William Stallings
Computer Organization
and Architecture

8th Edition

Chapter 12

Processor Structure and
Function

CPU Structure

e CPU must:
—Fetch instructions
—Interpret instructions
—Fetch data
—Process data
—Write data

CPU With Systems Bus

Control Data Address
Bus Bus Bus

'\...—-'-'—"'Y—'—'---._.J
System
Bus

CPU Internal Structure

Arithmetic and Logic Unit

A rithmetic

‘ ’ and ‘

Boolean
Logic

Internal CPLI Bus

Registers

Control
Lnit

Control
Paths

12.2 Registers

e CPU must have some fast temporary
storage for internal manipulations
e Top level of memory hierarchy

—Fastest
—Smallest capacity

e Number and function vary greatly with
processor design

—One of the major CPU design decisions

Classification of Registers

o User-visible
—Can be accesses via assembly instructions
—Part of computer architecture

e Control and status

—Cannot (in general) be accessed via assembly
instructions

—Part of computer organization
—Used by:

—control unit

-0S

User-Visible Registers

e General Purpose
e Data

e Address

e Condition Codes

User-Visible Registers

e True general purpose if instruction set is
orthogonal

e May be restricted, e.g. dedicated to FP
e May be used for data or addressing

e Data (Dedicated to data, no addressing)
—E.g. EAX, EBX in x86

e Addressing (Dedicated to addressing, no data)
—E.g. segment in x86 (CS, DS, ES, SS)

General Purpose trade-off

e Make them general purpose
—Increase flexibility and programmer options
—Increase instruction size & complexity

e Make them specialized

—Smaller (faster) instructions
—Less flexibility

How Many GP Registers?

e Between 8 - 32 in CISC
e Fewer = more memory references

e More:

—Does not reduce memory references
(diminishing returns)

—Increases # of bits used for addressing them
—Takes up processor area

e See also Section 13.2 (Register “file” in
RISC vs. cache)

GP registers - How big?

e Large enough to hold full address
e Large enough to hold full word

e Often possible to combine two data
registers to hold a longer data type

GP registers - Condition Code Registers

e Sets of individual bits, a.k.a. flags
—e.g. result of last operation was zero

e Can be read (implicitly) by programs
—e.g. Jump if zero

e Can not (usually) be set directly by
programs, they are side-effects of
Instructions

—E.g. ADD EAX, 3

e Problem 12.1/476

Control & Status Registers

e Program Counter (PC)
—EIP in x86

e Instruction Decoding Register (IR)
e Memory Address Register (MAR)
e Memory Buffer Register (MBR)

e Please go back to Ch.2 and read over the
IAS organization (Fig. 2.3)

Control & Status Registers
Program Status Word (PSW)

Combination of Condition Codes with other
status info, e.q.
—Sign of last result
—Zero
—Carry
—Equal
—Overflow
—Interrupt enable/disable
—Supervisor (e.g. levels 0, 1, 2, 3 in x86)

Supervisor Mode

e Intel ring zero, a.k.a. Kernel mode
e Allows privileged instructions to execute

e Used only by OS (Not available to user
programs)

Other Status and Control Registers

e May have registers pointing to:
—Process control blocks (OS)
—Interrupt Vectors (OS)

e May have registers for control of I/O

CPU desigh and OS design are closely
linked!

e E.g. trade-off between placing control info
in registers and placing it in a low
memory block

Example Register-Organizaticons Architectures

Data Registers General Registers General Registers
)] AX [Accumulator EAX AX
1 BX Base EBX BX
D2 CX Count ECX CX
D3 DX Drata EDX [
D
5 Pointer & Index ESP 5P
1) 5P |Stack Pointer EBP BF
D7 BP |Base Pointer ESI b1 |
51 [Souwrce Index EDI DI

Address Registers D1 | Dest Index
Al Program Status
Al Segment FLAGS Register
A2 CS Code Instruction Pointer
A3 Ds Data
Ad 55 Stack
AS ES Exira () 80386 - Pentiom 11
Ab
A7 Program Status
AT Insir Pir

