
12 VECTOR GEOMETRY

12.1 Vectors in the Plane

Preliminary Questions
1. Answer true or false. Every nonzero vector is:

(a) equivalent to a vector based at the origin.
(b) equivalent to a unit vector based at the origin.
(c) parallel to a vector based at the origin.
(d) parallel to a unit vector based at the origin.

solution
(a) This statement is true. Translating the vector so that it is based on the origin, we get an equivalent vector
based at the origin.
(b) Equivalent vectors have equal lengths, hence vectors that are not unit vectors, are not equivalent to a unit
vector.
(c) This statement is true. A vector based at the origin such that the line through this vector is parallel to the
line through the given vector, is parallel to the given vector.
(d) Since parallel vectors do not necessarily have equal lengths, the statement is true by the same reasoning
as in (c).

2. What is the length of −3a if ‖a‖ = 5?

solution Using properties of the length we get

‖−3a‖ = |−3|‖a‖ = 3‖a‖ = 3 · 5 = 15

3. Suppose that v has components 〈3, 1〉. How, if at all, do the components change if you translate v
horizontally 2 units to the left?

solution Translating v = 〈3, 1〉 yields an equivalent vector, hence the components are not changed.

4. What are the components of the zero vector based at P = (3, 5)?

solution The components of the zero vector are always 〈0, 0〉, no matter where it is based.

5. True or false?
(a) The vectors v and −2v are parallel.
(b) The vectors v and −2v point in the same direction.

solution
(a) The lines through v and −2v are parallel, therefore these vectors are parallel.
(b) The vector −2v is a scalar multiple of v, where the scalar is negative. Therefore −2v points in the opposite
direction as v.

6. Explain the commutativity of vector addition in terms of the Parallelogram Law.

solution To determine the vector v + w, we translate w to the equivalent vector w′ whose tail coincides
with the head of v. The vector v + w is the vector pointing from the tail of v to the head of w′.

v v'

w'

w

v +
 w

w + v

To determine the vector w + v, we translate v to the equivalent vector v′ whose tail coincides with the head
of w. Then w + v is the vector pointing from the tail of w to the head of v′. In either case, the resulting vector
is the vector with the tail at the basepoint of v and w, and head at the opposite vertex of the parallelogram.
Therefore v + w = w + v.
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880 C H A P T E R 12 VECTOR GEOMETRY

Exercises
1. Sketch the vectors v1, v2, v3, v4 with tail P and head Q, and compute their lengths. Are any two of these

vectors equivalent?

v1 v2 v3 v4

P (2, 4) (−1, 3) (−1, 3) (4, 1)

Q (4, 4) (1, 3) (2, 4) (6, 3)

solution Using the definitions we obtain the following answers:

v1 = −→
PQ = 〈4 − 2, 4 − 4〉 = 〈2, 0〉

‖v1‖ =
√

22 + 02 = 2
y

x

QP
v1

v2 = 〈1 − (−1), 3 − 3〉 = 〈2, 0〉
‖v2‖ =

√
22 + 02 = 2

y

x

QP
v2

v3 = 〈2 − (−1), 4 − 3〉 = 〈3, 1〉
‖v3‖ =

√
32 + 12 = √

10
y

x

Q

P v3

v4 = 〈6 − 4, 3 − 1〉 = 〈2, 2〉
‖v4‖ =

√
22 + 22 = √

8 = 2
√

2
y

x

Q

P v4

v1 and v2 are parallel and have the same length, hence they are equivalent.

Sketch the vector b = 〈3, 4〉 based at P = (−2, −1).
3. What is the terminal point of the vector a = 〈1, 3〉 based at P = (2, 2)? Sketch a and the vector a0 based

at the origin and equivalent to a.

solution The terminal point Q of the vector a is located 1 unit to the right and 3 units up from P = (2, 2).
Therefore, Q = (2 + 1, 2 + 3) = (3, 5). The vector a0 equivalent to a based at the origin is shown in the
figure, along with the vector a.

y

x

P

Q

0

a0

a

Let v = −→
PQ, where P = (1, 1) and Q = (2, 2). What is the head of the vector v′ equivalent to v based

t (2 4)? Wh t i th h d f th t i l t t b d t th i i ? Sk t h d ′
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In Exercises 5–8, refer to Figure 21.

30°

15°

45°

20°

y

v u

w

q

x

FIGURE 21

5. Find the components of u.

solution Since u makes an angle of 45◦ with the positive x-axis, its components are

‖u‖ 〈cos 45◦, sin 45◦〉 = ‖u‖
〈√

2

2
,

√
2

2

〉
.

Find the components of v.
7. Find the components of w.

solution Since w makes an angle of −20◦ with the positive x-axis, its components are

‖w‖〈cos(−20◦), sin(−20◦)〉 = ‖w‖ 〈cos 20◦, − sin 20◦〉 .
Find the components of q.In Exercises 9–12, find the components of

−→
PQ.

9. P = (3, 2), Q = (2, 7)

solution Using the definition of the components of a vector we have
−→
PQ = 〈2 − 3, 7 − 2〉 = 〈−1, 5〉.

P = (1, −4), Q = (3, 5)
11. P = (3, 5), Q = (1, −4)

solution By the definition of the components of a vector, we obtain
−→
PQ = 〈1 − 3, −4 − 5〉 = 〈−2, −9〉.

P = (0, 2), Q = (5, 0)In Exercises 13–18, calculate.

13. 〈2, 1〉 + 〈3, 4〉
solution Using vector algebra we have 〈2, 1〉 + 〈3, 4〉 = 〈2 + 3, 1 + 4〉 = 〈5, 5〉.

〈−4, 6〉 − 〈3, −2〉15. 5 〈6, 2〉
solution 5〈6, 2〉 = 〈5 · 6, 5 · 2〉 = 〈30, 10〉

4(〈1, 1〉 + 〈3, 2〉)17.
〈
− 1

2 , 5
3

〉
+
〈
3, 10

3

〉
solution The vector sum is

〈
−1

2
,

5

3

〉
+
〈
3,

10

3

〉
=
〈
−1

2
+ 3,

5

3
+ 10

3

〉
=
〈

5

2
, 5

〉
.

〈ln 2, e〉 + 〈ln 3, π〉19. Which of the vectors (A)–(C) in Figure 22 is equivalent to v − w?

(A) (B) (C)

w

v

FIGURE 22

solution The vector −w has the same length as w but points in the opposite direction. The sum v + (−w),
which is the difference v − w, is obtained by the parallelogram law. This vector is the vector shown in (b).

w

vv − w

−w

−w

Sketch v + w and v − w for the vectors in Figure 23.
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21. Sketch 2v, −w, v + w, and 2v − w for the vectors in Figure 24.

2 4 61 3 5

1

2

3

4

5

x

y

v = 〈2, 3〉 

w = 〈4, 1〉

FIGURE 24

solution The scalar multiple 2v points in the same direction as v and its length is twice the length of v. It
is the vector 2v = 〈4, 6〉.

2 4 61 3 5

2v

1

2

3

4

5

x

y

2 4 61 3 5

v
1

2

3

4

5

x

y

−w has the same length as w but points to the opposite direction. It is the vector −w = 〈−4, −1〉.
y

x
w

−w

The vector sum v + w is the vector:

v + w = 〈2, 3〉 + 〈4, 1〉 = 〈6, 4〉.
This vector is shown in the following figure:

y

x
w

v

v + w

The vector 2v − w is

2v − w = 2〈2, 3〉 − 〈4, 1〉 = 〈4, 6〉 − 〈4, 1〉 = 〈0, 5〉
It is shown next:

2v − w

y

x
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Sketch v = 〈1, 3〉, w = 〈2, −2〉, v + w, v − w.
23. Sketch v = 〈0, 2〉, w = 〈−2, 4〉, 3v + w, 2v − 2w.

solution We compute the vectors and then sketch them:

3v + w = 3〈0, 2〉 + 〈−2, 4〉 = 〈0, 6〉 + 〈−2, 4〉 = 〈−2, 10〉
2v − 2w = 2〈0, 2〉 − 2〈−2, 4〉 = 〈0, 4〉 − 〈−4, 8〉 = 〈4, −4〉

y

x

w

v

3v + w

2v − 2w

Sketch v = 〈−2, 1〉, w = 〈2, 2〉, v + 2w, v − 2w.
25. Sketch the vector v such that v + v1 + v2 = 0 for v1 and v2 in Figure 25(A).

solution Since v + v1 + v2 = 0, we have that v = −v1 − v2, and since v1 = 〈1, 3〉 and v2 = 〈−3, 1〉,
then v = −v1 − v2 = 〈2, −4〉, as seen in this picture.

1 2

3

1

−4

−3

y

x

v

v1

v2

Sketch the vector sum v = v1 + v2 + v3 + v4 in Figure 25(B).27. Let v = −→
PQ, where P = (−2, 5), Q = (1, −2). Which of the following vectors with the given tails and

heads are equivalent to v?

(a) (−3, 3), (0, 4) (b) (0, 0), (3, −7)

(c) (−1, 2), (2, −5) (d) (4, −5), (1, 4)

solution Two vectors are equivalent if they have the same components. We thus compute the vectors and
check whether this condition is satisfied.

v = −→
PQ = 〈1 − (−2), −2 − 5〉 = 〈3, −7〉

(a) 〈0 − (−3), 4 − 3〉 = 〈3, 1〉 (b) 〈3 − 0, −7 − 0〉 = 〈3, −7〉
(c) 〈2 − (−1), −5 − 2〉 = 〈3, −7〉 (d) 〈1 − 4, 4 − (−5)〉 = 〈−3, 9〉
We see that the vectors in (b) and (c) are equivalent to v.

Which of the following vectors are parallel to v = 〈6, 9〉 and which point in the same direction?

(a) 〈12, 18〉 (b) 〈3, 2〉 (c) 〈2, 3〉
(d) 〈−6, −9〉 (e) 〈−24, −27〉 (f) 〈−24, −36〉

In Exercises 29–32, sketch the vectors
−→
AB and

−→
PQ, and determine whether they are equivalent.

29. A = (1, 1), B = (3, 7), P = (4, −1), Q = (6, 5)

solution We compute the vectors and check whether they have the same components:

−→
AB = 〈3 − 1, 7 − 1〉 = 〈2, 6〉
−→
PQ = 〈6 − 4, 5 − (−1)〉 = 〈2, 6〉

⇒ The vectors are equivalent.

A = (1, 4), B = (−6, 3), P = (1, 4), Q = (6, 3)
31. A = (−3, 2), B = (0, 0), P = (0, 0), Q = (3, −2)

solution We compute the vectors
−→
AB and

−→
PQ :

−→
AB = 〈0 − (−3), 0 − 2〉 = 〈3, −2〉
−→
PQ = 〈3 − 0, −2 − 0〉 = 〈3, −2〉

⇒ The vectors are equivalent.

A = (5, 8), B = (1, 8), P = (1, 8), Q = (−3, 8)
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In Exercises 33–36, are
−→
AB and

−→
PQ parallel? And if so, do they point in the same direction?

33. A = (1, 1), B = (3, 4), P = (1, 1), Q = (7, 10)

solution We compute the vectors
−→
AB and

−→
PQ:

−→
AB = 〈3 − 1, 4 − 1〉 = 〈2, 3〉
−→
PQ = 〈7 − 1, 10 − 1〉 = 〈6, 9〉

Since
−→
AB = 1

3 〈6, 9〉, the vectors are parallel and point in the same direction.

A = (−3, 2), B = (0, 0), P = (0, 0), Q = (3, 2)
35. A = (2, 2), B = (−6, 3), P = (9, 5), Q = (17, 4)

solution We compute the vectors
−→
AB and

−→
PQ:

−→
AB = 〈−6 − 2, 3 − 2〉 = 〈−8, 1〉
−→
PQ = 〈17 − 9, 4 − 5〉 = 〈8, −1〉

Since
−→
AB = −−→

PQ, the vectors are parallel and point in opposite directions.

A = (5, 8), B = (2, 2), P = (2, 2), Q = (−3, 8)In Exercises 37–40, let R = (−2, 7). Calculate the following:

37. The length of
−→
OR

solution Since
−→
OR = 〈−2, 7〉, the length of the vector is ‖−→

OR‖ =
√

(−2)2 + 72 = √
53.

The components of u = −→
PR, where P = (1, 2)

39. The point P such that
−→
PR has components 〈−2, 7〉

solution Denoting P = (x0, y0) we have:

−→
PR = 〈−2 − x0, 7 − y0〉 = 〈−2, 7〉

Equating corresponding components yields:

− 2 − x0 = −2

7 − y0 = 7
⇒ x0 = 0, y0 = 0 ⇒ P = (0, 0)

The point Q such that
−→
RQ has components 〈8, −3〉In Exercises 41–48, find the given vector.

41. Unit vector ev where v = 〈3, 4〉
solution The unit vector ev is the following vector:

ev = 1

‖v‖v

We find the length of v = 〈3, 4〉:
‖v‖ =

√
32 + 42 = √

25 = 5

Thus

ev = 1

5
〈3, 4〉 =

〈
3

5
,

4

5

〉
.

Unit vector ew where w = 〈24, 7〉43. Vector of length 4 in the direction of u = 〈−1, −1〉
solution We first find the unit vector in the direction of u:

eu = 1

‖u‖u = 1√
(−1)2 + (−1)2

〈−1, −1〉 =
〈
− 1√

2
, − 1√

2

〉
.

We now multiply eu by 4 to obtain the desired vector:

4eu = 4

〈
− 1√

2
, − 1√

2

〉
=
〈
− 4√

2
, − 4√

2

〉
=
〈
−2

√
2, −2

√
2
〉
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Vector of length 3 in the direction of v = 4i + 3j
45. Vector of length 2 in the direction opposite to v = i − j

solution We first find the unit vector in the direction of v:

ev = 1

‖v‖v = 1√
12 + (−1)2

〈1, −1〉 = 1√
2
〈1, −1〉 =

〈√
2

2
, −

√
2

2

〉
.

Now multiply by −2 to obtain the desired vector:

−2ev = −2

〈√
2

2
, −

√
2

2

〉
= 〈−√

2,
√

2〉.

Unit vector in the direction opposite to v = 〈−2, 4〉47. Unit vector e making an angle of 4π
7 with the x-axis

solution The unit vector e is the following vector:

e =
〈
cos

4π

7
, sin

4π

7

〉
= 〈−0.22, 0.97〉.

Vector v of length 2 making an angle of 30◦ with the x-axis
49. Find all scalars λ such that λ 〈2, 3〉 has length 1.

solution We have:

‖λ〈2, 3〉‖ = |λ|‖〈2, 3〉‖ = |λ|
√

22 + 32 = |λ|√13

The scalar λ must satisfy

|λ|√13 = 1

|λ| = 1√
13

⇒ λ1 = 1√
13

, λ2 = − 1√
13

Find a vector v satisfying 3v + 〈5, 20〉 = 〈11, 17〉.51. What are the coordinates of the point P in the parallelogram in Figure 26(A)?

solution We denote by A, B, C the points in the figure.

x

y

C (7, 8)

P (x0, y0)

B (5, 4)

A (2, 2)

Let P = (x0, y0). We compute the following vectors:

−→
PC = 〈7 − x0, 8 − y0〉
−→
AB = 〈5 − 2, 4 − 2〉 = 〈3, 2〉

The vectors
−→
PC and

−→
AB are equivalent, hence they have the same components. That is:

7 − x0 = 3

8 − y0 = 2
⇒ x0 = 4, y0 = 6 ⇒ P = (4, 6)

What are the coordinates a and b in the parallelogram in Figure 26(B)?53. Let v = −→
AB and w = −→

AC, where A, B, C are three distinct points in the plane. Match (a)–(d) with
(i)–(iv). (Hint: Draw a picture.)

(a) −w (b) −v (c) w − v (d) v − w

(i)
−→
CB (ii)

−→
CA (iii)

−→
BC (iv)

−→
BA
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solution

(a) −w has the same length as w and points in the opposite direction. Hence: −w = −→
CA.

C

A

−w

(b) −v has the same length as v and points in the opposite direction. Hence: −v = −→
BA.

B

A

−v

(c) By the parallelogram law we have:

−→
BC = −→

BA + −→
AC = −v + w = w − v

That is,

w − v = −→
BC

−v

w

−v + w = BC

A

B

C

(d) By the parallelogram law we have:

−→
CB = −→

CA + −→
AB = −w + v = v − w

That is,

v − w = −→
CB.

−w

v −w + v = CB

A

B

C

→

Find the components and length of the following vectors:

(a) 4i + 3j (b) 2i − 3j (c) i + j (d) i − 3j

In Exercises 55–58, calculate the linear combination.

55. 3j + (9i + 4j)

solution We have:

3j + (9i + 4j) = 3 〈0, 1〉 + 9 〈1, 0〉 + 4 〈0, 1〉 = 〈9, 7〉

− 3
2 i + 5

( 1
2 j − 1

2 i
)57. (3i + j) − 6j + 2(j − 4i)

solution We have:

(3i + j) − 6j + 2(j − 4i) = (〈3, 0〉 + 〈0, 1〉) − 〈0, 6〉 + 2(〈0, 1〉 − 〈4, 0〉) = 〈−5, −3〉

3(3i − 4j) + 5(i + 4j)
59. For each of the position vectors u with endpoints A, B, and C in Figure 27, indicate with a diagram the
multiples rv and sw such that u = rv + sw. A sample is shown for u = −−→

OQ.
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y

x

C

A

Q

B

w

v

sw

rv

FIGURE 27

solution See the following three figures:

y

x

A

w

v

sw

rv

y

x

w

v
B

sw
rv

y

x

w

vsw

rv

C

Sketch the parallelogram spanned by v = 〈1, 4〉 and w = 〈5, 2〉. Add the vector u = 〈2, 3〉 to the
sketch and express u as a linear combination of v and w.

In Exercises 61 and 62, express u as a linear combination u = rv + sw. Then sketch u, v, w, and the
parallelogram formed by rv and sw.

61. u = 〈3, −1〉; v = 〈2, 1〉, w = 〈1, 3〉
solution We have

u = 〈3, −1〉 = rv + sw = r〈2, 1〉 + s〈1, 3〉
which becomes the two equations

3 = 2r + s

−1 = r + 3s

Solving the second equation for r gives r = −1 − 3s, and substituting that into the first equation gives
3 = 2(−1 − 3s) + s = −2 − 6s + s, so 5 = −5s, so s = −1, and thus r = 2. In other words,

u = 〈3, −1〉 = 2〈2, 1〉 − 1〈1, 3〉
as seen in this sketch:

y

x

v

u

w

u = 〈6, −2〉; v = 〈1, 1〉, w = 〈1, −1〉63. Calculate the magnitude of the force on cables 1 and 2 in Figure 28.

65° 25°

Cable 1
Cable 2

50 kg

FIGURE 28
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solution The three forces acting on the point P are:

• The force F of magnitude 50 lb that acts vertically downward.
• The forces F1 and F2 that act through cables 1 and 2 respectively.

y

x
25

115
F1

F

F2

P

Since the point P is not in motion we have

F1 + F2 + F = 0 (1)

We compute the forces. Letting ‖F1‖ = f1 and ‖F2‖ = f2 we have:

F1 = f1〈cos 115◦, sin 115◦〉 = f1〈−0.423, 0.906〉
F2 = f2〈cos 25◦, sin 25◦〉 = f2〈0.906, 0.423〉
F = 〈0, −50〉

Substituting the forces in (1) gives

f1〈−0.423, 0.906〉 + f2〈0.906, 0.423〉 + 〈0, −50〉 = 〈0, 0〉
〈−0.423f1 + 0.906f2, 0.906f1 + 0.423f2 − 50〉 = 〈0, 0〉

We equate corresponding components and get

−0.423f1 + 0.906f2 = 0

0.906f1 + 0.423f2 − 50 = 0

By the first equation, f2 = 0.467f1. Substituting in the second equation and solving for f1 yields

0.906f1 + 0.423 · 0.467f1 − 50 = 0

1.104f1 = 50 ⇒ f1 = 45.29, f2 = 0.467f1 = 21.15

We conclude that the magnitude of the force on cable 1 is f1 = 45.29 lb and the magnitude of the force on
cable 2 is f2 = 21.15 lb.

Determine the magnitude of the forces F1 and F2 in Figure 29, assuming that there is no net force on
the object.

65. A plane flying due east at 200 km/h encounters a 40-km/h wind blowing in the northeast direction. The
resultant velocity of the plane is the vector sum v = v1 + v2, where v1 is the velocity vector of the plane and
v2 is the velocity vector of the wind (Figure 30). The angle between v1 and v2 is π

4 . Determine the resultant
speed of the plane (the length of the vector v).

40 km/h

200 km/h

v2

v1

v

FIGURE 30

solution The resultant speed of the plane is the length of the sum vector v = v1 + v2. We place the
xy-coordinate system as shown in the figure, and compute the components of the vectors v1 and v2. This
gives

v1 = 〈v1, 0〉

v2 =
〈
v2 cos

π

4
, v2 sin

π

4

〉
=
〈
v2 ·

√
2

2
, v2 ·

√
2

2

〉
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y

xv1

v2

v1

v2

π
4

We now compute the sum v = v1 + v2:

v = 〈v1, 0〉 +
〈√

2v2

2
,

√
2v2

2

〉
=
〈√

2

2
v2 + v1,

√
2

2
v2

〉

The resultant speed is the length of v, that is,

v = ‖v‖ =
√√√√(√

2v2

2

)2

+
(

v1 +
√

2v2

2

)2

=
√

v2
2

2
+ v2

1 + 2 ·
√

2

2
v2v1 + v2

2

2
=
√

v2
1 + v2

2 + √
2v1v2

Finally, we substitute the given information v1 = 200 and v2 = 40 in the equation above, to obtain

v =
√

2002 + 402 + √
2 · 200 · 40 ≈ 230 km/hr

Further Insights and Challenges
In Exercises 66–68, refer to Figure 31, which shows a robotic arm consisting of two segments of lengths L1
and L2.

y

PL1

L2

rθ1

θ1

θ2

x

FIGURE 31

Find the components of the vector r = −→
OP in terms of θ1 and θ2.

67. Let L1 = 5 and L2 = 3. Find r for θ1 = π
3 , θ2 = π

4 .

solution In Exercise 66 we showed that

r = 〈L1 sin θ1 + L2 sin θ2, L1 cos θ1 − L2cos θ2〉
Substituting the given information we obtain

r =
〈
5 sin

π

3
+ 3 sin

π

4
, 5 cos

π

3
− 3 cos

π

4

〉
=
〈

5
√

3

2
+ 3

√
2

2
,

5

2
− 3

√
2

2

〉
≈ 〈6.45, 0.38〉

Let L1 = 5 and L2 = 3. Show that the set of points reachable by the robotic arm with θ1 = θ2 is an
ellipse.

69. Use vectors to prove that the diagonals AC and BD of a parallelogram bisect each other (Figure 32).
Hint: Observe that the midpoint of BD is the terminal point of w + 1

2 (v − w).

(v + w)

v

w

A
B

D
C

1
2

(v − w)1
2

FIGURE 32
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solution We denote by O the midpoint of BD. Hence,

−−→
DO = 1

2
−→
DB

v

v

w
w

A
B

D
C

O

Using the Parallelogram Law we have

−→
AO = −→

AD + −−→
DO = −→

AD + 1

2
−→
DB

Since
−→
AD = w and

−→
DB = v − w we get

−→
AO = w + 1

2
(v − w) = w + v

2
(1)

On the other hand,
−→
AC = −→

AD + −→
DC = w + v, hence the midpoint O ′ of the diagonal AC is the terminal

point of w+v
2 . That is,

−−→
AO ′ = w + v

2
(2)

v

v

w

A
B

D
C

O'

We combine (1) and (2) to conclude that O and O ′ are the same point. That is, the diagonal AC and BD

bisect each other.

Use vectors to prove that the segments joining the midpoints of opposite sides of a quadrilateral bisect
each other (Figure 33). Hint: Show that the midpoints of these segments are the terminal points of

1

4
(2u + v + z) and

1

4
(2v + w + u)

71. Prove that two vectors v = 〈a, b〉 and w = 〈c, d〉 are perpendicular if and only if

ac + bd = 0

solution Suppose that the vectors v and w make angles θ1 and θ2, which are not π
2 or 3π

2 , respectively,
with the positive x-axis. Then their components satisfy

a = ‖v‖ cos θ1

b = ‖v‖ sin θ1
⇒ b

a
= sin θ1

cos θ1
= tan θ1

c = ‖w‖ cos θ2

d = ‖w‖ sin θ2
⇒ d

c
= sin θ2

cos θ2
= tan θ2

y

x

v

w
q1

q2

That is, the vectors v and w are on the lines with slopes b
a

and d
c

, respectively. The lines are perpendicular if
and only if their slopes satisfy

b

a
· d

c
= −1 ⇒ bd = −ac ⇒ ac + bd = 0

We now consider the case where one of the vectors, say v, is perpendicular to the x-axis. In this case
a = 0, and the vectors are perpendicular if and only if w is parallel to the x-axis, that is, d = 0. So
ac + bd = 0 · c + b · 0 = 0.
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12.2 Vectors in Three Dimensions

Preliminary Questions
1. What is the terminal point of the vector v = 〈3, 2, 1〉 based at the point P = (1, 1, 1)?

solution We denote the terminal point by Q = (a, b, c). Then by the definition of components of a vector,
we have

〈3, 2, 1〉 = 〈a − 1, b − 1, c − 1〉
Equivalent vectors have equal components respectively, thus,

3 = a − 1 a = 4

2 = b − 1 ⇒ b = 3

1 = c − 1 c = 2

The terminal point of v is thus Q = (4, 3, 2).

2. What are the components of the vector v = 〈3, 2, 1〉 based at the point P = (1, 1, 1)?

solution The component of v = 〈3, 2, 1〉 are 〈3, 2, 1〉 regardless of the base point. The component of v
and the base point P = (1, 1, 1) determine the head Q = (a, b, c) of the vector, as found in the previous
exercise.

3. If v = −3w, then (choose the correct answer):

(a) v and w are parallel.
(b) v and w point in the same direction.

solution The vectors v and w lie on parallel lines, hence these vectors are parallel. Since v is a scalar
multiple of w by a negative scalar, v and w point in opposite directions. Thus, (a) is correct and (b) is not.

4. Which of the following is a direction vector for the line through P = (3, 2, 1) and Q = (1, 1, 1)?

(a) 〈3, 2, 1〉 (b) 〈1, 1, 1〉 (c) 〈2, 1, 0〉
solution Any vector that is parallel to the vector

−→
PQ is a direction vector for the line through P and Q.

We compute the vector
−→
PQ:

−→
PQ = 〈1 − 3, 1 − 2, 1 − 1〉 = 〈−2, −1, 0〉.

The vectors 〈3, 2, 1〉 and 〈1, 1, 1〉 are not constant multiples of
−→
PQ, hence they are not parallel to

−→
PQ.

However 〈2, 1, 0〉 = −1〈−2, −1, 0〉 = −−→
PQ, hence the vector 〈2, 1, 0〉 is parallel to

−→
PQ. Therefore, the

vector 〈2, 1, 0〉 is a direction vector for the line through P and Q.

5. How many different direction vectors does a line have?

solution All the vectors that are parallel to a line are also direction vectors for that line. Therefore, there
are infinitely many direction vectors for a line.

6. True or false? If v is a direction vector for a line L, then −v is also a direction vector for L.

solution True. Every vector that is parallel to v is a direction vector for the line L. Since −v is parallel to
v, it is also a direction vector for L.

Exercises
1. Sketch the vector v = 〈1, 3, 2〉 and compute its length.

solution The vector v = 〈1, 3, 2〉 is shown in the following figure:

1 3

2

yx

z

v = 〈1, 3, 2〉
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The length of v is

‖v‖ =
√

12 + 32 + 22 = √
14

Let v = −−−→
P0Q0, where P0 = (1, −2, 5) and Q0 = (0, 1, −4). Which of the following vectors (with tail

P and head Q) are equivalent to v?

v1 v2 v3 v4

P (1, 2, 4) (1, 5, 4) (0, 0, 0) (2, 4, 5)

Q (0, 5, −5) (0, −8, 13) (−1, 3, −9) (1, 7, 4)

3. Sketch the vector v = 〈1, 1, 0〉 based at P = (0, 1, 1). Describe this vector in the form
−→
PQ for some

point Q, and sketch the vector v0 based at the origin equivalent to v.

solution The vector v = 〈1, 1, 0〉 based at P = (0, 1, 1) is shown in the figure:

v

v0
yx

Q = (1, 2, 1)

P = (0, 1, 1)

z

The head Q of the vector v = −→
PQ is at the point Q = (0 + 1, 1 + 1, 1 + 0) = (1, 2, 1).

v y
x S = (1, 1, 0)

O

z

The vector v0 based at the origin and equivalent to v is

v0 = 〈1, 1, 0〉 = −→
OS, where S = (1, 1, 0).

Determine whether the coordinate systems (A)–(C) in Figure 16 satisfy the right-hand rule.In Exercises 5–8, find the components of the vector
−→
PQ.

5. P = (1, 0, 1), Q = (2, 1, 0)

solution By the definition of the vector components we have

−→
PQ = 〈2 − 1, 1 − 0, 0 − 1〉 = 〈1, 1, −1〉

P = (−3, −4, 2), Q = (1, −4, 3)
7. P = (4, 6, 0), Q = (− 1

2 , 9
2 , 1
)

solution Using the definition of vector components we have

−→
PQ =

〈
−1

2
− 4,

9

2
− 6, 1 − 0

〉
=
〈
−9

2
, −3

2
, 1

〉

P = (− 1
2 , 9

2 , 1
)
, Q = (4, 6, 0)

In Exercises 9–12, let R = (1, 4, 3).

9. Calculate the length of
−→
OR.

solution The length of
−→
OR is the distance from R = (1, 4, 3) to the origin. That is,

‖−→
OR‖ =

√
(1 − 0)2 + (4 − 0)2 + (3 − 0)2 = √

26 ≈ 5.1.

Find the point Q such that v = −→
RQ has components 〈4, 1, 1〉, and sketch v.

11. Find the point P such that w = −→
PR has components 〈3, −2, 3〉, and sketch w.

solution Denoting P = (x0, y0, z0) we get

−→
PR = 〈1 − x0, 4 − y0, 3 − z0〉 = 〈3, −2, 3〉

Equating corresponding components gives

1 − x0 = 3

4 − y0 = −2

3 − z0 = 3

⇒ x0 = −2, y0 = 6, z0 = 0

The point P is, thus, P = (−2, 6, 0).
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w

z

x

yP = (−2, 6, 0)

R = (1, 4, 3)

(0, 0, 3)

(−2, 0, 0)

(0, 6, 0)

Find the components of u = −→
PR, where P = (1, 2, 2).

13. Let v = 〈4, 8, 12〉. Which of the following vectors is parallel to v? Which point in the same direction?
(a) 〈2, 4, 6〉 (b) 〈−1, −2, 3〉
(c) 〈−7, −14, −21〉 (d) 〈6, 10, 14〉
solution A vector is parallel to v if it is a scalar multiple of v. It points in the same direction if the
multiplying scalar is positive. Using these properties we obtain the following answer:
(a) 〈2, 4, 6〉 = 1

2 v ⇒ The vectors are parallel and point in the same direction.
(b) 〈−1, −2, 3〉 is not a scalar multiple of v, hence these vectors are not parallel.
(c) 〈−7, −14, −21〉 = − 7

4 v ⇒ The vectors are parallel but point in opposite directions.
(d) 〈6, 10, 14〉 is not a constant multiple of v, hence these vectors are not parallel.

