
William Stallings 

Computer Organization 

and Architecture

8
th

Edition

Chapter 12

Processor Structure and 

Function



CPU Structure

• CPU must:

—Fetch instructions

—Interpret instructions

—Fetch data

—Process data

—Write data



CPU With Systems Bus



CPU Internal Structure



12.2 Registers

• CPU must have some fast temporary 
storage for internal manipulations

• Top level of memory hierarchy

—Fastest

—Smallest capacity

• Number and function vary greatly with 
processor design

—One of the major CPU design decisions



Classification of Registers

• User-visible

—Can be accesses via assembly instructions

—Part of computer architecture

• Control and status

—Cannot (in general) be accessed via assembly 
instructions

—Part of computer organization

—Used by:

–control unit

–OS



User-Visible Registers

• General Purpose

• Data

• Address

• Condition Codes



User-Visible Registers

• True general purpose if instruction set is 
orthogonal

• May be restricted, e.g. dedicated to FP

• May be used for data or addressing

• Data (Dedicated to data, no addressing)

—E.g. EAX, EBX in x86

• Addressing (Dedicated to addressing, no data)

—E.g. segment in x86 (CS, DS, ES, SS)



General Purpose trade-off

• Make them general purpose

—Increase flexibility and programmer options

—Increase instruction size & complexity

• Make them specialized

—Smaller (faster) instructions

—Less flexibility



How Many GP Registers?

• Between 8 – 32 in CISC

• Fewer = more memory references

• More:

—Does not reduce memory references 
(diminishing returns)

—Increases # of bits used for addressing them

—Takes up processor area

• See also Section 13.2 (Register ―file‖ in 
RISC vs. cache)



GP registers - How big?

• Large enough to hold full address

• Large enough to hold full word

• Often possible to combine two data 
registers to hold a longer data type



GP registers - Condition Code Registers

• Sets of individual bits, a.k.a. flags

—e.g. result of last operation was zero

• Can be read (implicitly) by programs

—e.g. Jump if zero

• Can not (usually) be set directly by 
programs, they are side-effects of 
instructions

—E.g. ADD EAX, 3



• Problem 12.1/476



Control & Status Registers

• Program Counter (PC)

—EIP in x86

• Instruction Decoding Register (IR)

• Memory Address Register (MAR)

• Memory Buffer Register (MBR)

• Please go back to Ch.2 and read over the 
IAS organization (Fig. 2.3)



Control & Status Registers 

Program Status Word (PSW)

Combination of Condition Codes with other 
status info, e.g.

—Sign of last result

—Zero

—Carry

—Equal

—Overflow

—Interrupt enable/disable

—Supervisor (e.g. levels 0, 1, 2, 3 in x86)



Supervisor Mode

• Intel ring zero, a.k.a. Kernel mode

• Allows privileged instructions to execute

• Used only by OS (Not available to user 
programs)



Other Status and Control Registers

• May have registers pointing to:

—Process control blocks (OS)

—Interrupt Vectors (OS)

• May have registers for control of I/O

CPU design and OS design are closely 
linked!

• E.g. trade-off between placing control info 
in registers and placing it in a low 
memory block



Example Register Organizations Architectures

Read pp. 439-440



12.3 Instruction Cycle

Please go back to Ch.3.2 and read over the 
FETCH-EXECUTE cycle



Indirect Cycle

• May require memory access to fetch 
operands

• Indirect addressing requires more 
memory accesses

• Can be thought of as additional instruction 
subcycle



Instruction Cycle with Indirect



Instruction Cycle State Diagram



Data Flow (Instruction Fetch)

• Depends on CPU design

• In general:

• Fetch

—PC contains address of next instruction

—Address moved to MAR

—Address placed on address bus

—Control unit requests memory read

—Result placed on data bus, copied to MBR, 
then to IR

—Meanwhile PC incremented by 1



Data Flow (Data Fetch)

• IR is examined

• If indirect addressing, indirect cycle is 
performed

—Right most N bits of MBR transferred to MAR

—Control unit requests memory read

—Result (address of operand) moved to MBR



Data Flow (Fetch Diagram)



Data Flow (Indirect Diagram)



Data Flow (Execute)

• May take many forms

• Depends on instruction being executed

• May include

—Memory read/write

—Input/Output

—Register transfers

—ALU operations



Data Flow (Interrupt)

• Simple

• Predictable

• Current PC saved to allow resumption 
after interrupt

• Contents of PC copied to MBR

• Special memory location (e.g. stack 
pointer) loaded to MAR

• MBR written to memory

• PC loaded with address of interrupt 
handling routine

• Next instruction (first of interrupt handler) 
can be fetched



Data Flow (Interrupt Diagram)

?



