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12. Nonlinear optics I
What are nonlinear-optical  effects and why do 

they occur?

Maxwell's equations in a medium

Nonlinear-optical media

Second-harmonic generation

Conservation laws for photons ("Phase-
matching")

Quasi-phase-matching
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Nonlinear Optics can produce 
many exotic effects.

Sending infrared light into a 
crystal yielded this display of 
green light:

Nonlinear optics allows us to 
change the color of a light beam, 
to change its shape in space and 
time, to switch telecommunica-
tions systems, and to create the 
shortest events ever made by 
humans.
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Why do nonlinear-optical effects occur?
Recall that, in normal linear optics, a light wave acts on a molecule, 
which vibrates and then emits its own light wave that interferes with 
the original light wave.

We can also imagine this
process in terms of the 

molecular energy levels,
using arrows for the

photon energies:
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Why do nonlinear-optical effects 
occur? (continued)
Now, suppose the irradiance is high enough that many molecules 
are excited to the higher-energy state.  This state can then act as 
the lower level for additional excitation.  This yields vibrations at all 
frequencies corresponding to all energy differences between 
populated states.
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Reminder: Maxwell's Equations in a Medium
The induced polarization, P, contains the effect of the medium.  
The inhomogeneous wave equation (in one dimension):
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The polarization is usually proportional to the electric field:

 = unitless proportionality constant

Then, the wave equation becomes:
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Recall, for example, in the forced oscillator model, we found:
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Reminder: Maxwell's Equations in a Medium
 2 2

22 2
0

1
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 
E E

x tc


And, we call the quantity              the “refractive index”.1 

So, we can describe light in a medium just like light in vacuum, as 
long as we take into account the refractive index correction.

But this only worked because P was proportional to E…

What if it isn’t?   Then P is a non-linear function of E!

 
22

0

11 


c c


But this is the same equation as the usual homogeneous equation, 
if we define a new constant c:
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Maxwell's Equations in a Nonlinear Medium
Nonlinear optics is what happens when the polarization is the result
of higher-order terms in the field:

(1) (2) 2 (3) 3
0 ...
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Then the wave equation must look like this:
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

The linear term can be treated in the same way as before, giving
rise to the refractive index.  But the non-linear term is a problem…

   
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Usually, (2), (3), etc., are very small and can be ignored. 
But not if E is big…
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*
0 0( ) exp( ) exp( )  E t E i t E i t 

What sort of effect does this non-linear term have?

terms that vary at a new frequency, the 2nd harmonic, 2!

The effects of the non-linear terms

If we write the field as:
22 2 *2

0 0 0( ) exp(2 ) 2 exp( 2 )   E t E i t E E i t then

Nonlinearity can lead to the generation of new frequency components.

This can be extremely useful:
Frequency doubling crystal:

1064 nm        532 nm
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Sum and difference frequency generation
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   

   

Suppose there are two different-color beams present, not just one:

Then E(t)2 has 16 terms:

2nd harmonic of 1

2nd harmonic of 2

sum frequency

difference frequency

zero frequency - known as “optical rectification”

This is an awful lot of processes - do they all occur simultaneously?  
Which one dominates (if any)?  What determines the efficiency?
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Complicated nonlinear-optical effects can occur.

The more photons (i.e., the higher the order) the weaker the effect, 
however.  Very-high-order effects can be seen, but they require 
very high irradiance, since usually (2) > (3) > (4) > (5) …

Nonlinear-optical processes
are often referred to as:

"N-wave-mixing processes"

where N is the number of
photons involved (including 
the emitted one).Emitted-light

photon energy

This cartoon illustrates a 6-wave mixing process.  
It would involve the (5) term in the wave equation.
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Conservation laws for photons in nonlinear optics

1 2 3 4 5 0         

1 2 3 4 5 0    
     
k k k k k k

Satisfying these two relations simultaneously 
is called "phase-matching."

Energy must be conserved.  Recall that 
the energy of a photon is       .  Thus:

Photon momentum must also be conserved.  
The momentum of a photon is     , so:


k

Usually, only one (or zero) of the many possible N-wave mixing 
processes can be phase-matched at a time.

0


kBut     is related to 0:

So       may not correspond to a light 
wave at frequency 0!
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Phase-matching: an example
Consider the 2nd harmonic generation process:

nonlinear 
material

 in  outEnergy conservation requires:

Momentum conservation requires:      2 
  
k k k  

    22 2 n n
c c
  

2 red photons 1 blue photon

(2 ) ( )n n 

Unfortunately, dispersion prevents 
this from ever happening!
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Phase-matching Second-Harmonic 
Generation using birefringence

(2 ) ( )o en n   2Frequency
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on

Birefringent materials have different refractive indices for different 
polarizations: the “Ordinary” and “Extraordinary” refractive indices!

Using this, we can satisfy the 
phase-matching condition.

