hit the moon?

(d) With what velocity will the arrow hit the moon?

27. Velocity of a Particle The displacement s (in meters) of
a particle moving in a straight line is given by the equation
of motion s � 4t 3 � 6t � 2, where t is measured in seconds.
Find the velocity of the particle s at times t � a, t � 1,
t � 2, t � 3.

28. Inflating a Balloon A spherical balloon is being inflated.
Find the rate of change of the surface area with
respect to the radius r when r � 2 ft.

29. Temperature Change A roast turkey is taken from an
oven when its temperature has reached 185�F and is placed
on a table in a room where the temperature is 75�F. The
graph shows how the temperature of the turkey decreases

AS � 4pr 2B

g¿ 1a 2g1x 2 � 1/ 12x � 1 2
f¿ 1a 2f 1x 2 � x3 � 2x � 4

12.3 Exercises
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and eventually approaches room temperature. By measuring
the slope of the tangent, estimate the rate of change of the
temperature after an hour.

30. Heart Rate A cardiac monitor is used to measure the
heart rate of a patient after surgery. It compiles the number
of heartbeats after t minutes. When the data in the table are
graphed, the slope of the tangent line represents the heart
rate in beats per minute.

(a) Find the average heart rates (slopes of the secant lines)
over the time intervals 340, 424 and 342, 444.

(b) Estimate the patient’s heart rate after 42 minutes by 
averaging the slopes of these two secant lines.

31. Water Flow A tank holds 1000 gallons of water, which
drains from the bottom of the tank in half an hour. The 
values in the table show the volume V of water remaining 
in the tank (in gallons) after t minutes.

(a) Find the average rates at which water flows from the
tank (slopes of secant lines) for the time intervals 310, 154 and 315, 204.

(b) The slope of the tangent line at the point 
represents the rate at which water is flowing 
from the tank after 15 minutes. Estimate this rate 
by averaging the slopes of the secant lines in 
part (a).

115, 250 2

T  (°F)

0

P

30 60 90 120 150

100

200

t
(min)

32. World Population Growth The table gives the world’s
population in the 20th century.

Estimate the rate of population growth in 1920 and in 1980
by averaging the slopes of two secant lines.

Discovery • Discussion

33. Estimating Derivatives from a Graph For the function
g whose graph is given, arrange the following numbers in
increasing order and explain your reasoning.

34. Estimating Velocities from a Graph The graph shows
the position function of a car. Use the shape of the graph to
explain your answers to the following questions.

(a) What was the initial velocity of the car?

(b) Was the car going faster at B or at C?

(c) Was the car slowing down or speeding up at A, B,
and C?

(d) What happened between D and E?

t

s

A

0

B

C
D E

y=˝

1 3 4_1 0 2

1

2

_1

y

x

0  g¿ 1�2 2  g¿ 10 2  g¿ 12 2  g¿ 14 2

t (min) 5 10 15 20 25 30

V (gal) 694 444 250 111 28 0

t (min) 36 38 40 42 44

Heartbeats 2530 2661 2806 2948 3080

Population Population
Year (in millions) Year (in millions)

1900 1650 1960 3040
1910 1750 1970 3710
1920 1860 1980 4450
1930 2070 1990 5280
1940 2300 2000 6080
1950 2560



Designing a Roller Coaster

Suppose you are asked to design the first ascent and drop for a new roller
coaster. By studying photographs of your favorite coasters, you decide to make
the slope of the ascent 0.8 and the slope of the drop �1.6. You then connect
these two straight stretches and with part of a parabola

where x and are measured in feet. For the track to be smooth there can’t 
be abrupt changes in direction, so you want the linear segments L1 and L2 to be
tangent to the parabola at the transition points P and Q, as shown in the figure.

1. To simplify the equations, you decide to place the origin at P. As a 
consequence, what is the value of c?

2. Suppose the horizontal distance between P and Q is 100 ft. To ensure that the
track is smooth at the transition points, what should the values of and

be?

3. If , show that .

4. Use the results of problems 2 and 3 to determine the values of a and b. That
is, find a formula for .

5. Plot L1, f, and L2 to verify graphically that the transitions are smooth.

6. Find the difference in elevation between P and Q.

f 1x 2
f¿ 1x 2 � 2ax � bf 1x 2 � ax2 � bx � c

f¿ 1100 2 f¿ 10 2

L¤

L⁄ P
f

Q

f 1x 2 y � f 1x 2 � ax2 � bx � c

y � L21x 2y � L11x 2
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D I S C O V E R Y
P R O J E C T

12.4 Limits at Infinity; Limits of Sequences

In this section we study a special kind of limit called a limit at infinity. We examine
the limit of a function as x becomes large. We also examine the limit of a 
sequence an as n becomes large. Limits of sequences will be used in Section 12.5 to
help us find the area under the graph of a function.

f 1x 2
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Limits at Infinity

Let’s investigate the behavior of the function f defined by

as x becomes large. The table in the margin gives values of this function correct to six
decimal places, and the graph of f has been drawn by a computer in Figure 1.

Figure 1

As x grows larger and larger, you can see that the values of get closer and
closer to 1. In fact, it seems that we can make the values of as close as we like
to 1 by taking x sufficiently large. This situation is expressed symbolically by writing

In general, we use the notation

to indicate that the values of become closer and closer to L as x becomes larger
and larger.

f 1x 2 lim
xSq

 f 1x 2 � L

lim
xSq

 
x2 � 1

x2 � 1
� 1

f 1x 2f 1x 2
10

y=1

y=≈-1
≈+1

y

x

f 1x 2 �
x2 � 1

x2 � 1

x

0 �1.000000
�1 0.000000
�2 0.600000
�3 0.800000
�4 0.882353
�5 0.923077

�10 0.980198
�50 0.999200

�100 0.999800
�1000 0.999998

f 1x 2

Limit at Infinity

Let f be a function defined on some interval . Then

means that the values of can be made arbitrarily close to L by taking x
sufficiently large.

f 1x 2 lim
xSq

 f 1x 2 � L

1a,  q 2

Another notation for is

The symbol q does not represent a number. Nevertheless, we often read the expres-
sion as

“the limit of , as x approaches infinity, is L”

or “the limit of , as x becomes infinite, is L”

or “the limit of , as x increases without bound, is L”f 1x 2f 1x 2f 1x 2lim
xSq

 f 1x 2 � L

f 1x 2 � L  as  x �q

lim
xSq

 f 1x 2 � L

Limits at infinity are also discussed in
Section 3.6.



Geometric illustrations are shown in Figure 2. Notice that there are many ways for
the graph of f to approach the line y � L (which is called a horizontal asymptote) as
we look to the far right.