12.4 Pipelining

Idea: Prefetch

• Fetch is accessing main memory

• Execution usually does not access main 
memory

• Therefore: Can fetch next instruction 
during execution of current instruction



Two Stage Instruction Pipeline



Prefetch Improves Performance

But not doubled:

• Fetch usually shorter than execution

—Idea: Prefetch more than one 
instruction!

—Idea: Make smaller pieces! (so they’re 
about equal)

• Any jump or branch means that 
prefetched instructions are not the 
required instructions

—Idea: Guess! (You’ll be right about 50% 
of the time)



Full-fledged Pipelining

• Fetch instruction

• Decode instruction

• Calculate operands (i.e. EAs)

• Fetch operands (Get operands?)

• Execute instructions

• Write result

• Overlap all these operations!



Timing Diagram for 

Instruction Pipeline Operation

What is the time savings?



Timing Diagram for 

Instruction Pipeline Operation

What assumptions have we made?

• Each instruction goes through all 6 stages

• Any two stages can be performed in parallel

• FI, FO and WO can require the same memory address!

• Sequential execution

• Branches and Interrupts are not sequential!



The Effect of a Conditional Branch on 

Instruction Pipeline Operation



We have covered pp.433-447

Please read carefully and do all the ―back-
reading‖ assignments.

Solve end-of-chapter Problems 12.2, 12.3



Data Flow

(Interrupt Diagram)

QUIZ

In the coverage of Status and Control registers, it was mentioned that some CPUs 

have dedicated registers for the interrupt vectors, whereas others store these 

vectors in memory.

• Which of these types of CPU is represented in the diagram? Explain!

• What would the diagram look like for the other type of CPU?



QUIZ

End-of-chapter problem 12.4



Six Stage 

Instruction Pipeline

Decision points for 

unconditional branch, 

conditional branch and 

interrupt



Orthogonal Pipeline Depiction → Emphasis is on 

the pipeline itself, rather than individual instructions



Long pipelines – diminishing returns

• The ―N-squared‖ problem 

• The longer the pipeline, the more work is 
lost when it needs to be emptied

• Each stage needs its own latching delays 
(setup times and hold times)

Conclusion: We need quantitative measures!



Pipeline performance

• Assume a k-stage pipeline

• Common cycle time must be t = tmax + dlatch

Source: DLXview pipeline simulator

http://cobweb.ecn.purdue.edu/~teamaaa/dlxview/


Pipeline performance

• k-stage pipeline

• Common cycle time t

• Time needed for n instructions to go through the 

pipeline: [k + (n – 1)]· t

Explain this!



Non-Pipeline performance

• Assume non-pipelined CPU

• Instruction cycle time k·t

• Time needed for n instructions to execute: 

n·k·t

dlatch should be 

subtracted back, but 

normally dlatch « t

Multiplication is not 

exact, since the ti for 

each stage need not be 

“inflated” to tmax



Speedup Factors

with Instruction

Pipelining

Speedup = ratio of non-

pipelined to pipelined

For practice: re-derive the 

formula 12.2/450 when the 

latching delay is not negligible

What is not captured in these 

numerical measures:

• increased hardware 

complexity needed to 

coordinate the stages

• pipeline hazards (next slides)



QUIZ

End-of-chapter problem 12.5
Hint: Assume a long sequence of instructions



Pipeline Hazards

• The entire pipeline, or a portion thereof, 
must stall

• Also called pipeline bubbles

• Types of hazards

—Resource

—Data

—Control



Resource Hazards

• Two (or more) instructions in pipeline need same 
resource

• Executed serially rather than parallel for part of 
the pipeline

• A.k.a. structural hazard

Example:

• Assume simplified five-stage pipeline

• Each stage takes one clock cycle

• A new instruction enters pipeline each clock cycle

• See next slide



Resource Hazard Diagram



Resource Hazards

Assumptions made in prev. example:

• Main memory has single port

• Assume instruction fetches and data reads and 
writes performed one at a time

• No cache (or only cache misses)

• The operand needed for I1 is in memory, not in 
register, so it cannot be read in parallel with 
instruction fetch for I3

Conclusion: I3 Fetch (FI) stage must idle for one 
cycle

Another example: Multiple arithmetic or logic 
instructions are ready to enter the Execute (EI) 
stage, but there’s only one ALU



Resource Hazards

What can be done?

―Easy‖ solution: increase available resources

—Multiple main memory ports

—Separate memories for instructions and 
data (Harvard architecture!)

—Multiple ALUs

Advanced solutions (See App.I):

—Dynamic pipeline

—Out-of-order execution



Data Hazards

Conflict in access of an operand location

• At higher programming levels, this is 
known as the general problem of 
concurrency, e.g. two processes/threads 
need to access the same item of data
—Use semaphores, mutexes ... (OS) 

• Example:
—Two instructions to be executed in sequence
—Both access a particular memory or register 

operand
—If in strict sequence, no problem occurs
—If in a pipeline, operand value could be 

updated so as to produce different result from 
strict sequential execution



Data Hazards

x86 example:

ADD EAX, EBX
SUB ECX, EAX

• ADD instruction does not update EAX until end of 
stage 5, at clock cycle 5

• SUB instruction needs value at beginning of its 
stage 2, at clock cycle 4

• Pipeline must stall for two clocks cycles
• Without special hardware and specific avoidance 

algorithms, results in inefficient pipeline usage



Data Hazard Diagram



Types of Data Hazard

• Read after write (RAW), or true dependency

—An instruction modifies a register or memory location

—Succeeding instruction reads data in that location

—Hazard if read takes place before write complete

• Write after read (RAW), or antidependency

—An instruction reads a register or memory location 

—Succeeding instruction writes to location

—Hazard if write completes before read takes place

• Write after write (RAW), or output dependency

—Two instructions both write to same location

—Hazard if writes take place in reverse of order intended 
sequence

• Previous example is RAW hazard

• See also Chapter 14



We have covered pp. 448-453.

Homework for Ch.12 – Due Dec 7

(Last homework!)

End-of-chapter problems:

• 6 (Hint: see prev. problem 12.5 for the size of 

the instruction queue in 8088)

• 8

• 10



QUIZ: Problem 12.11

• Time needed for n instructions to go through the 

pipeline if there are no hazards: 

[k + (n – 1)]· t

• Stalling introduced by n hazardous instructions 

(each causes a reload of the pipeline):

n·k·t

How do we use the probabilities?



Control Hazard

• CPU makes wrong decision on branch 
prediction  Brings instructions into 
pipeline that must subsequently be 
discarded

• A.k.a. branch hazard

• Ways of dealing w/conditonal branches:

—Prefetch branch Target

—Multiple streams brute-force

—Loop buffer

—Branch prediction

—Delayed branch



Prefetch Branch Target

• Use more hardware:

—Target of branch is prefetched in a buffer 
(queue)

—while the instructions sequentially following 
the branch are executed normally in pipeline

• Keep target until branch is executed



Multiple Streams

• Use even more hardware  two full 
pipelines!

—Fetch each branch into a separate pipeline and 
execute them in parallel

—When decision was made, use appropriate 
pipeline, discard the other

• Problems:

—Increased bus & register contention

—Multiple branches in a row lead to further 
pipelines being needed



Loop Buffer

• Extends the prefetch approach in another 
way

—Very fast memory (instruction cache!)

—Maintained by fetch stage of pipeline

—Check buffer before fetching from memory

• Very good for small jumps (if-else, if-
then-else) and loops

—Buffer size designed to be able to store all 
instructions in loop



Loop Buffer Diagram

Compared to what? Work it out, 

assuming 16-bit addresses.



