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Abstract—Conventional automatic speech recognition (ASR)
based on a hidden Markov model (HMM)/deep neural network
(DNN) is a very complicated system consisting of various modules
such as acoustic, lexicon, and language models. It also requires
linguistic resources, such as a pronunciation dictionary, tokeniza-
tion, and phonetic context-dependency trees. On the other hand,
end-to-end ASR has become a popular alternative to greatly sim-
plify the model-building process of conventional ASR systems by
representing complicated modules with a single deep network ar-
chitecture, and by replacing the use of linguistic resources with a
data-driven learning method. There are two major types of end-
to-end architectures for ASR; attention-based methods use an at-
tention mechanism to perform alignment between acoustic frames
and recognized symbols, and connectionist temporal classification
(CTC) uses Markov assumptions to efficiently solve sequential
problems by dynamic programming. This paper proposes hybrid
CTC/attention end-to-end ASR, which effectively utilizes the ad-
vantages of both architectures in training and decoding. During
training, we employ the multiobjective learning framework to im-
prove robustness and achieve fast convergence. During decoding,
we perform joint decoding by combining both attention-based and
CTC scores in a one-pass beam search algorithm to further elim-
inate irregular alignments. Experiments with English (WSJ and
CHIiME-4) tasks demonstrate the effectiveness of the proposed
multiobjective learning over both the CTC and attention-based
encoder-decoder baselines. Moreover, the proposed method is ap-
plied to two large-scale ASR benchmarks (spontaneous Japanese
and Mandarin Chinese), and exhibits performance that is compa-
rable to conventional DNN/HMM ASR systems based on the advan-
tages of both multiobjective learning and joint decoding without
linguistic resources.

Index Terms—Automatic speech recognition, end-to-end, con-
nectionist temporal classification, attention mechanism, hybrid
CTC/attention.
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I. INTRODUCTION

UTOMATIC speech recognition (ASR) is an essential
technology for realizing natural human-machine inter-
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faces. It has become a mature set of technologies that have been
widely deployed, resulting in great success in interface applica-
tions such as voice search. A typical ASR system is factorized
into several modules including acoustic, lexicon, and language
models based on a probabilistic noisy channel model [1]. Over
the last decade, dramatic improvements in acoustic and language
models have been driven by machine learning techniques known
as deep learning [2]. However, current systems lean heavily on
the scaffolding of complicated legacy architectures that devel-
oped around traditional techniques. They present the following
problems that we may seek to eliminate.

1) Stepwise refinement: Many module-specific processes are
required to build an accurate module. For example, when
we build an acoustic model from scratch, we have to first
build a hidden Markov model (HMM) and Gaussian mix-
ture models (GMMs) to obtain the tied-state HMM struc-
ture and phonetic alignments, before we can train deep
neural networks (DNNs).

2) Linguistic information: To factorize acoustic and language

models well, we need to have a lexicon model, which is
usually based on a handcrafted pronunciation dictionary
to map word to phoneme sequences. Since phonemes are
designed using linguistic knowledge, they are subject to
human error that a fully data-driven system might avoid.
Finally, some languages do not explicitly have a word
boundary and need tokenization modules [3], [4].
Conditional independence assumptions: The current ASR
systems often use conditional independence assumptions
(especially Markov assumptions) during the above fac-
torization and to make use of GMM, DNN, and n-gram
models. Real-world data do not necessarily follow such
assumptions leading to model misspecification.
Complex decoding: Inference/decoding has to be per-
formed by integrating all modules. Although this integra-
tion is often efficiently handled by finite state transducers,
the construction and implementation of well-optimized
transducers are very complicated [5], [6].

5) Incoherence in optimization: The above modules are op-
timized separately with different objectives, which may
result in incoherence in optimization, where each module
is not trained to match the other modules.

Consequently, it is quite difficult for nonexperts to
use/develop ASR systems for new applications, especially for
new languages.

3)

4)
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End-to-end ASR has the goal of simplifying the above
module-based architecture into a single-network architecture
within a deep learning framework in order to address the above
issues. There are two major types of end-to-end architectures
for ASR; attention-based methods use an attention mechanism
to perform alignment between acoustic frames and recognized
symbols, and connectionist temporal classification (CTC) uses
Markov assumptions to efficiently solve sequential problems by
dynamic programming [7], [8].