Figure 2

Examples illustrating 

Referring back to Figure 1, we see that for numerically large negative values of x,
the values of are close to 1. By letting x decrease through negative values with-
out bound, we can make as close as we like to 1. This is expressed by writing

The general definition is as follows.

lim
xS�q

 
x2 � 1

x2 � 1
� 1

f 1x 2f 1x 2
lim
xSq

 f 1x 2 � L

0

y=Ï

y=L

0

y=Ï

y=L

0

y=Ï

y=L

y

x

y

x

y

x
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Limit at Negative Infinity

Let f be a function defined on some interval . Then

means that the values of can be made arbitrarily close to L by taking x
sufficiently large negative.

f 1x 2 lim
xS�q

 f 1x 2 � L

1�q, a 2

Again, the symbol �q does not represent a number, but the expression
is often read as

The definition is illustrated in Figure 3. Notice that the graph approaches the line 
y � L as we look to the far left.

“the limit of f 1x 2 , as x approaches negative infinity, is L”

lim
xS�q

 f 1x 2 � L

Horizontal Asymptote

The line y � L is called a horizontal asymptote of the curve if 
either

lim
xSq

 f 1x 2 � L  or  lim
xS�q

 f 1x 2 � L

y � f 1x 2
0

y=Ï
y=L

0

y=Ï

y=L

y

x

x

y

Figure 3

Examples illustrating lim
xS�q

 f 1x 2 � L



For instance, the curve illustrated in Figure 1 has the line y � 1 as a horizontal 
asymptote because

As we discovered in Section 7.4, an example of a curve with two horizontal 
asymptotes is y � tan�1 x (see Figure 4). In fact,

so both of the lines y � �p/2 and y � p/2 are horizontal asymptotes. (This 
follows from the fact that the lines x � �p/2 are vertical asymptotes of the graph 
of tan.)

Example 1 Limits at Infinity

Find .

Solution Observe that when x is large, 1/x is small. For instance,

In fact, by taking x large enough, we can make 1/x as close to 0 as we please.
Therefore

Similar reasoning shows that when x is large negative, 1/x is small negative, so we
also have

It follows that the line y � 0 (the x-axis) is a horizontal asymptote of the curve 
y � 1/x. (This is a hyperbola; see Figure 5.) ■

The Limit Laws that we studied in Section 12.2 also hold for limits at infinity. In
particular, if we combine Law 6 (Limit of a Power) with the results of Example 1, we
obtain the following important rule for calculating limits.

lim
xS�q

 
1
x

� 0

lim
xSq

 
1
x

� 0

1

100
� 0.01   

1

10,000
� 0.0001   

1

1,000,000
� 0.000001

lim
xSq

 
1
x

 and lim
xS�q

 
1
x

lim
xS�q

 tan�1
 x � � 

p

2
  and  lim

xSq
 tan�1

 x �
p

2

lim
xSq

 
x2 � 1

x2 � 1
� 1

SECTION 12.4 Limits at Infinity; Limits of Sequences 911

0

_ π
2

π
2

x

y

Figure 4

y � tan�1 x

We first investigated horizontal 
asymptotes and limits at infinity for 
rational functions in Section 3.6.

0 x

1
xy=

y

Figure 5

, lim
xS�q

 
1
x

� 0lim
xSq

 
1
x

� 0

If k is any positive integer, then

lim
xSq

 
1

xk � 0  and  lim
xS�q

 
1

xk � 0



Example 2 Finding a Limit at Infinity

Evaluate .

Solution To evaluate the limit at infinity of a rational function, we first divide
both the numerator and denominator by the highest power of x that occurs in the
denominator. (We may assume that x � 0 since we are interested only in large val-
ues of x.) In this case, the highest power of x in the denominator is x 2, so we have

Limit of a Quotient

Let x �q

A similar calculation shows that the limit as x �q is also . Figure 6 illustrates
the results of these calculations by showing how the graph of the given rational
function approaches the horizontal asymptote . ■

Example 3 A Limit at Negative Infinity

Use numerical and graphical methods to find .

Solution From the graph of the natural exponential function y � ex in Figure 7
and the corresponding table of values, we see that

It follows that the line y � 0 (the x-axis) is a horizontal asymptote.

lim
xS�q

 ex � 0

lim
xS�q

 ex

y � 3
5

3
5�

 � 
3 � 0 � 0

5 � 0 � 0
�

3

5

Limits of Sums and 
Differences

 � 

lim
xSq 

3 � lim
xSq

 
1
x

� 2 lim
xSq

 
1

x2

lim
xSq

 5 � 4 lim
xSq

 
1
x

� lim
xSq

 
1

x2

 � 

lim
xSq
a3 �

1
x

�
2

x2 b
lim
xSq
a5 �

4
x

�
1

x2 b

Divide numerator and
denominator by x2

 lim
xSq

 
3x2 � x � 2

5x2 � 4x � 1
� lim

xSq
 

3 �
1
x

�
2

x2

5 �
4
x

�
1

x2

lim
xSq

 
3x2 � x � 2

5x2 � 4x � 1
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1

y=0.6

0

y

x

Figure 6

y=Æ

0

1

1

y

x

Figure 7

x ex

0 1.00000
�1 0.36788
�2 0.13534
�3 0.04979
�5 0.00674
�8 0.00034

�10 0.00005

■



Example 4 A Function with No Limit at Infinity

Evaluate .

Solution From the graph in Figure 8 and the periodic nature of the sine function,
we see that, as x increases, the values of sin x oscillate between 1 and �1 infinitely
often and so they don’t approach any definite number. Therefore,
does not exist. ■

Limits of Sequences

In Section 11.1 we introduced the idea of a sequence of numbers a1, a2, a3, . . . . Here
we are interested in their behavior as n becomes large. For instance, the sequence
defined by

is pictured in Figure 9 by plotting its terms on a number line and in Figure 10 by 
plotting its graph. From Figure 9 or 10 it appears that the terms of the sequence

are approaching 1 as n becomes large. We indicate this by writing

lim
nSq

 
n

n � 1
� 1

an � n/ 1n � 1 2
an �

n

n � 1

limxSq sin x

lim
xSq

 sin x
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0

y=ß x
y

x

Figure 8

0 11
2

a⁄ a¤ a‹
a›

Figure 9

0 n

an

1

1

2 3 4 5 6 7

7
8a‡=

Figure 10

Definition of the Limit of a Sequence

A sequence a1, a2, a3, . . . has the limit L and we write

if the nth term an of the sequence can be made arbitrarily close to L by taking
n sufficiently large. If exists, we say the sequence converges (or is
convergent). Otherwise, we say the sequence diverges (or is divergent).

limnSq an

lim
nSq

 an � L  or  an � L as n �q

This definition is illustrated by Figure 11.

If we compare the definitions of and , we see that
the only difference is that n is required to be an integer. Thus, the following is true.

limxSq f 1x 2 � LlimnSq an � L

0 n

an

L

1 2 3 0 n

an

L

1 2 3

Figure 11

Graphs of two
sequences with
lim
nSq

 an � L

If and when n is an integer, then .lim
nSq

 an � Lf 1n 2 � anlim
xSq

 f 1x 2 � L



In particular, since we know that when k is a positive integer,
we have

if k is a positive integer

Note that the Limit Laws given in Section 12.2 also hold for limits of sequences.

