

https://www.google.com/maps/place/150+Gamma+Dr/@40.4997521,-79.8681269,18z/data=!4m2!3m1!1s0x8834ecdbc348bd5f:0xd10a14f6b42509

Pittsburgh, Pennsylvania

Alexander Radkoff Mechanical Option | Spring 2014 Advisor: Dr. Stephen Treado

Pittsburgh, Pennsylvania

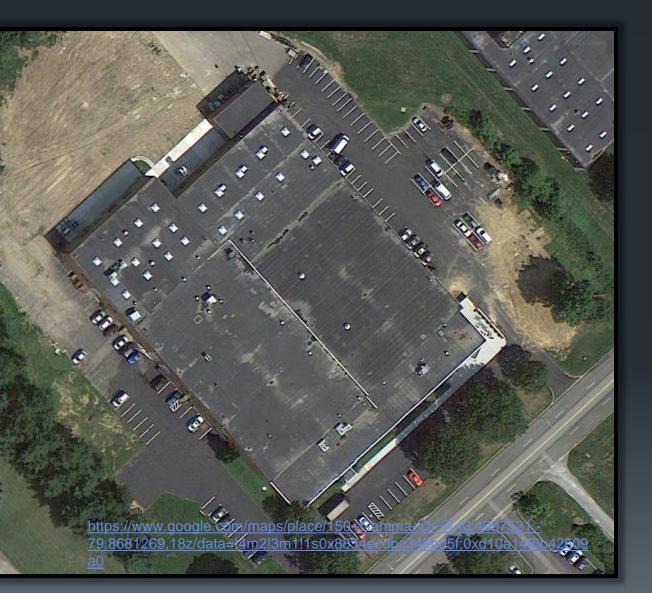
Introduction

Existing Mechanical System

Variable Refrigerant Flow System

Cost Analysis

Emissions Analysis


Acoustical Design

Conclusion

Alexander Radkoff

Mechanical Option | Spring 2014 Advisor: Dr. Stephen Treado

Background

Location: Pittsburgh, Pennsylvania

Building Use:

- Warehouse Storage • Laboratory Space • Offices

Footprint: 74,900 square feet

Ceiling Height:

- Offices: 9' • Warehouse: 22' 6"

Renovated: 2012

Pittsburgh, <u>Pennsylv</u>ania

Introduction

Existing Mechanical System

Variable Refrigerant Flow System

Cost Analysis

Emissions Analysis

Acoustical Design

Conclusion

Alexander Radkoff

Mechanical Option | Spring 2014 Advisor: Dr. Stephen Treado OA Dry Bul

OA Wet Bul

Design Conditions

Outdoor Design Conditions

Indoor Design Conditions

	Summer Design Cooling	Winter Design Heating
lb (°F)	89 °F	2.0 °F
lb (°F)	72 °F	.3 °F

	Offices & Lab	Warehouse & Packaging	Storage & Maintenance
Cooling Set Point	70 °F	85 °F	95 °F
Heating Set Point	55 °F	55 °F	60 °F
Relative Humidity	45%	-	-

Pittsburgh, Pennsylvania

Introduction

Existing Mechanical System

Variable Refrigerant Flow System

Cost Analysis

Emissions Analysis

Acoustical Design

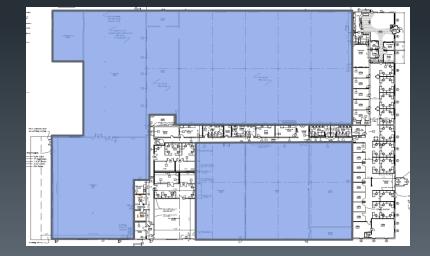
Conclusion

Alexander Radkoff

Mechanical Option | Spring 2014 Advisor: Dr. Stephen Treado

Existing Mechanical System

Office/Lab Space


- 6 single zone CAV rooftop units (RTUs)
- CO2 preheat conditioning option available
- CO2 radiant floor cooling and heating

Warehouse and Storage

- Primarily electric resistance heat
- 8 air handling units (AHUs)
- Makeup air handling unit

Pittsburgh, Pennsylvania

Introduction

Existing Mechanical System

Variable Refrigerant Flow System

Cost Analysis

Emissions Analysis

Acoustical Design

Conclusion

Alexander Radkoff

Mechanical Option | Spring 2014 Advisor: Dr. Stephen Treado

Annual Load Simulation

Monthly Energy Consumption

January March April May June July August emper october

Energy Consumption By Use

Lighting 46%

HVAC 18%

Electrical Equipment 36%

Pittsburgh, Pennsylvania

Introduction

Existing Mechanical System

Variable Refrigerant Flow System

Cost Analysis

Emissions Analysis

Acoustical Design

Conclusion

Alexander Radkoff

Mechanical Option | Spring 2014 Advisor: Dr. Stephen Treado

Annual Energy Consumption By Use

<u>HVAC:</u> 595,045 kWh

Lighting: 2,657,011 kWh

Electrical Equipment: 3,252,057 kWh

Total Annual Energy Consumption:

Annual Load Simulation

6,5041,143 kWh

Lighting 46%

Energy Consumption By Use

HVAC 18%

Electrical Equipment 36%

Pittsburgh, Pennsylvania

Introduction

Existing Mechanical System

Variable Refrigerant Flow System

Cost Analysis

Emissions Analysis

Acoustical Design

Conclusion

Alexander Radkoff

Mechanical Option | Spring 2014 Advisor: Dr. Stephen Treado

HVAC: \$0.96/ft²

Lighting: \$2.04/ft²

Electrical Equipment: \$1.89/ft²

Energy Cost and Consumption

Electrical Cost by Use

Annual Cost per Unit Floor Area

Total Annual Energy Cost: \$366,744

Electrical Equipment Lighting ■ HVAC

Pittsburgh, Pennsylvania

Introduction

Existing Mechanical System

Variable Refrigerant Flow System

Cost Analysis

Emissions Analysis

Acoustical Design

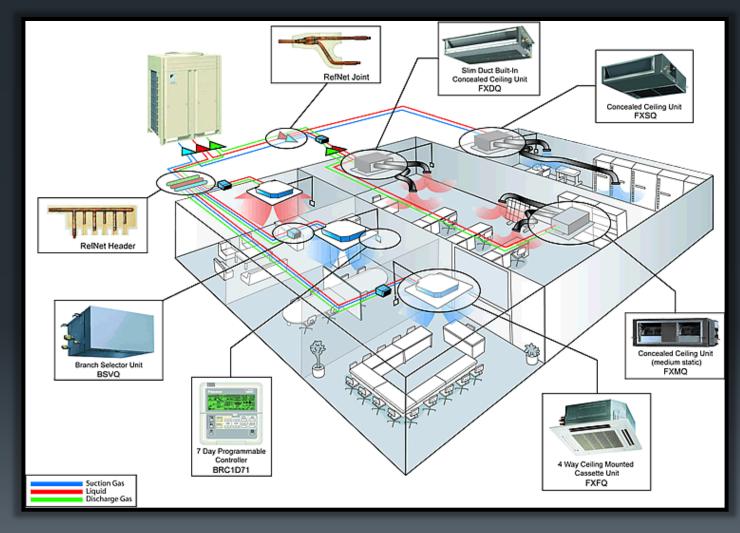
Conclusion

Alexander Radkoff

Mechanical Option | Spring 2014 Advisor: Dr. Stephen Treado

- discharge gas)
- coil unit
- Indoor fan coil units

Variable Refrigerant Flow System


System Components

Outdoor/Indoor Condensing Unit

3 pipe system (suction, liquid,

Mode Change Unit (MCU)

2 pipe system from MCU to fan

Advantages

- Lower energy costs
- Lower CO2e emissions
- Simultaneous heating and cooling
- Precise and occupant control capabilities

Disadvantages

- Expensive first costs
- Requires DOAS system

Pittsburgh, Pennsylvania

Introduction

Existing Mechanical System

Variable Refrigerant Flow System

Cost Analysis

Emissions Analysis

Acoustical Design

Conclusion

Alexander Radkoff

Mechanical Option | Spring 2014 Advisor: Dr. Stephen Treado

System Layout Restrictions

- Piping Length 656 feet maximum
- External Static Pressure 1" maximum
- Condensing Unit Elevation 360 feet
 maximum

VRF System Layout

VRF System 1

VRF System 2

VRF System 3

Pittsburgh, Pennsylvania

Introduction

Existing Mechanical System

Variable Refrigerant Flow System

Cost Analysis

Emissions Analysis

Acoustical Design

Conclusion

Alexander Radkoff

Mechanical Option | Spring 2014 Advisor: Dr. Stephen Treado Number of Condensing Units Needeo Size (tons)

Condensing Unit Quantity

Samsung DVM S Series Condensing

Unit Requirements

g ed	One	Two	Three
	6-12	14-24	26-36

VRF System	1	2	3
Size (tons)	11.5	17.2	12.5
Number of Condensing Units Needed	One	Two	Two

Pittsburgh, Pennsylvania

Introduction

Existing Mechanical System

Variable Refrigerant Flow System

Cost Analysis

Emissions Analysis

Acoustical Design

Conclusion


Alexander Radkoff

Mechanical Option | Spring 2014 Advisor: Dr. Stephen Treado

1-Way Cassette Terminal Unit

- Located at edges of room ceiling •
- Diffuses in one direction •
- **4-Way Cassette Terminal Unit**
- Located in central area of ceiling •
- Distributes air in four directions •
- **High Static Pressure Duct Unit**
- Up to .99 in wg. external static pressure •
- Can condition multiple spaces at a time •