In Exercises 14–17, determine whether
−→
AB is equivalent to

−→
PQ.

A = (1, 1, 1) B = (3, 3, 3)

P = (1, 4, 5) Q = (3, 6, 7)

15.
A = (1, 4, 1) B = (−2, 2, 0)

P = (2, 5, 7) Q = (−3, 2, 1)

solution We compute the two vectors:

−→
AB = 〈−2 − 1, 2 − 4, 0 − 1〉 = 〈−3, −2, −1〉
−→
PQ = 〈−3 − 2, 2 − 5, 1 − 7〉 = 〈−5, −3, −6〉

The components of
−→
AB and

−→
PQ are not equal, hence they are not a translate of each other, that is, the vectors

are not equivalent.

A = (0, 0, 0) B = (−4, 2, 3)

P = (4, −2, −3) Q = (0, 0, 0)

17.
A = (1, 1, 0) B = (3, 3, 5)

P = (2, −9, 7) Q = (4, −7, 13)

solution The vectors
−→
AB and

−→
PQ are the following vectors:

−→
AB = 〈3 − 1, 3 − 1, 5 − 0〉 = 〈2, 2, 5〉
−→
PQ = 〈4 − 2, −7 − (−9), 13 − 7〉 = 〈2, 2, 6〉

The z-coordinates of the vectors are not equal, hence the vectors are not equivalent.

In Exercises 18–23, calculate the linear combinations.

5 〈2, 2, −3〉 + 3 〈1, 7, 2〉19. −2 〈8, 11, 3〉 + 4 〈2, 1, 1〉
solution Using the operations of vector addition and scalar multiplication we have

−2〈8, 11, 3〉 + 4〈2, 1, 1〉 = 〈−16, −22, −6〉 + 〈8, 4, 4〉 = 〈−8, −18, −2〉

6(4j + 2k) − 3(2i + 7k)
21. 1

2 〈4, −2, 8〉 − 1
3 〈12, 3, 3〉

solution Using the operations on vectors we have

1

2
〈4, −2, 8〉 − 1

3
〈12, 3, 3〉 = 〈2, −1, 4〉 − 〈4, 1, 1〉 = 〈−2, −2, 3〉.

5(i + 2j) − 3(2j + k) + 7(2k − i)
23. 4 〈6, −1, 1〉 − 2 〈1, 0, −1〉 + 3 〈−2, 1, 1〉
solution Using the operations of vector addition and scalar multiplication we have

4 〈6, −1, 1〉 − 2 〈1, 0, −1〉 + 3 〈−2, 1, 1〉 = 〈24, −4, 4〉 + 〈−2, 0, 2〉 + 〈−6, 3, 3〉
= 〈16, −1, 9〉 .
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In Exercises 24–27, determine whether or not the two vectors are parallel.

u = 〈1, −2, 5〉 , v = 〈−2, 4, −10〉25. u = 〈4, 2, −6〉 , v = 〈2, −1, 3〉
solution Since the first component of u is twice the first component of v, if the two vectors are to be
parallel, the second component of u must be twice the second component of v. But it is not; it is −2 times the
second component of v. Thus the two vectors are not parallel.

u = 〈4, 2, −6〉 , v = 〈2, 1, 3〉27. u = 〈−3, 1, 4〉 , v = 〈6, −2, 8〉
solution Since the first component of v is −2 times the first component of u, if the two vectors are to be
parallel, the third component of v must be −2 times the third component of u. But it is not; it is 2 times the
third component of u. Thus the two vectors are not parallel.

In Exercises 28–31, find the given vector.

ev, where v = 〈1, 1, 2〉29. ew, where w = 〈4, −2, −1〉
solution We first find the length of w:

‖w‖ =
√

42 + (−2)2 + 12 = √
21

Hence,

ew = 1

‖w‖w =
〈

4√
21

,
−2√

21
,

−1√
21

〉

Unit vector in the direction of u = 〈1, 0, 7〉31. Unit vector in the direction opposite to v = 〈−4, 4, 2〉
solution A unit vector in the direction opposite to v = 〈−4, 4, 2〉 is the following vector:

−ev = − 1

‖v‖v

We compute the length of v:

‖v‖ =
√

(−4)2 + 42 + 22 = 6

The desired vector is, thus,

−ev = −1

6
〈−4, 4, 2〉 =

〈−4

−6
,

4

−6
,

2

−6

〉
=
〈

2

3
, −2

3
, −1

3

〉

Sketch the following vectors, and find their components and lengths:

(a) 4i + 3j − 2k (b) i + j + k
(c) 4j + 3k (d) 12i + 8j − k

In Exercises 33–40, find a vector parametrization for the line with the given description.

33. Passes through P = (1, 2, −8), direction vector v = 〈2, 1, 3〉
solution The vector parametrization for the line is

r(t) = −→
OP + tv

Inserting the given data we get

r(t) = 〈1, 2, −8〉 + t〈2, 1, 3〉 = 〈1 + 2t, 2 + t, −8 + 3t〉

Passes through P = (4, 0, 8), direction vector v = 〈1, 0, 1〉35. Passes through P = (4, 0, 8), direction vector v = 7i + 4k

solution Since v = 7i + 4k = 〈7, 0, 4〉 we obtain the following parametrization:

r(t) = −→
OP + tv = 〈4, 0, 8〉 + t〈7, 0, 4〉 = 〈4 + 7t, 0, 8 + 4t〉

Passes through O, direction vector v = 〈3, −1, −4〉37. Passes through (1, 1, 1) and (3, −5, 2)

solution We use the equation of the line through two points P and Q:

r(t) = (1 − t)
−→
OP + t

−−→
OQ

Since
−→
OP = 〈1, 1, 1〉 and

−−→
OQ = 〈3, −5, 2〉 we obtain

r(t) = (1 − t)〈1, 1, 1〉 + t〈3, −5, 2〉 = 〈1 − t, 1 − t, 1 − t〉 + 〈3t, −5t, 2t〉 = 〈1 + 2t, 1 − 6t, 1 + t〉
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Passes through (−2, 0, −2) and (4, 3, 7)
39. Passes through O and (4, 1, 1)

solution By the equation of the line through two points we get

r(t) = (1 − t)〈0, 0, 0〉 + t〈4, 1, 1〉 = 〈0, 0, 0〉 + 〈4t, t, t〉 = 〈4t, t, t〉

Passes through (1, 1, 1) parallel to the line through (2, 0, −1) and (4, 1, 3)In Exercises 41–44, find parametric equations for the lines with the given description.

41. Perpendicular to the xy-plane, passes through the origin

solution A direction vector for the line is a vector parallel to the z-axis, for instance, we may choose
v = 〈0, 0, 1〉. The line passes through the origin (0, 0, 0), hence we obtain the following parametrization:

r(t) = 〈0, 0, 0〉 + t〈0, 0, 1〉 = 〈0, 0, t〉
or x = 0, y = 0, z = t .

Perpendicular to the yz-plane, passes through (0, 0, 2)
43. Parallel to the line through (1, 1, 0) and (0, −1, −2), passes through (0, 0, 4)

solution The direction vector is v = 〈0 − 1, −1 − 1, −2 − 0〉 = 〈−1, −2, −2〉. Hence, using the equation
of a line we obtain

r(t) = 〈0, 0, 4〉 + t〈−1, −2, −2〉 = 〈−t, −2t, 4 − 2t〉

Passes through (1, −1, 0) and (0, −1, 2)
45. Which of the following is a parametrization of the line through P = (4, 9, 8) perpendicular to the xz-plane
(Figure 17)?

(a) r(t) = 〈4, 9, 8〉 + t 〈1, 0, 1〉 (b) r(t) = 〈4, 9, 8〉 + t 〈0, 0, 1〉
(c) r(t) = 〈4, 9, 8〉 + t 〈0, 1, 0〉 (d) r(t) = 〈4, 9, 8〉 + t 〈1, 1, 0〉

y

P = (4, 9, 8)

z

x

FIGURE 17

solution Since the line is perpendicular to the xz-plane, all of its points have x-coordinate equal to 4
and z-coordinate equal to 8 (see diagram). Thus only the y-coordinate varies, and the correct answer is (c),
〈4, 9, 8〉 + t 〈0, 1, 0〉.

Find a parametrization of the line through P = (4, 9, 8) perpendicular to the yz-plane.
47. Show that r1(t) and r2(t) define the same line, where

r1(t) = 〈3, −1, 4〉 + t 〈8, 12, −6〉
r2(t) = 〈11, 11, −2〉 + t 〈4, 6, −3〉

Hint: Show that r2(t) passes through (3, −1, 4) and that the direction vectors for r1(t) and r2(t) are parallel.

solution We observe first that the direction vectors of r1(t) and r2(t) are multiples of each other:

〈8, 12, −6〉 = 2 〈4, 6, −3〉
Therefore r1(t) and r2(t) are parallel. To show they coincide, it suffices to prove that they share a point in
common, so we verify that r1(0) = 〈3, −1, 4〉 lies on r2(t) by solving for t :

〈3, −1, 4〉 = 〈11, 11, −2〉 + t 〈4, 6, −3〉
〈3, −1, 4〉 − 〈11, 11, −2〉 = t 〈4, 6, −3〉

〈−8, −12, 6〉 = t 〈4, 6, −3〉
This equation is satisfied for t = −2, so r1 and r2 coincide.

Show that r1(t) and r2(t) define the same line, where

r1(t) = t 〈2, 1, 3〉 , r2(t) = 〈−6, −3, −9〉 + t 〈8, 4, 12〉
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49. Find two different vector parametrizations of the line through P = (5, 5, 2) with direction vector v =
〈0, −2, 1〉.
solution Two different parameterizations are

r1(t) = 〈5, 5, 2〉 + t 〈0, −2, 1〉
r2(t) = 〈5, 5, 2〉 + t 〈0, −20, 10〉

Find the point of intersection of the lines r(t) = 〈1, 0, 0〉 + t 〈−3, 1, 0〉 and s(t) = 〈0, 1, 1〉 +
t 〈2, 0, 1〉.

51. Show that the lines r1(t) = 〈−1, 2, 2〉 + t 〈4, −2, 1〉 and r2(t) = 〈0, 1, 1〉 + t 〈2, 0, 1〉 do not intersect.

solution The two lines intersect if there exist parameter values t1 and t2 such that

〈−1, 2, 2〉 + t1〈4, −2, 1〉 = 〈0, 1, 1〉 + t2〈2, 0, 1〉
〈−1 + 4t1, 2 − 2t1, 2 + t1〉 = 〈2t2, 1, 1 + t2〉

Equating corresponding components yields

−1 + 4t1 = 2t2

2 − 2t1 = 1

2 + t1 = 1 + t2

The second equation implies t1 = 1
2 . Substituting into the first and third equations we get

−1 + 4 · 1

2
= 2t2 ⇒ t2 = 1

2

2 + 1

2
= 1 + t2 ⇒ t2 = 3

2

We conclude that the equations do not have solutions, which means that the two lines do not intersect.

Determine whether the lines r1(t) = 〈2, 1, 1〉 + t 〈−4, 0, 1〉 and r2(s) = 〈−4, 1, 5〉 + s 〈2, 1, −2〉
intersect, and if so, find the point of intersection.

53. Determine whether the lines r1(t) = 〈0, 1, 1〉 + t 〈1, 1, 2〉 and r2(s) = 〈2, 0, 3〉 + s 〈1, 4, 4〉 intersect,
and if so, find the point of intersection.

solution The lines intersect if there exist parameter values t and s such that

〈0, 1, 1〉 + t〈1, 1, 2〉 = 〈2, 0, 3〉 + s〈1, 4, 4〉
〈t, 1 + t, 1 + 2t〉 = 〈2 + s, 4s, 3 + 4s〉 (1)

Equating corresponding components we get

t = 2 + s

1 + t = 4s

1 + 2t = 3 + 4s

Substituting t from the first equation into the second equation we get

1 + 2 + s = 4s

3s = 3
⇒ s = 1, t = 2 + s = 3

We now check whether s = 1, t = 3 satisfy the third equation:

1 + 2 · 3 = 3 + 4 · 1

7 = 7

We conclude that s = 1, t = 3 is the solution of (1), hence the two lines intersect. To find the point of
intersection we substitute s = 1 in the right-hand side of (1) to obtain

〈2 + 1, 4 · 1, 3 + 4 · 1〉 = 〈3, 4, 7〉
The point of intersection is the terminal point of this vector, that is, (3, 4, 7).

Find the intersection of the lines r1(t) = 〈−1, 1〉 + t 〈2, 4〉 and r2(s) = 〈2, 1〉 + s 〈−1, 6〉 in R2.
55. A meteor follows a trajectory r(t) = 〈2, 1, 4〉 + t 〈3, 2, −1〉 km. with t in minutes, near the surface of
the earth, which is represented by the xy-plane. Determine at what time the meteor hits the ground.
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solution Since the surface of the earth is the xy-plane, the z direction is the height above the ground. The
meteor hits the ground when the z component of r(t) is zero; this happens when 4 − t = 0, or t = 4. The
meteor hits the ground at t = 4 minutes.

A laser’s beam shines along the ray given by r1(t) = 〈1, 2, 4〉 + t〈2, 1, −1〉 for t ≥ 0. A second laser’s
beam shines along the ray given by r2(s) = 〈6, 3, −1〉 + s〈−5, 2, c〉 for s ≥ 0, where the value of c

allows for the adjustment of the z-coordinate of its direction vector. Find the value of c that will make the
two beams intersect.

57. Find the components of the vector v whose tail and head are the midpoints of segments AC and BC in

Figure 18. [Note that the midpoint of (a1, a2, a3) and (b1, b2, b3) is
(

a1+b1
2 , a2+b2

2 , a3+b3
2

)
.]

B = (1, 1, 0)

C = (0, 1, 1)
A = (1, 0, 1)

(0, 0, 0)

y

x

z

FIGURE 18

solution We denote by P and Q the midpoints of the segments AC and BC respectively. Thus,

v = −→
PQ (1)

y
x

A = (1, 0, 1) C = (0, 1, 1)

B = (1, 1, 0)

P

Q

z

We use the formula for the midpoint of a segment to find the coordinates of the points P and Q. This gives

P =
(

1 + 0

2
,

0 + 1

2
,

1 + 1

2

)
=
(

1

2
,

1

2
, 1

)

Q =
(

1 + 0

2
,

1 + 1

2
,

0 + 1

2

)
=
(

1

2
, 1,

1

2

)

Substituting in (1) yields the following vector:

v = −→
PQ =

〈
1

2
− 1

2
, 1 − 1

2
,

1

2
− 1

〉
=
〈
0,

1

2
, −1

2

〉
.

Find the components of the vector w whose tail is C and head is the midpoint of AB in Figure 18.
59. A box that weighs 1000 kg is hanging from a crane at the dock. The crane has a square 20 m by 20 m
framework as in Figure 19, with four cables, each of the same length, supporting the box. The box hangs 10 m
below the level of the framework. Find the magnitude of the force acting on each cable.

(10, −10, 0)

(−10, 10, 0)
(−10, −10, 0)

(0, 0, −10)

(10, 10, 0)

FIGURE 19

solution By symmetry, the magnitude of the force acting on all four cables is the same; denote this
magnitude by f . The directions of the four forces exerted by the cables are

〈10, −10, 0〉 − 〈0, 0, −10〉 = 〈10, −10, 10〉
〈−10, −10, 0〉 − 〈0, 0, −10〉 = 〈−10, −10, 10〉
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〈−10, 10, 0〉 − 〈0, 0, −10〉 = 〈−10, 10, 10〉
〈10, 10, 0〉 − 〈0, 0, −10〉 = 〈10, 10, 10〉 .

The sum of the forces in these four directions must balance the downward force, which is 〈0, 0, −1000〉. Thus
we get

f 〈10, −10, 10〉 + f 〈−10, −10, 10〉 + f 〈−10, 10, 10〉 + f 〈10, 10, 10〉 = 〈0, 0, −1000〉 ,

so that

f 〈0, 0, 40〉 = 〈0, 0, −1000〉 ,

which gives f = −25. The force has a magnitude of 25 newtons.

Further Insights and Challenges
In Exercises 60–66, we consider the equations of a line in symmetric form, when a �= 0, b �= 0, c �= 0.

x − x0

a
= y − y0

b
= z − z0

c
10

Let L be the line through P0 = (x0, y0, z0) with direction vector v = 〈a, b, c〉. Show that L is defined
by the symmetric equations (10). Hint: Use the vector parametrization to show that every point on L
satisfies (10).

61. Find the symmetric equations of the line through P0 = (−2, 3, 3) with direction vector v = 〈2, 4, 3〉.
solution Using (x0, y0, z0) = (−2, 3, 3) and 〈a, b, c〉 = 〈2, 4, 3〉 in Equation (10) gives

x + 2

2
= y − 3

4
= z − 3

3

Find the symmetric equations of the line through P = (1, 1, 2) and Q = (−2, 4, 0).
63. Find the symmetric equations of the line

x = 3 + 2t, y = 4 − 9t, z = 12t

solution If we solve each equation fot t , we get:

t = x − 3

2
, t = 4 − y

9
, t = z

12

When we set these equations equal to each other, we get:

x − 3

2
= 4 − y

9
= z

12

Find a vector parametrization for the line

x − 5

9
= y + 3

7
= z − 10

65. Find a vector parametrization for the line
x

2
= y

7
= z

8
.

solution If we let t equal these three terms, as follows:

t = x

2
= y

7
= z

8

then we can break it up into three equations:

t = x

2
, t = y

7
, t = z

8

and solving for x, y, and z gives us:

x = 2t, y = 7t, z = 8t

and writing this in vector form gives us

r(t) = t 〈2, 7, 8〉

Show that the line in the plane through (x0, y0) of slope m has symmetric equations

x − x0 = y − y0
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67. A median of a triangle is a segment joining a vertex to the midpoint of the opposite side. Referring
to Figure 20(A), prove that three medians of triangle ABC intersect at the terminal point P of the vector
1
3 (u + v + w). The point P is the centroid of the triangle. Hint: Show, by parametrizing the segment AA′,
that P lies two-thirds of the way from A to A′. It will follow similarly that P lies on the other two medians.

(B)(A)

A´

B' C ´
C

A

B

O

O

u

w

v

v

w
u

P

FIGURE 20

solution From Figure 20(A),

−−→
OC′ = −→

OA + −−→
AC′ = v + 1

2
(w − v) = 1

2
(v + w)

−−→
OD = u

The line through the points C and C′ has the parametrization

tu + (1 − t)
v + w

2
(1)

Similarly, the line through B and B ′ has the parametrization

tw + (1 − t)
v + u

2
(2)

And the line through A and A′ has the parametrization

tv + (1 − t)
u + w

2
(3)

Now, setting t = 1
3 in (1), (2) and (3) yields 1

3 (u + v + w). We conclude that the terminal point of this vector
lies on each one of the lines, hence it is their point of intersection.

A median of a tetrahedron is a segment joining a vertex to the centroid of the opposite face. The
tetrahedron in Figure 20(B) has vertices at the origin and at the terminal points of vectors u, v, and w.
Show that the medians intersect at the terminal point of 1

4 (u + v + w).12.3 Dot Product and the Angle Between Two Vectors

Preliminary Questions
1. Is the dot product of two vectors a scalar or a vector?

solution The dot product of two vectors is the sum of products of scalars, hence it is a scalar.

2. What can you say about the angle between a and b if a · b < 0?

solution Since the cosine of the angle between a and b satisfies cos θ = a·b
‖a‖‖b‖ , also cos θ < 0. By

definition 0 ≤ θ ≤ π , but since cos θ < 0 then θ is in [π/2, π ]. In other words, the angle between a and b is
obtuse.

3. Which property of dot products allows us to conclude that if v is orthogonal to both u and w, then v is
orthogonal to u + w?

solution One property is that two vectors are orthogonal if and only if the dot product of the two vectors
is zero. The second property is the Distributive Law. Since v is orthogonal to u and w, we have v · u = 0 and
v · w = 0. Therefore,

v · (u + w) = v · u + v · w = 0 + 0 = 0

We conclude that v is orthogonal to u + w.



900 C H A P T E R 12 VECTOR GEOMETRY

4. Which is the projection of v along v: (a) v or (b) ev?

solution The projection of v along itself is v, since

v||v =
(v · v

v · v

)
v = v.

5. Let u||v be the projection of u along v. Which of the following is the projection u along the vector 2v and
which is the projection of 2u along v?
(a) 1

2 u||v (b) u||v (c) 2u||v
solution Since u‖v is the projection of u along v, we have,

u‖v =
(u · v

v · v

)
v

The projection of u along the vector 2v is

u‖2v =
(

u · (2v)

(2v) · (2v)

)
2v =

(
2(u · v)

4(v · v)

)
2v =

(u · v
v · v

)
v = u‖v.

That is, u‖v is the projection of u along 2v. Notice that the projection of u along v is the projection of u
along the unit vector ev, hence it depends on the direction of v rather than on the length of v. Therefore, the
projection of u along v and along 2v is the same vector.

For the second question,

(2u)‖v =
(

(2u) · v
v · v

)
v = 2

(u · v
v · v

)
v = 2u‖v.

That is, the projection of 2u along v is twice the projection of u along v.

6. Which of the following is equal to cos θ , where θ is the angle between u and v?
(a) u · v (b) u · ev (c) eu · ev

solution By the Theorems on the Dot Product and the Angle Between Vectors, we have

cos θ = u · v
‖u‖‖v‖ = u

‖u‖ · v
‖v‖ = eu · ev

The correct answer is (c).

Exercises
In Exercises 1–12, compute the dot product.

1. 〈1, 2, 1〉 · 〈4, 3, 5〉
solution Using the definition of the dot product we obtain

〈1, 2, 1〉 · 〈4, 3, 5〉 = 1 · 4 + 2 · 3 + 1 · 5 = 15

〈3, −2, 2〉 · 〈1, 0, 1〉3. 〈0, 1, 0〉 · 〈7, 41, −3〉
solution The dot product is

〈0, 1, 0〉 · 〈7, 41, −3〉 = 0 · 7 + 1 · 41 + 0 · (−3) = 41

〈1, 1, 1〉 · 〈6, 4, 2〉5. 〈3, 1〉 · 〈4, −7〉
solution The dot product of the two vectors is the following scalar:

〈3, 1〉 · 〈4, −7〉 = 3 · 4 + 1 · (−7) = 5

〈 1
6 , 1

2

〉 · 〈3, 1
2

〉7. k · j

solution By the orthogonality of j and k, we have k · j = 0

k · k
9. (i + j) · (j + k)

solution By the distributive law and the orthogonality of i, j and k we have

(i + j) · (j + k) = i · j + i · k + j · j + j · k = 0 + 0 + 1 + 0 = 1
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(3j + 2k) · (i − 4k)
11. (i + j + k) · (3i + 2j − 5k)

solution We use properties of the dot product to obtain

(i + j + k) · (3i + 2j − 5k) = 3i · i + 2i · j − 5i · k + 3j · i + 2j · j − 5j · k + 3k · i + 2k · j − 5k · k

= 3‖i‖2 + 2‖j‖2 − 5‖k‖2 = 3 · 1 + 2 · 1 − 5 · 1 = 0

(−k) · (i − 2j + 7k)In Exercises 13–18, determine whether the two vectors are orthogonal and, if not, whether the angle between
them is acute or obtuse.

13. 〈1, 1, 1〉, 〈1, −2, −2〉
solution We compute the dot product of the two vectors:

〈1, 1, 1〉 · 〈1, −2, −2〉 = 1 · 1 + 1 · (−2) + 1 · (−2) = −3

Since the dot product is negative, the angle between the vectors is obtuse.

〈0, 2, 4〉, 〈−5, 0, 0〉15. 〈1, 2, 1〉, 〈7, −3, −1〉
solution We compute the dot product:

〈1, 1, 1〉 · 〈3, −2, −1〉 = 1 · 3 + 1 · (−2) + 1 · (−1) = 0

The dot product is zero, hence the vectors are orthogonal.

〈0, 2, 4〉, 〈3, 1, 0〉17.
〈 12

5 , − 4
5

〉
,
〈 1

2 , − 7
4

〉
solution We find the dot product of the two vectors:〈

12

5
, −4

5

〉
·
〈

1

2
, −7

4

〉
= 12

5
· 1

2
+
(

−4

5

)
·
(

−7

4

)
= 12

10
+ 28

20
= 13

5

The dot product is positive, hence the angle between the vectors is acute.

〈12, 6〉, 〈2, −4〉In Exercises 19–22, find the cosine of the angle between the vectors.

19. 〈0, 3, 1〉, 〈4, 0, 0〉
solution Since 〈0, 3, 1〉 · 〈4, 0, 0〉 = 0 · 4 + 3 · 0 + 1 · 0 = 0, the vectors are orthogonal, that is, the angle
between them is θ = 90◦ and cos θ = 0.

〈1, 1, 1〉, 〈2, −1, 2〉21. i + j, j + 2k

solution We use the formula for the cosine of the angle between two vectors. Let v = i + j and w = j + 2k.
We compute the following values:

‖v‖ = ‖i + j‖ =
√

12 + 12 = √
2

‖w‖ = ‖j + 2k‖ =
√

12 + 22 = √
5

v · w = (i + j) · (j + 2k) = i · j + 2i · k + j · j + 2j · k = ‖j‖2 = 1

Hence,

cos θ = v · w
‖v‖‖w‖ = 1√

2
√

5
= 1√

10
.

3i + k, i + j + kIn Exercises 23–28, find the angle between the vectors. Use a calculator if necessary.

23.
〈
2,

√
2
〉
,
〈
1 + √

2, 1 − √
2
〉

solution We write v =
〈
2,

√
2
〉

and w =
〈
2,

√
2
〉
. To use the formula for the cosine of the angle θ between

two vectors we need to compute the following values:

‖v‖ = √
4 + 2 = √

6

‖w‖ =
√

(1 + √
2)2 + (1 − √

2)2 = √
6

v · w = 2 + 2
√

2 + √
2 − 2 = 3

√
2
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Hence,

cos θ = v · w
‖v‖‖w‖ = 3

√
2√

6
√

6
=

√
2

2

and so,

θ = cos−1

√
2

2
= π/4

〈
5,

√
3
〉
,
〈√

3, 2
〉25. 〈1, 1, 1〉, 〈1, 0, 1〉

solution We denote v = 〈1, 1, 1〉 and w = 〈1, 0, 1〉. To use the formula for the cosine of the angle θ

between two vectors we need to compute the following values:

‖v‖ =
√

12 + 12 + 12 = √
3

‖w‖ =
√

12 + 02 + 12 = √
2

v · w = 1 + 0 + 1 = 2

Hence,

cos θ = v · w
‖v‖‖w‖ = 2√

3
√

2
=

√
6

3

and so,

θ = cos−1

√
6

3
≈ 0.615

〈3, 1, 1〉, 〈2, −4, 2〉27. 〈0, 1, 1〉, 〈1, −1, 0〉
solution We denote v = 〈0, 1, 1〉 and w = 〈1, −1, 0〉. To use the formula for the cosine of the angle θ

between two vectors we need to compute the following values:

‖v‖ =
√

02 + 12 + 12 = √
2

‖w‖ =
√

12 + (−1)2 + 02 = √
2

v · w = 0 + (−1) + 0 = −1

Hence,

cos θ = v · w
‖v‖‖w‖ = −1√

2
√

2
= −1

2

and so,

θ = cos−1 −1

2
= 2π

3

〈1, 1, −1〉, 〈1, −2, −1〉29. Find all values of b for which the vectors are orthogonal.
(a) 〈b, 3, 2〉, 〈1, b, 1〉 (b) 〈4, −2, 7〉, 〈

b2, b, 0
〉

solution
(a) The vectors are orthogonal if and only if the scalar product is zero. That is,

〈b, 3, 2〉 · 〈1, b, 1〉 = 0

b · 1 + 3 · b + 2 · 1 = 0

4b + 2 = 0 ⇒ b = −1

2

(b) We set the scalar product of the two vectors equal to zero and solve for b. This gives

〈4, −2, 7〉 · 〈b2, b, 0〉 = 0

4b2 − 2b + 7 · 0 = 0

2b(2b − 1) = 0 ⇒ b = 0 or b = 1

2
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Find a vector that is orthogonal to 〈−1, 2, 2〉.31. Find two vectors that are not multiples of each other and are both orthogonal to 〈2, 0, −3〉.
solution We denote by 〈a, b, c〉, a vector orthogonal to 〈2, 0, −3〉. Hence,

〈a, b, c〉 · 〈2, 0, −3〉 = 0

2a + 0 − 3c = 0

2a − 3c = 0 ⇒ a = 3

2
c

Thus, the vectors orthogonal to 〈2, 0, −3〉 are of the form〈
3

2
c, b, c

〉
.

We may find two such vectors by setting c = 0, b = 1 and c = 2, b = 2. We obtain

v1 = 〈0, 1, 0〉, v2 = 〈3, 2, 2〉.

Find a vector that is orthogonal to v = 〈1, 2, 1〉 but not to w = 〈1, 0, −1〉.33. Find v · e where ‖v‖ = 3, e is a unit vector, and the angle between e and v is 2π
3 .

solution Since v · e = ‖v‖‖e‖ cos 2π/3, and ‖v‖ = 3 and ‖e‖ = 1, we have v · e = 3 · 1 · (−1/2) =
−3/2.

Assume that v lies in the yz-plane. Which of the following dot products is equal to zero for all choices
of v?

(a) v · 〈0, 2, 1〉 (b) v · k
(c) v · 〈−3, 0, 0〉 (d) v · j

In Exercises 35–38, simplify the expression.

35. (v − w) · v + v · w

solution By properties of the dot product we obtain

(v − w) · v + v · w = v · v − w · v + v · w = ‖v‖2 − v · w + v · w = ‖v‖2

(v + w) · (v + w) − 2v · w
37. (v + w) · v − (v + w) · w

solution We use properties of the dot product to write

(v + w) · v − (v + w) · w = v · v + w · v − v · w − w · w

= ‖v‖2 + w · v − w · v − ‖w‖2 = ‖v‖2 − ‖w‖2

(v + w) · v − (v − w) · wIn Exercises 39–42, use the properties of the dot product to evaluate the expression, assuming that u · v = 2,
‖u‖ = 1, and ‖v‖ = 3.

39. u · (4v)

solution Using properties of the dot product we get

u · (4v) = 4(u · v) = 4 · 2 = 8.

(u + v) · v
41. 2u · (3u − v)

solution By properties of the dot product we obtain

2u · (3u − v) = (2u) · (3u) − (2u) · v = 6(u · u) − 2(u · v)

= 6‖u‖2 − 2(u · v) = 6 · 12 − 2 · 2 = 2

(u + v) · (u − v)
43. Find the angle between v and w if v · w = −‖v‖ ‖w‖.

solution Using the formula for dot product, and the given equation v · w = −‖v‖ ‖w‖, we get:

‖v‖ ‖w‖ cos θ = −‖v‖ ‖w‖,
which implies cos θ = −1, and so the angle between the two vectors is θ = π .

Find the angle between v and w if v · w = 1
2‖v‖ ‖w‖.