All ASR models aim to elucidate the posterior distribution,
p(W|X), of a word sequence, W, given a speech feature se-
quence X . End-to-end methods directly carry this out whereas
conventional models factorize p(WW|X) into modules such as
the language model, p(W'), which can be trained on pure lan-
guage data, and an acoustic model likelihood, p(X|W'), which is
trained on acoustic data with the corresponding language labels.
End-to-end ASR methods typically rely only on paired acoustic
and language data. Without the additional language data, they
can suffer from data sparseness or out-of-vocabulary issues.
To improve generalization, and handle out-of-vocabulary prob-
lems, it is typical to use the letter representation rather than the
word representation for the language output sequence, which
we adopt in the descriptions below.

The attention-based end-to-end method solves the ASR prob-
lem as a sequence mapping from speech feature sequences to
text by using an encoder—decoder architecture. The decoder net-
work uses an attention mechanism to find an alignment between
each element of the output sequence and the hidden states gener-
ated by the acoustic encoder network for each frame of acoustic
input [7], [9]-[11]. At each output position, the decoder net-
work computes a matching score between its hidden state and
the states of the encoder network at each input time, to form a
temporal alignment distribution, which is then used to extract
an average of the corresponding encoder states.

This basic temporal attention mechanism is too flexible in
the sense that it allows extremely nonsequential alignments.
This may be fine for applications such as machine translation
where the input and output word orders are different [12], [13].
However in speech recognition, the feature inputs and corre-
sponding letter outputs generally proceed in the same order with
only small within-word deviations (e.g., the word “iron,” which
transposes the sounds for “r” and “0”). Another problem is that
the input and output sequences in ASR can have very different
lengths, and they vary greatly from case to case, depending on
the speaking rate and writing system, making it more difficult
to track the alignment.

However, an advantage is that the attention mechanism does
not require any conditional independence assumptions, and
could address all of the problems cited above. Although the
alignment problems of attention-based mechanisms have been
partially addressed in [7], [14] using various mechanisms, here
we propose more rigorous constraints by using CTC-based
alignment to guide the training.

CTC permits the efficient computation of a strictly monotonic
alignment using dynamic programming [8], [15] although it re-
quires separate language models and graph-based decoding [16],
except in the case of huge training data [17], [18]. We propose
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to take advantage of the constrained CTC alignment in a hy-
brid CTC/attention-based system. During training, we propose
a multiobjective learning method by attaching a CTC objective
to an attention-based encoder network as a regularization [19].
This greatly reduces the number of irregularly aligned utter-
ances without any heuristic search techniques. During decod-
ing, we propose a joint decoding approach, which combines both
attention-based and CTC scores in a rescoring/one-pass beam
search algorithm to eliminate the irregular alignments [20].

The proposed method is first applied to English-read-speech
ASR tasks to mainly show the effectiveness of the multiobjec-
tive learning of our hybrid CTC/attention architecture. Then,
the method is further applied to Japanese and Mandarin ASR
tasks, which require extra linguistic resources including a mor-
phological analyzer [3] or word segmentation [21] in addition to
a pronunciation dictionary to provide accurate lexicon and lan-
guage models in conventional DNN/HMM ASR. Surprisingly,
the method achieved performance comparable to, and in some
cases superior to, several state-of-the-art HMM/DNN ASR sys-
tems, without using the above linguistic resources, when both
multiobjective learning and joint decoding are used.

This paper summarizes our previous studies of the hybrid
CTC/attention architecture [19], [20], which focus on its train-
ing and decoding functions, respectively. The paper extends
[19] and [20] by providing more detailed formulations from
conventional HMM/DNN systems to current end-to-end ASR
systems (Section II), a consistent formulation of the hybrid
CTC/attention architecture for training and decoding with
precise implementations (Section III), and more experimental
discussions (Section IV).

II. FRoM HMM/DNN TO END-TO-END ASR

This section provides a formulation of conventional
HMM/DNN ASR and CTC or attention-based end-to-end ASR.
The formulation is intended to clarify the probabilistic factor-
izations and conditional independence assumptions (Markov
assumptions), which are important properties to characterize
these three methods.

A. HMM/DNN

ASR deals with a sequence mapping from a 7T-length speech
feature sequence, X = {x; e RP|t=1,...,T}, to an N-
length word sequence, W = {w,, € V|n =1,..., N}.Here, x,
is a D-dimensional speech feature vector (e.g., log Mel filter-
banks) at frame ¢, and w,, is a word at position 7 in the vocabu-
lary, V.

ASR is mathematically formulated with Bayes decision the-
ory, where the most probable word sequence, W, is estimated
among all possible word sequences, Vx, as follows:

W = arg max p(W|X). (D

Therefore, the main problem of ASR is how to obtain the pos-
terior distribution p(W|X).