Indoor Fan Coil Unit Selection

1 Way Cassette Terminal Unit

Source: Samsung DVM S Series Catalog

Source: Samsung DVM S Series Catalog

4 Way Cassette Terminal Unit

Source: Samsung DVM S Series Catalog

High Static Pressure (HSP) Duct Unit

Pittsburgh, Pennsylvania

Introduction

Existing Mechanical System

Variable Refrigerant Flow System

Cost Analysis

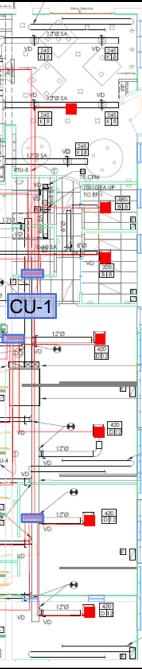
Emissions Analysis

Acoustical Design

Conclusion

Alexander Radkoff

Mechanical Option | Spring 2014 Advisor: Dr. Stephen Treado


VRF System Selection

VRF System 1

12 ton Outdoor Condensing Unit (1) Mode Change Units (3) 4 Way Cassette FCU (6) 1 Way Cassette FCU (9)

Pittsburgh, Pennsylvania

Introduction

Existing Mechanical System

Variable Refrigerant Flow System

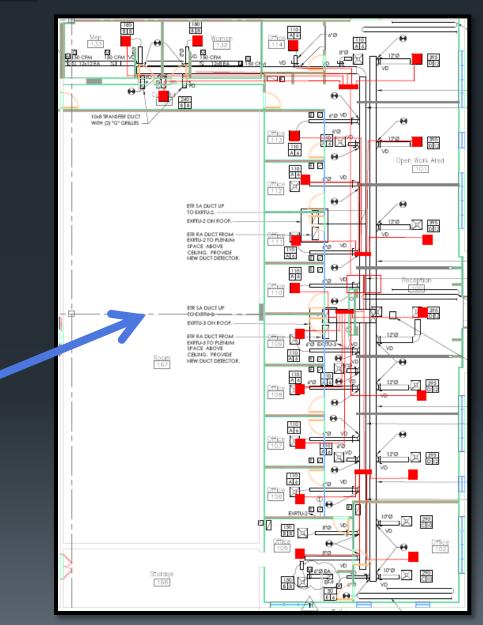
Cost Analysis

Emissions Analysis

Acoustical Design

Conclusion

Alexander Radkoff


Mechanical Option | Spring 2014 Advisor: Dr. Stephen Treado

VRF System Selection

VRF System 2

6 ton Outdoor Condensing Unit (1) 10 ton Outdoor Condensing Unit (1) Mode Change Units (4) 4 Way Cassette FCU (12) 1 Way Cassette FCU (7)

Pittsburgh, Pennsylvania

Introduction

Existing Mechanical System

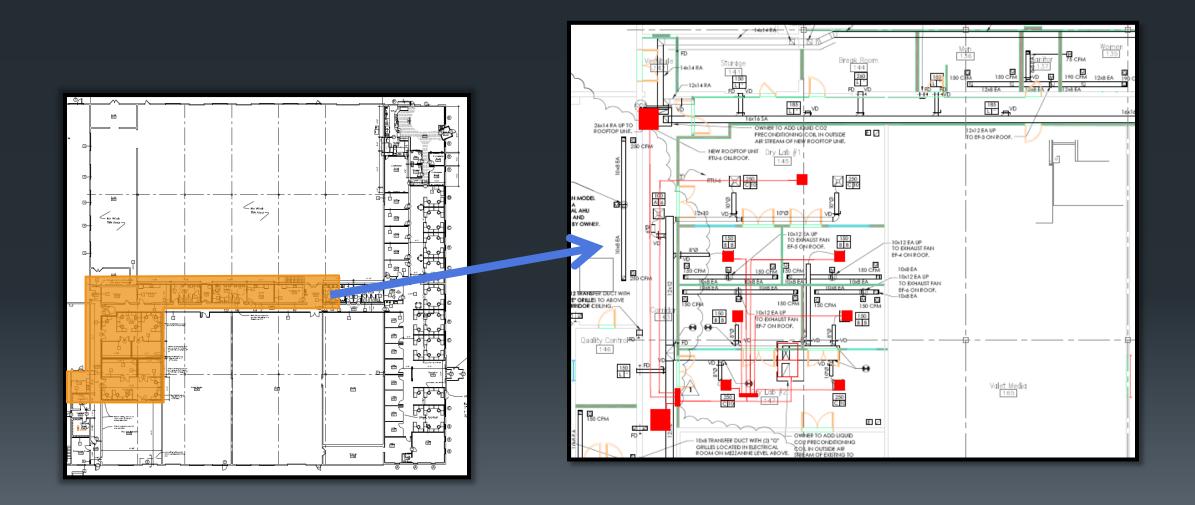
Variable Refrigerant Flow System

Cost Analysis

Emissions Analysis

Acoustical Design

Conclusion


Alexander Radkoff

Mechanical Option | Spring 2014 Advisor: Dr. Stephen Treado

VRF System Selection

VRF System 3

6 ton Outdoor Condensing Unit (1) 10 ton Outdoor Condensing Unit (1) Mode Change Units (3) 4 Way Cassette FCU (3) 1 Way Cassette FCU (4) High Static Pressure Unit (2)