For example:
Use the extraordinary polarization
for  and the ordinary for 2:

ne depends on propagation angle, so by rotating the 
birefringent crystal, we can tune the condition precisely by 
moving the red curve up and down relative to the blue curve.
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Light created in real crystals

Far from 
phase-matching:

Note that SH beam is brighter as phase-matching is achieved.

Closer to 
phase-matching:

Input beam

SHG crystal

Output beam

Input beam

SHG crystal

Output beam
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Second-Harmonic Generation

SHG KDP crystals at Lawrence 
Livermore National Laboratory

These crystals convert as much 
as 80% of the input light to its 
second harmonic. Then 
additional crystals produce the 
third harmonic with similar 
efficiency!
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Difference-Frequency Generation: Optical 
Parametric Generation, Amplification, Oscillation
Difference-frequency generation takes many useful forms.

1

3

2 = 3  1

Parametric Down-Conversion
(Difference-frequency generation)

1

3 2

Optical Parametric 
Amplification (OPA)

1

"signal"

"idler"

By convention:
signal  idler

1

3
2

Optical Parametric 
Generation (OPG)

1

Optical Parametric 
Oscillation (OPO)

3
2

mirror mirror

All of these are (2) processes (three-wave mixing).
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Another 2nd-order process: Electro-optics
Applying a voltage to a crystal changes its refractive indices and 
introduces birefringence.  In a sense, this is sum-frequency 
generation with a beam of zero frequency (but not zero field!). 

If V = Vp, the pulse 
polarization switches to its 
orthogonal state.

V
If V = 0, the pulse 
polarization doesn’t 
change.

Pockels cell

Polarizer

The Pockels effect can be described as a (2) nonlinear optical 
interaction, where E2 E() E( = 0).  Sum frequency is at  + 0 = .
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We have derived the wave equation in a medium, for 
the situation where the polarization is non-linear in E:

The wave equation with nonlinearity

2 2 2 2

02 2 2 2

  
 

 

NLE n E P
x c t dt



linear optics

(2) 2 (3) 3
0 ...    

NLP E E  where

(2) (3) Usually,

In these cases, we neglect the third (and higher) orders.

A good example: second harmonic generation
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Second Harmonic Generation: SHG

In this process, we imagine that one laser (at frequency ) is used 
to illuminate a nonlinear medium.

As this field propagates 
through the medium, its 
intensity will be depleted 
and the intensity of the 2nd 
harmonic wave (initially 
zero) will grow.

in
te

ns
ity

propagation distance z

intensity of the fundamental

intensity of the 2nd harmonic

(2)





z = 0 z = L
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     2 2
2 2, . .i tik zE z t A z e e c c 
 

 

Describing the 2nd harmonic wave
We are interested in the behavior of the field that oscillates at 2; 
that is, the 2nd harmonic.  We can assume that this field is of the 
form:

where we require that the amplitude A2(z) is slowly varying, and 
also that it vanishes at the input facet of the nonlinear medium:

 2 0 0 A z

Furthermore, the wave vector of this wave is related to the 
refractive index of the nonlinear medium at frequency 2:

 2
22k n
c


Our goal is to determine A2(z).



21

What equation must the 2nd harmonic obey?
The 2nd harmonic wave must obey the wave equation, of course.

  22 2 2 (2)
2 2

02 2 2

2   
    

nE E P
z c t dt

 


As we have seen, the 2nd-order polarization results from the 
field at frequency  - the fundamental.  Putting in the spatial 
dependence explicitly:

       22 2
0 02 i t ik zP t E e    

the amplitude of the incident field 
(the one at frequency )

this is the k of the 
incident field:

 k n
c


       2 22 2 2
0 02 i k z tP t E e    
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Plug our assumed forms for E(z,t) and P(2), to find:

 

     

2

22
22 22 2

2 2 2 22

22
2 22
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22

2 2
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i k z t

A Ajk k A n A e
z z c

E e
c





 
   





 





             

 

Plugging in to the wave equation…

Slowly Varying Envelope Approximation (SVEA):

2
2 2

22

 


 
A Ak
z z

 


So we neglect the second derivative of A2.
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 

  2

2 2
2 22

2 02

82 i k z ik zAik E z e e
z c

 


  
 



The nonlinear wave equation becomes:

Now, we could find a similar first-order differential equation for E0, 
and then solve the two coupled equations.

Solving the wave equation in second order

But, instead of doing that, let’s see if we can gain some physical 
insight by making another simplifying assumption:

E0 is independent of z.

In this case, we can easily integrate both sides of this equation.

The incident field is not significantly depleted 
by the conversion process.  That is, E0 does 
not decrease very much with increasing z.

Assume:
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 
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 



  


 

Integrate both sides

We can do the integral on the right side:

'

0

1' 1
z

i k z i k ze dz e
j k

      

Define the 'phase mismatch' 22  k k k 

This is just A2(z).

Thus we’ve arrived at a result!

   2
2 0

exp 1i kz
A z E

k

 
 



Note, this is just:

 

2

2

2 22
2

4



 

n n

n n

 

 

 
 





25

The solution
The intensity of the second harmonic radiation is proportional to | A2 |2.