Example 5 Finding the Limit of a Sequence

Find .

Solution The method is similar to the one we used in Example 2: Divide the 
numerator and denominator by the highest power of n and then use the Limit Laws.

Let n �q

Therefore, the sequence is convergent. ■

Example 6 A Sequence That Diverges

Determine whether the sequence is convergent or divergent.

Solution If we write out the terms of the sequence, we obtain

The graph of this sequence is shown in Figure 12. Since the terms oscillate between
1 and �1 infinitely often, an does not approach any number. Thus,
does not exist; that is, the sequence is divergent. ■

Example 7 Finding the Limit of a Sequence

Find the limit of the sequence given by

Solution Before calculating the limit, let’s first simplify the expression for an.
Because n 3 � n # n # n, we place a factor of n beneath each factor in the numerator
that contains an n:

an �
15

6
# n
n
# n � 1

n
# 2n � 1

n
�

5

2
# 1 # a1 �

1
n
b a 2 �

1
n
b

an �
15

n3 c n1n � 1 2 12n � 1 2
6

d

an � 1�1 2 n limnSq 1�1 2 n
�1, 1, �1, 1, �1, 1, �1, . . .

an � 1�1 2 n
an � n/ 1n � 1 2 � 

1

1 � 0
� 1

Limits of a Quotient 
and a Sum

 � 
lim
nSq

 1

lim
nSq

 1 � lim
nSq

 
1
n

Divide numerator and 
denominator by n

 lim
nSq

 
n

n � 1
� lim

nSq
 

1

1 �
1
n

lim
nSq

 
n

n � 1

lim
nSq

 
1

nk � 0

limxSq 11/xk 2 � 0
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This result shows that the guess we
made earlier from Figures 9 and 
10 was correct.

0 n

an

1

1

2 3 4
_1

Figure 12



Now we can compute the limit:

Definition of an

Limit of a Product

Let n �q ■

12.4 Exercises

 � 
5

2
 11 2 12 2 � 5

 � 
5

2
 lim
nSq
a1 �

1
n
b lim

nSq
a2 �

1
n
b

 lim
nSq

 an � lim
nSq

 
5

2
a1 �

1
n
b a2 �

1
n
b
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1–2 ■ (a) Use the graph of f to find the following limits.

(i)

(ii)

(b) State the equations of the horizontal asymptotes.

1. 2.

3–14 ■ Find the limit.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15–18 ■ Use a table of values to estimate the limit. Then use a
graphing device to confirm your result graphically.

15.

16. lim
xSq

 A29x2 � x � 3xBlim
xS�q

 
2x2 � 4x

4x � 1

lim
xSq

 cos xlim
xS�q

 a x � 1

x � 1
� 6 b

lim
tSq

 a 1

t
�

2t

t � 1
blim

xSq
 

x4

1 � x2 � x3

lim
rSq

 
4r 3 � r 21r � 1 2 3lim

tSq
 

8t3 � t12t � 1 2 12t2 � 1 2
lim

xS�q
 

x2 � 2

x3 � x � 1
lim

xS�q
 
4x2 � 1

2 � 3x2

lim
xSq

 
2 � 3x

4x � 5
lim
xSq

 
2x � 1

5x � 1

lim
xSq

 
3

x4lim
xSq

 
6
x

1

1

y

x1
1

x

y

lim
xSq

 f 1x 2lim
xSq

 f 1x 2 17. 18.

19–30 ■ If the sequence is convergent, find its limit. If it is 
divergent, explain why.

19. 20.

21. 22.

23. 24.

25.

26. an � cos np

27.

28.

29.

30.

Applications

31. Salt Concentration

(a) A tank contains 5000 L of pure water. Brine that con-
tains 30 g of salt per liter of water is pumped into the
tank at a rate of 25 L/min. Show that the concentration
of salt after t minutes (in grams per liter) is

(b) What happens to the concentration as t q?�

C1t 2 �
30t

200 � t

an �
12

n4 c n1n � 1 2
2

d 2
an �

24

n3 c n1n � 1 2 12n � 1 2
6

d
an �

5
n
an �

4
n
c n1n � 1 2

2
d b

an �
3

n2 c n1n � 1 2
2

d
an � sin1np/2 2 an �

1�1 2 n
n

an �
1

3n

an �
n � 1

n3 � 1
an �

n2

n � 1

an �
5n

n � 5
an �

1 � n

n � n2

lim
xSq

 a1 �
2
x
b 3x

lim
xSq

 
x5

ex
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32. Velocity of a Raindrop The downward velocity of a
falling raindrop at time t is modeled by the function

(a) Find the terminal velocity of the raindrop by evaluating
. (Use the result of Example 3.)

(b) Graph , and use the graph to estimate how long it
takes for the velocity of the raindrop to reach 99% 
of its terminal velocity.

(t)=1.2(1-e–8.2t)

√1t 2limtSq √1t 2
√1t 2 � 1.211 � e�8.2t 2 Discovery • Discussion

33. The Limit of a Recursive Sequence

(a) A sequence is defined recursively by a1 � 0 and

Find the first ten terms of this sequence correct to 
eight decimal places. Does this sequence appear to be
convergent? If so, guess the value of the limit.

(b) Assuming the sequence in part (a) is convergent, let
. Explain why also,

and therefore

Solve this equation to find the exact value of L.

L � 12 � L

limnSq an�1 � LlimnSq an � L

an�1 � 22 � an

12.5 Areas

We have seen that limits are needed to compute the slope of a tangent line or an in-
stantaneous rate of change. Here we will see that they are also needed to find the area
of a region with a curved boundary. The problem of finding such areas has conse-
quences far beyond simply finding area. (See Focus on Modeling, page 929.)

The Area Problem

One of the central problems in calculus is the area problem: Find the area of the re-
gion S that lies under the curve from a to b. This means that S, illustrated in
Figure 1, is bounded by the graph of a function f (where ), the vertical lines
x � a and x � b, and the x-axis.

Figure 1

In trying to solve the area problem, we have to ask ourselves: What is the mean-
ing of the word area? This question is easy to answer for regions with straight sides.

0 a b

y=Ï

S
x=a

x=b

y

x

f 1x 2 	 0
y � f 1x 2



For a rectangle, the area is defined as the product of the length and the width. The area
of a triangle is half the base times the height. The area of a polygon is found by di-
viding it into triangles (as in Figure 2) and adding the areas of the triangles.

However, it is not so easy to find the area of a region with curved sides. We all have
an intuitive idea of what the area of a region is. But part of the area problem is to make
this intuitive idea precise by giving an exact definition of area.

Recall that in defining a tangent we first approximated the slope of the tangent line
by slopes of secant lines and then we took the limit of these approximations. We pur-
sue a similar idea for areas. We first approximate the region S by rectangles, and then
we take the limit of the areas of these rectangles as we increase the number of rec-
tangles. The following example illustrates the procedure.