Pittsburgh, Pennsylvania

Introduction

Existing Mechanical System

Variable Refrigerant Flow System

Cost Analysis

Emissions Analysis

Acoustical Design

Conclusion

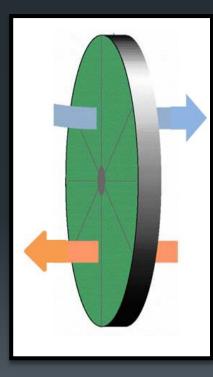
Alexander Radkoff

Mechanical Option | Spring 2014 Advisor: Dr. Stephen Treado

Semco FV-2000 Fresh Air Preconditioner

- 3 Angstrom Total Energy Wheel
- Parallel system to VRF system
- Manages humidification and de-humidification

Dedicated Outside Air System


Airflow (cfm)	Ext. Static Pressure (in wg.)	Motor Brake Horsepower	Fan Speed (RPM)
1,250	1.50	1.00	1723
1,175	.75	.64	1413

Outdoor Airstream

Dry Bulb (°F) :	95.0
Wet Bulb (°F):	75.0
Enthalpy (BTU/lb):	38.4

Exhaust Airstream

Dry Bulb (°F) : 90.8 Wet Bulb (°F): 72.5 Enthalpy (BTU/lb): 36.1

Source: Semco FV 2000 Catalog

Design Conditions: Cooling Season

Supply Airstream

Dry Bulb (°F) :	80.2
Wet Bulb (°F):	65.7
Enthalpy (BTU/lb):	30.5
Airflow (CFM):	1,250

Return Airstream

Dry Bulb (°F) :	75.0
Wet Bulb (°F):	62.0
Enthalpy (BTU/lb):	27.8
Airflow (CFM):	1,175

Pittsburgh, Pennsylvania

Introduction

Existing Mechanical System

Variable Refrigerant Flow System

Cost Analysis

Emissions Analysis

Acoustical Design

Conclusion

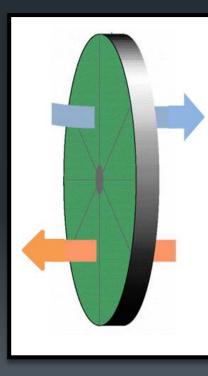
Alexander Radkoff

Mechanical Option | Spring 2014 Advisor: Dr. Stephen Treado

Dedicated Outside Air System

Efficiency and Static Pressure Loss

Design Conditions: Cooling Season


- Sensible Supply Efficiency: 74%
- Latent Supply Efficiency: 74%
- Supply Air Pressure Loss: .36
- Exhaust Air Pressure Loss: .33

Outdoor Airstream

Dry Bulb (°F) :	95.0
Wet Bulb (°F):	75.0
Enthalpy (BTU/lb):	38.4

Exhaust Airstream

Dry Bulb (°F) : 90.8 Wet Bulb (°F): 72.5 Enthalpy (BTU/lb): 36.1

Supply Airstream

Dry Bulb (°F) :	80.2
Wet Bulb (°F):	65.7
Enthalpy (BTU/lb):	30.5
Airflow (CFM):	1,250

Return Airstream

Dry Bulb (°F) :	75.0
Wet Bulb (°F):	62.0
Enthalpy (BTU/lb):	27.8
Airflow (CFM):	1,175

Pittsburgh, Pennsylvania

Introduction

Existing Mechanical System

Variable Refrigerant Flow System

Cost Analysis

Emissions Analysis

Acoustical Design

Conclusion

Alexander Radkoff

Mechanical Option | Spring 2014 Advisor: Dr. Stephen Treado

- Weekly/Daily Scheduling
- Temperature limitations
- ERV operation mode and fan speed
- Zone Management

Controls

BACnet Gateway Building Management System

• Can connect up to 256 indoor units/16 outdoor units

Occupant Controls

- MWR-WE10N Wired Remote Controller
- Can control up to 16 indoor units and ERV
- Operation mode
- Temperature setting (limited by BACnet)
- ERV operation and fan speed (limited by BACnet)