45. Assume that ‖v‖ = 3, ‖w‖ = 5, and the angle between v and w is θ = π
3 .

(a) Use the relation ‖v + w‖2 = (v + w) · (v + w) to show that ‖v + w‖2 = 32 + 52 + 2v · w.

(b) Find ‖v + w‖.
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solution For part (a), we use the distributive property to get:

‖v + w‖2 = (v + w) · (v + w)

= v · v + v · w + w · v + w · w

= ‖v‖2 + 2v · w + ‖w‖2

= 32 + 52 + 2v · w

For part (b), we use the definition of dot product on the previous equation to get:

‖v + w‖2 = 32 + 52 + 2v · w

= 34 + 2 · 3 · 5 · cos π/3

= 34 + 15 = 49

Thus, ‖v + w‖ = √
49 = 7.

Assume that ‖v‖ = 2, ‖w‖ = 3, and the angle between v and w is 120◦. Determine:

(a) v · w (b) ‖2v + w‖ (c) ‖2v − 3w‖
47. Show that if e and f are unit vectors such that ‖e + f‖ = 3

2 , then ‖e − f‖ =
√

7
2 . Hint: Show that e · f = 1

8 .

solution We use the relation of the dot product with length and properties of the dot product to write

9/4 = ‖e + f‖2 = (e + f) · (e + f) = e · e + e · f + f · e + f · f

= ‖e‖2 + 2e · f + ‖f‖2 = 12 + 2e · f + 12 = 2 + 2e · f

We now find e · f :

9/4 = 2 + 2e · f ⇒ e · f = 1/8

Hence, using the same method as above, we have:

‖e − f‖2 = (e − f) · (e − f) = e · e − e · f − f · e + f · f

= ‖e‖2 − 2e · f + ‖f‖2 = 12 − 2e · f + 12 = 2 − 2e · f = 2 − 2/8 = 7/4.

Taking square roots, we get:

‖e − f‖ =
√

7

2

Find ‖2e − 3f‖, assuming that e and f are unit vectors such that ‖e + f‖ = √
3/2.

49. Find the angle θ in the triangle in Figure 12.

x

y

(0, 10)

(10, 8)

(3, 2)

θ

FIGURE 12

solution We denote by u and v the vectors in the figure.

x

y

(0, 10)

(10, 8)

(3, 2)

v

u
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Hence,

cos θ = v · u
‖v‖‖u‖ (1)

We find the vectors v and u, and then compute their length and the dot product v · u. This gives

v = 〈0 − 10, 10 − 8〉 = 〈−10, 2〉
u = 〈3 − 10, 2 − 8〉 = 〈−7, −6〉

‖v‖ =
√

(−10)2+22 = √
104

‖u‖ =
√

(−7)2 + (−6)2 = √
85

v · u = 〈−10, 2〉 · 〈−7, −6〉 = (−10) · (−7) + 2 · (−6) = 58

Substituting these values in (1) yields

cos θ = 58√
104

√
85

≈ 0.617

Hence the angle of the triangle is 51.91◦.

Find all three angles in the triangle in Figure 13.
51. (a) Draw u||v and v||u for the vectors appearing as in Figure 14.
(b) Which of u||v and v||u has the greater magnitude?

v
u

FIGURE 14

solution
(a)

v

u

(b) The component of u parallel to v, u||v, has the greater magnitude.

Let u and v be two nonzero vectors.

(a) Is it possible for the component of u along v to have the opposite sign from the component of v along
u? Why or why not?

(b) What must be true of the vectors if either of these two components is 0?

In Exercises 53–60, find the projection of u along v.

53. u = 〈2, 5〉, v = 〈1, 1〉
solution We first compute the following dot products:

u · v = 〈2, 5〉 · 〈1, 1〉 = 7

v · v = ‖v‖2 = 12 + 12 = 2

The projection of u along v is the following vector:

u||v =
(u · v

v · v

)
v = 7

2
v =

〈
7

2
,

7

2

〉

u = 〈2, −3〉, v = 〈1, 2〉55. u = 〈−1, 2, 0〉, v = 〈2, 0, 1〉
solution The projection of u along v is the following vector:

u‖v =
(u · v

v · v

)
v

We compute the values in this expression:

u · v = 〈−1, 2, 0〉 · 〈2, 0, 1〉 = −1 · 2 + 2 · 0 + 0 · 1 = −2

v · v = ‖v‖2 = 22 + 02 + 12 = 5
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Hence,

u‖v = −2

5
〈2, 0, 1〉 =

〈
−4

5
, 0, −2

5

〉
.

u = 〈1, 1, 1〉, v = 〈1, 1, 0〉57. u = 5i + 7j − 4k, v = k

solution The projection of u along v is the following vector:

u‖v =
(u · v

v · v

)
v

We compute the dot products:

u · v = (5i + 7j − 4k) · k = −4k · k = −4

v · v = ‖v‖2 = ‖k‖2 = 1

Hence,

u‖v = −4

1
k = −4k

u = i + 29k, v = j
59. u = 〈a, b, c〉, v = i

solution The component of u along v is a, since

u · ev = (ai + bj + ck) · i = a

Therefore, the projection of u along v is the vector

u‖v = (u · ev)ev = ai

u = 〈a, a, b〉, v = i − jIn Exercises 61 and 62, compute the component of u along v.

61. u = 〈3, 2, 1〉, v = 〈1, 0, 1〉
solution We first compute the following dot products:

u · v = 〈3, 2, 1〉 · 〈1, 0, 1〉 = 4

v · v = ‖v‖2 = 12 + 12 = 2

The component of u along v is the length of the projection of u along v∥∥∥(u · v
v · v

)
v
∥∥∥ = 4

2
‖v‖ = 2‖v‖ = 2

√
2

u = 〈3, 0, 9〉, v = 〈1, 2, 2〉63. Find the length of OP in Figure 15.

x

y

u = 〈3, 5〉

v = 〈8, 2〉
u⊥

P

O

FIGURE 15

solution This is just the component of u = 〈3, 5〉 along v = 〈8, 2〉. We first compute the following dot
products:

u · v = 〈3, 5〉 · 〈8, 2〉 = 34

v · v = ‖v‖2 = 82 + 22 = 68

The component of u along v is the length of the projection of u along v∥∥∥(u · v
v · v

)
v
∥∥∥ = 34

68
‖v‖ = 34

68

√
68
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Find ‖u⊥v‖ in Figure 15.In Exercises 65–70, find the decomposition a = a||b + a⊥b with respect to b.

65. a = 〈1, 0〉, b = 〈1, 1〉
solution
Step 1. We compute a · b and b · b

a · b = 〈1, 0〉 · 〈1, 1〉 = 1 · 1 + 0 · 1 = 1

b · b = ‖b‖2 = 12 + 12 = 2

Step 2. We find the projection of a along b:

a‖b =
(

a · b
b · b

)
b = 1

2
〈1, 1〉 =

〈
1

2
,

1

2

〉

Step 3. We find the orthogonal part as the difference:

a⊥b = a − a‖b = 〈1, 0〉 −
〈

1

2
,

1

2

〉
=
〈

1

2
, −1

2

〉

Hence,

a = a‖b + a⊥b =
〈

1

2
,

1

2

〉
+
〈

1

2
, −1

2

〉
.

a = 〈2, −3〉, b = 〈5, 0〉67. a = 〈4, −1, 0〉, b = 〈0, 1, 1〉
solution We first compute a · b and b · b to find the projection of a along b:

a · b = 〈4, −1, 0〉 · 〈0, 1, 1〉 = 4 · 0 + (−1) · 1 + 0 · 1 = −1

b · b = ‖b‖2 = 02 + 12 + 12 = 2

Hence,

a‖b =
(

a · b
b · b

)
b = −1

2
〈0, 1, 1〉 =

〈
0, −1

2
, −1

2

〉

We now find the vector a⊥b orthogonal to b by computing the difference:

a − a‖b = 〈4, −1, 0〉 −
〈
0, −1

2
, −1

2

〉
=
〈
4, −1

2
,

1

2

〉

Thus, we have

a = a‖b + a⊥b =
〈
0, −1

2
, −1

2

〉
+
〈
4, −1

2
,

1

2

〉
.

a = 〈4, −1, 5〉, b = 〈2, 1, 1〉69. a = 〈x, y〉, b = 〈1, −1〉
solution We first compute a · b and b · b to find the projection of a along b:

a · b = 〈x, y〉 · 〈1, −1〉 = x − y

b · b = ‖b‖2 = 12 + (−1)2 = 2

Hence,

a|| =
(

a · b
b · b

)
b = x − y

2
〈1, −1〉 =

〈
x − y

2
,
y − x

2

〉

We now find the vector a⊥ orthogonal to b by computing the difference:

a − a|| = 〈x, y〉 −
〈
x − y

2
,
y − x

2

〉
=
〈
x + y

2
,
x + y

2

〉

Thus, we have

a = a|| + a⊥ =
〈
x − y

2
,
y − x

2

〉
+
〈
x + y

2
,
x + y

2

〉

a = 〈x, y, z〉, b = 〈1, 1, 1〉
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71. Let eθ = 〈cos θ, sin θ〉. Show that eθ · eψ = cos(θ − ψ) for any two angles θ and ψ .

solution First, eθ is a unit vector since by a trigonometric identity we have

‖eθ‖ =
√

cos2 θ + sin2 θ = √
1 = 1

The cosine of the angle α between eθ and the vector i in the direction of the positive x-axis is

cos α = eθ · i
‖eθ‖ · ‖i‖ = eθ · i = ((cos θ)i + (sin θ)j) · i = cos θ

The solution of cos α = cos θ for angles between 0 and π is α = θ . That is, the vector eθ makes an angle θ

with the x-axis. We now use the trigonometric identity

cos θ cos ψ + sin θ sin ψ = cos(θ − ψ)

to obtain the following equality:

eθ · eψ = 〈cos θ, sin θ〉 · 〈cos ψ, sin ψ〉 = cos θ cos ψ + sin θ sin ψ = cos(θ − ψ)

Let v and w be vectors in the plane.

(a) Use Theorem 2 to explain why the dot product v · w does not change if both v and w are rotated by
the same angle θ .

(b) Sketch the vectors e1 = 〈1, 0〉 and e2 =
〈√

2
2 ,

√
2

2

〉
, and determine the vectors e′

1, e′
2 obtained by

rotating e1, e2 through an angle π
4 . Verify that e1 · e2 = e′

1 · e′
2.

In Exercises 73–76, refer to Figure 16.

A = (0, 0, 1)

C = (1, 1, 0)

O

D = (0, 1, 0)

B = (1, 0, 0)

FIGURE 16 Unit cube in R3.

73. Find the angle between AB and AC.

solution The cosine of the angle α between the vectors
−→
AB and

−→
AC is

cos α =
−→
AB · −→

AC

‖−→AB‖‖−→AC‖
(1)

A = (0, 0, 1)

C = (1, 1, 0)

O

D = (0, 1, 0)

B = (1, 0, 0)

α

We compute the vectors
−→
AB and

−→
AC and then calculate their dot product and lengths. We get

−→
AB = 〈1 − 0, 0 − 0, 0 − 1〉 = 〈1, 0, −1〉
−→
AC = 〈1 − 0, 1 − 0, 0 − 1〉 = 〈1, 1, −1〉

−→
AB · −→

AC = 〈1, 0, −1〉 · 〈1, 1, −1〉 = 1 · 1 + 0 · 1 + (−1) · (−1) = 2

‖−→AB‖ =
√

12 + 02 + (−1)2 = √
2

‖−→AC‖ =
√

12 + 12 + (−1)2 = √
3



S E C T I O N 12.3 Dot Product and the Angle Between Two Vectors 909

Substituting in (1) and solving for 0 ≤ α ≤ 90◦ gives

cos α = 2√
2 · √

3
≈ 0.816 ⇒ α ≈ 35.31◦.

Find the angle between AB and AD.
75. Calculate the projection of

−→
AC along

−→
AD.

solution DC is perpendicular to the face OAD of the cube. Hence, it is orthogonal to the segment AD

on this face. Therefore, the projection of the vector
−→
AC along

−→
AD is the vector

−→
AD itself.

Calculate the projection of
−→
AD along

−→
AB.

77. The methane molecule CH4 consists of a carbon molecule bonded to four hydrogen molecules that are
spaced as far apart from each other as possible. The hydrogen atoms then sit at the vertices of a tetrahedron,
with the carbon atom at its center, as in Figure 17. We can model this with the carbon atom at the point
( 1

2 , 1
2 , 1

2 ) and the hydrogen atoms at (0, 0, 0), (1, 1, 0), (1, 0, 1), and (0, 1, 1). Use the dot product to find the
bond angle α formed between any two of the line segments from the carbon atom to the hydrogen atoms.

H

C

H

H

H

α

FIGURE 17 A methane molecule.

solution Use the atoms at (0, 0, 0) and (1, 1, 0). The vectors from C to these atoms are

u = 〈0, 0, 0〉 −
〈

1

2
,

1

2
,

1

2

〉
=
〈
−1

2
, −1

2
, −1

2

〉

v = 〈1, 1, 0〉 −
〈

1

2
,

1

2
,

1

2

〉
=
〈

1

2
,

1

2
, −1

2

〉
.

The angle α between these two vectors is given by

cos α = u · v
‖u‖‖v‖ =

− 1
2 · 1

2 − 1
2 · 1

2 − 1
2

(
− 1

2

)
√(

− 1
2

)2 +
(
− 1

2

)2 +
(
− 1

2

)2
√(

1
2

)2 +
(

1
2

)2 +
(
− 1

2

)2
= −1/4

3/4
= −1

3
.

It follows that

α = cos−1
(

−1

3

)
≈ 1.9106 ≈ 109.471◦.

Iron forms a crystal lattice where each central atom appears at the center of a cube, the corners of which
correspond to additional iron atoms, as in Figure 18. Use the dot product to find the angle β between
the line segments from the central atom to two adjacent outer atoms. Hint: Take the central atom to be
situated at the origin and the corner atoms to occur at (±1, ±1, ±1).

79. Let v and w be nonzero vectors and set u = ev + ew. Use the dot product to show that the angle
between u and v is equal to the angle between u and w. Explain this result geometrically with a diagram.

solution We denote by α the angle between u and v and by β the angle between u and w. Since ev and
ew are vectors in the directions of v and w respectively, α is the angle between u and ev and β is the angle
between u and ew. The cosines of these angles are thus

cos α = u · ev

‖u‖‖ev‖ = u · ev

‖u‖ ; cos β = u · ew

‖u‖‖ew‖ = u · ew

‖u‖
To show that cos α = cos β (which implies that α = β) we must show that

u · ev = u · ew.

We compute the two dot products:

u · ev = (ev + ew) · ev = ev · ev + ew · ev = 1 + ew · ev

u · ew = (ev + ew) · ew = ev · ew + ew · ew = ev · ew + 1
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We see that u · ev = u · ew. We conclude that cos α = cos β, hence α = β. Geometrically, u is a diagonal in
the rhombus OABC (see figure), hence it bisects the angle �AOC of the rhombus.

C

A
B 

O

u

v

w

ev

ew

Let v, w, and a be nonzero vectors such that v · a = w · a. Is it true that v = w? Either prove this
or give a counterexample.

81. Calculate the force (in newtons) required to push a 40-kg wagon up a 10◦ incline (Figure 19).

10°

40 kg

FIGURE 19

solution Gravity exerts a force Fg of magnitude 40g newtons where g = 9.8. The magnitude of the force
required to push the wagon equals the component of the force Fg along the ramp. Resolving Fg into a sum
Fg = F‖ + F⊥, where F‖ is the force along the ramp and F⊥ is the force orthogonal to the ramp, we need to
find the magnitude of F‖. The angle between Fg and the ramp is 90◦ − 10◦ = 80◦. Hence,

F‖ = ‖Fg‖ cos 80◦ = 40 · 9.8 · cos 80◦ ≈ 68.07N.

10°
80°

F⊥

F||

Fg

Therefore the minimum force required to push the wagon is 68.07 N. (Actually, this is the force required to
keep the wagon from sliding down the hill; any slight amount greater than this force will serve to push it up
the hill.)

A force F is applied to each of two ropes (of negligible weight) attached to opposite ends of a 40-kg
wagon and making an angle of 35◦ with the horizontal (Figure 20). What is the maximum magnitude of
F (in newtons) that can be applied without lifting the wagon off the ground?

83. A light beam travels along the ray determined by a unit vector L, strikes a flat surface at point P , and is
reflected along the ray determined by a unit vector R, where θ1 = θ2 (Figure 21). Show that if N is the unit
vector orthogonal to the surface, then

R = 2(L · N)N − L

R

N

L

Incoming light Reflected light

P

θ1 θ2

FIGURE 21

solution We denote by W a unit vector orthogonal to N in the direction shown in the figure, and let
θ1 = θ2 = θ .

R

W

N
L

Incoming light Reflected light



S E C T I O N 12.3 Dot Product and the Angle Between Two Vectors 911

We resolve the unit vectors R and L into a sum of forces along N and W. This gives

R = cos(90 − θ)W + cos θN = sin θW + cos θN

L = − cos(90 − θ)W + cos θN = − sin θW + cos θN (1)

W

N

Now, since

L · N = ‖L‖‖N‖ cos θ = 1 · 1 cos θ = cos θ

W

N

L

q
90 + q

W

N

R

q

90 − q

we have by (1):

2(L · N)N − L = (2 cos θ)N − L = (2 cos θ)N − ((− sin θ)W + (cos θ)N)

= (2 cos θ)N + (sin θ)W − (cos θ)N = (sin θ)W + (cos θ)N = R

Let P and Q be antipodal (opposite) points on a sphere of radius r centered at the origin and let R be
a third point on the sphere (Figure 22). Prove that PR and QR are orthogonal.

85. Prove that ‖v + w‖2 − ‖v − w‖2 = 4v · w.

solution We compute the following values:

‖v + w‖2 = (v + w) · (v + w) = v · v + v · w + w · v + w · w = ‖v‖2 + 2v · w + ‖w‖2

‖v − w‖2 = (v − w) · (v − w) = v · v − v · w − w · v − w · w = ‖v‖2 − 2v · w + ‖w‖2

Hence,

‖v + w‖2 − ‖v − w‖2 = (‖v‖2 + 2v · w + ‖w‖2) − (‖v‖2 − 2v · w + ‖w‖2) = 4v · w

Use Exercise 85 to show that v and w are orthogonal if and only if ‖v − w‖ = ‖v + w‖.
87. Show that the two diagonals of a parallelogram are perpendicular if and only if its sides have equal length.
Hint: Use Exercise 86 to show that v − w and v + w are orthogonal if and only if ‖v‖ = ‖w‖.

solution We denote the vectors
−→
AB and

−→
AD by

w = −→
AB, v = −→

AD.

Then,

−→
AC = w + v,

−→
BD = −w + v.

w

v

v + w
−w + v

A

B C

D

The diagonals are perpendicular if and only if the vectors v + w and v − w are orthogonal. By Exercise 86
these vectors are orthogonal if and only if the norms of the sum (v + w) + (v − w) = 2v and the difference
(v + w) − (v − w) = 2w are equal, that is,

‖2v‖ = ‖2w‖
2‖v‖ = 2‖w‖ ⇒ ‖v‖ = ‖w‖

Verify the Distributive Law:

u · (v + w) = u · v + u · w
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89. Verify that (λv) · w = λ(v · w) for any scalar λ.

solution We denote the components of the vectors v and w by

v = 〈a1, a2, a3〉 w = 〈b1, b2, b3〉
Thus,

(λv) · w = (λ〈a1, a2, a3〉) · 〈b1, b2, b3〉 = 〈λa1, λa2, λa3〉 · 〈b1, b2, b3〉
= λa1b1 + λa2b2 + λa3b3

Recalling that λ, ai , and bi are scalars and using the definitions of scalar multiples of vectors and the dot
product, we get

(λv) · w = λ(a1b1 + a2b2 + a3b3) = λ (〈a1, a2, a3〉 · 〈b1, b2, b3〉) = λ(v · w)

Further Insights and Challenges

Prove the Law of Cosines, c2 = a2 + b2 − 2ab cos θ , by referring to Figure 23. Hint: Consider the
right triangle �PQR.

91. In this exercise, we prove the Cauchy–Schwarz inequality: If v and w are any two vectors, then

|v · w| ≤ ‖v‖ ‖w‖ 6

(a) Let f (x) = ‖xv + w‖2 for x a scalar. Show that f (x) = ax2 + bx + c, where a = ‖v‖2, b = 2v · w,
and c = ‖w‖2.

(b) Conclude that b2 − 4ac ≤ 0. Hint: Observe that f (x) ≥ 0 for all x.

solution
(a) We express the norm as a dot product and compute it:

f (x) = ‖xv + w‖2 = (xv + w) · (xv + w)

= x2v · v + xv·w + xw · v + w · w = ‖v‖2x2 + 2(v · w)x + ‖w‖2

Hence, f (x) = ax2 + bx + c, where a = ‖v‖2, b = 2v · w, and c = ‖w‖2.

(b) If f has distinct real roots x1 and x2, then f (x) is negative for x between x1 and x2, but this is impossible
since f is the square of a length.

y

xx1 x2

f (x) = ax2 + bx + c, a > 0

Using properties of quadratic functions, it follows that f has a nonpositive discriminant. That is, b2 − 4ac ≤ 0.
Substituting the values for a, b, and c, we get

4(v · w)2 − 4‖v‖2‖w‖2 ≤ 0

(v · w)2 ≤ ‖v‖2‖w‖2

Taking the square root of both sides we obtain

|v · w| ≤ ‖v‖‖w‖

Use (6) to prove the Triangle Inequality:

‖v + w‖ ≤ ‖v‖ + ‖w‖
Hint: First use the Triangle Inequality for numbers to prove

|(v + w) · (v + w)| ≤ |(v + w) · v| + |(v + w) · w|

93. This exercise gives another proof of the relation between the dot product and the angle θ between
two vectors v = 〈a1, b1〉 and w = 〈a2, b2〉 in the plane. Observe that v = ‖v‖ 〈cos θ1, sin θ1〉 and w =
‖w‖ 〈cos θ2, sin θ2〉, with θ1 and θ2 as in Figure 24. Then use the addition formula for the cosine to show that

v · w = ‖v‖ ‖w‖ cos θ
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θ = θ2 − θ1

w
w

v v

x

y

x

y

x

y

a2

b2

b1

a1

θ2 θ1

θ

FIGURE 24

solution Using the trigonometric function for angles in right triangles, we have

a2 = ‖v‖ sin θ1, a1 = ‖v‖ cos θ1

b2 = ‖w‖ sin θ2, b1 = ‖w‖ cos θ2

Hence, using the given identity we obtain

v · w = 〈a1, a2〉 · 〈b1, b2〉 = a1b1 + a2b2 = ‖v‖ cos θ1‖w‖ cos θ2 + ‖v‖ sin θ1‖w‖ sin θ2

= ‖v‖‖w‖(cos θ1 cos θ2 + sin θ1 sin θ2) = ‖v‖‖w‖ cos(θ1 − θ2)

That is,

v · w = ‖v‖‖w‖ cos(θ)

Let v = 〈x, y〉 and

vθ = 〈x cos θ + y sin θ, −x sin θ + y cos θ〉
Prove that the angle between v and vθ is θ .

95. Let v be a nonzero vector. The angles α, β, γ between v and the unit vectors i, j, k are called the direction
angles of v (Figure 25). The cosines of these angles are called the direction cosines of v. Prove that

cos2 α + cos2 β + cos2 γ = 1

y

v

x

z

α
β

γ

FIGURE 25 Direction angles of v.

solution We use the relation between the dot product and the angle between two vectors to write

cos α = v · i
‖v‖‖i‖ = v · i

‖v‖

cos β = v · j
‖v‖‖j‖ = v · j

‖v‖ (1)

cos γ = v · k
‖v‖‖k‖ = v · k

‖v‖
We compute the values involved in (1). Letting v = 〈v1, v2, v3〉 we get

v · i = 〈v1, v2, v3〉 · 〈1, 0, 0〉 = v1

v · j = 〈v1, v2, v3〉 · 〈0, 1, 0〉 = v2

v · k = 〈v1, v2, v3〉 · 〈0, 0, 1〉 = v3

‖v‖ =
√

v2
1 + v2

2 + v2
3 (2)
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We now substitute (2) into (1) to obtain

cos α = v1

‖v‖ , cos β = v2

‖v‖ , cos γ = v3

‖v‖
Finally, we compute the sum of squares of the direction cosines:

cos2 α + cos2 β + cos2 γ =
(

v1

‖v‖
)2

+
(

v2

‖v‖
)2

+
(

v3

‖v‖
)2

= 1

‖v‖2
(v2

1 + v2
2 + v2

3) = 1

‖v‖2
· ‖v‖2 = 1

Find the direction cosines of v = 〈3, 6, −2〉.97. The set of all points X = (x, y, z) equidistant from two points P , Q in R3 is a plane (Figure 26). Show
that X lies on this plane if

−→
PQ · −→

OX = 1

2

(
‖−−→OQ‖2 − ‖−→

OP ‖2
)

7

y

x

P

X

R

Q

z

FIGURE 26

Hint: If R is the midpoint of PQ, then X is equidistant from P and Q if and only if
−→
XR is orthogonal to

−→
PQ.

solution Let R be the midpoint of the segment PQ. The points X = (x, y, z) that are equidistant from

P and Q are the points for which the vector
−→
XR is orthogonal to

−→
PQ. That is,

−→
XR · −→

PQ = 0 (1)

Since
−→
XR = −→

XO + −→
OR we have by (1):

O =
(−→
XO + −→

OR
)

· −→
PQ = −→

XO · −→
PQ + −→

OR · −→
PQ = −−→

OX · −→
PQ + −→

OR · −→
PQ

Transferring sides we get

−→
OX · −→

PQ = −→
OR · −→

PQ (2)

We now write
−→
PQ = −→

PO + −−→
OQ on the right-hand-side of (2), and

−→
OR =

−→
OP + −−→

OQ

2
. We get

−→
OX · −→

PQ = 1

2

(−→
OP + −−→

OQ
)

·
(−→
PO + −−→

OQ
)

= 1

2

(−→
OP + −−→

OQ
)

·
(−−→
OQ − −→

OP
)

= 1

2

(−→
OP · −−→

OQ − −→
OP · −→

OP + −−→
OQ · −−→

OQ − −−→
OQ · −→

OP
)

= 1

2

(
‖−−→OQ‖2 − ‖−→

OP ‖2
)

Thus, we showed that the vector equation of the plane is

−→
OX · −→

PQ = 1

2

(
‖−−→OQ‖2 − ‖−→

OP ‖2
)

.

Sketch the plane consisting of all points X = (x, y, z) equidistant from the points P = (0, 1, 0) and
Q = (0, 0, 1). Use Eq. (7) to show that X lies on this plane if and only if y = z.

99. Use Eq. (7) to find the equation of the plane consisting of all points X = (x, y, z) equidistant from
P = (2, 1, 1) and Q = (1, 0, 2).

solution Using Eq. (7) with X = (x, y, z), P = (2, 1, 1), and Q = (1, 0, 2) gives

〈x, y, z〉 · 〈−1, −1, 1〉 = 1

2

(
(
√

5)2 − (
√

6)2
)

= −1

2

This gives us −1x − 1y + 1z = − 1
2 , which leads to 2x + 2y − 2z = 1.
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12.4 The Cross Product

Preliminary Questions

1. What is the (1, 3) minor of the matrix

∣∣∣∣∣∣
3 4 2

−5 −1 1
4 0 3

∣∣∣∣∣∣?
solution The (1, 3) minor is obtained by crossing out the first row and third column of the matrix. That
is, ∣∣∣∣∣∣

3 4 2
−5 −1 1

4 0 3

∣∣∣∣∣∣ ⇒
∣∣∣∣−5 −1

4 0

∣∣∣∣
2. The angle between two unit vectors e and f is π

6 . What is the length of e × f?

solution We use the Formula for the Length of the Cross Product:

‖e × f‖ = ‖e‖‖f‖ sin θ

Since e and f are unit vectors, ‖e‖ = ‖f‖ = 1. Also θ = π
6 , therefore,

‖e × f‖ = 1 · 1 · sin
π

6
= 1

2

The length of e × f is 1
2 .

3. What is u × w, assuming that w × u = 〈2, 2, 1〉?
solution By anti-commutativity of the cross product, we have

u × w = −w × u = −〈2, 2, 1〉 = 〈−2, −2, −1〉

4. Find the cross product without using the formula:

(a) 〈4, 8, 2〉 × 〈4, 8, 2〉 (b) 〈4, 8, 2〉 × 〈2, 4, 1〉
solution By properties of the cross product, the cross product of parallel vectors is the zero vector. In
particular, the cross product of a vector with itself is the zero vector. Since 〈4, 8, 2〉 = 2〈2, 4, 1〉, the vectors
〈4, 8, 2〉 and 〈2, 4, 1〉 are parallel. We conclude that

〈4, 8, 2〉 × 〈4, 8, 2〉 = 0 and 〈4, 8, 2〉 × 〈2, 4, 1〉 = 0.

5. What are i × j and i × k?

solution The cross product i × j and i × k are determined by the right-hand rule. We can also use the
following figure to determine these cross-products:

j

i

k

We get

i × j = k and i × k = −j

6. When is the cross product v × w equal to zero?

solution The cross product v × w is equal to zero if one of the vectors v or w (or both) is the zero vector,
or if v and w are parallel vectors.
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7. Which of the following are meaningful and which are not? Explain.

(a) (u · v) × w

(b) (u × v) · w

(c) ‖w‖(u · v)

(d) ‖w‖(u × v)

solution
(a) Since u · v is a scalar, this product does not make sense: taking the cross product of a scalar with a vector
is not defined.

(b) u × v is a vector, so the result of this expression is the dot product of two vectors, which is defined and
is a scalar.

(c) Both ‖w‖ and u · v are scalars, so this expression is defined and is just the product of two real numbers.

(d) Since ‖w‖ is a scalar and u × v is a vector, this expression is defined. It is a multiple of the vector u × v.

8. Which of the following vectors are equal to j × i?
(a) i × k

(b) −k

(c) i × j

solution Since i × j = k (see Exercise 5 above), we see that j × i = −i × j = −k. Thus (b) is equal to
j × i, but (c) is not. Finally, since i × k = −j, (a) is not equal to j × i either.

Exercises
In Exercises 1–4, calculate the 2 × 2 determinant.

1.

∣∣∣∣1 2
4 3

∣∣∣∣
solution Using the definition of 2 × 2 determinant we get∣∣∣∣1 2

4 3

∣∣∣∣ = 1 · 3 − 2 · 4 = −5

∣∣∣∣∣
2
3

1
6

−5 2

∣∣∣∣∣
3.

∣∣∣∣−6 9
1 1

∣∣∣∣
solution We evaluate the determinant to obtain∣∣∣∣−6 9

1 1

∣∣∣∣ = −6 · 1 − 9 · 1 = −15

∣∣∣∣9 25
5 14

∣∣∣∣In Exercises 5–8, calculate the 3 × 3 determinant.

5.