Flags
Program Status
Program Counter (b) 8086
| Status Register

{a) MC63000

Read pp. 439-440

12.3 Instruction Cycle

Please go back to Ch.3.2 and read over the
FETCH-EXECUTE cycle

Indirect Cycle

e May require memory access to fetch
operands

e Indirect addressing requires more
memory accesses

e Can be thought of as additional instruction
subcycle

Instruction Cycle with Indirect

Interrupt

Fetch

Indirect

Instruction Cycle State Diagram

Indirection Indirection

~)

Operand

store

Muliaple Multiple
operands resulls

Instructio Operand Data Operand
operation address Overation address
decoding calculation pe caleulatiog
))) Mt
[mstruction complete, Keturn for string interrupl

feteth next instroction of vector data

Data Flow (Instruction Fetch)

e Depends on CPU design
e In general:

e Fetch
—PC contains address of next instruction
—Address moved to MAR
—Address placed on address bus
—Control unit requests memory read

—Result placed on data bus, copied to MBR,
then to IR

—Meanwhile PC incremented by 1

Data Flow (Data Fetch)

e IR is examined

o If indirect addressing, indirect cycle is
performed
—Right most N bits of MBR transferred to MAR
—Control unit requests memory read
—Result (address of operand) moved to MBR

Data Flow (Fetch Diagram)

CPU

PC —"5MAR

]

/T Control

Unit

K= Memory

IR K—— MBR K’

MBE = Memaory buller register

MAR = Memory address register

IR = Instruction register
PC = Program counter

Address
Bus

Data Control
Bus Bus

Data Flow (Indirect Diagram)

CPU

"> MAR

L

Control
Unit

K=
—>

MBR

Vv

Memory

Address Data Control

Bus

Bus

Bus

Data Flow (Execute)

e May take many forms
e Depends on instruction being executed

e May include
—Memory read/write
—Input/Output
—Register transfers
—ALU operations

Data Flow (Interrupt)

Simple
Predictable

Current PC saved to allow resumption
after interrupt

Contents of PC copied to MBR

Special memory location (e.g. stack
pointer) loaded to MAR

MBR written to memory

PC loaded with address of interrupt
handling routine

Next instruction (first of interrupt handler)
can be fetched

Data Flow (Interrupt Diagram)

CPU

PC

MAR

L

i

Control
Unit

f/

/

¢ > MBR %P

Address Data Control

Bus

Bus

Memory

Bus

12.4 Pipelining

Idea: Prefetch

e Fetch is accessing main memory

e Execution usually does not access main
memory

e Therefore: Can fetch next instruction
during execution of current instruction

Two Stage Instruction Pipeline

Instruction Instruction Result

Fetch Execute

{a) Simplified view

Wait MNew add ress Wait

Instruction Instruction Result

.

Discard

{b) Expanded view

Prefetch Improves Performance

But not doubled:
e Fetch usually shorter than execution

—Idea: Prefetch more than one
Instruction!

—Idea: Make smaller pieces! (so they're
about equal)

e Any jump or branch means that
prefetched instructions are not the
required instructions

—Idea: Guess! (You'll be right about 50%
of the time)

Full-fledged Pipelining

e Fetch instruction

e Decode instruction

e Calculate operands (i.e. EAS)

e Fetch operands (Get operands?)
e Execute instructions

o Write result

e Overlap all these operations!

Timing Diagram for
Instruction Pipeline Operation

Instruction 1
Instruction 2
Instruction 3
Instruction 4
Instruction 5
Instruction 6
Instruction 7
Instruction 8

Instruction 9

Time >
112134 |56 |7 |89 |10]11]12]13]14
FI | DI |CO]| FO| EI | WO

FI | DI |CO| FO| EI | WO
FI | DI |CO]| FO| EI | WO
FI | DI |CO]| FO| EI | WO
FI | DI |CO| FO| EI | WO
FI | DI |CO]| FO| EI | WO
FI | DI |CO]| FO| EI | WO
FI | DI |CO]| FO| EI | WO
FI | DI |CO| FO| EI | WO

What is the time savings?