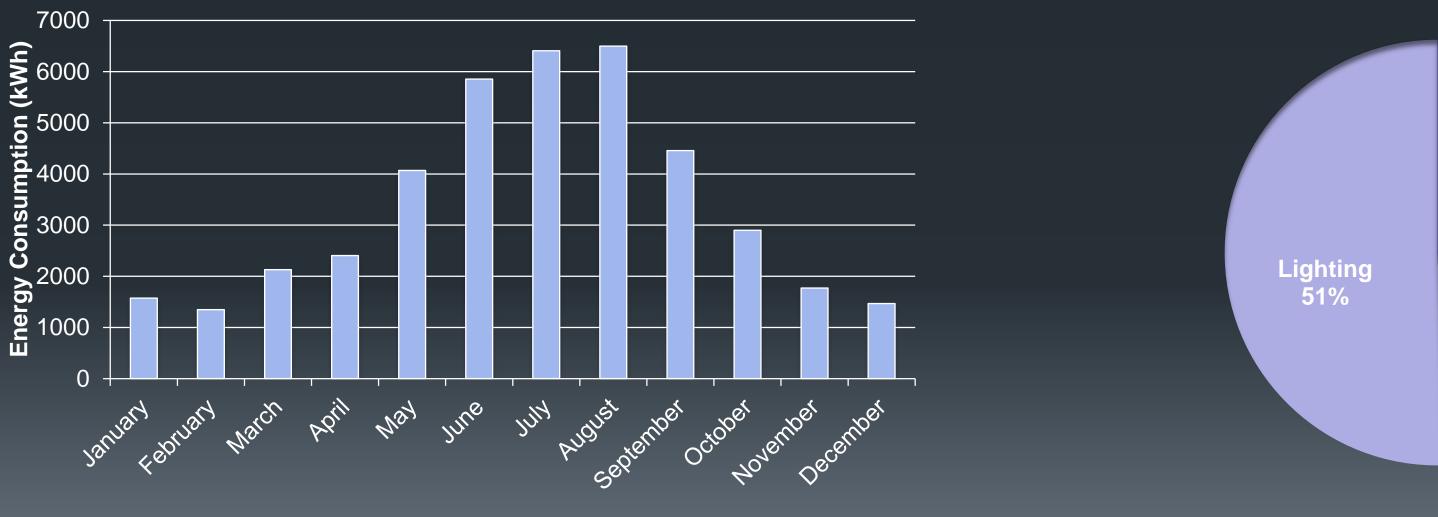
Pittsburgh, Pennsylvania

Introduction

Existing Mechanical System

Variable Refrigerant Flow System

Cost Analysis


Emissions Analysis

Acoustical Design

Conclusion

Alexander Radkoff

Mechanical Option | Spring 2014 Advisor: Dr. Stephen Treado

VRF System Monthly HVAC Energy Consumption

VRF Zone Annual Energy Consumption By Use

HVAC 9%

> **Electrical** Equipment 40%

Pittsburgh, Pennsylvania

Introduction

Existing Mechanical System

Variable Refrigerant Flow System

Cost Analysis

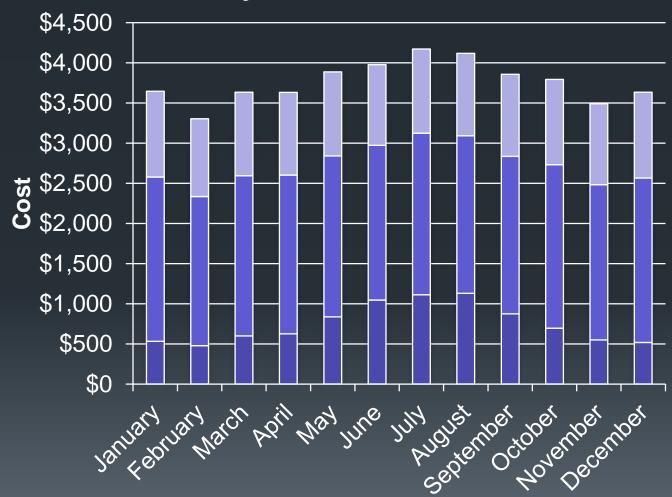
Emissions Analysis

Acoustical Design

Conclusion

Alexander Radkoff

Mechanical Option | Spring 2014 Advisor: Dr. Stephen Treado


Cost Analysis

Annual HVAC Cost Per Unit Area:

\$0.71/ft²

Total Annual HVAC Energy Cost:

\$9,001

VRF System Zones Electrical Cost by Use

Electrical Equipment Lighting ■ HVAC

Pittsburgh, Pennsylvania

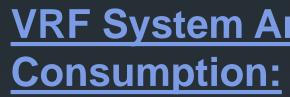
Introduction

Existing Mechanical System

Variable Refrigerant Flow System

Cost Analysis

Emissions Analysis


Acoustical Design

Conclusion

Alexander Radkoff

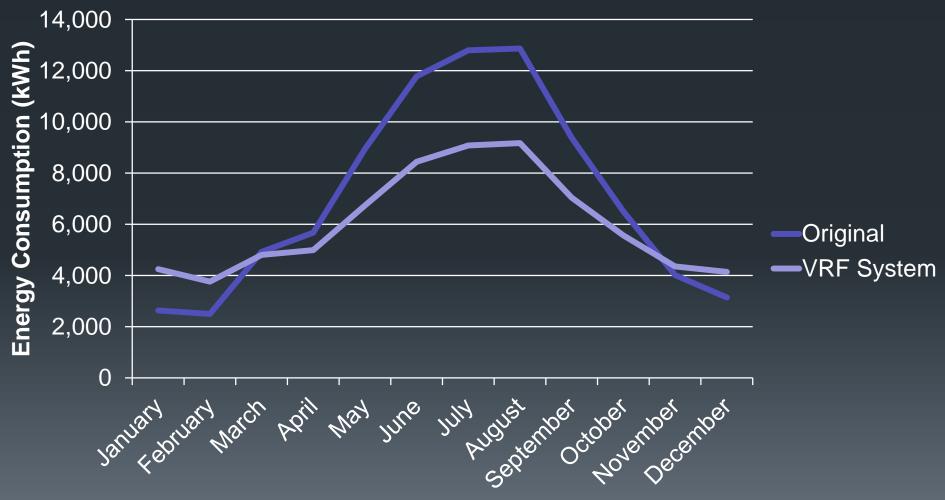
Mechanical Option | Spring 2014 Advisor: Dr. Stephen Treado