∣∣∣∣∣∣
1 2 1
4 −3 0
1 0 1

∣∣∣∣∣∣
solution Using the definition of 3 × 3 determinant we obtain∣∣∣∣∣∣

1 2 1
4 −3 0
1 0 1

∣∣∣∣∣∣ = 1

∣∣∣∣−3 0
0 1

∣∣∣∣− 2

∣∣∣∣4 0
1 1

∣∣∣∣+ 1

∣∣∣∣4 −3
1 0

∣∣∣∣
= 1 · (−3 · 1 − 0 · 0) − 2 · (4 · 1 − 0 · 1) + 1 · (4 · 0 − (−3) · 1)

= −3 − 8 + 3 = −8

∣∣∣∣∣∣
1 0 1

−2 0 3
1 3 −1

∣∣∣∣∣∣
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7.

∣∣∣∣∣∣
1 2 3
2 4 6

−3 −4 2

∣∣∣∣∣∣
solution We have∣∣∣∣∣∣

1 2 3
2 4 6

−3 −4 2

∣∣∣∣∣∣ = 1

∣∣∣∣ 4 6
−4 2

∣∣∣∣− 2

∣∣∣∣ 2 6
−3 2

∣∣∣∣+ 3

∣∣∣∣ 2 4
−3 −4

∣∣∣∣
= 1(4 · 2 − 6 · (−4)) − 2(2 · 2 − 6 · (−3)) + 3(2 · (−4) − 4 · (−3))

= 32 − 44 + 12 = 0

∣∣∣∣∣∣
1 0 0
0 0 −1
0 1 0

∣∣∣∣∣∣
In Exercises 9–12, calculate v × w.

9. v = 〈1, 2, 1〉, w = 〈3, 1, 1〉
solution Using the definition of the cross product we get

v × w =
∣∣∣∣∣∣

i j k
1 2 1
3 1 1

∣∣∣∣∣∣ =
∣∣∣∣2 1
1 1

∣∣∣∣ i −
∣∣∣∣1 1
3 1

∣∣∣∣ j +
∣∣∣∣1 2
3 1

∣∣∣∣k
= (2 − 1)i − (1 − 3)j + (1 − 6)k = i + 2j − 5k

v = 〈2, 0, 0〉, w = 〈−1, 0, 1〉11. v = 〈 23 , 1, 1
2

〉
, w = 〈4, −6, 3〉

solution We have

v × w =
∣∣∣∣∣∣

i j k
2
3 1 1

2
4 −6 3

∣∣∣∣∣∣ =
∣∣∣∣ 1 1

2−6 3

∣∣∣∣ i −
∣∣∣∣ 2

3
1
2

4 3

∣∣∣∣ j +
∣∣∣∣ 2

3 1
4 −6

∣∣∣∣k
= (3 + 3) i − (2 − 2) j + (−4 − 4) k = 6i − 8k

v = 〈1, 1, 0〉, w = 〈0, 1, 1〉In Exercises 13–16, use the relations in Eq. (5) to calculate the cross product.

13. (i + j) × k

solution We use basic properties of the cross product to obtain

(i + j) × k = i × k + j × k = −j + i

j

i

k

i × k = −j

j × k = i

( j − k) × ( j + k)
15. (i − 3j + 2k) × ( j − k)

solution Using the distributive law we obtain

(i − 3j + 2k) × (j − k) = (i − 3j + 2k) × j − (i − 3j + 2k) × (k)

= i × j + 2k × j − i × k − (−3j) × k

= i + j + k

(2i − 3j + 4k) × (i + j − 7k)
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In Exercises 17–22, calculate the cross product assuming that

u × v = 〈1, 1, 0〉 , u × w = 〈0, 3, 1〉 , v × w = 〈2, −1, 1〉
17. v × u

solution Using the properties of the cross product we obtain

v × u = −u × v = 〈−1, −1, 0〉

v × (u + v)
19. w × (u + v)

solution Using the properties of the cross product we obtain

w × (u + v) = w × u + w × v = −u × w − v × w = 〈−2, −2, −2〉 .

(3u + 4w) × w
21. (u − 2v) × (u + 2v)

solution Using the properties of the cross product we obtain

(u − 2v) × (u + 2v) = (u − 2v) × u + (u − 2v) × 2v = u × u − 2v × u + u × 2v − 4v × v

= 0 + 2u × v + 2u × v − 0 = 0 + 4u × v = 〈4, 4, 0〉

(v + w) × (3u + 2v)
23. Let v = 〈a, b, c〉. Calculate v × i, v × j, and v × k.

solution We write v = ai + bj + ck and use the distributive law:

v × i = (ai + bj + ck) × i = ai × i + bj × i + ck × i = a · 0 − bk + cj = −bk + cj = 〈0, c, −b〉
v × j = (ai + bj + ck) × j = ai × j + bj × j + ck × j = ak + b0 − ci = ak − ci = 〈−c, 0, a〉

v × k = (ai + bj + ck) × k = ai × k + bj × k + ck × k = −aj + bi + c0 = −aj + bi = 〈b, −a, 0〉

j

i

k

Find v × w, where v and w are vectors of length 3 in the xz-plane, oriented as in Figure 16, and θ = π
6 .In Exercises 25 and 26, refer to Figure 17.

v

−u

u

w

FIGURE 17

25. Which of u and −u is equal to v × w?

solution The direction of v × w is determined by the right-hand rule, that is, our thumb points in the
direction of v × w when the fingers of our right hand curl from v to w. Therefore v × w equals −u rather
than u.

Which of the following form a right-handed system?

(a) {v, w, u} (b) {w, v, u} (c) {v, u, w}
(d) {u, v, w} (e) {w, v, −u} (f) {v, −u, w}

27. Let v = 〈3, 0, 0〉 and w = 〈0, 1, −1〉. Determine u = v × w using the geometric properties of the cross
product rather than the formula.

solution The cross product u = v × w is orthogonal to v.
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y
x

v
w

z

u = v × w

Since v lies along the x-axis, u lies in the yz-plane, therefore u = 〈0, b, c〉. u is also orthogonal to w,
so u · w = 0. This gives u · w = 〈0, b, c〉 · 〈0, 1, −1〉 = b − c = 0 ⇒ b = c. Thus, u = 〈0, b, b〉.
By the right-hand rule, u points to the positive z-direction so b > 0. We compute the length of u. Since
v · w = 〈3, 0, 0〉 · 〈0, 1, −1〉 = 0, v and w are orthogonal. Hence,

‖v × w‖ = ‖v‖‖w‖ sin
π

2
= ‖v‖‖w‖ = 3 · √

2.

Also since b > 0, we have

‖u‖ = ‖〈0, b, b〉‖ =
√

2b2 = b
√

2

Equating the lengths gives

b
√

2 = 3
√

2 ⇒ b = 3.

We conclude that u = v × w = 〈0, 3, 3〉.

What are the possible angles θ between two unit vectors e and f if ‖e × f‖ = 1
2 ?

29. Show that if v and w lie in the yz-plane, then v × w is a multiple of i.

solution v × w is orthogonal to v and w. Since v and w lie in the yz-plane, v × w must lie along the x

axis which is perpendicular to yz-plane. That is, v × w is a scalar multiple of the unit vector i.

Find the two unit vectors orthogonal to both a = 〈3, 1, 1〉 and b = 〈−1, 2, 1〉.31. Let e and e′ be unit vectors in R3 such that e ⊥ e′. Use the geometric properties of the cross product to
compute e × (e′ × e).

solution Let u = e × (e′ × e
)

and v = e′ × e. The vector v is orthogonal to e′ and e, hence v is orthogonal
to the plane π defined by e′ and e. Now u is orthogonal to v, hence u lies in the plane π orthogonal to v. u is
orthogonal to e, which is in this plane, hence u is a multiple of e′:

u = λe′ (1)

v

ee'

The right-hand rule implies that u is in the direction of e′, hence λ > 0. To find λ, we compute the length of
u:

‖v‖ = ‖e′ × e‖ = ‖e′‖‖e‖ sin
π

2
= 1 · 1 · 1 = 1

‖u‖ = ‖e × v‖ = ‖e‖‖v‖ sin
π

2
= 1 · 1 · 1 = 1 (2)

Combining (1), (2), and λ > 0 we conclude that

u = e × (e′ × e
) = e′.

Calculate the force F on an electron (charge q = −1.6 × 10−19 C) moving with velocity 105 m/s in
the direction i in a uniform magnetic field B, where B = 0.0004i + 0.0001j teslas (see Example 5).

33. An electron moving with velocity v in the plane experiences a force F = q(v × B), where q is the charge
on the electron and B is a uniform magnetic field pointing directly out of the page. Which of the two vectors
F1 or F2 in Figure 18 represents the force on the electron? Remember that q is negative.
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v F2

F1

B

FIGURE 18 The magnetic field vector B points directly out of the page.

solution Since the magnetic field B points directly out of the page (toward us), the right-hand rule implies
that the cross product v × B is in the direction of F2 (see figure).

v F2

F1

B

I

II

Since F = q (v × B) and q < 0, the force F on the electron is represented by the opposite vector F1.

Calculate the scalar triple product u · (v × w), where u = 〈1, 1, 0〉, v = 〈3, −2, 2〉, and w = 〈4, −1, 2〉.35. Verify identity (12) for vectors v = 〈3, −2, 2〉 and w = 〈4, −1, 2〉.
solution We compute the cross product v × w:

v × w =
∣∣∣∣∣∣

i j k
3 −2 2
4 −1 2

∣∣∣∣∣∣ =
∣∣∣∣ −2 2

−1 2

∣∣∣∣ i −
∣∣∣∣ 3 2

4 2

∣∣∣∣ j +
∣∣∣∣ 3 −2

4 −1

∣∣∣∣k
= (−4 + 2)i − (6 − 8)j + (−3 + 8)k = −2i + 2j + 5k = 〈−2, 2, 5〉

We now find the dot product v · w:

v · w = 〈3, −2, 2〉 · 〈4, −1, 2〉 = 3 · 4 + (−2) · (−1) + 2 · 2 = 18

Finally we compute the squares of the lengths of v, w and v × w:

‖v‖2 = 32 + (−2)2 + 22 = 17

‖w‖2 = 42 + (−1)2 + 22 = 21

‖v × w‖2 = (−2)2 + 22 + 52 = 33

We now verify the equality:

‖v‖2‖w‖2 − (v · w)2 = 17 · 21 − 182 = 33 = ‖v × w‖2

Find the volume of the parallelepiped spanned by u, v, and w in Figure 19.
37. Find the area of the parallelogram spanned by v and w in Figure 19.

y

x

z

u = 〈1, 0, 4〉 
w = 〈−4, 2, 6〉 

v = 〈1, 3, 1〉 

FIGURE 19
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solution The area of the parallelogram equals the length of the cross product of the two vectors v =
〈1, 3, 1〉 and w = 〈−4, 2, 6〉. We calculate the cross product as follows:

v × w =
∣∣∣∣∣∣

i j k
1 3 1

−4 2 6

∣∣∣∣∣∣ = (18 − 2)i − (6 + 4)j + (2 + 12)k = 16i − 10j + 14k

The length of this vector 16i − 10j + 14k is
√

162 + 102 + 142 = 2
√

138. Thus, the area of the parallelogram
is 2

√
138.

Calculate the volume of the parallelepiped spanned by

u = 〈2, 2, 1〉 , v = 〈1, 0, 3〉 , w = 〈0, −4, 0〉

39. Sketch and compute the volume of the parallelepiped spanned by

u = 〈1, 0, 0〉 , v = 〈0, 2, 0〉 , w = 〈1, 1, 2〉
solution Using u = 〈1, 0, 0〉, v = 〈0, 2, 0〉, and w = 〈1, 1, 2〉, the volume is given by the following
scalar triple product:

u · (v × w) =
∣∣∣∣∣∣

1 0 0
0 2 0
1 1 2

∣∣∣∣∣∣ = 1(4 − 0) − 0 + 0 = 4.

u
v

w

y

x

z

Sketch the parallelogram spanned by u = 〈1, 1, 1〉 and v = 〈0, 0, 4〉, and compute its area.
41. Calculate the area of the parallelogram spanned by u = 〈1, 0, 3〉 and v = 〈2, 1, 1〉.
solution The area of the parallelogram is the length of the vector u × v. We first compute this vector:

u × v =
∣∣∣∣∣∣

i j k
1 0 3
2 1 1

∣∣∣∣∣∣ =
∣∣∣∣ 0 3

1 1

∣∣∣∣ i −
∣∣∣∣ 1 3

2 1

∣∣∣∣ j +
∣∣∣∣ 1 0

2 1

∣∣∣∣k = −3i − (1 − 6)j + k = −3i + 5j + k

The area A is the length

A = ‖u × v‖ =
√

(−3)2 + 52 + 12 = √
35 ≈ 5.92.

Find the area of the parallelogram determined by the vectors 〈a, 0, 0〉 and 〈0, b, c〉.43. Sketch the triangle with vertices at the origin O, P = (3, 3, 0), and Q = (0, 3, 3), and compute its area
using cross products.

solution The triangle OPQ is shown in the following figure.

y
x

O

Q = (0, 3, 3)

P = (3, 3, 0)

z

The area S of the triangle is half of the area of the parallelogram determined by the vectors
−→
OP = 〈3, 3, 0〉

and
−−→
OQ = 〈0, 3, 3〉. Thus,

S = 1

2
‖−→
OP × −−→

OQ‖ (1)

We compute the cross product:

−→
OP × −−→

OQ =
∣∣∣∣∣∣

i j k
3 3 0
0 3 3

∣∣∣∣∣∣ =
∣∣∣∣ 3 0

3 3

∣∣∣∣ i −
∣∣∣∣ 3 0

0 3

∣∣∣∣ j +
∣∣∣∣ 3 3

0 3

∣∣∣∣k
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= 9i − 9j + 9k = 9〈1, −1, 1〉
Substituting into (1) gives

S = 1

2
‖9〈1, −1, 1〉‖ = 9

2
‖〈1, −1, 1〉‖ = 9

2

√
12 + (−1)2 + 12 = 9

√
3

2
≈ 7.8

The area of the triangle is S = 9
√

3
2 ≈ 7.8.

Use the cross product to find the area of the triangle with vertices P = (1, 1, 5), Q = (3, 4, 3), and
R = (1, 5, 7) (Figure 20).

45. Use cross products to find the area of the triangle in the xy-plane defined by (1, 2), (3, 4), and (−2, 2).

solution Think of the triangle as lying in the xy-plane in a three-dimensional coordinate system, and let
P = (1, 2, 0), Q = (3, 4, 0), and R = (−2, 2, 0). Then the area T of the triangle is given by equation (7) in
the text:

T = 1

2
‖−→
PQ × −→

PR‖

We compute the vectors
−→
PQ and

−→
PR :

−→
PQ = 〈3 − 1, 4 − 2, 0 − 0〉 = 〈2, 2, 0〉
−→
PR = 〈−2 − 1, 2 − 2, 0 − 0〉 = 〈−3, 0, 0〉

We now find the cross product
−→
PQ × −→

PR by computing the following determinant:

−→
PQ × −→

PR =
∣∣∣∣∣∣

i j k
2 2 0

−3 0 0

∣∣∣∣∣∣ =
∣∣∣∣ 2 0

0 0

∣∣∣∣ i −
∣∣∣∣ 2 0

−3 0

∣∣∣∣ j +
∣∣∣∣ 2 2

−3 0

∣∣∣∣k = 6k

Thus, we get

T = 1

2
‖6k‖ = 1

2
· 6 = 3.

Use cross products to find the area of the quadrilateral in the xy-plane defined by (0, 0), (1, −1), (3, 1),
and (2, 4).

47. Check that the four points P(2, 4, 4), Q(3, 1, 6), R(2, 8, 0), and S(7, 2, 1) all lie in a plane. Then use
vectors to find the area of the quadrilateral they define.

solution The points P , Q, and R determine a plane with normal vector n; S lies in that plane if
−→
PS is

perpendicular to n. To find n, we compute

−→
PQ × −→

PR = 〈1, −3, 2〉 × 〈0, 4, −4〉 =
∣∣∣∣∣∣
i j k
1 −3 2
0 4 −4

∣∣∣∣∣∣
=
∣∣∣∣−3 2

4 −4

∣∣∣∣ i −
∣∣∣∣1 2
0 −4

∣∣∣∣ j +
∣∣∣∣1 −3
0 4

∣∣∣∣k
= 4i + 4j + 4k.

Since

〈4, 4, 4〉 · −→
PS = 〈4, 4, 4〉 · 〈5, −2, −3〉 = 0,

the normal vector is also orthogonal to
−→
PS, so that the vector

−→
PS, and therefore the point S, also lies in the

plane. So all four points lie in a plane.
To find the area of the quadrilateral of which they are the vertices, divide the quadrilateral into the two

triangles �PQR and �SQR. The area of each of these triangles is given by equation (7) in the text. First we
must compute various vectors:

−→
PQ = 〈3 − 2, 1 − 4, 6 − 4〉 = 〈1, −3, 2〉
−→
PR = 〈2 − 2, 8 − 4, 0 − 4〉 = 〈0, 4, −4〉
−→
SQ = 〈3 − 7, 1 − 2, 6 − 1〉 = 〈−4, −1, 5〉
−→
SR = 〈2 − 7, 8 − 2, 0 − 1〉 = 〈−5, 6, −1〉.



S E C T I O N 12.4 The Cross Product 923

To find the area of �PQR, we must compute
−→
PQ × −→

PR; to find the area of �SQR we must compute−→
SQ × −→

SR:

−→
PQ × −→

PR =
∣∣∣∣∣∣
i j k
1 −3 2
0 4 −4

∣∣∣∣∣∣ =
∣∣∣∣−3 2

4 −4

∣∣∣∣ i −
∣∣∣∣1 2
0 −4

∣∣∣∣ j +
∣∣∣∣1 −3
0 4

∣∣∣∣k = 4i + 4j + 4k

−→
SQ × −→

SR =
∣∣∣∣∣∣

i j k
−4 −1 5
−5 6 −1

∣∣∣∣∣∣ =
∣∣∣∣−1 5

6 −1

∣∣∣∣ i −
∣∣∣∣−4 5
−5 −1

∣∣∣∣ j +
∣∣∣∣−4 −1
−5 6

∣∣∣∣k = −29i − 29j − 29k.

The area of the quadrilateral, S, is given by

S = A(�PQS) + A(�RQS) = 1

2
‖4i + 4j + 4k‖ + 1

2
‖−29i − 29j − 29k‖ = 1

2
(4

√
3 + 29

√
3) = 33

2

√
3.

Find three nonzero vectors a, b, and c such that a × b = a × c �= 0 but b �= c.In Exercises 49–51, verify the identity using the formula for the cross product.

49. v × w = −w × v
solution Let v = 〈a, b, c〉 and w = 〈d, e, f 〉. By the definition of the cross product we have

v × w =
∣∣∣∣∣∣

i j k
a b c

d e f

∣∣∣∣∣∣ =
∣∣∣∣ b c

e f

∣∣∣∣ i −
∣∣∣∣ a c

d f

∣∣∣∣ j +
∣∣∣∣ a b

d e

∣∣∣∣k = (bf − ec)i − (af − dc)j + (ae − db)k

We also have

−w × v =
∣∣∣∣∣∣

i j k
−d −e −f

a b c

∣∣∣∣∣∣ = (−ec + bf )i − (−dc + af )j + (−db + ea)k

Thus, v × w = −w × v, as desired.

(λv) × w = λ(v × w) (λ a scalar)
51. (u + v) × w = u × w + v × w
solution We let u = 〈a1, a2, a3〉, v = 〈b1, b2, b3〉 and w = 〈c1, c2, c3〉. Computing the left-hand side
gives

(u + v) × w = 〈a1 + b1, a2 + b2, a3 + b3〉 × 〈c1, c2, c3〉 =
∣∣∣∣∣∣

i j k
a1 + b1 a2 + b2 a3 + b3

c1 c2 c3

∣∣∣∣∣∣
=
∣∣∣∣ a2 + b2 a3 + b3

c2 c3

∣∣∣∣ i −
∣∣∣∣ a1 + b1 a3 + b3

c1 c3

∣∣∣∣ j +
∣∣∣∣ a1 + b1 a2 + b2

c1 c2

∣∣∣∣k
= (c3(a2 + b2) − c2(a3 + b3)) i − (c3 (a1 + b1) − c1 (a3 + b3)) j

+ (c2(a1 + b1) − c1(a2 + b2)) k

We now compute the right-hand-side of the equality:

u × w + v × w =
∣∣∣∣∣∣

i j k
a1 a2 a3
c1 c2 c3

∣∣∣∣∣∣+
∣∣∣∣∣∣

i j k
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣
=
∣∣∣∣ a2 a3

c2 c3

∣∣∣∣ i −
∣∣∣∣ a1 a3

c1 c3

∣∣∣∣ j +
∣∣∣∣ a1 a2

c1 c2

∣∣∣∣k +
∣∣∣∣ b2 b3

c2 c3

∣∣∣∣ i
−
∣∣∣∣ b1 b3

c1 c3

∣∣∣∣ j +
∣∣∣∣ b1 b2

c1 c2

∣∣∣∣k
= (a2c3 − a3c2)i − (a1c3 − a3c1)j + (a1c2 − a2c1)k

+ (b2c3 − b3c2)i − (b1c3 − b3c1)j + (b1c2 − b2c1)k

= (a2c3 − a3c2 + b2c3 − b3c2)i − (a1c3 − a3c1 + b1c3 − b3c1)j

+(a1c2 − a2c1 + b1c2 − b2c1)k

= (c3(a2 + b2) − c2(a3 + b3)) i − (c3(a1 + b1) − c1(a3 + b3)) j

+ (c2(a1 + b1) − c1(a2 + b2)) k
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The results are the same. Hence,

(u + v) × w = u × w + v × w.

Use the geometric description in Theorem 1 to prove Theorem 2 (iii): v × w = 0 if and only if w = λv
for some scalar λ or v = 0.

53. Verify the relations (5).

solution We must verify the following relations:

i × j = k, j × k = i, k × i = j, i × i = j × j = k × k = 0

We compute the cross products using the definition of the cross product. This gives

i × j =
∣∣∣∣∣∣

i j k
1 0 0
0 1 0

∣∣∣∣∣∣ =
∣∣∣∣ 0 0

1 0

∣∣∣∣ i −
∣∣∣∣ 1 0

0 0

∣∣∣∣ j +
∣∣∣∣ 1 0

0 1

∣∣∣∣k = k

j × k =
∣∣∣∣∣∣

i j k
0 1 0
0 0 1

∣∣∣∣∣∣ =
∣∣∣∣ 1 0

0 1

∣∣∣∣ i −
∣∣∣∣ 0 0

0 1

∣∣∣∣ j +
∣∣∣∣ 0 1

0 0

∣∣∣∣k = i

k × i =
∣∣∣∣∣∣

i j k
0 0 1
1 0 0

∣∣∣∣∣∣ =
∣∣∣∣ 0 1

0 0

∣∣∣∣ i −
∣∣∣∣ 0 1

1 0

∣∣∣∣ j +
∣∣∣∣ 0 0

1 0

∣∣∣∣k = j

i × i =
∣∣∣∣∣∣

i j k
1 0 0
1 0 0

∣∣∣∣∣∣ =
∣∣∣∣ 0 0

0 0

∣∣∣∣ i −
∣∣∣∣ 1 0

1 0

∣∣∣∣ j +
∣∣∣∣ 1 0

1 0

∣∣∣∣k = 0

j × j =
∣∣∣∣∣∣

i j k
0 1 0
0 1 0

∣∣∣∣∣∣ =
∣∣∣∣ 1 0

1 0

∣∣∣∣ i −
∣∣∣∣ 0 0

0 0

∣∣∣∣ j +
∣∣∣∣ 0 1

0 1

∣∣∣∣k = 0

k × k =
∣∣∣∣∣∣

i j k
0 0 1
0 0 1

∣∣∣∣∣∣ =
∣∣∣∣ 0 1

0 1

∣∣∣∣ i −
∣∣∣∣ 0 1

0 1

∣∣∣∣ j +
∣∣∣∣ 0 0

0 0

∣∣∣∣k = 0

Show that

(i × j) × j �= i × (j × j)

Conclude that the Associative Law does not hold for cross products.

55. The components of the cross product have a geometric interpretation. Show that the absolute value of the
k-component of v × w is equal to the area of the parallelogram spanned by the projections v0 and w0 onto
the xy-plane (Figure 21).

y

x

v0

v
w

w0

z

FIGURE 21

solution Let v = 〈a1, a2, a3〉 and w = 〈b1, b2, b3〉, hence, v0 = 〈a1, a2, 0〉 and w0 = 〈b1, b2, 0〉. The
area S of the parallelogram spanned by v0 and w0 is the following value:

S = ‖v0 × w0‖ (1)

We compute the cross product:

v0 × w0 =
∣∣∣∣∣∣

i j k
a1 a2 0
b1 b2 0

∣∣∣∣∣∣ =
∣∣∣∣ a2 0

b2 0

∣∣∣∣ i −
∣∣∣∣ a1 0

b1 0

∣∣∣∣ j +
∣∣∣∣ a1 a2

b1 b2

∣∣∣∣k
= 0i − 0j + (a1b2 − a2b1)k = 〈0, 0, a1b2 − a2b1〉
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Using (1) we have

S =
√

02 + 02 + (a1b2 − a2b1)
2 = |a1b2 − a2b1| (2)

We now compute v × w:

v × w =
∣∣∣∣∣∣

i j k
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ =
∣∣∣∣ a2 a3

b2 b3

∣∣∣∣ i −
∣∣∣∣ a1 a3

b1 b3

∣∣∣∣ j +
∣∣∣∣ a1 a2

b1 b2

∣∣∣∣k
The k-component of v × w is, thus, ∣∣∣∣ a1 a2

b1 b2

∣∣∣∣ = a1b2 − a2b1 (3)

By (2) and (3) we obtain the desired result.

Formulate and prove analogs of the result in Exercise 55 for the i- and j-components of v × w.57. Show that three points P, Q, R are collinear (lie on a line) if and only if
−→
PQ × −→

PR = 0.

solution The points P , Q, and R lie on one line if and only if the vectors
−→
PQ and

−→
PR are parallel. By

basic properties of the cross product this is equivalent to
−→
PQ × −→

PR = 0.

R

P

Q

Use the result of Exercise 57 to determine whether the points P , Q, and R are collinear, and if not,
find a vector normal to the plane containing them.

(a) P = (2, 1, 0), Q = (1, 5, 2), R = (−1, 13, 6)

(b) P = (2, 1, 0), Q = (−3, 21, 10), R = (5, −2, 9)

(c) P = (1, 1, 0), Q = (1, −2, −1), R = (3, 2,−4)

59. Solve the equation 〈1, 1, 1〉 × X = 〈1, −1, 0〉, where X = 〈x, y, z〉. Note: There are infinitely many
solutions.

solution Let X = 〈a, b, c〉. We compute the cross product:

〈1, 1, 1〉 × 〈a, b, c〉 =
∣∣∣∣∣∣

i j k
1 1 1
a b c

∣∣∣∣∣∣ =
∣∣∣∣ 1 1

b c

∣∣∣∣ i −
∣∣∣∣ 1 1

a c

∣∣∣∣ j +
∣∣∣∣ 1 1

a b

∣∣∣∣k
= (c − b)i−(c − a)j + (b − a)k = 〈c − b, a − c, b − a〉

The equation for X is, thus,

〈c − b, a − c, b − a〉 = 〈1, −1, 0〉
Equating corresponding components we get

c − b = 1

a − c = −1

b − a = 0

The third equation implies a = b. Substituting in the first and second equations gives

c − a = 1

a − c = −1
⇒ c = a + 1

The solution is thus, b = a, c = a + 1. The corresponding solutions X are

X = 〈a, b, c〉 = 〈a, a, a + 1〉
Therefore any vector of the form 〈a, a, a + 1〉 where a is an arbitrary constant is a solution. For example,
setting a = 0 gives 〈0, 0, 1〉.



926 C H A P T E R 12 VECTOR GEOMETRY

Explain geometrically why 〈1, 1, 1〉 × X = 〈1, 0, 0〉 has no solution, where X = 〈x, y, z〉.61. Let X = 〈x, y, z〉. Show that i × X = v has a solution if and only if v is contained in the yz-plane
(the i-component is zero).

solution Let X = 〈a, b, c〉. We compute the cross product:

〈1, 1, 1〉 × 〈a, b, c〉 =
∣∣∣∣∣∣

i j k
1 1 1
a b c

∣∣∣∣∣∣ =
∣∣∣∣ 1 1

b c

∣∣∣∣ i −
∣∣∣∣ 1 1

a c

∣∣∣∣ j +
∣∣∣∣ 1 1

a b

∣∣∣∣k
= (c − b)i−(c − a)j + (b − a)k = 〈c − b, a − c, b − a〉

The equation for X is, thus,

〈c − b, a − c, b − a〉 = 〈1, −1, 0〉
Equating corresponding components we get

c − b = 1

a − c = −1

b − a = 0

The third equation implies a = b. Substituting in the first and second equations gives

c − a = 1

a − c = −1
⇒ c = a + 1

The solution is thus, b = a, c = a + 1. The corresponding solutions X are

X = 〈a, b, c〉 = 〈a, a, a + 1〉
One possible solution is obtained for a = 0, that is, X = 〈0, 0, 1〉.

Suppose that vectors u, v, and w are mutually orthogonal—that is, u ⊥ v, u ⊥ w, and v ⊥ w. Prove
that (u × v) × w = 0 and u × (v × w) = 0.

In Exercises 63–66, the torque about the origin O due to a force F acting on an object with position vector r
is the vector quantity τ = r × F. If several forces Fj act at positions rj , then the net torque (units: N-m or
lb-ft) is the sum

τ =
∑

rj × Fj

Torque measures how much the force causes the object to rotate. By Newton’s Laws, τ is equal to the rate of
change of angular momentum.

63. Calculate the torque τ about O acting at the point P on the mechanical arm in Figure 22(A), assuming
that a 25-newton force acts as indicated. Ignore the weight of the arm itself.

(B)

O

10 m

P

125°

x

y

Fg

F = 25 newtons

O

10 m

(A)

P

125°

x

y

F = 25 newtons

FIGURE 22

solution We denote by O and P the points shown in the figure and compute the position vector r = −→
OP

and the force vector F.
Denoting by θ the angle between the arm and the x-axis we have

r = −→
OP = 10 (cos θ i + sin θ j)

The angle between the force vector F and the x-axis is (θ + 125◦), hence,

F = 25
(
cos
(
θ + 125◦) i + sin

(
θ + 125◦) j

)
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The torque τ about O acting at the point P is the cross product τ = r × F. We compute it using the cross
products of the unit vectors i and j:

τ = r × F = 10 (cos θ i + sin θ j) × 25
(
cos
(
θ + 125◦) i + sin

(
θ + 125◦) j

)
= 250 (cos θ i + sin θ j) × (cos

(
θ + 125◦) i + sin

(
θ + 125◦) j

)
= 250

(
cos θ sin

(
θ + 125◦)k + sin θ cos

(
θ + 125◦) (−k)

)
= 250

(
sin
(
θ + 125◦) cos θ − sin θ cos

(
θ + 125◦))k

We now use the identity sin α cos β − sin β cos α = sin(α − β) to obtain

τ = 250 sin
(
θ + 125◦ − θ

)
k = 250 sin 125◦k ≈ 204.79k

Calculate the net torque about O at P , assuming that a 30-kg mass is attached at P [Figure 22(B)].
The force Fg due to gravity on a mass m has magnitude 9.8m m/s2 in the downward direction.