Timing Diagram for
Instruction Pipeline Operation

Time

1123|456 |7]|8(9|1011]12]13]|14
Instruction 1 | F | pI | co| Fo | EI [wo
Instruction 2 FIl | DI |co|Fo| B |wO
Instruction 3 FI | oI |co|Fo| Bl [wo
Instruction 4 FI | DI |co|FO| EI |WO
Instruction 5 FI | DI |co|Fo| EI |[wo
Instruction 6 FI | DI |co|Fo]| EI |wWo
Instruction 7 FIl | DI [co|Fo| EI |[WO
Instruction 8 FI | DI |co|FO]| EI |wo
Instruction 9 FI | ol |co|Fo| EI [wo

What assumptions have we made?
» Each instruction goes through all 6 stages
* Any two stages can be performed in parallel
 FI, FO and WO can require the same memory address!
 Sequential execution
 Branches and Interrupts are not sequential!

The Effect of a Conditional Branch on
Instruction Pipeline Operation

Instruction 1
Instruction 2

Instruction 3
Instruction 4

Instruction 5

Instruction 6
Instruction 7
Instruction 15

Instruction 16

Time > < Branch Penalty >
11213456789]10]11112]113|14
FI | DI | CO|FO | EI | WO

FI | DI | CO| FO | EI | WO
FI | DI |CO| FO | EI | WO
FI | DI | CO| FO
FI | DI | CO
FI | DI
Fl
FI | DI | CO| FO | EI | WO
FI | DI | CO| FO | EI | WO

We have covered pp.433-447

Please read carefully and do all the “back-
reading” assignments.

Solve end-of-chapter Problems 12.2, 12.3

QuUIZ

Data Flow
(Interrupt Diagram) PC MAR ——"

ﬁ Memory
Control :>

Unit

Address Data Control
Bus Bus Bus

CPU

VYV

In the coverage of Status and Control registers, it was mentioned that some CPUs
have dedicated registers for the interrupt vectors, whereas others store these
vectors in memory.

« Which of these types of CPU is represented in the diagram? Explain!

« What would the diagram look like for the other type of CPU?

QuUIZ

End-of-chapter problem 12.4

Six Stage
Instruction Pipeline

Decision points for
unconditional branch,
conditional branch and
Interrupt

Fl1

DI

coO

Yes

Update
PC

Empty
Pipe

Fetch
Instruction

Decnde
Instruction

'ncon-
ditional

FO

El

WO

Orthogonal Pipeline Depiction — Emphasis is on
the pipeline itself, rather than individual instructions

FI | DI |CO|FO| EI [WO FI | DI |CO|FO| EI [WO

1 11 1 11

2 11211 2 |121n

3 131121 3 |13f(121N1

4 (141311211 4 (14131211

5 |I5114[13]12]| 11 5 |54 13121
ol © 6 115 |14 13|12]| 11 6 |I6]115)14([13]12]|N1
E 7 |17 |16|15]14]|13] 12 7 11716 |15]14 |13]12

8 |18|17[16|15]14]13 8 |15 13
v 9 |19|18[I7|16]|15] 14 9 |1M6]115

10 9|18 |I7|16]15 10 116|115

11 19 (18 |17 |16 11 116|115

12 9118 | 17 12 116 | 115

13 19| 18 13 116|115

14 19 14 116

(a) No branches (b) With conditional branch

Long pipelines — diminishing returns

e The “"N-squared” problem

» The longer the pipeline, the more work is
lost when it needs to be emptied

e Each stage needs its own latching delays
(setup times and hold times)

Conclusion: We need quantitative measures!

Pipeline performance

e Assume a k-stage pipeline

e Common cycle time mustbe T =T, + d,_.:

...

i
L
-ADT
IDSEX EX/MEM MEH WE
j..__ZEr-:-?— !
R2 I_': I \
o] W=
Regizters — ALY ffie] gy —Je- =
"]
Dat
bl | ||
=l
- -
16 f sign y 32
L extend [
» =
P | | —‘
W L

current Cpcle

INTEGEE datapath of pipeline

Source: DLXview pipeline simulator

http://cobweb.ecn.purdue.edu/~teamaaa/dlxview/

Pipeline performance

o k-stage pipeline

e Common cycle time T _

e Time needed for N instrfuctions to go through the
pipeline: [K + (n - 1)]- T

Non-Pipeline performance

e Assume non-pipelined CPU

e Instruction cycle time K=t

e Time needed for N instructions to execute:
n-k-T

Specdup factor

speedup Factors 12+
with Instruction
Pipelining

Speedup = ratio of non-
pipelined to pipelined

For practice: re-derive the ,

formula 12.2/450 when the

latching delay is not negligible
What Is not captured in these -
numerical measures: 10-
e Increased hardware
complexity needed to
coordinate the stages 24