Consumption:

Energy Consumption Comparison

Original Design Annual HVAC Energy

85,148 kWh


VRF System Annual HVAC Energy

72,316 kWh

Monthly HVAC Energy Consumption

Pittsburgh, Pennsylvania

Introduction

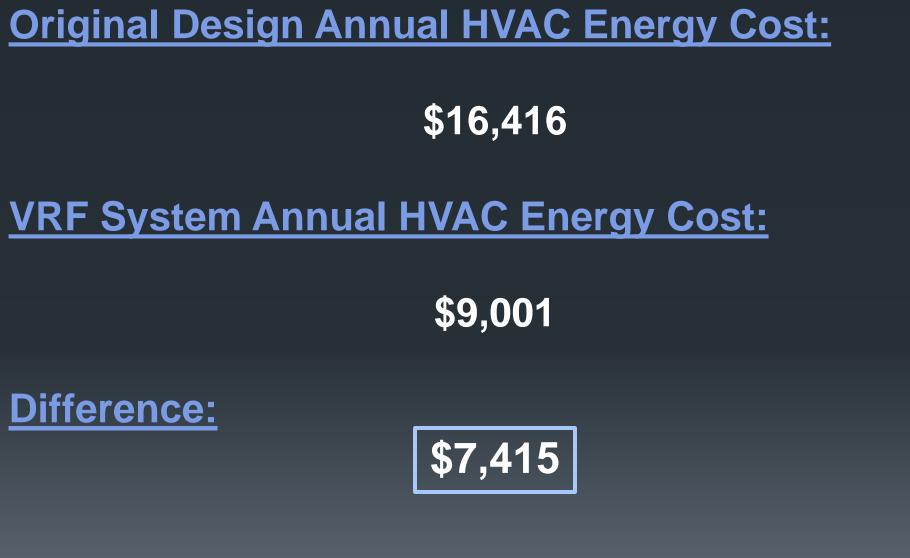
Existing Mechanical System

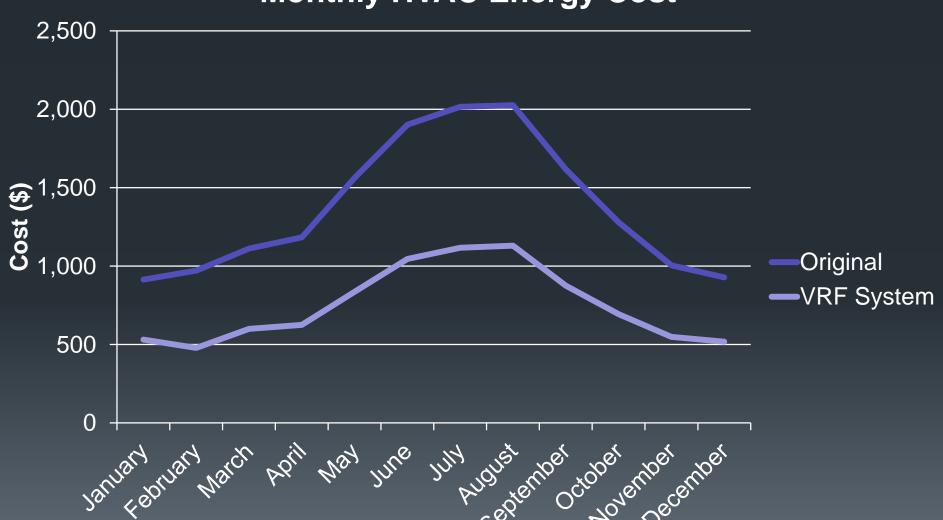
Variable Refrigerant Flow System

Cost Analysis

Emissions Analysis

Acoustical Design


Conclusion


Alexander Radkoff

Mechanical Option | Spring 2014 Advisor: Dr. Stephen Treado

Difference:

Energy Cost Comparison

Monthly HVAC Energy Cost

Pittsburgh, Pennsylvania

Introduction

Existing Mechanical System

Variable Refrigerant Flow System

Cost Analysis

Emissions Analysis

Acoustical Design

Conclusion

Alexander Radkoff

Mechanical Option | Spring 2014 Advisor: Dr. Stephen Treado

Original HVAC System VRF System Difference

Mechanical First Costs Comparison

Original HVAC vs. VRF System First Costs

Materials	Labor	Total
\$144,663.88	\$79,733.00	\$222,396.88
\$327,702.26	\$20,690.81	\$348,393.07
-\$178,038.38	\$59,042.19	-\$118,996.19