65. Let τ be the net torque about O acting on the robotic arm of Figure 23. Assume that the two segments
of the arms have mass m1 and m2 (in kilograms) and that a weight of m3 kg is located at the endpoint P . In
calculating the torque, we may assume that the entire mass of each arm segment lies at the midpoint of the
arm (its center of mass). Show that the position vectors of the masses m1, m2, and m3 are

r1 = 1

2
L1(sin θ1i + cos θ1j)

r2 = L1(sin θ1i + cos θ1j) + 1

2
L2(sin θ2i − cos θ2j)

r3 = L1(sin θ1i + cos θ1j) + L2(sin θ2i − cos θ2j)

Then show that

τ = −g

(
L1

(
1

2
m1 + m2 + m3

)
sin θ1 + L2

(
1

2
m2 + m3

)
sin θ2

)
k

where g = 9.8 m/s2. To simplify the computation, note that all three gravitational forces act in the −j direction,
so the j-components of the position vectors ri do not contribute to the torque.

PL1

m1

m2

L2

m3

θ2θ1

θ1

x

y

FIGURE 23

solution We denote by O, P , and Q the points shown in the figure.

x

y

1

1

2
P

O

Q

L1

m1

m2

L2

m3

The coordinates of O and Q are

O = (0, 0), Q = (L1 sin θ1, L1 cos θ1)

The midpoint of the segment OQ is, thus,(
0 + L1 sin θ1

2
,

0 + L1 cos θ1

2

)
=
(

L1 sin θ1

2
,
L1 cos θ1

2

)

Since the mass m1 is assumed to lie at the midpoint of the arm, the position vector of m1 is

r1 = L1

2
(sin θ1i + cos θ1j) (1)
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We now find the position vector r2 of m2. We have (see figure)

x

y

O

P

Q

M

q1
q 2

L2
2

−(90 − q 2)

r2

r2 = −−→
OQ + −−→

QM (2)
−−→
OQ = L1 sin θ1i + L1 cos θ1j = L1 (sin θ1i + cos θ1j) (3)

The vector
−−→
QM makes an angle of − (90◦ − θ2) with the x axis and has length L2

2 , hence,

−−→
QM = L2

2

(
cos
(− (90◦ − θ2

))
i + sin

(− (90◦ − θ2
))

j
) = L2

2
(sin θ2i − cos θ2j) (4)

Combining (2), (3) and (4) we get

r2 = L1 (sin θ1i + cos θ1j) + L2

2
(sin θ2i − cos θ2j) (5)

Finally, we find the position vector r3:

r3 = −−→
OQ + −→

QP = −−→
OQ + 2

−−→
QM

x

y

O

P

Q

M

r3

Substituting (3) and (4) we get

r3 = L1 (sin θ1i + cos θ1j) + L2 (sin θ2i − cos θ2j) (6)

The net torque is the following vector:

τ = r1 × (−gm1j) + r2 × (−gm2j) + r3 × (−gm3j)

In computing the cross products, the j components of r1, r2 and r3 do not contribute to the torque since
j × j = 0. We thus consider only the i components of r1, r2 and r3 in (1), (5) and (6). This gives

τ = L1

2
sin θ1i × (−gm1j) +

(
L1 sin θ1 + L2

2
sin θ2

)
i × (−gm2j) + (L1 sin θ1 + L2 sin θ2) i × (−gm3j)

= −L1gm1 sin θ1

2
k −

(
L1gm2 sin θ1 + L2gm2

2
sin θ2

)
k − (L1gm3 sin θ1 + L2gm3 sin θ2) k

= −
(

L1

(
1

2
gm1 + gm2 + gm3

)
sin θ1 + L2

(
1

2
gm2 + gm3

)
sin θ2

)
k

= −g

(
L1

(
1

2
m1 + m2 + m3

)
sin θ1 + L2

(
1

2
m2 + m3

)
sin θ2

)
k

Continuing with Exercise 65, suppose that L1 = 3 m, L2 = 2 m, m1 = 15 kg, m2 = 20 kg, and
m3 = 18 kg. If the angles θ1, θ2 are equal (say, to θ ), what is the maximum allowable value of θ if we
assume that the robotic arm can sustain a maximum torque of 1200 N m?
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Further Insights and Challenges
67. Show that 3 × 3 determinants can be computed using the diagonal rule: Repeat the first two columns
of the matrix and form the products of the numbers along the six diagonals indicated. Then add the products
for the diagonals that slant from left to right and subtract the products for the diagonals that slant from right
to left.

det(A) =

∣∣∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

− − −

∣∣∣∣∣∣∣∣
a11 a12
a21 a22
a31 a32
+ + +

= a11a22a33 + a12a23a31 + a13a21a32 − a13a22a31 − a11a23a32 − a12a21a33

solution Using the definition of 3 × 3 determinants given in Eq. (2) we get

det(A) = a11

∣∣∣∣ a22 a23
a32 a33

∣∣∣∣− a12

∣∣∣∣ a21 a23
a31 a33

∣∣∣∣+ a13

∣∣∣∣ a21 a22
a31 a32

∣∣∣∣
Using the definition of 2 × 2 determinants given in Eq. (1) we get

det(A) = a11(a22a33 − a23a32) − a12(a21a33 − a23a31) + a13(a21a32 − a22a31)

= a11a22a33 − a11a23a32 − a12a21a33 + a12a23a31 + a13a21a32 − a13a22a31

= a11a22a33 + a12a23a31 + a13a21a32 − a13a22a31 − a11a23a32 − a12a21a33

Use the diagonal rule to calculate

∣∣∣∣∣∣
2 4 3
0 1 −7

−1 5 3

∣∣∣∣∣∣.
69. Prove that v × w = v × u if and only if u = w + λv for some scalar λ. Assume that v �= 0.

solution Transferring sides and using the distributive law and the property of parallel vectors, we obtain
the following equivalent equalities:

v × w = v × u

0 = v × u − v × w

0 = v × (u − w)

This holds if and only if there exists a scalar λ such that

u − w = λv

u = w + λv

Use Eq. (12) to prove the Cauchy–Schwarz inequality:

|v · w| ≤ ‖v‖ ‖w‖
Show that equality holds if and only if w is a multiple of v or at least one of v and w is zero.

71. Show that if u, v, and w are nonzero vectors and (u × v) × w = 0, then either (i) u and v are parallel, or
(ii) w is orthogonal to u and v.

solution By the theorem on basic properties of the cross product, part (c), it follows that (u × v) × w = 0
if and only if

• u × v = 0 or
• w = λ (u × v)

We consider the two possibilities.

1. u × v = 0 is equivalent to u and v being parallel vectors or one of them being the zero vector.
2. The cross product u × v is orthogonal to u and v, hence w = λ (u × v) implies that w is also orthogonal

to u and v (for λ �= 0) or w = 0 (for λ = 0).

Conclusions: (u × v) × w = 0 implies that either u and v are parallel, or w is orthogonal to u and v, or one
of the vectors u, v, w is the zero vector.

Suppose that u, v, w are nonzero and

(u × v) × w = u × (v × w) = 0

Show that u, v, and w are either mutually parallel or mutually perpendicular. Hint: Use Exercise 71.

73. Let a, b, c be nonzero vectors. Assume that b and c are not parallel, and set

v = a × (b × c), w = (a · c)b − (a · b)c

(a) Prove that:
(i) v lies in the plane spanned by b and c.

(ii) v is orthogonal to a.
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(b) Prove that w also satisfies (i) and (ii). Conclude that v and w are parallel.

(c) Show algebraically that v = w (Figure 24).

a

b × c

c

b
a × (b × c)

FIGURE 24

solution
(a) Since v is the cross product of a and another vector (b × c), then v is orthogonal to a. Furthermore, v is
orthogonal to (b × c), so it is orthogonal to the normal vector to the plane containing b and c, so v must be
in that plane.

(b) w · a = ((a · c)b − (a · b)c) · a = (a · c)(b · a) − (a · b)(c · a) = 0 (since a · c = c · a and b · a = a · b).
Thus, w is orthogonal to a. Also, w is a multiple of b and c, so w must be in the plane containing b and c.

Now, if a is perpendicular to the plane spanned by b and c, then a is parallel to b × c and so a × (b × c) = 0,
which means v = 0, but also a · b = a · c = 0 which means w = 0. Thus, v and w are parallel (in fact, equal).

Now, if a is not perpendicular to the plane spanned by b and c, then the set of vectors on that plane that are
also perpendicular to a form a line, and thus all such vectors are parallel. We conclude that v and w, being on
that plane and perpendicular to a, are parallel.

(c) On the one hand,

v = a × (b × c) = 〈a1, a2, a3〉 ×
∣∣∣∣∣∣

i j k
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣
=
∣∣∣∣∣∣

i j k
a1 a2 a3

(b2c3 − b3c2) (b3c1 − b1c3) (b1c2 − b2c1)

∣∣∣∣∣∣
= 〈a2(b1c2 − b2c1) − a3(b3c1 − b1c3), a3(b2c3 − b3c2) − a1(b1c2 − b2c1),

a1(b3c1 − b1c3) − a2(b2c3 − b3c2)
〉

but on the other hand,

w = (a · c)b − (a · b)c

= (a1c1 + a2c2 + a3c3)〈b1, b2, b3〉 − (a1b1 + a2b2 + a3b3)〈c1, c2, c3〉
= 〈a2c2b1 + a3c3b1 − a2b2c1 − a3b3c1, a1c1b2 + a3c3b2 − a1b1c2 − a3b3c2,

a1c1b3 + a2c2b3 − a1b1c3 − a2b2c3
〉

= 〈a2(b1c2 − b2c1) − a3(b3c1 − b1c3), a3(b2c3 − b3c2) − a1(b1c2 − b2c1),

a1(b3c1 − b1c3) − a2(b2c3 − b3c2)
〉

which is the same as v.

Use Exercise 73 to prove the identity

(a × b) × c − a × (b × c) = (a · b)c − (b · c)a

75. Show that if a, b are nonzero vectors such that a ⊥ b, then there exists a vector X such that

a × X = b 1

Hint: Show that if X is orthogonal to b and is not a multiple of a, then a × X is a multiple of b.

solution We define the following vectors:

X = a × b

‖a‖2
, c = a × X (1)
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We show that c = b. Since X is orthogonal to a and b, X is orthogonal to the plane of a and b. But c is
orthogonal to X, hence c is contained in the plane of a and b, that is, a, b and c are in the same plane. Now
the vectors a, b and c are in one plane, and the vectors c and b are orthogonal to a. It follows that c and b are
parallel. We now show that ‖c‖ = ‖b‖. We use the cross-product identity to obtain

‖c‖2 = ‖a × X‖2 = ‖a‖2‖X‖2 − (a · X)2

X is orthogonal to a, hence a · X = 0, and we obtain

‖c‖2 = ‖a‖2‖X‖2 = ‖a‖2
∥∥∥∥a × b

‖a‖2

∥∥∥∥
2

= ‖a‖2

‖a‖4
‖a × b‖2 = 1

‖a‖2
‖a × b‖2.

By the given data, a and b are orthogonal vectors, so ‖a × b‖2 = ‖a‖2‖b‖2, and then

‖c‖2 = 1

‖a‖2
‖a × b‖2 = 1

‖a‖2

(
‖a‖2‖a‖2

)
= ‖b‖2 ⇒ ‖c‖ = ‖b‖. (2)

Since c and b are parallel, it follows that c = b or c = −b. We thus proved that the vector X = a × b

‖a‖2
satisfies

a × X = b or a × X = −b. If a × X = −b, then a × (−X) = b. Hence, there exists a vector X such that
a × X = b.

Show that if a, b are nonzero vectors such that a ⊥ b, then the set of all solutions of Eq. (1) is a line
with a as direction vector. Hint: Let X0 be any solution (which exists by Exercise 75), and show that
every other solution is of the form X0 + λa for some scalar λ.

77. Assume that v and w lie in the first quadrant in R2 as in Figure 25. Use geometry to prove that the area

of the parallelogram is equal to det

(
v
w

)
.

(c, d)

(a, b)

(a + c, b + d)
c a

ca

v

w

b

d

b

d

FIGURE 25

solution We denote the components of u and v by

u = 〈c, d〉
v = 〈a, b〉

We also denote by O, A, B, C, D, E, F , G, H , K the points shown in the figure.

(c, d)

(a, b)

(a + c, b + d)
c a

ca

v

R

b

d

b

d

CD
E

F

O
A

B

HK

G

Since OGCK is a parallelogram, it follows by geometrical properties that the triangles OFG and KHC and
also the triangles DGC and AKO are congruent. It also follows that the rectangles EFDG and ABHK have
equal areas. We use the following notation:

A: The area of the parallelogram

S: The area of the rectangle OBCE

S1: The area of the rectangle EFDG

S2: The area of the triangle OFG

S3: The area of the triangle DGC
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Hence,

A = S − 2(S1 + S2 + S3) (1)

Using the formulas for the areas of rectangles and triangles we have (see figure)

S = OB · OE = (a + c)(d + b)

S1 = bc, S2 = cd

2
, S3 = ab

2

Substituting into (1) we get

A = (a + c)(d + b) − 2

(
bc + cd

2
+ ab

2

)
= ad + ab + cd + cb − 2bc − cd − ab (2)

= ad − bc

On the other hand,

det

(
v
w

)
=
∣∣∣∣ a b

c d

∣∣∣∣ = ad − bc (3)

By (2) and (3) we obtain the desired result.

Consider the tetrahedron spanned by vectors a, b, and c as in Figure 26(A). Let A, B, C be the faces
containing the origin O, and let D be the fourth face opposite O. For each face F , let vF be the vector
normal to the face, pointing outside the tetrahedron, of magnitude equal to twice the area of F . Prove the
relations

vA + vB + vC = a × b + b × c + c × a

vA + vB + vC + vD = 0

Hint: Show that vD = (c − b) × (b − a).

79. In the notation of Exercise 78, suppose that a, b, c are mutually perpendicular as in Figure 26(B). Let SF

be the area of face F . Prove the following three-dimensional version of the Pythagorean Theorem:

S2
A + S2

B + S2
C = S2

D

y

x

z

(A) (B)

a
a

b

c
c

OO

b

vDvD

FIGURE 26 The vector vD is perpendicular to the face.

solution Since ‖vD‖ = SD then using Exercise 78 we obtain

S2
D = ‖vD‖2 = vD · vD = (vA + vB + vC) · (vA + vB + vC)

= vA · vA + vA · vB + vA · vC + vB · vA + vB · vB + vB · vC + vC · vA + vC · vB + vC · vC

= ‖vA‖2 + ‖vB‖2 + ‖vC‖2 + 2 (vA · vB + vA · vC + vB · vC) (1)

Now, the normals vA, vB , and vC to the coordinate planes are mutually orthogonal, hence,

vA · vB = vA · vC = vB · vC = 0 (2)

Combining (1) and (2) and using the relations ‖vF ‖ = SF we obtain

S2
D = S2

A + S2
B + S2

C
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12.5 Planes in 3-Space

Preliminary Questions
1. What is the equation of the plane parallel to 3x + 4y − z = 5 passing through the origin?

solution The two planes are parallel, therefore the vector n = 〈3, 4, −1〉 that is normal to the given plane
is also normal to the plane we need to find. This plane is passing through the origin, hence we may substitute
〈x0, y0, z0〉 = 〈0, 0, 0〉 in the vector form of the equation of the plane. This gives

n · 〈x, y, z〉 = n · 〈x0, y0, z0〉
〈3, 4, −1〉 · 〈x, y, z〉 = 〈3, 4, −1〉 · 〈0, 0, 0〉 = 0

or in scalar form

3x + 4y − z = 0

2. The vector k is normal to which of the following planes?

(a) x = 1 (b) y = 1 (c) z = 1

solution The planes x = 1, y = 1, and z = 1 are orthogonal to the x, y, and z-axes respectively. Since
the plane z = 1 is orthogonal to the z-axis, the vector k is normal to this plane.

3. Which of the following planes is not parallel to the plane x + y + z = 1?

(a) 2x + 2y + 2z = 1 (b) x + y + z = 3

(c) x − y + z = 0

solution The two planes are parallel if vectors that are normal to the planes are parallel. The vector
n = 〈1, 1, 1〉 is normal to the plane x + y + z = 1. We identify the following normals:

• v = 〈2, 2, 2〉 is normal to plane (a)
• u = 〈1, 1, 1〉 is normal to plane (b)
• w = 〈1, −1, 1〉 is normal to plane (c)

The vectors v and u are parallel to n, whereas w is not. (These vectors are not constant multiples of each
other). Therefore, only plane (c) is not parallel to the plane x + y + z = 1.

4. To which coordinate plane is the plane y = 1 parallel?

solution The plane y = 1 is parallel to the xz-plane.

y

x

z

1

5. Which of the following planes contains the z-axis?

(a) z = 1 (b) x + y = 1 (c) x + y = 0

solution The points on the z-axis are the points with zero x and y coordinates. A plane contains the z-axis
if and only if the points (0, 0, c) satisfy the equation of the plane for all values of c.

(a) Plane (a) does not contain the z-axis, rather it is orthogonal to this axis. Only the point (0, 0, 1) is on the
plane.

(b) x = 0 and y = 0 do not satisfy the equation of the plane, since 0 + 0 �= 1. Therefore the plane does not
contain the z-axis.

(c) The plane x + y = 0 contains the z-axis since x = 0 and y = 0 satisfy the equation of the plane.
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6. Suppose that a plane P with normal vector n and a line L with direction vector v both pass through the
origin and that n · v = 0. Which of the following statements is correct?
(a) L is contained in P .
(b) L is orthogonal to P .

solution The direction vector of the line L is orthogonal to the vector n that is normal to the plane.
Therefore, L is either parallel or contained in the plane. Since the origin is common to L and P , the line is
contained in the plane. That is, statement (a) is correct.

P

O
v

n

Exercises
In Exercises 1–8, write the equation of the plane with normal vector n passing through the given point in the
scalar form ax + by + cz = d .

1. n = 〈1, 3, 2〉, (4, −1, 1)

solution The vector equation is

〈1, 3, 2〉 · 〈x, y, z〉 = 〈1, 3, 2〉 · 〈4, −1, 1〉 = 4 − 3 + 2 = 3

To obtain the scalar forms we compute the dot product on the left-hand side of the previous equation:

x + 3y + 2z = 3

or in the other scalar form:

(x − 4) + 3(y + 1) + 2(z − 1) + 4 − 3 + 2 = 3

(x − 4) + 3(y + 1) + 2(z − 1) = 0

n = 〈−1, 2, 1〉, (3, 1, 9)
3. n = 〈−1, 2, 1〉, (4, 1, 5)

solution The vector form is

〈−1, 2, 1〉 · 〈x, y, z〉 = 〈−1, 2, 1〉 · 〈4, 1, 5〉 = −4 + 2 + 5 = 3

To obtain the scalar form we compute the dot product above:

−x + 2y + z = 3

or in the other scalar form:

−(x − 4) + 2(y − 1) + (z − 5) = 3 + 4 − 2 − 5 = 0

−(x − 4) + 2(y − 1) + (z − 5) = 0

n = 〈2, −4, 1〉, ( 1
3 , 2

3 , 1
)5. n = i, (3, 1, −9)

solution We find the vector form of the equation of the plane. We write the vector n = i as n = 〈1, 0, 0〉
and obtain

〈1, 0, 0〉 · 〈x, y, z〉 = 〈1, 0, 0〉 · 〈3, 1, −9〉 = 3 + 0 + 0 = 3

Computing the dot product above gives the scalar form:

x + 0 + 0 = 3

x = 3

Or in the other scalar form:

(x − 3) + 0 · (y − 1) + 0 · (z + 9) = 3 − 3 = 0

n = j,
(−5, 1

2 , 1
2

)
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7. n = k, (6, 7, 2)

solution We write the normal n = k in the form n = 〈0, 0, 1〉 and obtain the following vector form of
the equation of the plane:

〈0, 0, 1〉 · 〈x, y, z〉 = 〈0, 0, 1〉 · 〈6, 7, 2〉 = 0 + 0 + 2 = 2

We compute the dot product to obtain the scalar form:

0x + 0y + 1z = 2

z = 2

or in the other scalar form:

0(x − 6) + 0(y − 7) + 1(z − 2) = 0

n = i − k, (4, 2, −8)
9. Write down the equation of any plane through the origin.

solution We can use any equation ax + by + cz = d which contains the point (x, y, z) = (0, 0, 0). One
solution (and there are many) is x + y + z = 0.

Write down the equations of any two distinct planes with normal vector n = 〈3, 2, 1〉 that do not pass
through the origin.

11. Which of the following statements are true of a plane that is parallel to the yz-plane?

(a) n = 〈0, 0, 1〉 is a normal vector.

(b) n = 〈1, 0, 0〉 is a normal vector.

(c) The equation has the form ay + bz = d

(d) The equation has the form x = d

solution
(a) For n = 〈0, 0, 1〉 a normal vector, the plane would be parallel to the xy-plane, not the yz-plane. This
statement is false.

(b) For n = 〈1, 0, 0〉 a normal vector, the plane would be parallel to the yz-plane. This statement is true.

(c) For the equation ay + bz = d , this plane intersects the yz-plane at y = 0, z = d/b or y = d/a, z = 0
depending on whether a or b is non-zero, but it is not equal to the yz-plane (which has equation x = d) Thus,
it is not parallel to the yz-plane This statement is false.

(d) For the equation of the form x = d , this has 〈1, 0, 0〉 as a normal vector and is parallel to the yz-plane.
This statement is true.

Find a normal vector n and an equation for the planes in Figures 7(A)–(C).In Exercises 13–16, find a vector normal to the plane with the given equation.

13. 9x − 4y − 11z = 2

solution Using the scalar form of the equation of the plane, a vector normal to the plane is the coefficients
vector:

n = 〈9, −4, −11〉

x − z = 0
15. 3(x − 4) − 8(y − 1) + 11z = 0

solution Using the scalar form of the equation of the plane, 3x − 8y + 11z = 4 a vector normal to the
plane is the coefficients vector:

n = 〈3, −8, 11〉

x = 1In Exercises 17–20, find an equation of the plane passing through the three points given.

17. P = (2, −1, 4), Q = (1, 1, 1), R = (3, 1, −2)

solution We go through the steps below:

Step 1. Find the normal vector n. The vectors a = −→
PQ and b = −→

PR lie on the plane, hence the cross product
n = a × b is normal to the plane. We compute the cross product:

a = −→
PQ = 〈1 − 2, 1 − (−1), 1 − 4〉 = 〈−1, 2, −3〉

b = −→
PR = 〈3 − 2, 1 − (−1), −2 − 4〉 = 〈1, 2, −6〉
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n = a × b =
∣∣∣∣∣∣

i j k
−1 2 −3
1 2 −6

∣∣∣∣∣∣ =
∣∣∣∣ 2 −3

2 −6

∣∣∣∣ i −
∣∣∣∣ −1 −3

1 −6

∣∣∣∣ j +
∣∣∣∣ −1 2

1 2

∣∣∣∣k
= −6i − 9j − 4k = 〈−6, −9, −4〉

Step 2. Choose a point on the plane. We choose any one of the three points on the plane, for instance
Q = (1, 1, 1). Using the vector form of the equation of the plane we get

n · 〈x, y, z〉 = n · 〈x0, y0, z0〉
〈−6, −9, −4〉 · 〈x, y, z〉 = 〈−6, −9, −4〉 · 〈1, 1, 1〉

Computing the dot products we obtain the following equation:

−6x − 9y − 4z = −6 − 9 − 4 = −19

6x + 9y + 4z = 19

P = (5, 1, 1), Q = (1, 1, 2), R = (2, 1, 1)
19. P = (1, 0, 0), Q = (0, 1, 1), R = (2, 0, 1)

solution We use the vector form of the equation of the plane:

n · 〈x, y, z〉 = d (1)

To find the normal vector to the plane, n, we first compute the vectors
−→
PQ and

−→
PR that lie in the plane, and

then find the cross product of these vectors. This gives

−→
PQ = 〈0, 1, 1〉 − 〈1, 0, 0〉 = 〈−1, 1, 1〉
−→
PR = 〈2, 0, 1〉 − 〈1, 0, 0〉 = 〈1, 0, 1〉

n = −→
PQ × −→

PR =
∣∣∣∣∣∣

i j k
−1 1 1

1 0 1

∣∣∣∣∣∣ =
∣∣∣∣ 1 1

0 1

∣∣∣∣ i −
∣∣∣∣ −1 1

1 1

∣∣∣∣ j +
∣∣∣∣ −1 1

1 0

∣∣∣∣k
= i + 2j − k = 〈1, 2, −1〉 (2)

We now choose any one of the three points in the plane, say P = (1, 0, 0), and compute d:

d = n · −→
OP = 〈1, 2, −1〉 · 〈1, 0, 0〉 = 1 · 1 + 2 · 0 + (−1) · 0 = 1 (3)

Finally we substitute (2) and (3) into (1) to obtain the following equation of the plane:

〈1, 2, −1〉 · 〈x, y, z〉 = 1

x + 2y − z = 1

P = (2, 0, 0), Q = (0, 4, 0), R = (0, 0, 2)In Exercises 21–28, find the equation of the plane with the given description.

21. Passes through O and is parallel to 4x − 9y + z = 3

solution The vector n = 〈4, −9, 1〉 is normal to the plane 4x − 9y + z = 3, and so is also normal to the
parallel plane. Setting n = 〈4, −9, 1〉 and (x0, y0, z0) = (0, 0, 0) in the vector equation of the plane yields

〈4, −9, 1〉 · 〈x, y, z〉 = 〈4, −9, 1〉 · 〈0, 0, 0〉 = 0

4x − 9y + z = 0

Passes through (4, 1, 9) and is parallel to x + y + z = 3
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23. Passes through (4, 1, 9) and is parallel to x = 3

solution The vector form of the plane x = 3 is

〈1, 0, 0〉 · 〈x, y, z〉 = 3

Hence, n = 〈1, 0, 0〉 is normal to this plane. This vector is also normal to the parallel plane. Setting
(x0, y0, z0) = (4, 1, 9) and n = 〈1, 0, 0〉 in the vector equation of the plane yields

〈1, 0, 0〉 · 〈x, y, z〉 = 〈1, 0, 0〉 · 〈4, 1, 9〉 = 4 + 0 + 0 = 4

or

x + 0 + 0 = 4 ⇒ x = 4

Passes through P = (3, 5, −9) and is parallel to the xz-plane
25. Passes through (−2, −3, 5) and has normal vector i + k

solution We substitute n = 〈1, 0, 1〉 and (x0, y0, z0) = (−2, −3, 5) in the vector equation of the plane
to obtain

〈1, 0, 1〉 · 〈x, y, z〉 = 〈1, 0, 1〉 · 〈−2, −3, 5〉

or

x + 0 + z = −2 + 0 + 5 = 3

x + z = 3

Contains the lines r1(t) = 〈t, 2t, 3t〉 and r2(t) = 〈3t, t, 8t〉27. Contains the lines r1(t) = 〈2, 1, 0〉 + 〈t, 2t, 3t〉 and r2(t) = 〈2, 1, 0〉 + 〈3t, t, 8t〉
solution Since the plane contains the lines r1(t) and r2(t), the direction vectors v1 = 〈1, 2, 3〉 and
v2 = 〈3, 1, 8〉 of the lines lie in the plane. Therefore the cross product n = v1 × v2 is normal to the plane.
We compute the cross product:

n = 〈1, 2, 3〉 × 〈3, 1, 8〉 =
∣∣∣∣∣∣

i j k
1 2 3
3 1 8

∣∣∣∣∣∣ =
∣∣∣∣ 2 3

1 8

∣∣∣∣ i −
∣∣∣∣ 1 3

3 8

∣∣∣∣ j +
∣∣∣∣ 1 2

3 1

∣∣∣∣k
= 13i + j − 5k = 〈13, 1, −5〉

We now must choose a point on the plane. Since the line r1 (t) = 〈2 + t, 1 + 2t, 3t〉 is contained in the plane,
all of its points are on the plane. We choose the point corresponding to t = 0, that is,

〈x0, y0, z0〉 = 〈2, 1, 0〉

We now use the vector equation of the plane to determine the equation of the desired plane:

n · 〈x, y, z〉 = n · 〈x0, y0, z0〉
〈13, 1, −5〉 · 〈x, y, z〉 = 〈13, 1, −5〉 · 〈2, 1, 0〉

13x + y − 5z = 26 + 1 + 0 = 27

13x + y − 5z = 27

Contains P = (−1, 0, 1) and r(t) = 〈t + 1, 2t, 3t − 1〉29. Are the planes 1
2x + 2y − z = 5 and 3x + 12y − 6z = 1 parallel?

solution The planes 1
2x + 2y − z = 5 and 3x + 12y − 6z = 1 are parallel if and only if the vectors

n1 = 〈 12 , 2, −1
〉
and n2 = 〈3, 12, −6〉 normal to the planes are parallel. Since n2 = 6n1 the planes are parallel.

Are the planes 2x − 4y − z = 3 and −6x + 12y + 3z = 1 parallel?
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In Exercises 31–35, draw the plane given by the equation.

31. x + y + z = 4

solution

1

1

1

2

3

4

2

3

4

2
3

4

x

z

y

3x + 2y − 6z = 12
33. 12x − 6y + 4z = 6

solution

1
−−1

−1

1

3

4

2

−2
−−−−2

1
2

3
4

5
6

7
8

−−3

−4

−−−2

2
3

4
5

6
7

8

z

x

y

x + 2y = 6
35. x + y + z = 0

solution

z

x

y

−1

−2

−1

1

2

−2

−1

1

2

1

2

−2
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Let a, b, c be constants. Which two of the following equations define the plane passing through (a, 0, 0),
(0, b, 0), (0, 0, c)?

(a) ax + by + cz = 1 (b) bcx + acy + abz = abc

(c) bx + cy + az = 1 (d)
x

a
+ y

b
+ z

c
= 1

37. Find an equation of the plane P in Figure 8.

y3
2

5

x

z

FIGURE 8

solution We must find the equation of the plane passing though the points P = (3, 0, 0), Q = (0, 2, 0),
and R = (0, 0, 5). We use the following steps:

Step 1. Find a normal vector n. The vectors a = −→
PQ and b = −→

PR lie in the plane, hence the cross product
n = a × b is normal to the plane. We compute the cross product:

a = −→
PQ = 〈0 − 3, 2 − 0, 0 − 0〉 = 〈−3, 2, 0〉

b = −→
PR = 〈0 − 3, 0 − 0, 5 − 0〉 = 〈−3, 0, 5〉

n = a × b =
∣∣∣∣∣∣

i j k
−3 2 0
−3 0 5

∣∣∣∣∣∣ =
∣∣∣∣ 2 0

0 5

∣∣∣∣ i −
∣∣∣∣ −3 0

−3 5

∣∣∣∣ j +
∣∣∣∣ −3 2

−3 0

∣∣∣∣k
= 10i + 15j + 6k = 〈10, 15, 6〉

Step 2. Choose a point on the plane. We choose one of the points on the plane, say P = (3, 0, 0). Substituting
n = 〈10, 15, 6〉 and (x0, y0, z0) = (3, 0, 0) in the vector form of the equation of the plane gives

n · 〈x, y, z〉 = n · 〈x0, y0, z0〉
〈10, 15, 6〉 · 〈x, y, z〉 = 〈10, 15, 6〉 · 〈3, 0, 0〉

Computing the dot products we get the following scalar form of the equation of the plane:

10x + 15y + 6z = 10 · 3 + 0 + 0 = 30

10x + 15y + 6z = 30

Verify that the plane x − y + 5z = 10 and the line r(t) = 〈1, 0, 1〉 + t 〈−2, 1, 1〉 intersect at P =
(−3, 2, 3).