Example 1 Estimating an Area Using Rectangles

Use rectangles to estimate the area under the parabola y � x 2 from 0 to 1 (the para-
bolic region S illustrated in Figure 3).

Solution We first notice that the area of S must be somewhere between 0 and 1
because S is contained in a square with side length 1, but we can certainly do better
than that. Suppose we divide S into four strips S1, S2, S3, and S4 by drawing the ver-
tical lines as in Figure 4(a). We can approximate each strip
by a rectangle whose base is the same as the strip and whose height is the same as
the right edge of the strip (see Figure 4(b)). In other words, the heights of these 
rectangles are the values of the function at the right endpoints of the
subintervals .30,  

1
4 4 , 3 14,  

1
2 4 , 3 12,  

3
4 4 , and 3 34,  1 4f 1x 2 � x2

x � 1
4, x � 1

2, and x � 3
4

A⁄

A¤ A‹

A›

A=A⁄+A¤+A‹+A›

h

b

A=   bh1
2A=l„

l

„
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Figure 2

0 1

(1, 1)

y=≈

S

y

x

Figure 3

(a)

0 1

(1, 1)
y=≈

3
4

1
2

1
4

S›

S‹S¤
S⁄

y

x

Figure 4 (b)

0 13
4

1
2

1
4

(1, 1)
y=≈

y

x



Each rectangle has width and the heights are . If we let R4

be the sum of the areas of these approximating rectangles, we get

From Figure 4(b) we see that the area A of S is less than R4, so

Instead of using the rectangles in Figure 4(b), we could use the smaller rectan-
gles in Figure 5 whose heights are the values of f at the left endpoints of the 
subintervals. (The leftmost rectangle has collapsed because its height is 0.) The 
sum of the areas of these approximating rectangles is

We see that the area of S is larger than L4, so we have lower and upper estimates for A:

We can repeat this procedure with a larger number of strips. Figure 6 shows
what happens when we divide the region S into eight strips of equal width. By com-
puting the sum of the areas of the smaller rectangles and the sum of the areas
of the larger rectangles , we obtain better lower and upper estimates for A:

So one possible answer to the question is to say that the true area of S lies some-
where between 0.2734375 and 0.3984375.

We could obtain better estimates by increasing the number of strips. The table 
in the margin shows the results of similar calculations (with a computer) using n
rectangles whose heights are found with left endpoints 1Ln2 or right endpoints 1Rn2.
In particular, we see by using 50 strips that the area lies between 0.3234 and
0.3434. With 1000 strips we narrow it down even more: A lies between 0.3328335
and 0.3338335. A good estimate is obtained by averaging these numbers:
A � 0.3333335. ■

From the values in the table it looks as if Rn is approaching as n increases. We
confirm this in the next example.

1
3

(a) Using left endpoints (b)  Using right endpoints

0 11
8

y=≈
(1, 1)

0 11
8

(1, 1)

y=≈

y

x

y

x

0.2734375 � A � 0.3984375

1R8 2 1L8 2
0.21875 � A � 0.46875

L4 � 1
4
# 02

� 1
4
# A14B2 � 1

4
# A12B2 � 1

4
# A34B2 � 7

32 � 0.21875

A � 0.46875

R4 � 1
4
# A14B2 � 1

4
# A12B2 � 1

4
# A34B2 � 1

4
# 12

� 15
32 � 0.46875

A14B2, A12B2, A34B2, and 121
4
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0 1

(1, 1)

3
4

1
2

1
4

y=≈

y

x

Figure 5

Figure 6

Approximating S with eight rectangles

n Ln Rn

10 0.2850000 0.3850000
20 0.3087500 0.3587500
30 0.3168519 0.3501852
50 0.3234000 0.3434000

100 0.3283500 0.3383500
1000 0.3328335 0.3338335



Example 2 The Limit of Approximating Sums

For the region S in Example 1, show that the sum of the areas of the upper 
approximating rectangles approaches , that is,

Solution Rn is the sum of the areas of the n rectangles shown in Figure 7. Each
rectangle has width 1/n, and the heights are the values of the function 
at the points 1/n, 2/n, 3/n, . . . , n/n. That is, the heights are 

. Thus

Here we need the formula for the sum of the squares of the first n positive 
integers:

Putting the preceding formula into our expression for Rn, we get

Thus, we have

■

It can be shown that the lower approximating sums also approach , that is,

lim
n�q

Ln � 1
3

1
3

 � 16 # 1 # 2 � 1
3

 � lim
n�q

 
1

6
a1 �

1
n
b a 2 �

1
n
b

 � lim
n�q

 
1

6
a n � 1

n
b a 2n � 1

n
b

 lim
n�q

Rn � lim
n�q

1n � 1 2 12n � 1 2
6n2

Rn �
1

n3
# n1n � 1 2 12n � 1 2

6
�
1n � 1 2 12n � 1 2

6n2

12 � 22 � 32 � . . . � n2 �
n1n � 1 2 12n � 1 2

6

 � 
1

n3  112 � 22 � 32 � . . . � n2 2
 � 

1
n
# 1
n2  112 � 22 � 32 � . . . � n2 2

 Rn �
1
n
a 1

n
b 2

�
1
n
a 2

n
b 2

�
1
n
a 3

n
b 2

� . . . �
1
n
a n

n
b 2

13/n 2 2, . . . , 1n/n 2 2 11/n 2 2, 12/n 2 2,f 1x 2 � x2

lim
n�q 

Rn � 1
3

1
3
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1
n

0 1

(1, 1)

y=≈

y

x

Figure 7

This formula was discussed in 
Section 11.5.



From Figures 8 and 9 it appears that, as n increases, both Rn and Ln become better and
better approximations to the area of S. Therefore, we define the area A to be the limit
of the sums of the areas of the approximating rectangles, that is,

Figure 8

Figure 9

Definition of Area

Let’s apply the idea of Examples 1 and 2 to the more general region S of Figure 1. We
start by subdividing S into n strips S1, S2, . . . , Sn of equal width as in Figure 10.

Figure 10
0 a bx⁄ x¤ x‹ xi-1 xi xn-1.  .  ..  .  .

y=Ï

S⁄ S¤ S‹ Si Sn

y

x

10

n=10    L⁄‚=0.285

10

n=30    L‹‚Å0.3169

10

n=50    Lfi‚=0.3234

y

x

y

x

y

x

10

n=50    Rfi‚=0.3434

10

n=30    R‹‚Å0.3502

10

n=10    R⁄‚=0.385

y

x

y

x

y

x

A � lim
n�q

Rn � lim
n�q

Ln � 1
3
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The width of the interval is b � a, so the width of each of the n strips is

These strips divide the interval into n subintervals

where x0 � a and xn � b. The right endpoints of the subintervals are

Let’s approximate the kth strip Sk by a rectangle with width �x and height ,
which is the value of f at the right endpoint (see Figure 11). Then the area of the kth
rectangle is . What we think of intuitively as the area of S is approximated by
the sum of the areas of these rectangles, which is

Figure 12 shows this approximation for n � 2, 4, 8, and 12.