Materials Difference:

Labor Difference:

Total First Cost Difference:

+118%

-74%

+51.8%

Pittsburgh, Pennsylvania

Introduction

Existing Mechanical System

Variable Refrigerant Flow System

Cost Analysis

Emissions Analysis

Acoustical Design

Conclusion

Alexander Radkoff

Mechanical Option | Spring 2014 Advisor: Dr. Stephen Treado

Payback Period

Variables

- FC_{O} = First Cost of Original HVAC System
- AEC_O= Annual Energy Cost of Original HVAC System
- FC_{VRF}= First Cost of Original VRF System
- AEC_{VRF} = Annual Energy Cost of VRF HVAC System
- X= Payback Period in years

Equation

- $FC_{O} + (AEC_{O} * X) = FC_{VRF} + (AEC_{VRF} * X)$
- $229,396 + (16,416 \times X) = 348,393.07 + (9001 \times X)$
 - \$118996 = \$7<u>415 * X</u>

Payback Period

X= 16.04 years

Pittsburgh, Pennsylvania

Introduction

Existing Mechanical System

Variable Refrigerant Flow System

Cost Analysis

Emissions Analysis

Acoustical Design

Conclusion

Alexander Radkoff

Mechanical Option | Spring 2014

Advisor: Dr. Stephen Treado

Emissions Comparison

Pollutant	Regional Grid Emission Factors 2007 (lb/kWh)	Calculated Emis	Emissions Reduction %	
		Original	VRF	
C02e	1.55	701,073	611,089	12.84%

Pittsburgh, Pennsylvania

Introduction

Existing Mechanical System

Variable Refrigerant Flow System

Cost Analysis

Emissions Analysis

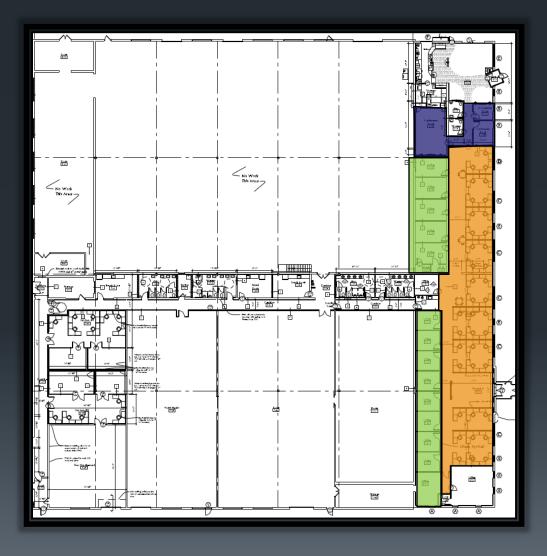
Acoustical Design

Conclusion

Alexander Radkoff

Mechanical Option | Spring 2014 Advisor: Dr. Stephen Treado

Open-Offic


Private O

Confere Roon

Acoustical Breadth Investigation

Recommended Noise Criterion - NC

	Recommended NC Rating	Equivalent Sound Level dBA
Plan es	35-40	45-50
Offices	30-35	40-45
ence ns	25-30	35-40

Private Offices

Conference Rooms

Open Plan Offices

Pittsburgh, Pennsylvania

Introduction

Existing Mechanical System

Variable Refrigerant Flow System

Cost Analysis

Emissions Analysis

Acoustical Design

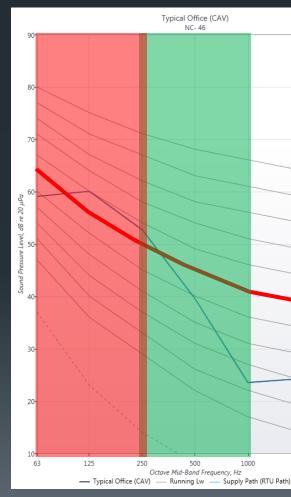
Conclusion

Alexander Radkoff

Mechanical Option | Spring 2014 Advisor: Dr. Stephen Treado

Octave Frequenc

Discha


Acoustical Breadth Investigation

Existing Mechanical Conditions

- 5 Ton Carrier 50TCD06 Rooftop Unit
- 1" Fiberglass Insulation
- Room Dimensions : 34'x26'x8'
- Measure SPL to nearest diffuser

	Sound Power Level, dB (re 10^-12 W)						
Band cy, HZ	63	125	250	500	1000	2000	4000
irge	85.8	84.3	80.5	78.7	76.4	72.7	68.3