In Exercises 39–42, find the intersection of the line and the plane.

39. x + y + z = 14, r(t) = 〈1, 1, 0〉 + t 〈0, 2, 4〉
solution The line has parametric equations

x = 1, y = 1 + 2t, z = 4t

To find a value of t for which (x, y, z) lies on the plane, we substitute the parametric equations in the equation
of the plane and solve for t :

x + y + z = 14

1 + (1 + 2t) + 4t = 14

6t = 12 ⇒ t = 2

The point P of intersection has coordinates

x = 1, y = 1 + 2 · 2 = 5, z = 4 · 2 = 8

That is, P = (1, 5, 8).

2x + y = 3, r(t) = 〈2, −1, −1〉 + t 〈1, 2, −4〉
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41. z = 12, r(t) = t 〈−6, 9, 36〉
solution The parametric equations of the line are

x = −6t, y = 9t, z = 36t (1)

We substitute the parametric equations in the equation of the plane and solve for t :

z = 12

36t = 12 ⇒ t = 1

3

The value of the parameter at the point of intersection is t = 1
3 . Substituting into (1) gives the coordinates of

the point P of intersection:

x = −6 · 1

3
= −2, y = 9 · 1

3
= 3, z = 36 · 1

3
= 12

That is,

P = (−2, 3, 12) .

x − z = 6, r(t) = 〈1, 0, −1〉 + t 〈4, 9, 2〉In Exercises 43–48, find the trace of the plane in the given coordinate plane.

43. 3x − 9y + 4z = 5, yz

solution The yz-plane has the equation x = 0, hence the intersection of the plane with the yz-plane must
satisfy both x = 0 and the equation of the plane 3x − 9y + 4z = 5. That is, this is the set of all points (0, y, z)

in the yz-plane such that −9y + 4z = 5.

3x − 9y + 4z = 5, xz
45. 3x + 4z = −2, xy

solution The trace of the plane 3x + 4z = −2 in the xy coordinate plane is the set of all points that satisfy
the equation of the plane and the equation z = 0 of the xy coordinate plane. Thus, we substitute z = 0 in
3x + 4z = −2 to obtain the line 3x = −2 or x = − 2

3 in the xy-plane.

3x + 4z = −2, xz
47. −x + y = 4, xz

solution The trace of the plane −x + y = 4 on the xz-plane is the set of all points that satisfy both the
equation of the given plane and the equation y = 0 of the xz-plane. That is, the set of all points (x, 0, z) such
that −x + 0 = 4, or x = −4. This is a vertical line in the xz-plane.

−x + y = 4, yz
49. Does the plane x = 5 have a trace in the yz-plane? Explain.

solution The yz-plane has the equation x = 0, hence the x-coordinates of the points in this plane are
zero, whereas the x-coordinates of the points in the plane x = 5 are 5. Thus, the two planes have no common
points.

Give equations for two distinct planes whose trace in the xy-plane has equation 4x + 3y = 8.
51. Give equations for two distinct planes whose trace in the yz-plane has equation y = 4z.

solution The yz-plane has the equation x = 0, hence the trace of a plane ax + by + cz = 0 in the
yz-plane is obtained by substituting x = 0 in the equation of the plane. Therefore, the following two planes
have trace y = 4z (that is, y − 4z = 0) in the yz-plane:

x + y − 4z = 0; 2x + y − 4z = 0

Find parametric equations for the line through P0 = (3, −1, 1) perpendicular to the plane 3x + 5y −
7z = 29.

53. Find all planes in R3 whose intersection with the xz-plane is the line with equation 3x + 2z = 5.

solution The intersection of the plane ax + by + cz = d with the xz-plane is obtained by substituting
y = 0 in the equation of the plane. This gives the following line in the xz-plane:

ax + cz = d

This is the equation of the line 3x + 2z = 5 if and only if for some λ �= 0,

a = 3λ, c = 2λ, d = 5λ

Notice that b can have any value. The planes are thus

(3λ)x + by + (2λ)z = 5λ, λ �= 0.
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Find all planes in R3 whose intersection with the xy-plane is the line r(t) = t 〈2, 1, 0〉.In Exercises 55–60, compute the angle between the two planes, defined as the angle θ (between 0 and π )
between their normal vectors (Figure 9).

L

2

1

θ

θ

n2

n2

n1

n1

FIGURE 9 By definition, the angle between two planes is the angle between their normal vectors.

55. Planes with normals n1 = 〈1, 0, 1〉, n2 = 〈−1, 1, 1〉
solution Using the formula for the angle between two vectors we get

cos θ = n1 · n2

‖n1‖‖n2‖ = 〈1, 0, 1〉 · 〈−1, 1, 1〉
‖〈1, 0, 1〉‖‖〈−1, 1, 1〉‖ = −1 + 0 + 1√

12 + 0 + 12
√

(−1)2 + 12 + 12
= 0

The solution for 0 ≤ θ < π is θ = π
2 .

Planes with normals n1 = 〈1, 2, 1〉, n2 = 〈4, 1, 3〉57. 2x + 3y + 7z = 2 and 4x − 2y + 2z = 4

solution The planes 2x + 3y + 7z = 2 and 4x − 2y + 2z = 4 have the normals n1 = 〈2, 3, 7〉 and
n2 = 〈4, −2, 2〉 respectively. The cosine of the angle between n1 and n2 is

cos θ = n1 · n2

‖n1‖‖n2‖ = 〈2, 3, 7〉 · 〈4, −2, 2〉
‖〈2, 3, 7〉‖‖〈4, −2, 2〉‖ = 8 − 6 + 14√

22 + 32 + 72
√

42 + (−2)2 + 22
= 16√

62
√

24
≈ 0.415

The solution for 0 ≤ θ < π is θ = 1.143 rad or θ = 65.49◦.

x − 3y + z = 3 and 2x − 3z = 4
59. 3(x − 1) − 5y + 2(z − 12) = 0 and the plane with normal n = 〈1, 0, 1〉
solution The plane 3(x − 1) − 5y + 2(z − 12) = 0 has the normal n1 = 〈3, −5, 2〉, and our second
plane has given normal n2 = 〈1, 0, 1〉. We use the formula for the angle between two vectors:

cos θ = n1 · n2

‖n1‖‖n2‖ = 〈3, −5, 2〉 · 〈1, 0, 1〉
‖〈3, −5, 2〉‖‖〈1, 0, 1〉‖ = 3 + 0 + 2√

32 + (−5)2 + 22
√

12 + 0 + 12
= 5√

38
√

2
≈ 0.5735

The solution for 0 ≤ θ < π is θ = 0.96 rad or θ = 55◦.

The plane through (1, 0, 0), (0, 1, 0), and (0, 0, 1) and the yz-plane
61. Find an equation of a plane making an angle of π

2 with the plane 3x + y − 4z = 2.

solution The angle θ between two planes (chosen so that 0 ≤ θ < π ) is defined as the angle between
their normal vectors. The following vector is normal to the plane 3x + y − 4z = 2:

n1 = 〈3, 1, −4〉
Let n · 〈x, y, z〉 = d denote the equation of a plane making an angle of π

2 with the given plane, where
n = 〈a, b, c〉. Since the two planes are perpendicular, the dot product of their normal vectors is zero. That is,

n · n1 = 〈a, b, c〉 · 〈3, 1, −4〉 = 3a + b − 4c = 0 ⇒ b = −3a + 4c

Thus, the required planes (there is more than one plane) have the following normal vector:

n = 〈a, −3a + 4c, c〉
We obtain the following equation:

n · 〈x, y, c〉 = d

〈a, −3a + 4c, c〉 · 〈x, y, z〉 = d

ax + (4c − 3a)y + cz = d

Every choice of the values of a, c and d yields a plane with the desired property. For example, we set
a = c = d = 1 to obtain

x + y + z = 1
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Let P1 and P2 be planes with normal vectors n1 and n2. Assume that the planes are not parallel, and
let L be their intersection (a line). Show that n1 × n2 is a direction vector for L.

63. Find a plane that is perpendicular to the two planes x + y = 3 and x + 2y − z = 4.

solution The vector forms of the equations of the planes are 〈1, 1, 0〉 · 〈x, y, z〉 = 3 and 〈1, 2, −1〉 ·
〈x, y, z〉 = 4, hence the vectors n1 = 〈1, 1, 0〉 and n2 = 〈1, 2, −1〉 are normal to the planes. We denote the
equation of the planes which are perpendicular to the two planes by

ax + by + cz = d (1)

Then, the normal n = 〈a, b, c〉 to the planes is orthogonal to the normals n1 and n2 of the given planes.
Therefore, n · n1 = 0 and n · n2 = 0 which gives us

〈a, b, c〉 · 〈1, 1, 0〉 = 0, 〈a, b, c〉 · 〈1, 2, −1〉 = 0

We obtain the following equations: {
a + b = 0
a + 2b − c = 0

The first equation implies that b = −a. Substituting in the second equation we get a − 2a − c = 0, or c = −a.
Substituting b = −a and c = −a in (1) gives (for a �= 0):

ax − ay − az = d ⇒ x − y − z = d

a

d
a

is an arbitrary constant which we denote by f . The planes which are perpendicular to the given planes are,
therefore,

x − y − z = f

Let L be the intersection of the planes x + y + z = 1 and x + 2y + 3z = 1. Use Exercise 62 to find a
direction vector for L. Then find a point P on L by inspection, and write down the parametric equations
for L.

65. Let L denote the intersection of the planes x − y − z = 1 and 2x + 3y + z = 2. Find parametric
equations for the line L. Hint: To find a point on L, substitute an arbitrary value for z (say, z = 2) and then
solve the resulting pair of equations for x and y.

solution We use Exercise 62 to find a direction vector for the line of intersection L of the planes x − y −
z = 1 and 2x + 3y + z = 2. We identify the normals n1 = 〈1, −1, −1〉 and n2 = 〈2, 3, 1〉 to the two planes
respectively. Hence, a direction vector for L is the cross product v = n1 × n2. We find it here:

v = n1 × n2 =
∣∣∣∣∣∣

i j k
1 −1 −1
2 3 1

∣∣∣∣∣∣ = 2i − 3j + 5k = 〈2, −3, 5〉

We now need to find a point on L. We choose z = 2, substitute in the equations of the planes and solve the
resulting equations for x and y. This gives

x − y − 2 = 1

2x + 3y + 2 = 2
or

x − y = 3

2x + 3y = 0

The 1st equation implies that y = x − 3. Substituting in the 2nd equation and solving for x gives

2x + 3(x − 3) = 0

5x = 9 ⇒ x = 9

5
, y = 9

5
− 3 = −6

5

We conclude that the point
( 9

5 , − 6
5 , 2
)

is on L. We now use the vector parametrization of a line to obtain the
following parametrization for L:

r(t) =
〈

9

5
, −6

5
, 2

〉
+ t〈2, −3, 5〉

This yields the parametric equations

x = 9

5
+ 2t, y = −6

5
− 3t, z = 2 + 5t

Find parametric equations for the intersection of the planes 2x + y − 3z = 0 and x + y = 1.
67. Two vectors v and w, each of length 12, lie in the plane x + 2y − 2z = 0. The angle between v and w is
π/6. This information determines v × w up to a sign ±1. What are the two possible values of v × w?
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solution The length of v × w is ‖v‖‖w‖ sin θ , but since both vectors have length 12 and since the angle
between them is π/6, then the length of v × w is 12 · 12 · 1/2 = 72. The direction of v × w is perpendicular
to the plane containing them, which is the plane x + 2y − 2z = 0, which has normal vector n = 〈1, 2, −2〉.
Since v × w must have length 72 and must be parallel to 〈1, 2, −2〉, then it must be ±72 times the unit vector
〈1, 2, −2〉 /

√
12 + 22 + (−2)2 = 〈1/3, 2/3, −2/3〉. Thus,

v × w = ±72 · 〈1/3, 2/3, −2/3〉 = ±24 · 〈1, 2, −2〉

The plane

x

2
+ y

4
+ z

3
= 1

intersects the x-, y-, and z-axes in points P , Q, and R. Find the area of the triangle �PQR.

69. In this exercise, we show that the orthogonal distance D from the plane P with equation ax +
by + cz = d to the origin O is equal to (Figure 10)

D = |d|√
a2 + b2 + c2

Let n = 〈a, b, c〉, and let P be the point where the line through n intersects P . By definition, the orthogonal
distance from P to O is the distance from P to O.

(a) Show that P is the terminal point of v =
(

d

n · n

)
n.

(b) Show that the distance from P to O is D.

n · 〈x, y, z〉 = d

y

x

O

D

z

P

n

FIGURE 10

solution Let v be the vector v =
(

d

n · n

)
n. Then v is parallel to n and the two vectors are on the same

ray.

(a) First we must show that the terminal point of v lies on the plane ax + by + cz = d . Since the terminal
point of v is the point(

d

n · n

)
(a, b, c) =

(
da

a2 + b2 + c2
,

db

a2 + b2 + c2
,

dc

a2 + b2 + c2

)

then we need only show that this point satisfies ax + by + cz = d . Plugging in, we find:

ax + by + cz = a · da

a2 + b2 + c2
+ b · db

a2 + b2 + c2
+ c · dc

a2 + b2 + c2
= a2d + b2d + c2d

a2 + b2 + c2
= d

(b) We now show that the distance from P to O is D. This distance is just the length of the vector v, which
is:

‖v‖ =
( |d|

n · n

)
‖n‖ = |d|

‖n‖ = |d|√
a2 + b2 + c2

as desired.

Use Exercise 69 to compute the orthogonal distance from the plane x + 2y + 3z = 5 to the origin.Further Insights and Challenges
In Exercises 71 and 72, let P be a plane with equation

ax + by + cz = d

and normal vector n = 〈a, b, c〉. For any point Q, there is a unique point P on P that is closest to Q, and is
such that PQ is orthogonal to P (Figure 11).
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71. Show that the point P on P closest to Q is determined by the equation

−→
OP = −−→

OQ +
(

d − −−→
OQ · n

n · n

)
n 7

n

P y

Q

x

O

z

FIGURE 11

solution Since
−→
PQ is orthogonal to the plane P , it is parallel to the vector n = 〈a, b, c〉 which is normal

to the plane. Hence,
−→
PQ = λn (1)

Q

O

P

Since
−→
OP + −→

PQ = −−→
OQ, we have

−→
PQ = −−→

OQ − −→
OP . Thus, by (1) we get

−−→
OQ − −→

OP = λn ⇒ −→
OP = −−→

OQ − λn (2)

The point P is on the plane, hence
−→
OP satisfies the vector form of the equation of the plane, that is,

n · −→
OP = d (3)

Substituting (2) into (3) and solving for λ yields

n ·
(−−→
OQ − λn

)
= d

n · −−→
OQ − λn · n = d

λn · n = n · −−→
OQ − d ⇒ λ = n · −−→

OQ − d

n · n
(4)

Finally, we combine (2) and (4) to obtain

−→
OP = −−→

OQ +
(

d − n · −−→
OQ

n · n

)
n

By definition, the distance from Q = (x1, y1, z1) to the plane P is the distance to the point P on P
closest to Q. Prove

Distance from Q to P = |ax1 + by1 + cz1 − d|
‖n‖

73. Use Eq. (7) to find the point P closest to Q = (2, 1, 2) on the plane x + y + z = 1.

solution We identify n = 〈1, 1, 1〉 as a vector normal to the plane. By Eq. (7) the closest point P to Q is
determined by

−→
OP = −−→

OQ +
(

d − −−→
OQ · n

n · n

)
n
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We substitute n = 〈1, 1, 1〉, −−→
OQ = 〈2, 1, 2〉 and d = 1 in this equation to obtain

−→
OP = 〈2, 1, 2〉 + 1 − 〈2, 1, 2〉 · 〈1, 1, 1〉

〈1, 1, 1〉 · 〈1, 1, 1〉 〈1, 1, 1〉 = 〈2, 1, 2〉 + 1 − (2 + 1 + 2)

1 + 1 + 1
〈1, 1, 1〉

= 〈2, 1, 2〉 − 4

3
〈1, 1, 1〉 =

〈
2

3
, −1

3
,

2

3

〉

The terminal point P =
(

2
3 , − 1

3 , 2
3

)
of

−→
OP is the closest point to Q = (2, 1, 2) on the plane.

Find the point P closest to Q = (−1, 3, −1) on the plane

x − 4z = 2

75. Use Eq. (8) to find the distance from Q = (1, 1, 1) to the plane 2x + y + 5z = 2.

solution By Eq. (8), the distance from Q = 〈x1, y1, z1〉 to the plane ax + by + cz = d is


 = |ax1 + by1 + cz1 − d|
‖n‖ (1)

We identify the vector n = 〈2, 1, 5〉 as a normal to the plane 2x + y + 5z = 2. Also a = 2, b = 1, c = 5,
d = 2, and (x1, y1, z1) = (1, 1, 1). Substituting in (1) above we get


 = |2 · 1 + 1 · 1 + 5 · 1 − 2|
‖〈2, 1, 5〉‖ = 6√

22 + 12 + 52
= 6√

30
≈ 1.095

Find the distance from Q = (1, 2, 2) to the plane n · 〈x, y, z〉 = 3, where n = 〈 35 , 4
5 , 0
〉
.

77. What is the distance from Q = (a, b, c) to the plane x = 0? Visualize your answer geometrically and
explain without computation. Then verify that Eq. (8) yields the same answer.

solution The plane x = 0 is the yz-coordinate plane. The closest point to Q on the plane is the projection
of Q on the plane, which is the point Q′ = (0, b, c). Therefore the distance from Q to the plane is the length

of the vector
−−→
Q′Q = 〈a, 0, 0〉 which is |a|.

z

a y
x

b

(0, b, c)

(a, b, c)

|a|

We now verify that Eq. (8) gives the same answer. The plane x = 0 has the vector parametrization 〈1, 0, 0〉 ·
〈x, y, z〉 = 0, hence n = 〈1, 0, 0〉. The coefficients of the plane x = 0 are A = 1, B = C = D = 0. Also
(x1, y1, z1) = (a, b, c). Substituting this value in Eq. (8) we get

|Ax1 + By1 + Cz1 − D|
‖n‖ = |1 · a + 0 + 0 − 0|

‖〈1, 0, 0〉‖ = |a|√
12 + 02 + 02

= |a|

The two answers agree, as expected.

The equation of a plane n · 〈x, y, z〉 = d is said to be in normal form if n is a unit vector. Show that in
this case, |d| is the distance from the plane to the origin. Write the equation of the plane 4x − 2y + 4z = 24
in normal form.12.6 A Survey of Quadric Surfaces

Preliminary Questions
1. True or false? All traces of an ellipsoid are ellipses.

solution This statement is true, mostly. All traces of an ellipsoid
(

x
a

)2 + ( y
b

)2 + ( z
c

)2 = 1 are ellipses,
except for the traces obtained by intersecting the ellipsoid with the planes x = ±a, y = ±b and z = ±c.
These traces reduce to the single points (±a, 0, 0), (0, ±b, 0) and (0, 0, ±c) respectively.

2. True or false? All traces of a hyperboloid are hyperbolas.

solution The statement is false. For a hyperbola in the standard orientation, the horizontal traces are
ellipses (or perhaps empty for a hyperbola of two sheets), and the vertical traces are hyperbolas.
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3. Which quadric surfaces have both hyperbolas and parabolas as traces?

solution The hyperbolic paraboloid z = ( x
a

)2 − ( y
b

)2 has vertical trace curves which are parabolas. If we
set x = x0 or y = y0 we get

z =
(x0

a

)2 −
(y

b

)2 ⇒ z = −
(y

b

)2 + C

z =
(x

a

)2 −
(y0

b

)2 ⇒ z =
(x

a

)2 + C

The hyperbolic paraboloid has vertical traces which are hyperbolas, since for z = z0, (z0 > 0), we get

z0 =
(x

a

)2 −
(y

b

)2

4. Is there any quadric surface whose traces are all parabolas?

solution There is no quadric surface whose traces are all parabolas.

5. A surface is called bounded if there exists M > 0 such that every point on the surface lies at a distance
of at most M from the origin. Which of the quadric surfaces are bounded?

solution The only quadric surface that is bounded is the ellipsoid

(x

a

)2 +
(y

b

)2 +
(z

c

)2 = 1.

All other quadric surfaces are not bounded, since at least one of the coordinates can increase or decrease
without bound.

6. What is the definition of a parabolic cylinder?

solution A parabolic cylinder consists of all vertical lines passing through a parabola C in the xy-plane.

Exercises
In Exercises 1–6, state whether the given equation defines an ellipsoid or hyperboloid, and if a hyperboloid,
whether it is of one or two sheets.

1.
(x

2

)2 +
(y

3

)2 +
( z

5

)2 = 1

solution This equation is the equation of an ellipsoid.

(x

5

)2 +
(y

5

)2 −
( z

7

)2 = 1
3. x2 + 3y2 + 9z2 = 1

solution We rewrite the equation as follows:

x2 +
⎛
⎝ y

1√
3

⎞
⎠

2

+
(

z

1
3

)2

= 1

This equation defines an ellipsoid.

−
(x

2

)2 −
(y

3

)2 +
( z

5

)2 = 1
5. x2 − 3y2 + 9z2 = 1

solution We rewrite the equation in the form

x2 −
⎛
⎝ y

1√
3

⎞
⎠

2

+
(

z

1
3

)2

= 1

This is the equation of a hyperboloid of one sheet.

x2 − 3y2 − 9z2 = 1
In Exercises 7–12, state whether the given equation defines an elliptic paraboloid, a hyperbolic paraboloid,
or an elliptic cone.

7. z =
(x

4

)2 +
(y

3

)2

solution This equation defines an elliptic paraboloid.

z2 =
(x

4

)2 +
(y

3

)2
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9. z =
(x

9

)2 −
( y

12

)2

solution This equation defines a hyperbolic paraboloid.

4z = 9x2 + 5y211. 3x2 − 7y2 = z

solution Rewriting the equation as

z =
⎛
⎝ x

1√
3

⎞
⎠

2

−
⎛
⎝ y

1√
7

⎞
⎠

2

we identify it as the equation of a hyperbolic paraboloid.

3x2 + 7y2 = 14z2In Exercises 13–20, state the type of the quadric surface and describe the trace obtained by intersecting with
the given plane.

13. x2 +
(y

4

)2 + z2 = 1, y = 0

solution The equation x2 + ( y
4

)2 + z2 = 1 defines an ellipsoid. The xz-trace is obtained by substituting
y = 0 in the equation of the ellipsoid. This gives the equation x2 + z2 = 1 which defines a circle in the
xz-plane.

x2 +
(y

4

)2 + z2 = 1, y = 5
15. x2 +

(y

4

)2 + z2 = 1, z = 1

4

solution The quadric surface is an ellipsoid, since its equation has the form
(

x
a

)2 + ( y
b

)2 + ( z
c

)2 = 1 for
a = 1, b = 4, c = 1. To find the trace obtained by intersecting the ellipsoid with the plane z = 1

4 , we set
z = 1

4 in the equation of the ellipsoid. This gives

lx2 +
(y

4

)2 +
(

1

4

)2

= 1

x2 + y2

16
= 15

16

To get the standard form we divide by 15
16 to obtain

x2

15
16

+ y2

16·15
16

= 1 ⇒
(

x√
15
4

)2

+
(

y√
15

)2

= 1 (1)

We conclude that the trace is an ellipse on the xy-plane, whose equation is given in (1).

(x

2

)2 +
(y

5

)2 − 5z2 = 1, x = 0
17.

(x

3

)2 +
(y

5

)2 − 5z2 = 1, y = 1

solution Rewriting the equation in the form

(x

3

)2 +
(y

5

)2 −
⎛
⎝ z

1√
5

⎞
⎠

2

= 1

we identify it as the equation of a hyperboloid of one sheet. Substituting y = 1 we get

x2

9
+ 1

25
− 5z2 = 1

x2

9
− 5z2 = 24

25
25

24 · 9
x2 − 25 · 5

24
z2 = 1

(
x

6
√

6
5

)2

−
⎛
⎜⎝ z

2
5

√
6
5

⎞
⎟⎠

2

= 1

Thus, the trace on the plane y = 1 is a hyperbola.
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4x2 +
(y

3

)2 − 2z2 = −1, z = 1
19. y = 3x2, z = 27

solution This equation defines a parabolic cylinder, consisting of all vertical lines passing through the
parabola y = 3x2 in the xy-plane. Hence, the trace of the cylinder on the plane z = 27 is the parabola y = 3x2

on this plane, that is, the following set:{
(x, y, z) : y = 3x2, z = 27

}
.

y = 3x2, y = 27
21. Match each of the ellipsoids in Figure 13 with the correct equation:

(a) x2 + 4y2 + 4z2 = 16 (b) 4x2 + y2 + 4z2 = 16

(c) 4x2 + 4y2 + z2 = 16

y y y

x x x

z z z

FIGURE 13

solution
(a) We rewrite the equation in the form(x

4

)2 +
(y

2

)2 +
( z

2

)2 = 1

The ellipsoid intersects the x, y, and z axes at the points (±4, 0, 0), (0, ±2, 0), and (0, 0, ±2), hence (B) is
the corresponding figure.

(b) We rewrite the equation in the form(x

2

)2 +
(y

4

)2 +
( z

2

)2 = 1

The x, y, and z intercepts are (±2, 0, 0), (0, ±4, 0), and (0, 0, ±2) respectively, hence (C) is the correct figure.

(c) We write the equation in the form (x

2

)2 +
(y

2

)2 +
( z

4

)2 = 1

The x, y, and z intercepts are (±2, 0, 0), (0, ±2, 0), and (0, 0, ±4) respectively, hence the corresponding
figure is (A).

Describe the surface that is obtained when, in the equation ±8x2 ± 3y2 ± z2 = 1, we choose (a) all
plus signs, (b) one minus sign, and (c) two minus signs.

23. What is the equation of the surface obtained when the elliptic paraboloid z =
(x

2

)2 +
(y

4

)2
is rotated

about the x-axis by 90◦? Refer to Figure 14.

zz

y

y

xx

FIGURE 14
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solution The axis of symmetry of the resulting surface is the y-axis rather than the z-axis. Interchanging
y and z in the given equation gives the following equation of the rotated paraboloid:

y =
(x

2

)2 +
( z

4

)2

Describe the intersection of the horizontal plane z = h and the hyperboloid −x2 − 4y2 + 4z2 = 1.
For which values of h is the intersection empty?

In Exercises 25–38, sketch the given surface.

25. x2 + y2 − z2 = 1

solution This equation defines a hyperboloid of one sheet. The trace on the plane z = z0 is the circle
x2 + y2 = 1 + z2

0. The trace on the plane y = y0 is the hyperbola x2 − z2 = 1 − y2
0 and the trace on the

plane x = x0 is the hyperbola y2 − z2 = 1 − x2
0 . We obtain the following surface:

z

y

x

Graph of x2 + y2 − z2 = 1

(x

4

)2 +
(y

8

)2 +
( z

12

)2 = 1
27. z =

(x

4

)2 +
(y

8

)2

solution This equation defines an elliptic paraboloid, as shown in the following figure:

−10

−20

−10

10
2

4
20

−5

5

10

z
x

y

z =
(x

4

)2 −
(y

8

)229. z2 =
(x

4

)2 +
(y

8

)2

solution This equation defines the following elliptic cone:

4

1

8

z

y

x

z = −x2
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31. x2 − y2 + 9z2 = 9

solution This is the equation of a hyperboloid of one sheet oriented along the y-axis. The graph of the
surface is shown below:

5

4

2

−2

−4 10

5

−5

−10

−5

x

z

y

y2 + z2 = 1
33. x = sin y

solution This is the equation of a cylindrical surface oriented along the z-axis whose cross-section is the
curve x = sin y. The graph of the surface is shown below:

−0.5

−1.0

−0.5

0.5

1.0

−2

−1

2

1
0.5

z

x

y

x = 2y2 − z235. x = 1 + y2 + z2

solution This is the equation of an elliptic paraboloid oriented along the x-axis. The graph of the surface
is shown below:

−2

−2

−1

1

2

2−1

1

2

x

z

y
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x2 − 4y2 = z
37. x2 + 9y2 + 4z2 = 36

solution This is the equation of an ellipsoid. The graph of the surface is shown below:

−2

2

−2

−5

5

2

z

x

y

y2 − 4x2 − z2 = 4
39. Find the equation of the ellipsoid passing through the points marked in Figure 15(A).

z

y

x

(A)

6

4

−4

2

−2

−6

z

y

x

(B)

4

−4

2

−2

FIGURE 15

solution The equation of an ellipsoid is(x

a

)2 +
(y

b

)2 +
(z

c

)2 = 1 (1)

The x, y and z intercepts are (±a, 0, 0), (0, ±b, 0) and (0, 0, ±c) respectively. The x, y and z intercepts of
the desired ellipsoid are (±2, 0, 0), (0, ±4, 0) and (0, 0, ±6) respectively, hence a = 2, b = 4 and c = 6.
Substituting into (1) we get (x

2

)2 +
(y

4

)2 +
( z

6

)2 = 1.

Find the equation of the elliptic cylinder passing through the points marked in Figure 15(B).
41. Find the equation of the hyperboloid shown in Figure 16(A).

z

y

x

(A)

6

12
8

4

6

5
9

8

z

y

x

(B)

FIGURE 16

solution The hyperboloid in the figure is of one sheet and the intersections with the planes z = z0 are
ellipses. Hence, the equation of the hyperboloid has the form(x

a

)2 +
(y

b

)2 −
(z

c

)2 = 1 (1)
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Substituting z = 0 we get (x

a

)2 +
(y

b

)2 = 1

By the given information this ellipse has x and y intercepts at the points (±4, 0) and (0, ±6) hence a = 4,
b = 6. Substituting in (1) we get (x

4

)2 +
(y

6

)2 −
(z

c

)2 = 1 (2)

Substituting z = 9 we get

x2

16
+ y2

36
− 92

c2
= 1

x2

16
+ y2

36
= 1 + 81

c2
= c2 + 81

c2

c2x2

16(81 + c2)
+ c2y2

36(81 + c2)
= 1

(
x

4
c

√
81 + c2

)2

+
(

y

6
c

√
81 + c2

)2

= 1

By the given information the following must hold:

4

c

√
81 + c2 = 8

6

c

√
81 + c2 = 12

⇒
√

81 + c2

c
= 2 ⇒ 81 + c2 = 4c2 ⇒ 3c2 = 81

Thus, c = 3
√

3, and by substituting in (2) we obtain the following equation:

(x

4

)2 +
(y

6

)2 −
(

z

3
√

3

)2

= 1

Find the equation of the quadric surface shown in Figure 16(B).
43. Determine the vertical traces of elliptic and parabolic cylinders in standard form.

solution The vertical traces of elliptic or parabolic cylinders are one or two vertical lines, or an empty
set.

What is the equation of a hyperboloid of one or two sheets in standard form if every horizontal trace
is a circle?