Figure 11

Figure 12

Notice that this approximation appears to become better and better as the number
of strips increases, that is, as n q. Therefore, we define the area A of the region S
in the following way.

�

(a) n=2 (b) n=4 (c) n=8 (d) n=12

0 a bx⁄ 0 a bx⁄ x¤ x‹ 0 a b 0 a b

y

x

y

x

y

x

y

x

0 a bx⁄ x¤ x‹ xk-1 xk

Îx

f(xk)

y

x

Rn � f 1x1 2¢x � f 1x2 2¢x � . . . � f 1xn 2¢x

f 1xk 2¢x

f 1xk 2x1 � a � ¢x, x2 � a � 2 ¢x, x3 � a � 3 ¢x, . . . , xk � a � k ¢x, . . .

3x0, x1 4 , 3x1, x2 4 , 3x2, x3 4 ,  . . . ,  3xn�1, xn 43a,  b 4¢x �
b � a

n

3a,  b 4
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In using this formula for area, remember that �x is the width of an approximating
rectangle, xk is the right endpoint of the kth rectangle, and is its height. So

When working with sums, we will need the following properties from Section 11.1:

We will also need the following formulas for the sums of the powers of the first n
natural numbers from Section 11.5.

Example 3 Finding the Area under a Curve

Find the area of the region that lies under the parabola y � x 2, 0 
 x 
 5.

Solution The region is graphed in Figure 13. To find the area, we first find the
dimensions of the approximating rectangles at the nth stage.

Height:       f 1xk 2 � f a 5k
n
b � a 5k

n
b 2

�
25k2

n2

 Right endpoint:     xk � a � k ¢x � 0 � k a 5
n
b �

5k
n

Width:           ¢x �
b � a

n
�

5 � 0
n

�
5
n

 a
n

k�1
k2 �

n1n � 1 2 12n � 1 2
6

      a
n

k�1
k3 �

n21n � 1 2 2
4

a
n

k�1
c � nc                  a

n

k�1
k �

n1n � 1 2
2

a
n

k�1
1ak � bk 2 � a

n

k�1
ak � a

n

k�1
bk  a

n

k�1
cak � ca

n

k�1
ak

Height:      f 1xk 2 � f 1a � k ¢x 2 Right endpoint:   xk � a � k ¢x

Width:          ¢x �
b � a

n

f 1xk 2
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Definition of Area

The area A of the region S that lies under the graph of the continuous func-
tion f is the limit of the sum of the areas of approximating rectangles:

Using sigma notation, we write this as follows:

A � lim
n�q a

n

k�1
f 1xk 2¢x

A � lim
n�q

Rn � lim
n�q
3f 1x1 2¢x � f 1x2 2¢x � . . . � f 1xn 2¢x 4

1 5

5

25

0

y=≈

y

x

Figure 13



Now we substitute these values into the definition of area:

Definition of area

Simplify

Factor 

Sum of squares formula

Cancel n and expand numerator

Divide numerator and denominator by n2

Let n �q

Thus, the area of the region is . ■

Example 4 Finding the Area under a Curve

Find the area of the region that lies under the parabola y � 4x � x 2, 1 
 x 
 3.

Solution We start by finding the dimensions of the approximating rectangles at
the nth stage.

Thus, according to the definition of area, we get

 � lim
n�q
a an

k�1
3 �

4
na

n

k�1
k �

4

n2 a
n

k�1
k2 b a 2

n
b

 A � lim
n�q a

n

k�1
f 1xk 2¢x � lim

n�q a
n

k�1
a3 �

4k
n

�
4k2

n2 b a 2
n
b

 � 3 �
4k
n

�
4k2

n2

 � 4 �
8k
n

� 1 �
4k
n

�
4k2

n2

Height:        f 1xk 2 � f a1 �
2k
n
b � 4 a1 �

2k
n
b � a1 �

2k
n
b 2

 Right endpoint:    xk � a � k ¢x � 1 � k a 2
n
b � 1 �

2k
n

Width:         ¢x �
b � a

n
�

3 � 1
n

�
2
n

125
3 � 41.7

 � 
125

6
 12 � 0 � 0 2 �

125

3

 � lim
n�q

125

6
a2 �

3
n

�
1

n2 b
 � lim

n�q

12512n2 � 3n � 1 2
6n2

 � lim
n�q

125

n3
# n1n � 1 2 12n � 1 2

6

125
n3 � lim

n�q

125

n3 a
n

k�1
k2

 � lim
n�qa

n

k�1

125k2

n3

f  1xk 2 �
25k 2

n2 , ¢x �
5
n

 � lim
n�q a

n

k�1

25k2

n2
# 5
n

 A � lim
n�q a

n

k�1
f 1xk 2¢x
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We can also calculate the limit by 
writing

as in Example 2.

� 
125

6
a n

n
b a n � 1

n
b a 2n � 1

n
b

125

n3
# n1n � 1 2 12n � 1 2

6

1 40

y=4x-≈

3

y

x

Figure 14

Figure 14 shows the region whose area
is computed in Example 4.



■

12.5 Exercises

 � 6 � 4 # 1 �
4

3
# 1 # 2 �

22

3

 � lim
n�q
c6 � 4 a1 �

1
n
b �

4

3
a1 �

1
n
b a2 �

1
n
b d

 � lim
n�q
a6 � 4 # n

n
# n � 1

n
�

4

3
# n
n
# n � 1

n
# 2n � 1

n
b

 � lim
n�q
a 2

n
 13n 2 �

8

n2 c n1n � 1 2
2

d �
8

n3 c n1n � 1 2 12n � 1 2
6

d b
 � lim

n�q
a 2

na
n

k�1
3 �

8

n2 a
n

k�1
k �

8

n3 a
n

k�1
k2 b
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1. (a) By reading values from the given graph of f, use five
rectangles to find a lower estimate and an upper estimate
for the area under the given graph of f from x � 0 to
x � 10. In each case, sketch the rectangles that you use.

(b) Find new estimates using ten rectangles in each case.

2. (a) Use six rectangles to find estimates of each type for the
area under the given graph of f from x � 0 to x � 12.

(i) L6 (using left endpoints)

(ii) R6 (using right endpoints)

(b) Is L6 an underestimate or an overestimate of the true
area?

(c) Is R6 an underestimate or an overestimate of the true
area?

0 4

4

8

y=Ï

8 12

y

x

0 5

5 y=Ï

10

y

x

3–6 ■ Approximate the area of the shaded region under the
graph of the given function by using the indicated rectangles.
(The rectangles have equal width.)

3. 4.

5. 6.