Existing Mechanical NC Rating

NC-46 ~ 48 dBA

Pittsburgh, Pennsylvania

Introduction

Existing Mechanical System

Variable Refrigerant Flow System

Cost Analysis

Emissions Analysis

Acoustical Design

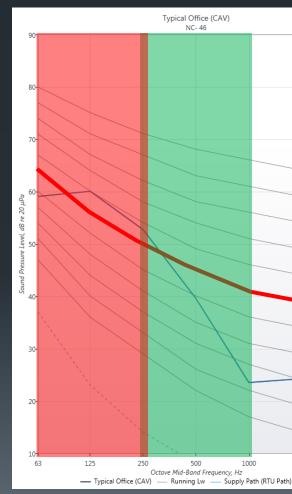
Conclusion

Alexander Radkoff

Mechanical Option | Spring 2014 Advisor: Dr. Stephen Treado

Open-Offic

Private O


Confer Roor

Acoustical Breadth Investigation

Recommended Noise Criterion - NC

	Recommended NC Rating	Equivalent Sound Level dBA
Plan es	35-40	45-50
Offices	30-35	40-45
ence ns	25-30	35-40

Existing Mechanical NC Rating

NC-46 ~ 48 dBA

Pittsburgh, Pennsylvania

Introduction

Existing Mechanical System

Variable Refrigerant Flow System

Cost Analysis

Emissions Analysis

Acoustical Design

Conclusion

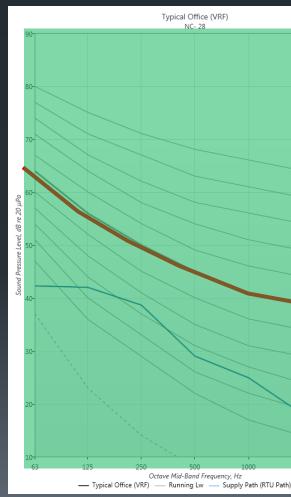
Alexander Radkoff

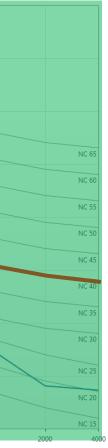
Mechanical Option | Spring 2014 Advisor: Dr. Stephen Treado

Octave Band Frequency, HZ

Discharge

Acoustical Breadth Investigation


Proposed Mechanical Conditions


• Samsung DMV AM024FN4dCH/AA 4 Way Cassette Fan Coil Units

• Room Dimensions : 34'x26'x8'

Sound Power Level, dB (re 10^-12 W)						
63	125	250	500	1000	2000	4000
40.1	37.2	36.4	33.0	29.7	27.3	22.6

Recommended Noise Criterion - NC

NC-25 ~ 32 dBA

Introduction

Existing Mechanical System

Variable Refrigerant Flow System

Cost Analysis

Emissions Analysis

Acoustical Design

Conclusion

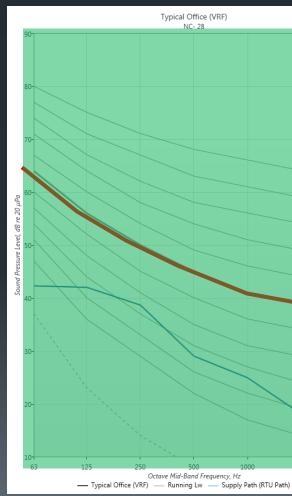
Pittsburgh, Pennsylvania

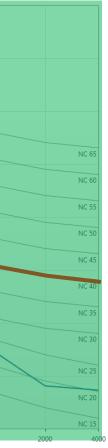
Oper

Private

Conf Ro

Alexander Radkoff


Mechanical Option | Spring 2014 Advisor: Dr. Stephen Treado


Acoustical Breadth Investigation

Recommended Noise Criterion - NC

	Recommended NC Rating	Equivalent Sound Level dBA
n-Plan fices	35-40	45-50
e Offices	30-35	40-45
erence oms	25-30	35-40

Recommended Noise Criterion - NC

NC-25 ~ 32 dBA

Pittsburgh, Pennsylvania

Introduction

Existing Mechanical System

Variable Refrigerant Flow System

Cost Analysis

Emissions Analysis

Acoustical Design

Conclusion

Mechanical Option | Spring 2014 Alexander Radkoff Advisor: Dr. Stephen Treado

- Emissions 13% less annually than original Improve occupant comfort

- First Costs 51% more expensive than original • Annual Costs – 45% cheaper than original system • Payback Period – 16 years (uneconomical)

Conclusion

Variable Refrigerant Flow System

- Ratings for office spaces
 - Potential for rumbly HVAC noise
 - and dBA values

Acoustical Invesitgation

Original Design – did <u>not</u> meet recommended NC

• VRF Design – met <u>all</u> recommended NC Rating

Pittsburgh, Pennsylvania

Introduction

Existing Mechanical System

Variable Refrigerant Flow System

Cost Analysis

Emissions Analysis

Acoustical Design

<u>Conclusion</u>

Alexander Radkoff

Mechanical Option | Spring 2014

Advisor: Dr. Stephen Treado

<u>Acknowledgements</u>

AE Staff and Faculty Marc Portnoff Jonathan lams Joel Butler Dan Gardner My friends and family

Pittsburgh, Pennsylvania

Introduction

Existing Mechanical System

Variable Refrigerant Flow System

Cost Analysis

Emissions Analysis

Acoustical Design

<u>Conclusion</u>

Alexander Radkoff

Mechanical Option | Spring 2014

Advisor: Dr. Stephen Treado