45. Let C be an ellipse in a horizonal plane lying above the xy-plane. Which type of quadric surface is made
up of all lines passing through the origin and a point on C?

solution The quadric surface is the upper part of an elliptic cone.

z

y

x

The eccentricity of a conic section is defined in Section 11.5. Show that the horizontal traces of the
ellipsoid (x

a

)2 +
(y

b

)2 +
(z

c

)2 = 1

are ellipses of the same eccentricity (apart from the traces at height h = ±c, which reduce to a single
point). Find the eccentricity.

Further Insights and Challenges
47. Let S be the hyperboloid x2 + y2 = z2 + 1 and let P = (α, β, 0) be a point on S in the (x, y)-plane.
Show that there are precisely two lines through P entirely contained in S (Figure 17). Hint: Consider the line
r(t) = 〈α + at, β + bt, t〉 through P . Show that r(t) is contained in S if (a, b) is one of the two points on the
unit circle obtained by rotating (α, β) through ±π

2 . This proves that a hyperboloid of one sheet is a doubly
ruled surface, which means that it can be swept out by moving a line in space in two different ways.



S E C T I O N 12.6 A Survey of Quadric Surfaces 953

z

y

(−β, α)
(α, β)

(β, −α)

x

y

x

x2 + y2 = z2 + 1

(α, β)

FIGURE 17

solution The parametric equations of the lines through P = (α, β, 0) have the form

x = α + ks, y = β + 
s, z = ms

Setting the parameter t = ms and replacing k
m

and 

m

by a and b, respectively, we obtain the following
(normalized) form

x = α + at, y = β + bt, z = t

The line is entirely contained in S if and only if for all values of the parameter t , the following equality holds:

(α + at)2 + (β + bt)2 = t2 + 1

That is, for all t ,

α2 + 2αat + a2t2 + β2 + 2βbt + b2t2 = t2 + 1

(a2 + b2 − 1)t2 + 2(αa + βb)t + (α2 + β2 − 1) = 0

This equality holds for all t if and only if all the coefficients are zero. That is, if and only if⎧⎨
⎩

a2 + b2 − 1 = 0
αa + βb = 0
α2 + β2 − 1 = 0

The first and the third equations imply that (a, b) and (α, β) are points on the unit circle x2 + y2 = 1. The
second equation implies that the vector u = 〈a, b〉 is orthogonal to the vector v = 〈α, β〉 (since u · v =
aα + bβ = 0).

Conclusions: There are precisely two lines through P entirely contained in S. For the direction vectors
(a, b, 1) of these lines, (a, b) is obtained by rotating (α, β) through ±π

2 about the origin.

In Exercises 48 and 49, let C be a curve in R3 not passing through the origin. The cone on C is the surface
consisting of all lines passing through the origin and a point on C [Figure 18(A)].

Cone on ellipse C Cone on parabola C
(half of cone shown)

O

C

C

z

y

x

y

x

z

O

c

c

FIGURE 18

Show that the elliptic cone
(z

c

)2 =
(x

a

)2 +
(y

b

)2
is, in fact, a cone on the ellipse C consisting of all

points (x, y, c) such that
(x

a

)2 +
(y

b

)2 = 1.

49. Let a and c be nonzero constants and let C be the parabola at height c consisting of all points (x, ax2, c)

[Figure 18(B)]. Let S be the cone consisting of all lines passing through the origin and a point on C. This
exercise shows that S is also an elliptic cone.
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(a) Show that S has equation yz = acx2.

(b) Show that under the change of variables y = u + v and z = u − v, this equation becomes acx2 = u2 − v2

or u2 = acx2 + v2 (the equation of an elliptic cone in the variables x, v, u).

solution

(a) A point P on the parabola C has the form P = (
x0, ax2

0 , c
)
, hence the parametric equations of the line

through the origin and P are

x = tx0, y = tax2
0 , z = tc.

Then

yz = tax2
0ct = ac(tx0)

2 = acx2.

(b) Define new variables z = u − v and y = u + v. The equation in part (a) becomes

(u + v)(u − v) = acx2

u2 − v2 = acx2 ⇒ u2 = acx2 + v2

This is the equation of an elliptic cone in the variables x, v, u. We, thus, showed that the cone on the parabola
C is transformed to an elliptic cone by the transformation (change of variables) y = u + v, z = u − v, x = x.

12.7 Cylindrical and Spherical Coordinates

Preliminary Questions
1. Describe the surfaces r = R in cylindrical coordinates and ρ = R in spherical coordinates.

solution The surface r = R consists of all points located at a distance R from the z-axis. This surface is
the cylinder of radius R whose axis is the z-axis. The surface ρ = R consists of all points located at a distance
R from the origin. This is the sphere of radius R centered at the origin.

2. Which statement about cylindrical coordinates is correct?

(a) If θ = 0, then P lies on the z-axis.

(b) If θ = 0, then P lies in the xz-plane.

solution The equation θ = 0 defines the half-plane of all points that project onto the ray θ = 0, that is,
onto the nonnegative x-axis. This half plane is part of the (x, z)-plane, therefore if θ = 0, then P lies in the
(x, z)-plane.

z

y

x

The half-plane q = 0

For instance, the point P = (1, 0, 1) satisfies θ = 0, but it does not lie on the z-axis. We conclude that
statement (b) is correct and statement (a) is false.

3. Which statement about spherical coordinates is correct?

(a) If φ = 0, then P lies on the z-axis.

(b) If φ = 0, then P lies in the xy-plane.

solution The equation φ = 0 describes the nonnegative z-axis. Therefore, if φ = 0, P lies on the z-axis
as stated in (a). Statement (b) is false, since the point (0, 0, 1) satisfies φ = 0, but it does not lie in the
(x, y)-plane.
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4. The level surface φ = φ0 in spherical coordinates, usually a cone, reduces to a half-line for two values
of φ0. Which two values?

solution For φ0 = 0, the level surface φ = 0 is the upper part of the z-axis. For φ0 = π , the level surface
φ = π is the lower part of the z-axis. These are the two values of φ0 where the level surface φ = φ0 reduces
to a half-line.

5. For which value of φ0 is φ = φ0 a plane? Which plane?

solution For φ0 = π
2 , the level surface φ = π

2 is the xy-plane.

z

y

P

P

x

π
2

π
2

Exercises
In Exercises 1–4, convert from cylindrical to rectangular coordinates.

1. (4, π, 4)

solution By the given data r = 4, θ = π and z = 4. Hence,

x = r cos θ = 4 cos π = 4 · (−1) = −4

y = r sin θ = 4 sin π = 4 · 0

z = 4

⇒ (x, y, z) = (−4, 0, 4)

(
2,

π

3
, −8

)
3.
(

0,
π

5
,

1

2

)

solution We have r = 0, θ = π
5 , z = 1

2 . Thus,

x = r cos θ = 0 · cos
π

5
= 0

y = r sin θ = 0 · sin
π

5
= 0

z = 1

2

⇒ (x, y, z) =
(

0, 0,
1

2

)

(
1,

π

2
, −2

)In Exercises 5–10, convert from rectangular to cylindrical coordinates.

5. (1, −1, 1)

solution We are given that x = 1, y = −1, z = 1. We find r:

r =
√

x2 + y2 =
√

12 + (−1)2 = √
2

Next we find θ . The point (x, y) = (1, −1) lies in the fourth quadrant, hence,

tan θ = y

x
= −1

1
= −1,

3π

2
≤ θ ≤ 2π ⇒ θ = 7π

4

We conclude that the cylindrical coordinates of the point are

(r, θ, z) =
(√

2,
7π

4
, 1

)
.

(2, 2, 1)
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7. (1,
√

3, 7)

solution We have x = 1, y = √
3, z = 7. We first find r:

r =
√

x2 + y2 =
√

12 +
(√

3
)2 = 2

Since the point (x, y) =
(

1,
√

3
)

lies in the first quadrant, 0 ≤ θ ≤ π
2 . Hence,

tan θ = y

x
=

√
3

1
= √

3, 0 ≤ θ ≤ π

2
⇒ θ = π

3

The cylindrical coordinates are thus

(r, θ, z) =
(

2,
π

3
, 7
)

.

(
3

2
,

3
√

3

2
, 9

)
9.
(

5√
2
,

5√
2
, 2

)

solution We have x = 5√
2

, y = 5√
2

, z = 2. We find r:

r =
√

x2 + y2 =
√(

5√
2

)2

+
(

5√
2

)2

= √
25 = 5

Since the point (x, y) =
(

5√
2
, 5√

2

)
is in the first quadrant, 0 ≤ θ ≤ π

2 , therefore,

tan θ = y

x
= 5/

√
2

5/
√

2
= 1, 0 ≤ θ ≤ π

2
⇒ θ = π

4

The corresponding cylindrical coordinates are

(r, θ, z) =
(

5,
π

4
, 2
)

.

(3, 3
√

3, 2)
In Exercises 11–16, describe the set in cylindrical coordinates.

11. x2 + y2 ≤ 1

solution The inequality describes a solid cylinder of radius 1 centered on the z-axis. Since x2 + y2 = r2,
this inequality can be written as r2 ≤ 1.

x2 + y2 + z2 ≤ 1
13. y2 + z2 ≤ 4, x = 0

solution The projection of the points in this set onto the xy-plane are points on the y axis, thus θ = π
2

or θ = 3π
2 . Therefore, y = r sin π

2 = r · 1 = r or y = r sin
(

3π
2

)
= −r . In both cases, y2 = r2, thus the

inequality y2 + z2 ≤ 4 becomes r2 + z2 ≤ 4. In cylindrical coordinates, we obtain the following inequality

r2 + z2 ≤ 4, θ = π

2
or θ = 3π

2

x2 + y2 + z2 = 4, x ≥ 0, y ≥ 0, z ≥ 0
15. x2 + y2 ≤ 9, x ≥ y

solution The equation x2 + y2 ≤ 9 in cylindrical coordinates becomes r2 ≤ 9, which becomes r ≤ 3.
However, we also have the restriction that x ≥ y. This means that the projection of our set onto the xy plane
is below and to the right of the line y = x. In other words, our θ is restricted to −3π/4 ≤ θ ≤ π/4. In
conclusion, the answer is:

r ≤ 3, −3π/4 ≤ θ ≤ π/4

y2 + z2 ≤ 9, x ≥ y



S E C T I O N 12.7 Cylindrical and Spherical Coordinates 957

In Exercises 17–26, sketch the set (described in cylindrical coordinates).

17. r = 4

solution The surface r = 4 consists of all points located at a distance 4 from the z-axis. It is a cylinder of
radius 4 whose axis is the z-axis. The cylinder is shown in the following figure:

−4

−4

4
4

z

y

x

θ = π

3

19. z = −2

solution z = −2 is the horizontal plane at height −2, shown in the following figure:

−2

z

y

x

r = 2, z = 3
21. 1 ≤ r ≤ 3, 0 ≤ z ≤ 4

solution The region 1 ≤ r ≤ 3, 0 ≤ z ≤ 4 is shown in the following figure:

z

y

x

−4

−4

4

0

4

4

z = r
23. r = sin θ (Hint: Convert to rectangular.)

solution To convert to rectangular coordinates, multiply both sides by r , giving r2 = r sin θ = y, so that

x2 + y2 = y. This simplifies to x2 +
(
y − 1

2

)2 = 1
4 , which is a cylinder oriented in the z direction whose

base in the xy-plane is the circle of radius 1
2 centered at

(
0, 1

2

)
. A sketch of the surface is below:

−1.0

−0.5

−0.5

0.5

0.5 0.5

1.01.0

z y

x
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1 ≤ r ≤ 3, 0 ≤ θ ≤ π

2
, 0 ≤ z ≤ 4

25. z2 + r2 ≤ 4

solution The region z2 + r2 ≤ 4 is shown in the following figure:

2

2

2

−2

−2

−2

z

y

x

In rectangular coordinates the inequality is z2 + (x2 + y2
) ≤ 4, or x2 + y2 + z2 ≤ 4, which is a ball of radius

2.

r ≤ 3, π ≤ θ ≤ 3π

2
, z = 4

In Exercises 27–32, find an equation of the form r = f (θ, z) in cylindrical coordinates for the following
surfaces.

27. z = x + y

solution We substitute x = r cos θ , y = r sin θ to obtain the following equation in cylindrical coordinates:

z = r cos θ + r sin θ

z = r(cos θ + sin θ)
⇒ r = z

cos θ + sin θ
.

x2 + y2 + z2 = 429.
x2

yz
= 1

solution We rewrite the equation in the form

x
y
x
z

= 1

Substituting x = r cos θ and y
x

= tan θ we get

r cos θ

(tan θ) z
= 1

r = z tan θ

cos θ

x2 − y2 = 4
31. x2 + y2 = 4

solution Since x2 + y2 = r2, the equation in cylindrical coordinates is, r2 = 4 or r = 2.

z = 3xyIn Exercises 33–38, convert from spherical to rectangular coordinates.

33.
(

3, 0,
π

2

)
solution We are given that ρ = 3, θ = 0, φ = π

2 . Using the relations between spherical and rectangular
coordinates we have

x = ρ sin φ cos θ = 3 sin
π

2
cos 0 = 3 · 1 · 1 = 3

y = ρ sin φ sin θ = 3 sin
π

2
sin 0 = 3 · 1 · 0 = 0

z = ρ cos φ = 3 cos
π

2
= 3 · 0 = 0

⇒ (x, y, z) = (3, 0, 0)

(
2,

π

4
,
π

3

)35. (3, π, 0)

solution We have ρ = 3, θ = π , φ = 0. Hence,

x = ρ sin φ cos θ = 3 sin 0 cos π = 0

y = ρ sin φ sin θ = 3 sin 0 sin π = 0

z = ρ cos φ = 3 cos 0 = 3

⇒ (x, y, z) = (0, 0, 3)
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(
5,

3π

4
,
π

4

)
37.

(
6,

π

6
,

5π

6

)

solution Since ρ = 6, θ = π
6 , and φ = 5π

6 we get

x = ρ sin φ cos θ = 6 sin
5π

6
cos

π

6
= 6 · 1

2
·
√

3

2
= 3

√
3

2

y = ρ sin φ sin θ = 6 sin
5π

6
sin

π

6
= 6 · 1

2
· 1

2
= 3

2

z = ρ cos φ = 6 cos
5π

6
= 6 ·

(
−

√
3

2

)
= −3

√
3

⇒ (x, y, z) =
(

3
√

3

2
,

3

2
, −3

√
3

)

(0.5, 3.7, 2)In Exercises 39–44, convert from rectangular to spherical coordinates.

39. (
√

3, 0, 1)

solution By the given data x = √
3, y = 0, and z = 1. We find the radial coordinate:

ρ =
√

x2 + y2 + z2 =
√(√

3
)2 + 02 + 12 = 2

The angular coordinate θ satisfies

tan θ = y

x
= 0√

3
= 0 ⇒ θ = 0 or θ = π

Since the point (x, y) =
(√

3, 0
)

lies in the first quadrant, the correct choice is θ = 0. The angle of declination

φ satisfies

cos φ = z

ρ
= 1

2
, 0 ≤ φ ≤ π ⇒ φ = π

3

The spherical coordinates of the given points are thus

(ρ, θ, φ) =
(

2, 0,
π

3

)

(√
3

2
,

3

2
, 1

)41. (1, 1, 1)

solution We have x = y = z = 1. The radial coordinate is

ρ =
√

x2 + y2 + z2 =
√

12 + 12 + 12 = √
3

The angular coordinate θ is determined by tan θ = y
x

= 1
1 = 1 and by the quadrant of the point (x, y) = (1, 1),

that is, θ = π
4 . The angle of declination φ satisfies

cos φ = z

ρ
= 1√

3
, 0 ≤ φ ≤ π ⇒ φ = 0.955

The spherical coordinates are thus (√
3,

π

4
, 0.955

)

(1, −1, 1)43.

(
1

2
,

√
3

2
,
√

3

)

solution We have x = 1
2 , y =

√
3

2 , and z = √
3. Thus

ρ =
√

x2 + y2 + z2 =
√√√√(1

2

)2

+
(√

3

2

)2

+
(√

3
)2 = 2
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The angular coordinate θ satisfies 0 ≤ θ ≤ π
2 , since the point (x, y) =

(
1
2 ,

√
3

2

)
is in the first quadrant. Also

tan θ = y
x

=
√

3/2
1/2 = √

3, hence the angle is θ = π
3 . The angle of declination φ satisfies

cos φ = z

ρ
=

√
3

2
, 0 ≤ φ ≤ π ⇒ φ = π

6

We conclude that

(ρ, θ, φ) =
(

2,
π

3
,
π

6

)
(√

2

2
,

√
2

2
,
√

3

)In Exercises 45 and 46, convert from cylindrical to spherical coordinates.

45. (2, 0, 2)

solution We are given that r = 2, θ = 0, z = 2. Using the conversion formulas, we have

ρ =
√

x2 + y2 + z2 =
√

r2 + z2 =
√

22 + 22 = 2
√

2

θ = θ = 0

φ = cos−1(z/ρ) = cos−1(2/(2
√

2)) = π/4

(3, π,
√

3)
In Exercises 47 and 48, convert from spherical to cylindrical coordinates.

47.
(
4, 0, π

4

)
solution We are given that ρ = 4, θ = 0, and φ = π/4. To find r , we use the formulas x = r cos θ and
x = ρ cos θ sin φ to get r cos θ = ρ cos θ sin φ, and so

r = ρ sin φ = 4 sin π/4 = 2
√

2

Clearly θ = 0, and as for z,

z = ρ cos φ = 4 cos π/4 = 2
√

2

So, in cylindrical coordinates, our point is (2
√

2, 0, 2
√

2)

(
2, π

3 , π
6

)In Exercises 49–54, describe the given set in spherical coordinates.

49. x2 + y2 + z2 ≤ 1

solution Substituting ρ2 = x2 + y2 + z2 we obtain ρ2 ≤ 1 or 0 ≤ ρ ≤ 1.

x2 + y2 + z2 = 1, z ≥ 0
51. x2 + y2 + z2 = 1, x ≥ 0, y ≥ 0, z ≥ 0

solution By ρ2 = x2 + y2 + z2, we get ρ2 = 1 or ρ = 1. The inequalities x ≥ 0, y ≥ 0 determine the
first quadrant, which is also determined by 0 ≤ θ ≤ π

2 . Finally, z ≥ 0 gives cos φ = z
ρ

≥ 0. Also 0 ≤ φ ≤ π ,
hence 0 ≤ φ ≤ π

2 . We obtain the following description:

ρ = 1, 0 ≤ θ ≤ π

2
, 0 ≤ φ ≤ π

2

x2 + y2 + z2 ≤ 1, x = y, x ≥ 0, y ≥ 0
53. y2 + z2 ≤ 4, x = 0

solution We substitute y = ρ sin θ sin φ and z = ρ cos φ in the given inequality. This gives

4 ≥ ρ2 sin2 θ sin2 φ + ρ2 cos2 φ (1)

The equality x = 0 determines that θ = π
2 or θ = 3π

2 (and the origin). In both cases, sin2 θ = 1. Hence by
(1) we get

ρ2 sin2 φ + ρ2 cos2 φ ≤ 4

ρ2(1) ≤ 4

ρ ≤ 2

We obtain the following description:{
(ρ, θ, φ) : 0 ≤ ρ ≤ 2, θ = π

2
or θ = 3π

2

}
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x2 + y2 = 3z2In Exercises 55–64, sketch the set of points (described in spherical coordinates).

55. ρ = 4

solution ρ = 4 describes the sphere of radius 4. This is shown in the following figure:

z

y

x

φ = π

4

57. ρ = 2, θ = π

4

solution The equation ρ = 2 is a sphere of radius 2, and the equation θ = π
4 is the vertical plane y = x.

These two surfaces intersect in a (vertical) circle of radius 2, as seen here.

x

y

z

ρ = 2, φ = π

4

59. ρ = 2, 0 ≤ φ ≤ π

2

solution The set

ρ = 2, 0 ≤ φ ≤ π

2

is shown in the following figure:

2

2
2

−2

−2

z

y

x

It is the upper half of the sphere with radius 2.

θ = π

2
, φ = π

4
, ρ ≥ 1

61. ρ ≤ 2, 0 ≤ θ ≤ π

2
,

π

2
≤ φ ≤ π

solution This set is the part of the ball of radius 2 which is below the first quadrant of the xy-plane, as
shown in the following figure:

2
2

−2

z

y

x

ρ = 1,
π

3
≤ φ ≤ 2π

3
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63. ρ = csc φ

solution Multiplying both sides by sin φ gives ρ sin φ = 1; since ρ2 sin2 φ = x2 + y2, this is the equation
of the surface x2 + y2 = 1, which is a cylinder oriented parallel to the z-axis having cross-section the circle
of radius 1 centered at the origin. This set is shown in the following figure:

0.5

−0.5
−1.0

−1.0

−1.0

−0.5

1.0

−0.5

0.5

1.0

1.0 y

x

z

ρ = csc φ cot φIn Exercises 65–70, find an equation of the form ρ = f (θ, φ) in spherical coordinates for the following
surfaces.

65. z = 2

solution Since z = ρ cos φ, we have ρ cos φ = 2, or ρ = 2
cos φ

.

z2 = 3(x2 + y2)
67. x = z2

solution Substituting x = ρ cos θ sin φ and z = ρ cos φ we obtain

ρ cos θ sin φ = ρ2 cos2 φ

cos θ sin φ = ρ cos2 φ

ρ = cos θ sin φ

cos2 φ
= cos θ tan φ

cos φ

z = x2 + y269. x2 − y2 = 4

solution We substitute x = ρ cos θ sin φ and y = ρ sin θ sin φ to obtain

4 = ρ2 cos2 θ sin2 φ − ρ2 sin2 θ sin2 φ = ρ2 sin2 φ
(
cos2 θ − sin2 θ

)
Using the identity cos2 θ − sin2 θ = cos 2θ we get

4 = ρ2 sin2 φ cos 2θ

ρ2 = 4

sin2 φ cos 2θ

We take the square root of both sides. Since 0 < φ < π we have sin φ > 0, hence,

ρ = 2

sin φ
√

cos 2θ

xy = z71. Which of (a)–(c) is the equation of the cylinder of radius R in spherical coordinates? Refer to
Figure 17.

(a) Rρ = sin φ (b) ρ sin φ = R (c) ρ = R sin φ
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R

r
f

q

z

y

x

FIGURE 17

solution The equation of the cylinder of radius R in rectangular coordinates is x2 + y2 = R2 (z is
unlimited). Substituting the formulas for x and y in terms of ρ, θ and φ yields

R2 = ρ2 cos2 θ sin2 φ + ρ2 sin2 θ sin2 φ = ρ2 sin2 φ
(
cos2 θ + sin2 θ

) = ρ2 sin2 φ

Hence,

R2 = ρ2 sin2 φ

We take the square root of both sides. Since 0 ≤ φ ≤ π , we have sin φ ≥ 0, therefore,

R = ρ sin φ

Equation (b) is the correct answer.

Let P1 = (1, −√
3, 5) and P2 = (−1,

√
3, 5) in rectangular coordinates. In which quadrants do the

projections of P1 and P2 onto the xy-plane lie? Find the polar angle θ of each point.

73. Find the spherical angles (θ, φ) for Helsinki, Finland (60.1◦ N, 25.0◦ E), and São Paulo, Brazil (23.52◦
S, 46.52◦ W).

solution For Helsinki, θ is 25◦ and φ is 90 − 60.1 = 29.9◦.
For São Paulo, θ is 360 − 46.52 = 313.48◦ and φ is 90 + 23.52 = 113.52◦.

Find the longitude and latitude for the points on the globe with angular coordinates (θ, φ) =
(π/8, 7π/12) and (4, 2).

75. Consider a rectangular coordinate system with its origin at the center of the earth, z-axis through the
North Pole, and x-axis through the prime meridian. Find the rectangular coordinates of Sydney, Australia
(34◦ S, 151◦ E), and Bogotá, Colombia (4◦ 32′ N, 74◦ 15′ W). A minute is 1/60◦. Assume that the earth is a
sphere of radius R = 6370 km.

solution We first find the angle (θ, φ) for the two towns. For Sydney θ = 151◦, since its longitude lies
to the east of Greenwich, that is, in the positive θ direction. Sydney’s latitude is south of the equator, hence
φ = 90 + 34 = 124◦.

For Bogotá, we have θ = 360◦ − 74◦15′ = 285◦45′, since 74◦15′W refers to 74◦15′ in the negative θ

direction. The latitude is north of the equator hence φ = 90◦ − 4◦32′ = 85◦28′.
We now use the formulas of x,y and z in terms of ρ, θ , φ to find the rectangular coordinates of the two

towns. (Notice that 285◦45′ = 285.75◦ and 85◦28′ = 85.47◦).
Sydney:

x = ρ cos θ sin φ = 6370 cos 151◦ sin 124◦ = −4618.8

y = ρ sin θ sin φ = 6370 sin 151◦ sin 124◦ = 2560

z = ρ cos φ = 6370 cos 124◦ = −3562.1

Bogotá:

x = ρ cos θ sin φ = 6370 cos 285.75◦ sin 85.47◦ = 1723.7

y = ρ sin θ sin φ = 6370 sin 285.75◦ sin 85.47◦ = −6111.7

z = ρ cos φ = 6370 cos 85.47◦ = 503.1

Find the equation in rectangular coordinates of the quadric surface consisting of the two cones φ = π
4

and φ = 3π
4 .

77. Find an equation of the form z = f (r, θ) in cylindrical coordinates for z2 = x2 − y2.

solution In cylindrical coordinates, x = r cos θ and y = r sin θ . Hence,

z2 = x2 − y2 = r2 cos2 θ − r2 sin2 θ

We use the identity cos2 θ − sin2 θ = cos 2θ to obtain

z2 = r2 cos 2θ ⇒ z = ±r
√

cos 2θ
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Show that ρ = 2 cos φ is the equation of a sphere with its center on the z-axis. Find its radius and
center.

79. An apple modeled by taking all the points in and on a sphere of radius 2 in. is cored with a vertical cylinder
of radius 1 in. Use inequalities in cylindrical coordinates to describe the set of all points that remain in the
apple once the core is removed.

solution The sphere together with its interior is, in rectangular coordinates, the set of points with x2 +
y2 + z2 ≤ 4. In cylindrical coordinates, this is the set of points with r2 + z2 ≤ 4. So we can parametrize the
sphere and its interior as −2 ≤ z ≤ 2 and 0 ≤ r ≤ √

4 − z2. The vertical cylinder together with its interior is
parametrized by r ≤ 1. The cylinder intersects the sphere when 12 + z2 = 4, or z = ±√

3. When |z| >
√

3,
all points in the sphere lie inside the cylinder, so are gone when the cylinder is removed. So removing the
cylinder from the sphere gives a set of points parametrized as −√

3 < z <
√

3, 1 < r ≤ √
4 − z2.

Repeat Problem 79 using inequalities in spherical coordinates.81. Explain the following statement: If the equation of a surface in cylindrical or spherical coordinates
does not involve the coordinate θ , then the surface is rotationally symmetric with respect to the z-axis.

solution Suppose the point P = (ρ0, θ0, φ0) (in spherical coordinates) or (r0, θ0, z0) (in cylindrical
coordinates) lies on the surface. Since the equation of the surface does not involve the coordinate θ , we may
substitute any value of θ for θ0 and still get a point on the surface. But changing θ amounts to rotating P

around the z-axis. Therefore all the points obtained by rotating P around the z-axis are on the surface and
hence the surface is rotationally symmetric with respect to the z-axis.

Plot the surface ρ = 1 − cos φ. Then plot the trace of S in the xz-plane and explain why S is obtained
by rotating this trace.

83. Find equations r = g(θ, z) (cylindrical) and ρ = f (θ, φ) (spherical) for the hyperboloid x2 + y2 =
z2 + 1 (Figure 18). Do there exist points on the hyperboloid with φ = 0 or π? Which values of φ occur for
points on the hyperboloid?

y

z

x

FIGURE 18 The hyperboloid x2 + y2 = z2 + 1.

solution For the cylindrical coordinates (r, θ, z) we have x2 + y2 = r2. Substituting into the equation
x2 + y2 = z2 + 1 gives

r2 = z2 + 1 ⇒ r =
√

z2 + 1

For the spherical coordinates (ρ, θ, φ) we have x = ρ sin φ cos θ , y = ρ sin φ sin θ and z = ρ cos φ. We
substitute into the equation of the hyperboloid x2 + y2 = z2 + 1 and simplify to obtain

ρ2 sin2 φ cos2 θ + ρ2 sin2 φ sin2 θ = ρ2 cos2 φ + 1

ρ2 sin2 φ
(
cos2 θ + sin2 θ

) = ρ2 cos2 φ + 1

ρ2(sin2 φ − cos2 φ
) = 1

Using the trigonometric identity cos 2φ = cos2 φ − sin2 φ we get

ρ2 · (− cos 2φ
) = 1 ⇒ ρ =

√
− 1

cos 2φ

For φ = 0 and φ = π we have cos 2 · 0 = 1 and cos 2π = 1. In both cases − 1
cos 2φ

= −1 < 0, hence there

is no real value of ρ satisfying ρ =
√

− 1
cos 2φ

. We conclude that there are no points on the hyperboloid with

φ = 0 or π .
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To obtain a real ρ such that ρ =
√

− 1
cos 2φ

, we must have − 1
cos 2φ

> 0. That is, cos 2φ < 0 (and of course

0 ≤ φ ≤ π ). The corresponding values of φ are

π

2
< 2φ ≤ 3π

2
⇒ π

4
< φ ≤ 3π

4

Further Insights and Challenges
In Exercises 84–88, a great circle on a sphere S with center O and radius R is a circle obtained by intersecting
S with a plane that passes through O (Figure 19). If P and Q are not antipodal (on opposite sides), there is
a unique great circle through P and Q on S (intersect S with the plane through O, P , and Q). The geodesic
distance from P to Q is defined as the length of the smaller of the two circular arcs of this great circle.

Great circle

through P and Q

Smaller circle

ψ

FIGURE 19

Show that the geodesic distance from P to Q is equal to Rψ , where ψ is the central angle between P

and Q (the angle between the vectors v = −→
OP and u = −−→

OQ).

85. Show that the geodesic distance from Q = (a, b, c) to the North Pole P = (0, 0, R) is equal to

R cos−1
( c

R

)
.

solution Let ψ be the central angle between P and Q, that is, the angle between the vectors v = −→
OP

and u = −−→
OQ. By Exercise 84 the geodesic distance from P to Q is Rψ . We find ψ . By the formula for the

cosine of the angle between two vectors, we have

cos ψ = u · v
‖u‖‖v‖ (1)

We compute the values in this quotient:

u · v = 〈0, 0, R〉 · 〈a, b, c〉 = 0 + 0 + Rc = Rc

‖v‖ = ‖−→
OP ‖= R

‖u‖ = ‖−−→OQ‖=
√

a2 + b2 + c2 = R

Substituting in (1) we get

cos ψ = Rc

R2
= c

R
⇒ ψ = cos−1

( c

R

)
The geodesic distance from Q to P is thus

Rψ = R cos−1
( c

R

)

The coordinates of Los Angeles are 34◦ N and 118◦ W. Find the geodesic distance from the North Pole
to Los Angeles, assuming that the earth is a sphere of radius R = 6370 km.