7. (a) Estimate the area under the graph of 
from x � 1 to x � 5 using four approximating rectan-
gles and right endpoints. Sketch the graph and the 
rectangles. Is your estimate an underestimate or an
overestimate?

(b) Repeat part (a) using left endpoints.

f 1x 2 � 1/x

2

5

1

10

0

y

x
1

1

70

4

y

x

f 1x 2 � 9x � x3f 1x 2 �
4
x

1

1

_1 0

y

x1

1

20

y

x

f 1x 2 � 4 � x2f 1x 2 � 1
2 x � 2



CHAPTER 12 Review 925

8. (a) Estimate the area under the graph of
from x � 0 to x � 5 using five approximating rectangles
and right endpoints. Sketch the graph and the rectangles.
Is your estimate an underestimate or an overestimate?

(b) Repeat part (a) using left endpoints.

9. (a) Estimate the area under the graph of from
x � �1 to x � 2 using three rectangles and right end-
points. Then improve your estimate by using six rectan-
gles. Sketch the curve and the approximating rectangles.

(b) Repeat part (a) using left endpoints.

10. (a) Estimate the area under the graph of ,
0 
 x 
 4, using four approximating rectangles and
taking the sample points to be

(i) right endpoints

(ii) left endpoints

In each case, sketch the curve and the rectangles.

(b) Improve your estimates in part (a) by using eight 
rectangles.

11–12 ■ Use the definition of area as a limit to find the area 
of the region that lies under the curve. Check your answer by
sketching the region and using geometry.

11. y � 3x, 0 
 x 
 5 12. y � 2x � 1, 1 
 x 
 3

13–18 ■ Find the area of the region that lies under the graph of
f over the given interval.

13. , 0 
 x 
 2

14. , 0 
 x 
 1

15. , 0 
 x 
 5

16. , 2 
 x 
 5

17. , 1 
 x 
 4

18. , 2 
 x 
 3

Discovery • Discussion

19. Approximating Area with a Calculator When we 
approximate areas using rectangles as in Example 1, then
the more rectangles we use the more accurate the answer.

f 1x 2 � 20 � 2x2

f 1x 2 � x � 6x2

f 1x 2 � 4x3

f 1x 2 � x3 � 2

f 1x 2 � x � x2

f 1x 2 � 3x2

f 1x 2 � e�x

f 1x 2 � 1 � x2

f 1x 2 � 25 � x2 The following TI-83 program finds the approximate area 
under the graph of f on the interval [a, b] using n rectangles.
To use the program, first store the function f in Y1. The 
program prompts you to enter N, the number of rectangles,
and A and B, the endpoints of the interval.

(a) Approximate the area under the graph of
on 31, 34 using 10, 20,

and 100 rectangles.

(b) Approximate the area under the graph of f on the given
interval using 100 rectangles.

(i) , on 30, p4
(ii) , on 3�1, 14

PROGRAM:AREA

:Prompt N

:Prompt A

:Prompt B

:(B-A)/N�D

:0�S

:A�X

:For (K,1,N)

:X+D�X

:S+Y1�S

:End

:D*S�S

:Disp "AREA IS"

:Disp S

20. Regions with Straight Versus Curved Boundaries

Write a short essay that explains how you would find the area
of a polygon, that is, a region bounded by straight line seg-
ments. Then explain how you would find the area of a region
whose boundary is curved, as we did in this section. What is
the fundamental difference between these two processes?

f 1x 2 � e�x2

f 1x 2 � sin x

f 1x 2 � x5 � 2x � 3

12 Review

Concept Check

1. Explain in your own words what is meant by the equation

Is it possible for this statement to be true and yet ?
Explain.

f 12 2 � 3

lim
x�2

f 1x 2 � 5

2. Explain what it means to say that

In this situation is it possible that exists? 
Explain.

limx�1f 1x 2
lim

x�1�
f 1x 2 � 3 and lim

x�1�
f 1x 2 � 7
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3. Describe several ways in which a limit can fail to exist. 
Illustrate with sketches.

4. State the following Limit Laws.

(a) Sum Law

(b) Difference Law

(c) Constant Multiple Law

(d) Product Law

(e) Quotient Law

(f) Power Law

(g) Root Law

5. Write an expression for the slope of the tangent line to the
curve at the point .

6. Define the derivative . Discuss two ways of interpret-
ing this number.

7. If , write expressions for the following.

(a) The average rate of change of y with respect to x
between the numbers a and x.

(b) The instantaneous rate of change of y with respect to 
x at x � a.

y � f 1x 2
f¿ 1a 2 1a, f 1a 22y � f 1x 2

8. Explain the meaning of the equation

Draw sketches to illustrate the various possibilities.

9. (a) What does it mean to say that the line y � L is a hori-
zontal asymptote of the curve ? Draw curves 
to illustrate the various possibilities.

(b) Which of the following curves have horizontal 
asymptotes?

(i) y � x 2 (iv) y � tan�1 x

(ii) y � 1/x (v) y � ex

(iii) y � sin x (vi) y � ln x

10. (a) What is a convergent sequence?

(b) What does mean?

11. Suppose S is the region that lies under the graph of
.

(a) Explain how this area is approximated using rectangles.

(b) Write an expression for the area of S as a limit 
of sums.

y � f 1x 2 , a 
 x 
 b

limn�q 
an � 3

y � f 1x 2
lim
x�q

f 1x 2 � 2

Exercises

1–6 ■ Use a table of values to estimate the value of the 
limit. Then use a graphing device to confirm your result 
graphically.

1.

2.

3.

4.

5.

6.

7. The graph of f is shown in the figure. Find each limit or 
explain why it does not exist.

(a) (b)

(c) (d) lim
x��3 

f 1x 2lim
x��3�

 

f 1x 2 lim
x��3�

 

f 1x 2lim
x�2�

 

f 1x 2
lim

x�0�

tan x0 x 0
lim

x�1� 
ln 1x � 1

lim
x�0

 
sin 2x

x

lim
x�0

 
2x � 1

x

lim
t��1

t � 1

t3 � t

lim
x�2

 
x � 2

x2 � 3x � 2

(e) (f)

(g) (h)

8. Let

Find each limit or explain why it does not exist.

(a) (b)

(c) (d) lim
x�2�

f 1x 2lim
x��1

f 1x 2 lim
x��1�

f 1x 2lim
x��1�

f 1x 2
f 1x 2 � •2      if x � �1

x2     if �1 
 x 
 2

x � 2  if x � 2

1

1

y

x

lim
x�0 

f 1x 2lim
x��q

f 1x 2 lim
x�q 

f 1x 2lim
x�4 

f 1x 2
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(e) (f)

(g) (h)

9–20 ■ Use the Limit Laws to evaluate the limit, if it exists.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21–24 ■ Find the derivative of the function at the given number.

21. 22.

23. 24.

25–28 ■ (a) Find . (b) Find and .

25. 26.

27. 28.

29–30 ■ Find an equation of the tangent line shown in the
figure.

29. 30.