Specdup factor

Nimber of mstrnctions

{a)

=3 IS mndions

h=MN mEiractions

n= 10 msiroctions

+ pipeline hazards (next slides) °7

1 | I
10 15 20

MWumber of stages
b

QuUIZ

End-of-chapter problem 12.5
Hint: Assume a long sequence of instructions

Pipeline Hazards

e The entire pipeline, or a portion thereof,
must stall

e Also called pipeline bubbles

e Types of hazards
—Resource
—Data
—Control

Resource Hazards

e Two (or more) instructions in pipeline need same
resource

o Executed serially rather than parallel for part of
the pipeline
e A.k.a. structural hazard

Example:

e Assume simplified five-stage pipeline

e Each stage takes one clock cycle

e A new instruction enters pipeline each clock cycle
e See next slide

Resource Hazard Diagram

Instrutcion

Instrutcion

Clock cycle
1T 2 3 4 5 6 7 8 9
FI | DI | FO| EI | WO
FI DI | FO| EI | WO
FIl | DI | FO| EI | WO
FIl | DI | FO| EI | WO
(a) Five-stage pipeline, ideal case
Clock cycle
1 2 3 4 5 6 7 8 9
FI | DI | FO| EI | WO
FI DI | FO| EI | WO
Idle] FI | DI | FO| EI | WO
FIl | DI | FO| EI | WO

(b) 11 source operand in memory

Resource Hazards

Assumptions made in prev. example:
e Main memory has single port

e Assume instruction fetches and data reads and
writes performed one at a time

e No cache (or only cache misses)

e The operand needed for I1 is in memory, not in
register, so it cannot be read in parallel with
instruction fetch for I3

Conclusion: I3 Fetch (FI) stage must idle for one
cycle

Another example: Multiple arithmetic or logic
instructions are ready to enter the Execute (EI)
stage, but there’s only one ALU

Resource Hazards
What can be done?

“Easy” solution: increase available resources
—Multiple main memory ports

—Separate memories for instructions and
data (Harvard architecture!)

—Multiple ALUs

Advanced solutions (See App.I):
—Dynamic pipeline
—Qut-of-order execution

Data Hazards

Conflict in access of an operand location

o At higher programming levels, this is
known as the general problem of
concurrency, e.g. two processes/threads
need to access the same item of data

—Use semaphores, mutexes ... (OS)

e Example:
—Two instructions to be executed in sequence

—Both access a particular memory or register
operand

—If in strict sequence, no problem occurs

—If in a pipeline, operand value could be
updated so as to produce different result from
strict sequential execution

Data Hazards
x86 example:

ADD EAX, EBX
SUB ECX, EAX

e ADD instruction does not update EAX until end of
stage 5, at clock cycle 5

e SUB instruction needs value at beginning of its
stage 2, at clock cycle 4

e Pipeline must stall for two clocks cycles

o Without special hardware and specific avoidance
algorithms, results in inefficient pipeline usage

Data Hazard Diagram

ADD EAX, EBX

SUB ECX, EAX

13

14

Clock cycle
1T 2 3 4 5 6 7 8 9 10
Fl | DI | FO| EIl | WO
FI | DI Idle FO | EI | WO
Fi DI | FO| El | WO
Fl | DI | FO| El | WO

Types of Data Hazard

e Read after write (RAW), or true dependency
— An instruction modifies a register or memory location
— Succeeding instruction reads data in that location
— Hazard if read takes place before write complete

o Write after read (RAW), or antidependency
— An instruction reads a register or memory location
— Succeeding instruction writes to location
— Hazard if write completes before read takes place
e Write after write (RAW), or output dependency
— Two instructions both write to same location

— Hazard if writes take place in reverse of order intended
sequence

e Previous example is RAW hazard
e See also Chapter 14

We have covered pp. 448-453.