     
 

2
2 2

2 2 0 2

sin 2 
 



k z
I z A z I

k
 

The intensity of the 2nd 
harmonic is proportional to the 
square of the intensity of the 
fundamental.

It also depends sensitively on 
the product of k and z.

 2
2 2

0 2

sin
 I z




where 2  k z

-10 -8 -6 -4 -2 0 2 4 6 8 100

0.2

0.4

0.6

0.8

1



2

2

sin 
 
 




 = dimensionless phase mismatch
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SHG intensity is most 
efficient for || < 1

 SVEA and zero-depletion approximations give lowest order solution.
 Intensity of SHG radiation is proportional to the square of the input intensity.
 Intensity of SHG radiation grows quadratically with propagation distance.
 Intensity of SHG is very sensitive to phase mismatch - maximum when k = 0

Phase matching for a (2) process

To summarize:
   

 

2
2 2

2 0 2

sin 2
2

 


 

k z
I z I z

k z


-10 -8 -6 -4 -2 0 2 4 6 8 100

0.2

0.4

0.6

0.8

1



2

2

sin 
 
 


 If  = 1, then sin2/2 = 0.71.

2
 k

L
|| < 1 corresponds to

If the SHG medium is too thick for a 
given k, conversion efficiency suffers.
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What does phase matching mean?
When k = 0, this means that n() = n(2).  The phase velocity of the 
fundamental and 2nd harmonic are equal.   = 2 2.

This is why 
k L << 1 is 
the important 
condition to 
satisfy.

phase-matched: 
am

pl
itu

de

propagation distance

not phase-matched: 

When k is not zero, the phase velocity of the fundamental and 2nd 
harmonic are different, and    2 2.  As z increases, the 2nd 
harmonic wave gets increasingly out of phase with the fundamental.

am
pl

itu
de

propagation distance
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Materials and configurations for (2) NLO

There are a number of materials commonly used for SHG or 
other frequency conversion effects based on (2).

• KDP: potassium di-hydrogen phosphate
• BBO: beta-barium borate
• LiNbO3: lithium niobate
• etc.

LiNbO3 crystals

A non-linear crystal inside the 
laser cavity to produce UV light:

This is a “VECSEL”: a 
“vertical external cavity 
surface emitting laser”
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SHG illustration
Example of matching n() and n(2) in a nonlinear medium:

0.4 0.8 1.2 1.6
1.5

1.6

1.7

wavelength (m)

re
fra

ct
iv

e 
in

de
x

no

ne for  = 0º

ne for  = 22.78º

refractive indices for BBO

1.6545

532 nm 1064 nm

optic 
axis

k 
vector

o-ray

e-ray


What if we changed the angle 
slightly?  For example: 23º.

Then no() is unchanged.  But 
ne(2) = 1.6542.  And thus:

  -1
2

4 4150 m   k n n 



For a crystal of thickness = 1 mm: 2 2.1   k z
2

2

sin 0.18



and so

For  = 1064 nm, at this angle, 
no() = ne(2) and thus k = 0.
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What if the phase matching is not perfect?
in

te
ns

ity

propagation distance z

intensity of the fundamental (decreasing?)

intensity of the 2nd harmonic (increasing quadratically if k = 0)

If the phase mismatch is not 
precisely zero, then how does the 
second harmonic intensity behave?

   
 

2
2 2

2 0 2

sin 2
2

 


 

k z
I z I z

k z


SHG crystal

The SHG intensity oscillates as a function of propagation distance:

2
in

te
ns

ity

propagation distance

k = 0 (quadratic)

decreasing peak 
signal with 
increasing k
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In some cases, we can control the sign of 
(2) by changing the crystal structure.

LiNbO3

Another way to boost the SHG efficiency

SHG crystal
Why does the signal oscillate?

If phase matching condition is not perfect, then 
after a certain length (called the ‘coherence 
length’ Lcoh), the fundamental and 2nd harmonic 
walk out of phase with each other.

At that point, the process reverses itself, and the fundamental grows 
while the 2 beam diminishes.  This process then oscillates.

What if, at z = Lcoh, we could flip the sign of 
(2)?  This would change the phase of E2 by 
.  Instead of cancelling out as it propagates 
beyond Lcoh, E2 would be further enhanced.
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Flipping the sign of (2) once each coherence length is known as 
“quasi-phase matching.” It has recently become a critically important 
method for efficient second harmonic generation.

Quasi-phase matching

(Length)2

phase 
matching

quasi-
phase 
matching

no phase 
matching

The process of fabricating a 
material where the sign of 
(2) flips back and forth is 
known as “periodic poling”.

A photo of PPLN: 
periodically poled 
lithium niobate



33

SHG at a surface

Another method of minimizing  = k z / 2 : use a very small value of z. 
For example, at a surface or an interface.

“surface second harmonic generation”
- a very sensitive probe of surfaces
(but very weak!) = 1 + 2

Applications:
• measuring the orientation of molecules at a liquid surface
• studying buried interfaces, e.g., silicon/insulator