31–34 ■ Find an equation of the line tangent to the graph of f at
the given point.

31. 32.

33. 34. f 1x 2 � 1x � 1, at 13,  2 2f 1x 2 �
1
x

, at a2,  

1

2
b f 1x 2 � x2 � 3, at 12,  1 2f 1x 2 � 2x, at 13,  6 2

1 40

y=œ∑x

1 (1, 1)

y

x10

y=4x-≈

2

1

(1, 3)

4

y

x

f 1x 2 �
4
x

f 1x 2 � 1x � 6

f 1x 2 � x2 � 3xf 1x 2 � 6 � 2x

f¿ 1�2 2f¿ 12 2f¿ 1a 2
f1x 2 �

x

x � 1
, at 1f 1x 2 � 1x, at 16

g1x 2 � 2x2 � 1, at �1f 1x 2 � 3x � 5, at 4

lim
t��q

 
t4

t3 � 1
lim
x�q  

cos2x

lim
x�q

 
x2 � 1

x4 � 3x � 6
lim
x�q

 
2x

x � 4

lim
x�0

 a 1
x

�
2

x2 � 2x
blim

x�3�
 

x � 30 x � 3 0
lim
z�9

 
1z � 3

z � 9
lim
u�0

 
1u � 1 2 2 � 1

u

lim
x��2

 
x2 � 4

x2 � x � 2
lim
x�3

 
x2 � x � 12

x � 3

lim 
t�1
1t3 � 3t � 6 2lim 

x�2
 
x � 1

x � 3

lim 
x�3
1f 1x 22 2lim

x�0 
f 1x 2 lim

x�2 
f 1x 2lim

x�2� 
f 1x 2 35. A stone is dropped from the roof of a building 640 ft above

the ground. Its height (in feet) after t seconds is given by
.

(a) Find the velocity of the stone when t � 2.

(b) Find the velocity of the stone when t � a.

(c) At what time t will the stone hit the ground?

(d) With what velocity will the stone hit the ground?

36. If a gas is confined in a fixed volume, then according 
to Boyle’s Law the product of the pressure P and the 
temperature T is a constant. For a certain gas, PT � 100,
where P is measured in lb/in2 and T is measured in 
kelvins (K).

(a) Express P as a function of T.

(b) Find the instantaneous rate of change of P with respect
to T when T � 300 K.

37–42 ■ If the sequence is convergent, find its limit. If it is 
divergent, explain why.

37. 38.

39. 40.

41. 42.

43–44 ■ Approximate the area of the shaded region under the
graph of the given function by using the indicated rectangles.
(The rectangles have equal width.)

43. 44.

45–48 ■ Use the limit definition of area to find the area of the
region that lies under the graph of f over the given interval.

45.

46.

47.

48. f 1x 2 � x3, 1 
 x 
 2

f 1x 2 � x2 � x, 1 
 x 
 2

f 1x 2 � x2 � 1, 0 
 x 
 3

f 1x 2 � 2x � 3, 0 
 x 
 2

10 3

1

4

y

x1 30

1

y

x

f 1x 2 � 4x � x2f 1x 2 � 1x

an �
10

3nan � cos a np

2
b

an �
n3

2n � 6
an �

n1n � 1 2
2n2

an �
n3

n3 � 1
an �

n

5n � 1

h1t 2 � 640 � 16t2



12 Test

1. (a) Use a table of values to estimate the limit

(b) Use a graphing calculator to confirm your answer graphically.

2. For the piecewise-defined function f whose graph is shown, find:

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

3. Evaluate the limit, if it exists.

(a) (b) (c)

(d) (e) (f)

4. Let . Find:

(a) (b)

5. Find the equation of the line tangent to the graph of at the point where 
x � 9.

6. Find the limit of the sequence.

(a) (b)

7. The region sketched in the figure in the margin lies under the graph of ,
above the interval 0 
 x 
 1.

(a) Approximate the area of the region with five rectangles, equally spaced along the 
x-axis, using right endpoints to determine the heights of the rectangles.

(b) Use the limit definition of area to find the exact value of the area of the region.

f 1x 2 � 4 � x2

an � sec npan �
n

n2 � 4

f 1x 2 � 1x

f¿ 1�1 2 , f¿ 11 2 , f¿ 12 2f¿ 1x 2f 1x 2 � x2 � 2x

lim
x�q

 
2x2 � 4

x2 � x
lim
x�4

 
1x � 2

x � 4
lim
x�2

 
x � 20 x � 2 0

lim
x�2

 
1

x � 2
lim
x�2

 
x2 � 2x � 8

x � 2
lim
x�2

 
x2 � 2x � 8

x � 2

10 2

1

4

y

x

f 1x 2 � μ 1

0

x2

4 � x

lim
x�2 

f 1x 2lim
x�2� 

f 1x 2lim
x�2� 

f 1x 2 lim
x�0 

f 1x 2lim
x�0� 

f 1x 2lim
x�0� 

f 1x 2 lim
x��1 

f 1x 2lim
x��1� 

f 1x 2lim
x��1� 

f 1x 2
lim
x�0

 
x

sin 2x
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if x � �1

if x � �1
if �1 � x 
 2
if 2 � x

1

1

4 y=4-≈

0

y

x



The area under the graph of a function is used to model many quantities in physics,
economics, engineering, and other fields. That is why the area problem is so impor-
tant. Here we will show how the concept of work (Section 8.5) is modeled by area.
Several other applications are explored in the problems.

Recall that the work W done in moving an object is the product of the force F
applied to the object and the distance d that the object moves:

This formula is used if the force is constant. For example, suppose you are pushing a
crate across a floor, moving along the positive x-axis from x � a to x � b, and you
apply a constant force F � k. The graph of F as a function of the distance x is shown
in Figure 1(a). Notice that the work done is , which is the area
under the graph of F (see Figure 1(b)).

But what if the force is not constant? For example, suppose the force you apply 
to the crate varies with distance (you push harder at certain places than you do at 
others). More precisely, suppose that you push the crate along the x-axis in the posi-
tive direction, from x � a to x � b, and at each point x between a and b you apply 
a force to the crate. Figure 2 shows a graph of the force f as a function of the 
distance x.

How much work was done? We can’t apply the formula for work directly because
the force is not constant. So let’s divide the interval 3a, b4 into n subintervals with end-
points x0, x1, . . . , xn and equal width �x as shown in Figure 3(a) on the next page.
The force at the right endpoint of the interval 3xk�1, xk4 is . If n is large, then �x
is small, so the values of f don’t change very much over the interval 3xk�1, xk4. In other

f 1xk 2

y
(force)

0 x
(distance)

a b

f

Figure 2

A variable force

f 1x 2

F

0 a b

k

(a) (b)

F

0 a b

k
work=area

xx

W � Fd � k1b � a 2
W � Fd   work � force � distance

929
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words f is almost constant on the interval, and so the work Wk that is done in moving
the crate from xk�1 to xk is approximately

Thus, we can approximate the work done in moving the crate from x � a to x � b by

It seems that this approximation becomes better as we make n larger (and so make
the interval 3xk�1, xk4 smaller). Therefore, we define the work done in moving an ob-
ject from a to b as the limit of this quantity as n �q:

Notice that this is precisely the area under the graph of f between x � a and x � b as
defined in Section 12.5. See Figure 3(b).