87. Show that the central angle ψ between points P and Q on a sphere (of any radius) with angular coordinates
(θ, φ) and (θ ′, φ′) is equal to

ψ = cos−1(sin φ sin φ′ cos(θ − θ ′) + cos φ cos φ′)
Hint: Compute the dot product of

−→
OP and

−−→
OQ. Check this formula by computing the geodesic distance

between the North and South Poles.
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solution We denote the vectors u = −→
OP and v = −−→

OQ. By the formula for the angle between two vectors
we have

ψ = cos−1
(

u · v
‖u‖‖v‖

)

Denoting by R the radius of the sphere, we have ‖u‖ = ‖v‖ = R, hence,

ψ = cos−1
(u · v

R2

)
(1)

The rectangular coordinates of u and v are

u v

x = R sin φ cos θ x′ = R sin φ′ cos θ ′

y = R sin φ sin θ y′ = R sin φ′ sin θ ′

z = R cos φ z′ = R cos φ′

Hence,

u · v = R2 sin φ cos θ sin φ′ cos θ ′ + R2 sin φ sin θ sin φ′ sin θ ′ + R2 cos φ cos φ′

= R2 [sin φ sin φ′ (cos θ cos θ ′ + sin θ sin θ ′)+ cos φ cos φ′]
We use the identity cos (α − β) = cos α cos β + sin α sin β to obtain

u · v = R2 (sin φ sin φ′ cos
(
θ − θ ′)+ cos φ cos φ′)

Substituting in (1) we obtain

ψ = cos−1 (sin φ sin φ′ cos
(
θ − θ ′)+ cos φ cos φ′) (2)

We now check this formula in the case where P and Q are the north and south poles respectively. In this case
θ = θ ′ = 0, φ = 0, φ′ = π . Substituting in (2) gives

ψ = cos−1 (sin 0 sin π cos 0 + cos 0 cos π) = cos−1(−1) = π

Using Exercise 84, the geodesic distance between the two poles is Rψ = Rπ , in accordance with the formula
for the length of a semicircle.

Use Exercise 87 to find the geodesic distance between Los Angeles (34◦ N, 118◦ W) and Bombay
(19◦ N, 72.8◦ E).CHAPTER REVIEW EXERCISES

In Exercises 1–6, let v = 〈−2, 5〉 and w = 〈3, −2〉.
1. Calculate 5w − 3v and 5v − 3w.

solution We use the definition of basic vector operations to compute the two linear combinations:

5w − 3v = 5〈3, −2〉 − 3〈−2, 5〉 = 〈15, −10〉 + 〈6, −15〉 = 〈21, −25〉
5v − 3w = 5〈−2, 5〉 − 3〈3, −2〉 = 〈−10, 25〉 + 〈−9, 6〉 = 〈−19, 31〉

Sketch v, w, and 2v − 3w.
3. Find the unit vector in the direction of v.

solution The unit vector in the direction of v is

ev = 1

‖v‖v

We compute the length of v:

‖v‖ =
√

(−2)2 + 52 = √
29

Hence,

ev = v
‖v‖ = 〈−2, 5〉√

29
=
〈 −2√

29
,

5√
29

〉
.



Chapter Review Exercises 967

Find the length of v + w.
5. Express i as a linear combination rv + sw.

solution We use basic properties of vector algebra to write

i = rv + sw (1)

〈1, 0〉 = r〈−2, 5〉 + s〈3, −2〉 = 〈−2r + 3s, 5r − 2s〉
The vector are equivalent, hence,

1 = −2r + 3s

0 = 5r − 2s

The second equation implies that s = 5
2 r . We substitute in the first equation and solve for r:

1 = −2r + 3 · 5

2
r

1 = 11

2
r

r = 2

11
⇒ s = 5

2
· 2

11
= 5

11

Substituting in (1) we obtain

i = 2

11
v + 5

11
w.

Find a scalar α such that ‖v + αw‖ = 6.7. If P = (1, 4) and Q = (−3, 5), what are the components of
−→
PQ? What is the length of

−→
PQ?

solution By the Definition of Components of a Vector we have

−→
PQ = 〈−3 − 1, 5 − 4〉 = 〈−4, 1〉

The length of
−→
PQ is

∥∥−→
PQ

∥∥ =
√

(−4)2 + 12 = √
17.

Let A = (2, −1), B = (1, 4), and P = (2, 3). Find the point Q such that
−→
PQ is equivalent to

−→
AB.

Sketch
−→
PQ and

−→
AB.

9. Find the vector with length 3 making an angle of 7π
4 with the positive x-axis.

solution We denote the vector by v = 〈a, b〉. v makes an angle θ = 7π
4 with the x-axis, and its length is

3, hence,

a = ‖v‖ cos θ = 3 cos
7π

4
= 3√

2

b = ‖v‖ sin θ = 3 sin
7π

4
= − 3√

2

That is,

v = 〈a, b〉 =
〈

3√
2
, − 3√

2

〉
.

Calculate 3 (i − 2j) − 6 (i + 6j).
11. Find the value of β for which w = 〈−2, β〉 is parallel to v = 〈4, −3〉.
solution If v = 〈4, −3〉 and w = 〈−2, β〉 are parallel, there exists a scalar λ such that w = λv. That is,

〈−2, β〉 = λ〈4, −3〉 = 〈4λ, −3λ〉
yielding

−2 = 4λ and β = −3λ

These equations imply that λ = − 1
2 and λ = −β

3 . Equating the two expressions for λ gives

−1

2
= −β

3
or β = 3

2
.

Let P = (1, 4, −3).

(a) Find the point Q such that
−→
PQ is equivalent to 〈3, −1, 5〉.

(b) Find a unit vector e equivalent to
−→
PQ.
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13. Let w = 〈2, −2, 1〉 and v = 〈4, 5, −4〉. Solve for u if v + 5u = 3w − u.

solution Using vector algebra we have

v + 5u = 3w − u

6u = 3w − v

u = 1

2
w − 1

6
v =

〈
1, −1,

1

2

〉
−
〈

4

6
,

5

6
, −4

6

〉
=
〈

1

3
, −11

6
,

7

6

〉

Let v = 3i − j + 4k. Find the length of v and the vector 2v + 3 (4i − k).
15. Find a parametrization r1(t) of the line passing through (1, 4, 5) and (−2, 3, −1). Then find a parametriza-
tion r2(t) of the line parallel to r1 passing through (1, 0, 0).

solution Since the points P = (−2, 3, −1) and Q = (1, 4, 5) are on the line l1, the vector
−→
PQ is a

direction vector for the line. We find this vector:

−→
PQ = 〈1 − (−2), 4 − 3, 5 − (−1)〉 = 〈3, 1, 6〉

Substituting v = 〈3, 1, 6〉 and P0 = 〈1, 4, 5〉 in the vector parametrization of the line we obtain the following
equation for l1:

r1(t) = −−→
OP0 + tv

r1(t) = 〈1, 4, 5〉 + t〈3, 1, 6〉 = 〈1 + 3t, 4 + t, 5 + 6t〉

The line l2 is parallel to l1, hence
−→
PQ = 〈3, 1, 6〉 is also a direction vector for l2. Substituting v = 〈3, 1, 6〉

and P0 = (1, 0, 0) in the vector parametrization of the line we obtain the following equation for l2:

r2(t) = −−→
OP0 + tv

r2(t) = 〈1, 0, 0〉 + t〈3, 1, 6〉 = 〈1 + 3t, t, 6t〉

Let r1(t) = v1 + tw1 and r2(t) = v2 + tw2 be parametrizations of lines L1 and L2. For each statement
(a)–(e), provide a proof if the statement is true and a counterexample if it is false.

(a) If L1 = L2, then v1 = v2 and w1 = w2.

(b) If L1 = L2 and v1 = v2, then w1 = w2.

(c) If L1 = L2 and w1 = w2, then v1 = v2.

(d) If L1 is parallel to L2, then w1 = w2.

(e) If L1 is parallel to L2, then w1 = λw2 for some scalar λ.

17. Find a and b such that the lines r1 = 〈1, 2, 1〉 + t〈1, −1, 1〉 and r2 = 〈3, −1, 1〉 + t〈a, b, −2〉 are
parallel.

solution The lines are parallel if and only if the direction vectors v1 = 〈1, −1, 1〉 and v2 = 〈a, b, −2〉
are parallel. That is, if and only if there exists a scalar λ such that:

v2 = λv1

〈a, b, −2〉 = λ〈1, −1, 1〉 = 〈λ, −λ, λ〉
We obtain the following equations:

a = λ

b = −λ ⇒ a = −2, b = 2

−2 = λ

Find a such that the lines r1 = 〈1, 2, 1〉 + t〈1, −1, 1〉 and r2 = 〈3, −1, 1〉 + t〈a, 4, −2〉 intersect.
19. Sketch the vector sum v = v1 − v2 + v3 for the vectors in Figure 1(A).

(A)

x

y

v1

v2

v3

(B)

x

y

v1

v2

v3

FIGURE 1
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solution Using the Parallelogram Law we obtain the vector sum shown in the figure.

x

y

v1

v1 − v2 + v3

−v2

v2

v3

v'3

v1 − v2

We first add v1 and −v2, then we add v3 to v1 − v2.

Sketch the sums v1 + v2 + v3, v1 + 2v2, and v2 − v3 for the vectors in Figure 1(B).In Exercises 21–26, let v = 〈1, 3, −2〉 and w = 〈2, −1, 4〉.
21. Compute v · w.

solution Using the definition of the dot product we have

v · w = 〈1, 3, −2〉 · 〈2, −1, 4〉 = 1 · 2 + 3 · (−1) + (−2) · 4 = 2 − 3 − 8 = −9

Compute the angle between v and w.
23. Compute v × w.

solution We use the definition of the cross product as a “determinant”:

v × w =
∣∣∣∣∣∣

i j k
1 3 −2
2 −1 4

∣∣∣∣∣∣ =
∣∣∣∣ 3 −2

−1 4

∣∣∣∣ i −
∣∣∣∣ 1 −2

2 4

∣∣∣∣ j +
∣∣∣∣ 1 3

2 −1

∣∣∣∣k
= (12 − 2)i − (4 + 4)j + (−1 − 6)k = 10i − 8j − 7k = 〈10, −8, −7〉

Find the area of the parallelogram spanned by v and w.
25. Find the volume of the parallelepiped spanned by v, w, and u = 〈1, 2, 6〉.
solution The volume V of the parallelepiped spanned by v, w and u is the following determinant:

V =
∣∣∣∣∣∣det

⎛
⎝ v

w
u

⎞
⎠
∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 3 −2
2 −1 4
1 2 6

∣∣∣∣∣∣ =
∣∣∣∣1 ·
∣∣∣∣ −1 4

2 6

∣∣∣∣− 3

∣∣∣∣ 2 4
1 6

∣∣∣∣− 2

∣∣∣∣ 2 −1
1 2

∣∣∣∣
∣∣∣∣

= |1 · (−6 − 8) − 3(12 − 4) − 2(4 + 1)| = 48

Find all the vectors orthogonal to both v and w.
27. Use vectors to prove that the line connecting the midpoints of two sides of a triangle is parallel to the
third side.

solution Let E and F be the midpoints of sides AC and BC in a triangle ABC (see figure).

C

F

A E

B

We must show that

−→
EF ‖ −→

AB

Using the Parallelogram Law we have

−→
EF = −→

EA + −→
AB + −→

BF (1)
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By the definition of the points E and F ,

−→
EA = 1

2
−→
CA; −→

BF = 1

2
−→
BC

We substitute (1) to obtain

−→
EF = 1

2
−→
CA + −→

AB + 1

2
−→
BC = −→

AB + 1

2

(−→
CA + −→

BC
)

= −→
AB + 1

2

(−→
BC + −→

CA
) = −→

AB + 1

2
−→
BA = −→

AB − 1

2
−→
AB = 1

2
−→
AB

Therefore,
−→
EF is a constant multiple of

−→
AB, which implies that

−→
EF and

−→
AB are parallel vectors.

Let v = 〈1, −1, 3〉 and w = 〈4, −2, 1〉.
(a) Find the decomposition v = v‖w + v⊥w with respect to w.

(b) Find the decomposition w = w‖v + w⊥v with respect to v.

29. Calculate the component of v = 〈− 2, 1
2 , 3
〉

along w = 〈1, 2, 2〉.
solution We first compute the following dot products:

v · w = 〈−2,
1

2
, 3〉 · 〈1, 2, 2〉 = 5

w · w = ‖w‖2 = 12 + 22 + 22 = 9

The component of v along w is the following number:∥∥∥( v · w
w · w

)
w
∥∥∥ = 5

9
‖w‖ = 5

9
· 3 = 5

3

Calculate the magnitude of the forces on the two ropes in Figure 2.
31. A 50-kg wagon is pulled to the right by a force F1 making an angle of 30◦ with the ground. At the same
time, the wagon is pulled to the left by a horizontal force F2.

(a) Find the magnitude of F1 in terms of the magnitude of F2 if the wagon does not move.

(b) What is the maximal magnitude of F1 that can be applied to the wagon without lifting it?

solution
(a) By Newton’s Law, at equilibrium, the total force acting on the wagon is zero.

F2

F1

W

N

30°

F⊥

F||

We resolve the force F1 into its components:

F1 = F‖ + F⊥

where F‖ is the horizontal component and F⊥ is the vertical component. Since the wagon does not move, the
magnitude of F‖ must be equal to the magnitude of F2. That is,

‖F‖‖ = ‖F1‖ cos 30◦ = ‖F2‖
The above equation gives:

‖F1‖
√

3

2
= ‖F2‖ ⇒ ‖F1‖ = 2‖F2‖√

3

(b) The maximum magnitude of force F1 that can be applied to the wagon without lifting the wagon is found
by comparing the vertical forces:

‖F1‖ sin 30◦ = 9.8 · 50

‖F1‖ · 1

2
= 9.8 · 50 ⇒ ‖F1‖ = 9.8 · 100 = 980 N

Let v, w, and u be the vectors in R3. Which of the following is a scalar?

(a) v × (u + w)

(b) (u + w) (v × w)
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In Exercises 33–36, let v = 〈1, 2, 4〉, u = 〈6, −1, 2〉, and w = 〈1, 0, −3〉. Calculate the given quantity.

33. v × w

solution We use the definition of the cross product as a determinant to compute v × w:

v × w =
∣∣∣∣∣∣

i j k
1 2 4
1 0 −3

∣∣∣∣∣∣ =
∣∣∣∣ 2 4

0 −3

∣∣∣∣ i −
∣∣∣∣ 1 4

1 −3

∣∣∣∣ j +
∣∣∣∣ 1 2

1 0

∣∣∣∣k
= (−6 − 0)i − (−3 − 4)j + (0 − 2)k = −6i + 7j − 2k = 〈−6, 7, −2〉

w × u
35. det

⎛
⎝ u

v
w

⎞
⎠

solution We compute the determinant:

det

⎛
⎝ u

v
w

⎞
⎠ =

∣∣∣∣∣∣
6 −1 2
1 2 4
1 0 −3

∣∣∣∣∣∣ = 6 ·
∣∣∣∣ 2 4

0 −3

∣∣∣∣+ 1 ·
∣∣∣∣ 1 4

1 −3

∣∣∣∣+ 2

∣∣∣∣ 1 2
1 0

∣∣∣∣
= 6 · (−6 − 0) + 1 · (−3 − 4) + 2 · (0 − 2) = −47

v · (u × w)
37. Use the cross product to find the area of the triangle whose vertices are (1, 3, −1), (2, −1, 3), and (4, 1, 1).

solution Let A = (1, 3, −1), B = (2, −1, 3) and C = (4, 1, 1).

y

x

z

A = (1, 3, −1)

B = (2, −1, 3)

C = (4, 1, 1)

The area S of the triangle ABC is half the area of the parallelogram spanned by
−→
AB and

−→
AC. Using the

Formula for the Area of the Parallelogram, we conclude that the area of the triangle is:

S = 1

2

∥∥∥−→AB × −→
AC

∥∥∥ (1)

We first compute the vectors
−→
AB and

−→
AC:

−→
AB = 〈2 − 1, −1 − 3, 3 − (−1)〉 = 〈1, −4, 4〉
−→
AC = 〈4 − 1, 1 − 3, 1 − (−1)〉 = 〈3, −2, 2〉

We compute the cross product of the two vectors:

−→
AB × −→

AC =
∣∣∣∣∣∣

i j k
1 −4 4
3 −2 2

∣∣∣∣∣∣ =
∣∣∣∣ −4 4

−2 2

∣∣∣∣ i −
∣∣∣∣ 1 4

3 2

∣∣∣∣ j +
∣∣∣∣ 1 −4

3 −2

∣∣∣∣k
= (−8 − (−8))i − (2 − 12)j + (−2 − (−12))k

= 10j + 10k = 〈0, 10, 10〉 = 10〈0, 1, 1〉
The length of

−→
AB × −→

AC is, thus:∥∥−→AB × −→
AC
∥∥ = ‖10〈0, 1, 1〉‖ = 10‖〈0, 1, 1〉‖ = 10

√
02 + 12 + 12 = 10

√
2

Substituting in (1) gives the following area:

S = 1

2
· 10

√
2 = 5

√
2.

Calculate ‖v × w‖ if ‖v‖ = 2, v · w = 3, and the angle between v and w is π
6 .
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39. Show that if the vectors v, w are orthogonal, then ‖v + w‖2 = ‖v‖2 + ‖w‖2.

solution The vectors v and w are orthogonal, hence:

v · w = 0 (1)

Using the relation of the dot product with length and properties of the dot product we obtain:

‖v + w‖2 = (v + w) · (v + w) = v · (v + w) + w · (v + w)

= v · v + v · w + w · v + w · w = ‖v‖2 + 2v · w + ‖w‖2 (2)

Combining (1) and (2) we get:

‖v + w‖2 = ‖v‖2 + ‖w‖2.

Find the angle between v and w if ‖v + w‖ = ‖v‖ = ‖w‖.41. Find ‖e − 4f‖, assuming that e and f are unit vectors such that ‖e + f‖ = √
3.

solution We use the relation of the dot product with length and properties of the dot product to write

3 = ‖e + f‖2 = (e + f) · (e + f) = e · e + e · f + f · e + f · f

= ‖e‖2 + 2e · f + ‖f‖2 = 12 + 2e · f + 12 = 2 + 2e · f

We now find e · f :

3 = 2 + 2e · f ⇒ e · f = 1/2

Hence, using the same method as above, we have:

‖e − 4f‖2 = (e − 4f) · (e − 4f)

= ‖e‖2 − 2 · e · 4f + ‖4f‖2 = 12 − 8e · f + 42 = 17 − 4 = 13

Taking square roots, we get:

‖e − 4f‖ = √
13

Find the area of the parallelogram spanned by vectors v and w such that ‖v‖ = ‖w‖ = 2 and v · w = 1.
43. Show that the equation 〈1, 2, 3〉 × v = 〈−1, 2, a〉 has no solution for a �= −1.

solution By properties of the cross product, the vector 〈−1, 2, a〉 is orthogonal to 〈1, 2, 3〉, hence the dot
product of these vectors is zero. That is:

〈−1, 2, a〉 · 〈1, 2, 3〉 = 0

We compute the dot product and solve for a:

−1 + 4 + 3a = 0

3a = −3 ⇒ a = −1

We conclude that if the given equation is solvable, then a = −1.

Prove with a diagram the following: If e is a unit vector orthogonal to v, then e × (v × e) = (e × v) ×
e = v.

45. Use the identity

u × (v × w) = (u · w) v − (u · v) w

to prove that

u × (v × w) + v × (w × u) + w × (u × v) = 0

solution The given identity implies that:

u × (v × w) = (u · w) v − (u · v) w

v × (w × u) = (v · u) w − (v · w) u

w × (u × v) = (w · v) u − (w · u) v

Adding the three equations and using the commutativity of the dot product we find that:

u × (v × w) + v × (w × u) + w × (u × v)

= (u · w − w · u) v + (v · u − u · v) w + (w · v − v · w) u = 0
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Find an equation of the plane through (1, −3, 5) with normal vector n = 〈2, 1, −4〉.47. Write the equation of the plane P with vector equation

〈1, 4, −3〉 · 〈x, y, z〉 = 7

in the form

a (x − x0) + b (y − y0) + c (z − z0) = 0

Hint: You must find a point P = (x0, y0, z0) on P .

solution We identify the vector n = 〈a, b, c〉 = 〈1, 4, −3〉 that is normal to the plane, hence we may
choose,

a = 1, b = 4, c = −3.

We now must find a point in the plane. The point (x0, y0, z0) = (0, 1, −1), for instance, satisfies the equation
of the plane, therefore the equation may be written in the form:

1(x − 0) + 4(y − 1) − 3(z − (−1)) = 0

or

(x − 0) + 4(y − 1) − 3(z + 1) = 0

Find all the planes parallel to the plane passing through the points (1, 2, 3), (1, 2, 7), and (1, 1, −3).
49. Find the plane through P = (4, −1, 9) containing the line r(t) = 〈1, 4, −3〉 + t〈2, 1, 1〉.
solution Since the plane contains the line, the direction vector of the line, v = 〈2, 1, 1〉, is in the plane.
To find another vector in the plane, we use the points A = (1, 4, −3) and B = (4, −1, 9) that lie in the plane,
and compute the vector u = −→

AB:

u = −→
AB = 〈4 − 1, −1 − 4, 9 − (−3)〉 = 〈3, −5, 12〉

We now compute the cross product n = v × u that is normal to the plane:

n = v × u =
∣∣∣∣∣∣

i j k
2 1 1
3 −5 12

∣∣∣∣∣∣ =
∣∣∣∣ 1 1

−5 12

∣∣∣∣ i −
∣∣∣∣ 2 1

3 12

∣∣∣∣ j +
∣∣∣∣ 2 1

3 −5

∣∣∣∣k
= (12 + 5)i − (24 − 3)j + (−10 − 3)k = 17i − 21j − 13k = 〈17, −21, −13〉

Finally, we use the vector form of the equation of the plane with n = 〈17, −21, −13〉 and P0 = (4, −1, 9) to
obtain the following equation:

n · 〈x, y, z〉 = n · 〈x0, y0, z0〉
〈17, −21, −13〉 · 〈x, y, z〉 = 〈17, −21, −13〉 · 〈4, −1, 9〉

17x − 21y − 13z = 17 · 4 + 21 − 13 · 9 = −28

The equation of the plane is, thus,

17x − 21y − 13z = −28.

Find the intersection of the line r(t) = 〈3t + 2, 1, −7t〉 and the plane 2x − 3y + z = 5.
51. Find the trace of the plane 3x − 2y + 5z = 4 in the xy-plane.

solution The xy-plane has equation z = 0, therefore the intersection of the plane 3x − 2y + 5z = 4 with
the xy-plane must satisfy both z = 0 and the equation of the plane. Therefore the trace has the following
equation:

3x − 2y + 5 · 0 = 4 ⇒ 3x − 2y = 4

We conclude that the trace of the plane in the xy-plane is the line 3x − 2y = 4 in the xy-plane.

Find the intersection of the planes x + y + z = 1 and 3x − 2y + z = 5.
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In Exercises 53–58, determine the type of the quadric surface.

53.
(x

3

)2 +
(y

4

)2 + 2z2 = 1

solution Writing the equation in the form:

(x

3

)2 +
(y

4

)2 +
⎛
⎝ z

1√
2

⎞
⎠

2

= 1

we identify the quadric surface as an ellipsoid.

(x

3

)2 −
(y

4

)2 + 2z2 = 1
55.

(x

3

)2 +
(y

4

)2 − 2z = 0

solution We rewrite this equation as:

2z =
(x

3

)2 +
(y

4

)2

or

z =
(

x

3
√

2

)2

+
(

y

4
√

2

)2

This is the equation of an elliptic paraboloid.

(x

3

)2 −
(y

4

)2 − 2z = 0
57.

(x

3

)2 −
(y

4

)2 − 2z2 = 0

solution This equation may be rewritten in the form

(x

3

)2 −
(y

4

)2 =
⎛
⎝ z

1√
2

⎞
⎠

2

we identify the quadric surface as an elliptic cone.

(x

3

)2 −
(y

4

)2 − 2z2 = 1
59. Determine the type of the quadric surface ax2 + by2 − z2 = 1 if:

(a) a < 0, b < 0

(b) a > 0, b > 0

(c) a > 0, b < 0

solution

(a) If a < 0, b < 0 then for all x, y and z we have ax2 + by2 − z2 < 0, hence there are no points that satisfy
ax2 + by2 − z2 = 1. Therefore it is the empty set.

(b) For a > 0 and b > 0 we rewrite the equation as⎛
⎝ x

1√
a

⎞
⎠

2

+
⎛
⎝ y

1√
b

⎞
⎠

2

− z2 = 1

which is the equation of a hyperboloid of one sheet.

(c) For a > 0, b < 0 we rewrite the equation in the form⎛
⎝ x

1√
a

⎞
⎠

2

−
⎛
⎝ y

1√|b|

⎞
⎠

2

− z2 = 1

which is the equation of a hyperboloid of two sheets.

Describe the traces of the surface (x

2

)2 − y2 +
( z

2

)2 = 1

in the three coordinate planes.

61. Convert (x, y, z) = (3, 4, −1) from rectangular to cylindrical and spherical coordinates.

solution In cylindrical coordinates (r, θ, z) we have

r =
√

x2 + y2, tan θ = y

x
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Therefore, r = √
32 + 42 = 5 and tan θ = 4

3 . The projection of the point (3, 4, −1) onto the xy-plane is
the point (3, 4), in the first quadrant. Therefore, the corresponding value of θ is tan−1 4

3 ≈ 0.93 rad. The
cylindrical coordinates are, thus,

(r, θ, z) =
(

5, tan−1 4

3
, −1

)

The spherical coordinates (ρ, θ, φ) satisfy

ρ =
√

x2 + y2 + z2, tan θ = y

x
, cos φ = z

ρ

Therefore,

ρ =
√

32 + 42 + (−1)2 = √
26

tan θ = 4

3

cos φ = −1√
26

The angle θ is the same as in the cylindrical coordinates, that is, θ = tan−1 4
3 . The angle φ is the solution of

cos φ = −1√
26

that satisfies 0 ≤ φ ≤ π , that is, φ = cos1
( −1√

26

)
≈ 1.77 rad. The spherical coordinates are,

thus,

(ρ, θ, φ) =
(√

26, tan−1 4

3
, cos−1

( −1√
26

))
.

Convert (r, θ, z) = (3, π
6 , 4
)

from cylindrical to spherical coordinates.
63. Convert the point (ρ, θ, φ) = (3, π

6 , π
3

)
from spherical to cylindrical coordinates.

solution By the given information, ρ = 3, θ = π
6 , and φ = π

3 . We must determine the cylindrical
coordinates (r, θ, z). The angle θ is the same as in spherical coordinates. We find z using the relation cos φ = z

ρ
,

or z = ρ cos φ. We obtain

z = ρ cos φ = 3 cos
π

3
= 3 · 1

2
= 3

2

We find r using the relation ρ2 = x2 + y2 + z2 = r2 + z2, or r = √ρ2 − z2, we get

r =
√

32 −
(

3

2

)2

=
√

27

4
= 3

√
3

2

Hence, in cylindrical coordinates we obtain the following description:

(r, θ, z) =
(

3
√

3

2
,
π

6
,

3

2

)
.

Describe the set of all points P = (x, y, z) satisfying x2 + y2 ≤ 4 in both cylindrical and spherical
coordinates.

65. Sketch the graph of the cylindrical equation z = 2r cos θ and write the equation in rectangular coordinates.

solution To obtain the equation in rectangular coordinates, we substitute x = r cos θ in the equation
z = 2r cos θ :

z = 2r cos θ = 2x ⇒ z = 2x

This is the equation of a plane normal to the xz-plane, whose intersection with the xz-plane is the line z = 2x.
The graph of the plane is shown in the following figure (the same plane drawn twice, using the cylindrical
coordinates’ equation and using the rectangular coordinates’ equation):
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Write the surface x2 + y2 − z2 = 2 (x + y) as an equation r = f (θ, z) in cylindrical coordinates.
67. Show that the cylindrical equation

r2(1 − 2 sin2 θ) + z2 = 1

is a hyperboloid of one sheet.

solution We rewrite the equation in the form

r2 − 2(r sin θ)2 + z2 = 1

To write this equation in rectangular coordinates, we substitute r2 = x2 + y2 and r sin θ = y. This gives

x2 + y2 − 2y2 + z2 = 1

x2 − y2 + z2 = 1

We now can identify the surface as a hyperboloid of one sheet.

Sketch the graph of the spherical equation ρ = 2 cos θ sin φ and write the equation in rectangular
coordinates.

69. Describe how the surface with spherical equation

ρ2(1 + A cos2 φ) = 1

depends on the constant A.

solution To identify the surface we convert the equation to rectangular coordinates. We write

ρ2 + Aρ2 cos2 φ = 1

To obtain the following equation in terms of x, y, z only, we substitute ρ2 = x2 + y2 + z2 and ρ cos φ = z:

x2 + y2 + z2 + Az2 = 1

x2 + y2 + (1 + A)z2 = 1 (1)

Case 1: A < −1. Then A + 1 < 0 and the equation can be rewritten in the form

x2 + y2 −
(

z

|1 + A|−1/2

)2

= 1

The corresponding surface is a hyperboloid of one sheet.
Case 2: A = −1. Equation (1) becomes:

x2 + y2 = 1

In R3, this equation describes a cylinder with the z-axis as its central axis.
Case 3: A > −1. Then equation (1) can be rewritten as

x2 + y2 +
(

z

(1 + A)−1/2

)2

= 1

Then if A = 0 the equation x2 + y2 + z2 = 1 describes the unit sphere in R3. Otherwise, the surface is an
ellipsoid.

Show that the spherical equation cot φ = 2 cos θ + sin θ defines a plane through the origin (with the
origin excluded). Find a normal vector to this plane.

71. Let c be a scalar, a and b be vectors, and X = 〈x, y, z〉. Show that the equation (X − a) · (X − b) = c2

defines a sphere with center m = 1
2 (a + b) and radius R, where R2 = c2 + ∥∥ 1

2 (a − b)
∥∥2.
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solution We evaluate the following length:

‖x − m‖2 =
∥∥∥∥x − 1

2
(a + b)

∥∥∥∥
2

=
(

(x − a) + 1

2
(a − b)

)
·
(

(x − b) − 1

2
(a − b)

)

= (x − a) · (x − b) − 1

2
(x − a) · (a − b) + 1

2
(a − b) · (x − b) − 1

4
(a − b) · (a − b)

= (x − a) · (x − b) + 1

2
(a − b) · (x − b − x + a) − 1

4
(a − b) · (a − b)

= (x − a) · (x − b) + 1

2
(a − b) · (a − b) − 1

4
(a − b) · (a − b)

= (x − a) · (x − b) + 1

4
(a − b) · (a − b)

= (x − a) · (x − b) +
∥∥∥∥1

2
(a − b)

∥∥∥∥
2

Since R2 = c2 + ‖ 1
2 (a − b) ‖2

we get

‖x − m‖2 = (x − a) · (x − b) + R2 − c2

We conclude that if (x − a) (x − b) = c2 then ‖x − m‖2 = R2. That is, the equation (x − a) (x − b) = c2

defines a sphere with center m and radius R.
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