Loop Buffer Diagram

16

8
8-bit register for L.B. environment



16

8
8-bit register for L.B. environment

Extra-credit question: How does this L.B. mechanism 

relate to the cache address format from Ch.4?



Branch Prediction – Static methods

• Predict never taken

—Assume that jump will not happen

—Always fetch next instruction 

—68020 & VAX 11/780

—VAX will not prefetch after branch if a page 
fault would result (O/S v CPU design)

• Predict always taken

—Assume that jump will happen

—Always fetch target instruction

—Success rate is slightly over 50%, only now 
page faults are more likely!



Branch Prediction – Static methods

• Predict by Opcode
—Based on statistical studies, some instructions 

are more likely to result in a jump than others

—Can get up to 75% success



Branch Prediction – Dynamic methods

• Taken/Not taken switch
—Based on the previous history of k executions 

of that particular branch instr.

—How long the history?  Associate k state bits 
with each branch instr.

—Where are these bits?  In the (instruction) 
cache

—The prediction ―switch‖ is governed by the 
state of the k bits  see ex. next slides

—k =1 works well for loops! (Why?)



Flowchart for Taken/Not taken switch with k=2

How can you tell 

that k=2?



State Diagram for Taken/Not taken switch with 

k=2



Problem 12.13



Branch Prediction – Dynamic methods

• Improvement of history-bits method: if 
the branch is predicted taken, it would be 
nice to have the opcode of the target 
already prefetched! 



Branch Prediction – Dynamic methods

• Correlation-based
—In loop-closing branches, history is good 

predictor

—In more complex structures, branch direction 
correlates with that of related branches
– Use recent branch history as well



Dealing With 

Branches



Branch Prediction – Dynamic methods

• Delayed Branch

—Do not take jump until you have to

—Optimization: Rearrange instructions!

– Does not work for conditional branches whose 
condition is set by the instruction right before the 
branch!

– Example on next slide



Use of Delayed 

Branch

Ch. 13, pp.501-503

Note that the opcode 

for ADD is fetched 

before JUMP has 

modified the PC!



Intel 80486 Pipelining: 5-stage pipeline

Burst-mode memory cycles:

• A standard 32-bit (4-byte) memory transfer takes two clock 
cycles. After that, more data up to the next 12 bytes (or three 
transfers) can be transferred with only one cycle used for each 
32-bit (4-byte) transfer.

• Thus, up to 16 bytes of contiguous, sequential memory data 
can be transferred in as little as five cycles instead of eight 
cycles.

Fetch
— From cache or external memory

— Put in one of two 16-byte prefetch buffers

— Fill buffer with new data as soon as old data consumed

— Variable instruction length  Average 5 instructions fetched 
per load

— Independent of other stages to keep buffers full

http://gecko54000.free.fr/?documentations=1989-04_Intel_80486

http://gecko54000.free.fr/?documentations=1989-04_Intel_80486
http://gecko54000.free.fr/?documentations=1989-04_Intel_80486
http://gecko54000.free.fr/?documentations=1989-04_Intel_80486


Intel 80486 Pipelining: 5-stage pipeline

Decode stage 1
— Opcode & address-mode info

— The info needed is included in at most first 3 bytes of every 
instruction

— Can direct D2 stage to get rest of instruction

Decode stage 2
— Generate control signals for ALU, based on opcode

— Performs computations needed for complex address modes

Execute
— ALU operations, cache access for operands

Writeback
— Update registers & flags

— Results sent to cache & bus interface write buffers



80486 Instruction Pipeline Examples

Why can’t 

decoding proceed 

here?

How can it proceed here? 

(Bypass logic … but 

remember the “N2” 

problem!



80486 Instruction Pipeline Examples

Q: What if the EX stage of Jcc finds out that the condition is false?

A: It’s actually better, b/c the sequential instruction is already fetched and completely 

decoded (D1 + D2)!

Speculative prefetch 

of target instruction



SKIP the remainder of Ch.12 (12.5, 12.6)

This concludes the material required 
for the final.

Review next Tuesday and Thursday!