Homework for Ch.12 - Due Dec 7

(Last homework!)
End-of-chapter problems:

e 6 (Hint: see prev. problem 12.5 for the size of
the instruction queue in 8088)

e 8
e 10

QUIZ: Problem 12.11

e Time needed for N instructions to go through the
pipeline if there are no hazards:

[k+ (n-1)]- 7T

e Stalling introduced by N hazardous instructions
(each causes a reload of the pipeline):

n-k-T

How do we use the probabilities?

Control Hazard

e CPU makes wrong decision on branch
prediction — Brings instructions into
pipeline that must subsequently be

discarded
e A.k.a. branch hazard

e Ways of dealing w/conditonal branches:

—Prefetch branch Target
—Multiple streams
—Loop buffer

—Branch prediction
—Delayed branch

\

~ brute-force

Prefetch Branch Target

e Use more hardware:

—Target of branch is prefetched in a buffer
(queue)

—while the instructions sequentially following
the branch are executed normally in pipeline

o Keep target until branch is executed

Multiple Streams

e Use even more hardware — two full
pipelines!
—Fetch each branch into a separate pipeline and
execute them in parallel

—When decision was made, use appropriate
pipeline, discard the other

e Problems:
—Increased bus & register contention

—Multiple branches in a row lead to further
pipelines being needed

Loop Buffer

o Extends the prefetch approach in another
way
—Very fast memory (instruction cache!)
—Maintained by fetch stage of pipeline
—Check buffer before fetching from memory

e Very good for small jumps (if-else, if-
then-else) and loops

—Buffer size designed to be able to store all
instructions in loop

Loop Buffer Diagram

Branch address
g I nstruction to he
AN Loop Buffer dmrd&;l. in case of hit
7 (256 bytes)
Most significant address hits

compared to determine a hit

Loop Buffer Diagram

Branch address

/16

Loop Buffer

(256 bytes)

I nstruction to he
decoded in case of hit

-

[8-bitregister for L.B. environment

Most significant address hits

compared to determine a hit

Extra-credit question: How does this L.B. mechanism
relate to the cache address format from Ch.4?

Word

Tag t=s-r bits Line identifier r bits w bits

3 14 2

Branch address
/ 16
I nstruction to be
3 | Loop Buffer decoded in case of hit
7 (256 bytes)
/8 [8-bitregister for L.B. environment
Most significant address bits

compared to determine a hit

Branch Prediction - Static methods

e Predict never taken
—Assume that jump will not happen
—Always fetch next instruction
—68020 & VAX 11/780

—VAX will not prefetch after branch if a page
fault would result (O/S v CPU design)

e Predict always taken
—Assume that jump will happen
—Always fetch target instruction

—Success rate is slightly over 50%, only now
page faults are more likely!

Branch Prediction - Static methods

e Predict by Opcode

—Based on statistical studies, some instructions
are more likely to result in a jump than others

—Can get up to 75% success

Branch Prediction - Dynamic methods

e Taken/Not taken switch

—Based on the previous history of k executions
of that particular branch instr.

—How long the history? — Associate k state bits
with each branch instr.

—Where are these bits? — In the (instruction)
cache

—The prediction “switch” is governed by the
state of the k bits — see ex. next slides

—k =1 works well for loops! (Why?)

>

Yes

Read next
conditional
branch instr

I

Predict taken

Read next
conditional
branch instr

Predict taken

Branch
taken?

Mo

Read next
p| conditional

branch instr

!

Predict not taken

Read next
conditional
branch instr

Predict not taken

Flowchart for Taken/Not taken switch with k=2

How can you tell

that k=27

State Diagram for Taken/Not taken switch with
k=2

Not Taken

Predict

Taken

Taken

Predict

Taken

Taken \

Taken
Not Taken

~

Predict
Not Taken

Not Taken

Not Taken

Predict
MNot Taken

Taken

Problem 12.13

Not Taken
Taken Predict
Taken
Taken
5
=
ot
\ Not Taken

Predict
Not Taken

Taken

Predict

Taken

Not Taken

Predict
Not Taken

Not Taken

Branch Prediction - Dynamic methods

e Improvement of history-bits method: if
the branch is predicted taken, it would be
nice to have the opcode of the target
already prefetched!