Example The Work Done by a Variable Force

A man pushes a crate along a straight path a distance of 18 ft. At a distance x from
his starting point, he applies a force given by . Find the work done
by the man.

Solution The graph of f between x � 0 and x � 18 is shown in Figure 4. Notice
how the force the man applies varies—he starts by pushing with a force of 340 lb,
but steadily applies less force. The work done is the area under the graph of f on 

Figure 4

(force)

0
(distance)xk_1

xk

Îx

50

350

5

y

x

f 1x 2 � 340 � x2

(force)

0
(distance)

x‚ xnx⁄ xk_1 xk

Îx

… …

(force)

0
(distance)

work=area under
graph of f

(a) (b)

y

x

y

x

W � lim
n�qa

n

k�1
f 1xk 2¢x

W � a
n

k�1
f 1xk 2¢x

Wk � f 1xk 2¢x
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the interval 30, 184. To find this area, we start by finding the dimensions of the 
approximating rectangles at the nth stage.

Width:

Right endpoint:

Height:

Thus, according to the definition of work we get

So the work done by the man in moving the crate is 4176 ft-lb. ■

Problems

1. Work Done by a Winch A motorized winch is being used to pull a felled tree to 
a logging truck. The motor exerts a force of lb on the 
tree at the instant when the tree has moved x ft. The tree must be moved a distance 
of 40 ft, from x � 0 to x � 40. How much work is done by the winch in moving 
the tree?

2. Work Done by a Spring Hooke’s law states that when a spring is stretched, it 
pulls back with a force proportional to the amount of the stretch. The constant of 
proportionality is a characteristic of the spring known as the spring constant. Thus,
a spring with spring constant k exerts a force when it is stretched a 
distance x.

A certain spring has spring constant k � 20 lb/ft. Find the work done when the 
spring is pulled so that the amount by which it is stretched increases from x � 0 to 
x � 2 ft.

3. Force of Water As any diver knows, an object submerged in water experiences pres-
sure, and as depth increases, so does the water pressure. At a depth of x ft, the water
pressure is lb/ft2. To find the force exerted by the water on a surface,
we multiply the pressure by the area of the surface:

force � pressure � area

p1x 2 � 62.5x

f 1x 2 � kx

f 1x 2 � 1500 � 10x � 1
2x2

 � 6120 � 972 # 1 # 1 # 2 � 4176

 � lim
n�q
a6120 � 972 # n

n
# n � 1

n
# 2n � 1

n
b

 � lim
n�q
a 18

n
  340n �

5832

n3 c n1n � 1 2 12n � 1 2
6

d b
 � lim

n�q
a 18

n a
n

k�1
340 �

118 2 1324 2
n3 a

n

k�1
k2 b

 W � lim
n�qa

n

k�1
f 1xk 2¢x � lim

n�qa
n

k�1
a340 �

324k2

n2 b a 18
n
b

 � 340 �
324k2

n2

 f 1xk 2 � f a 18k
n
b � 340 � a 18k

n
b 2

 xk � a � k  ¢x � 0 � k a 18
n
b �

18k
n

 ¢x �
b � a

n
�

18 � 0
n

�
18
n
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Suppose an aquarium that is 3 ft wide, 6 ft long, and 4 ft high is full of water. The 
bottom of the aquarium has area 3 � 6 � 18 ft2, and it experiences water pressure of

lb/ft2. Thus, the total force exerted by the water on the bottom
is 250 � 18 � 4500 lb.

The water also exerts a force on the sides of the aquarium, but this is not as easy to
calculate because the pressure increases from top to bottom. To calculate the force on
one of the 4 ft by 6 ft sides, we divide its area into n thin horizontal strips of width ¢x,
as shown in the figure. The area of each strip is

If the bottom of the kth strip is at the depth xk, then it experiences water pressure 
of approximately lb/ft2—the thinner the strip, the more accurate the 
approximation. Thus, on each strip the water exerts a force of

(a) Explain why the total force exerted by the water on the 4 ft by 6 ft sides of the 
aquarium is

where ¢x � 4/n and xk � 4k/n.

(b) What area does the limit in part (a) represent?

(c) Evaluate the limit in part (a) to find the force exerted by the water on one of the 4 ft
by 6 ft sides of the aquarium.

(d) Use the same technique to find the force exerted by the water on one of the 4 ft by 
3 ft sides of the aquarium.

NOTE Engineers use the technique outlined in this problem to find the total force 
exerted on a dam by the water in the reservoir behind the dam.

4. Distance Traveled by a Car Since distance � speed � time, it is easy to see 
that a car moving, say, at 70 mi/h for 5 h will travel a distance of 350 mi. But what if 
the speed varies, as it usually does in practice?

(a) Suppose the speed of a moving object at time t is . Explain why the distance
traveled by the object between times t � a and t � b is the area under the graph 
of √ between t � a and t � b.

(b) The speed of a car t seconds after it starts moving is given by the function
ft/s. Find the distance traveled by the car from t � 0 to 

t � 5 s.

5. Heating Capacity If the outdoor temperature reaches a maximum of 90 �F one day 
and only 80 �F the next, then we would probably say that the first day was hotter than 
the second. Suppose, however, that on the first day the temperature was below 60 �F 
for most of the day, reaching the high only briefly, whereas on the second day the 
temperature stayed above 75 �F all the time. Now which day is the hotter one? To better
measure how hot a particular day is, scientists use the concept of heating degree-hour.
If the temperature is a constant D degrees for t hours, then the “heating capacity”
generated over this period is Dt heating degree-hours:

If the temperature is not constant, then the number of heating degree-hours equals the

heating degree-hours � temperature � time

√1t 2 � 6t � 0.1t3

√1t 2

lim
n�qa

n

k�1
375xk ¢x

pressure � area � 62.5xk � 6 ¢x � 375xk ¢x lb

p1xk 2 � 62.5xk

length � width � 6 ¢x

p14 2 � 62.5 � 4 � 250
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3 ft
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area under the graph of the temperature function over the time period in question.

(a) On a particular day, the temperature (in �F) was modeled by the function
, where t was measured in hours since midnight. How many

heating degree-hours were experienced on this day, from t � 0 to t � 24?

(b) What was the maximum temperature on the day described in part (a)?

(c) On another day, the temperature (in �F) was modeled by the function
. How many heating degree-hours were experienced on 

this day?

(d) What was the maximum temperature on the day described in part (c)?

(e) Which day was “hotter”?

E1t 2 � 50 � 5t � 1
4t2

D1t 2 � 61 � 6
5t � 1

25t2
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