Branch Prediction - Dynamic methods

e Correlation-based

—In loop-closing branches, history is good
predictor

—In more complex structures, branch direction
correlates with that of related branches
— Use recent branch history as well

Dealing With
Branches

Mext sequential

address
3 .
. w0 Memaony
E - BEranch Miss
Handling
{a) Predict never taken st ate gy
Mext sequential
I address
| IFFAR | Branch
instroction Target -
address address State =
Liospkup > 5 L
- L Memaory
Addew IPEAR = instruction
entry . . . prefix address register
Update * - *
gt ate I
— Branch Miss Re divect
* Handling

{b) Branch higtory table stratesy

Branch Prediction - Dynamic methods

e Delayed Branch
—Do not take jump until you have to

—Optimization: Rearrange instructions!

— Does not work for conditional branches whose
condition is set by the instruction right before the
branch!

— Example on next slide

Use of Delayed
Branch 100L0ADX, 1A

101 ADD 1, rA
102 JUMP 105
103 ADD rA, rB

Ch. 13, pp501_503 105 STORE rA, Z

100 LOAD X, rA

Time

(a) Traditional Pipeline

101 ADD 1, rA
102 JUMP 106

103 NOOP
106 STORE A, £
Note that the opcode
for ADD is fetched
before JUMP has
modified the PC!

100 LOAD X, Ar

101 JUMP 105
102 ADD 1, rA

105 STORE rA, £

I E

D

(c) Reversed Instructions

Intel 80486 Pipelining: 5-stage pipeline

Burst-mode memory cycles:

e A standard 32-bit (4-byte) memory transfer takes two clock
cycles. After that, more data up to the next 12 bytes (or three
transfers) can be transferred with only one cycle used for each
32-bit (4-byte) transfer.

e Thus, up to 16 bytes of contiguous, sequential memory data
can be transferred in as little as five cycles instead of eight
cycles.

http://gecko54000.free.fr/?documentations=1989-04 Intel 80486

Fetch
— From cache or external memory
— Put in one of two 16-byte prefetch buffers
— Fill buffer with new data as soon as old data consumed

— Variable instruction length — Average 5 instructions fetched
per load

— Independent of other stages to keep buffers full

http://gecko54000.free.fr/?documentations=1989-04_Intel_80486
http://gecko54000.free.fr/?documentations=1989-04_Intel_80486
http://gecko54000.free.fr/?documentations=1989-04_Intel_80486

Intel 80486 Pipelining: 5-stage pipeline

Decode stage 1
— Opcode & address-mode info

— The info needed is included in at most first 3 bytes of every
instruction

— Can direct D2 stage to get rest of instruction

Decode stage 2
— Generate control signals for ALU, based on opcode
— Performs computations needed for complex address modes

Execute
— ALU operations, cache access for operands

Writeback
— Update registers & flags
— Results sent to cache & bus interface write buffers

80486 Instruction Pipeline Examples

Fetich | D1 D2 EX WB MOV Regl, Meml
Fetch | D1 D2 EX WB MOV Regl, Reg2
Fetich | D1 D2 EX WB MOV Mem2, Regl

{a) No Data Load Delay in the Pipeline

Feech | D1 | D2 | EX|[]| WB MOV Regl, Meml
Fetch | D1 D2 | EX MOV Reg2, (Regl)

{b) Pointer Load Delay

80486 Instruction Pipeline Examples

Fetich | D1 D2 EX WB CMP Regl, Imm
Feich | D1 D2 EX Joe Target
Fetch | D1 D2 EX | Target

{¢) Branch Instruction Timing

Q: What if the EX stage of Jcc finds out that the condition is false?
A: It’s actually better, b/c the sequential instruction is already fetched and completely
decoded (D1 + D2)!

SKIP the remainder of Ch.12 (12.5, 12.6)

This concludes the material required
for the final.

Review next Tuesday and Thursday!