The current main stream of ASR is based on a hybrid
HMM/DNN [22], which uses Bayes’ theorem and introduces
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the HMM state sequence, S = {s; € {1,...,J}|t =1,...,T},
to factorize p(WW|X) into the following three distributions:

arg max p(W]X)

= arg max %:p(X IS, W)p(SIW)p(W)  (2)

~ arg max gp(X |S)p(S|W)p(W). 3)

The three factors, p(X|.S), p(S|W), and p(W), are the acoustic,
lexicon, and language models, respectively. Eq. (3) is obtained
by a conditional independence assumption (i.e., p(X|S, W) =~
p(X1S)), which is a reasonable assumption to simplify the de-
pendency of the acoustic model.

1) Acoustic Model p(X|S): p(X|S) is further factorized by
using a probabilistic chain rule and conditional independence
assumption as follows:

T

p(X1S) :H (X¢]|X1y s ey X1, 5) 4)
d d p(s \X
R~ Hp(xt|sf % H Ju (%)
t=1 t=1 p(s

where the framewise likelihood function p(x¢|s;) is replaced
with the framewise posterior distribution p(s;|x;)/p(s:) com-
puted by powerful DNN classifiers by using the so-called
pseudo-likelihood trick [22]. The conditional independence as-
sumption in (5) is often regarded as too strong, since it does not
consider any input and hidden state contexts. Therefore DNNs
with long context features or recurrent neural networks are often
used to mitigate this issue. To train the framewise posterior, we
also require the provision of a framewise state alignment, s;, as
a target, which is often provided by an HMM/GMM system.

2) Lexicon Model p(S|W): p(S|W) is also factorized by
using a probabilistic chain rule and conditional independence
assumption (Ist-order Markov assumption) as follows:

S|W Hp St|81,..

t=1

T
H $f|Sr LW (N

This probability is represented by an HMM state transition given
W. The conversion from W to HMM states is deterministi-
cally performed by using a pronunciation dictionary through a
phoneme representation.

3) Language Model p(W): Similarly, p(WW) is factorized by
using a probabilistic chain rule and conditional independence
assumption ((m — 1)th-order Markov assumption) as an m-
gram model, i.e.,

;St-1, W) (6)

N

= Hp(wn|w1,...,
n=1

Wy 1) ®)

N
~ H p(wn |wnfmfla ey

n=1

Wy —1). €))

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 11, NO. 8, DECEMBER 2017

Although recurrent neural network language models
(RNNLMs) can avoid this conditional independence assump-
tion issue [23], it makes the decoding complex, and RNNLMs
are often combined with m-gram language models based on a
rescoring technique.

Thus, conventional HMM/DNN systems make the ASR prob-
lem formulated in (1) feasible by using factorization and condi-
tional independence assumptions, at the cost of the five problems
discussed in Section I.

B. Connectionist Temporal Classification (CTC)

The CTC formulation also follows from Bayes decision the-
ory (Eq. (1)). Note that the CTC formulation uses an L-length
letter sequence, C' = {¢; € U|l = 1,..., L}, with a set of dis-
tinct letters, ¢. In addition, CTC additionally uses a “blank
symbol,” which explicitly denotes the letter boundary to han-
dle the repetition of letter symbols. With the blank symbol, an
augmented letter sequence, C’, is defined as

C' = {<b>,c1,<b>,c9,<b>, ...,
={deUU{<b>}|l=1,...,

cr, <b>}
2L + 1}.

(10)
an

In C, the augmented letter, ¢}, is always blank “<b>" when [
is an odd number, whereas it is always a letter when [ is an even
number

Similar to Section II-A, by introducing a framewise letter
sequence with an additional blank symbol, Z = {2z, € Y U {<

b>}t=1,...,T},! the posterior distribution, p(C|X), is fac-
torized as follows:
p(C1X) =Y p(C1Z, X)p(Z]X) (12)
7z
(13)

~ 3 p(C|2)p(Z]X).
Z

Similar to (3), CTC uses a conditional independence assumption
to obtain (13) (i.e., p(C|Z, X) ~ p(C|Z)), whichis areasonable
assumption to simplify the dependency of the CTC acoustic
model, p(Z]X), and CTC letter model, p(C|Z).

1) CTC Acoustic Model: Similar to Section II-A1, p(Z|X)
is further factorized by using a probabilistic chain rule and
conditional independence assumption as follows:

T
p(Z|X)_H (Zt‘zlv"'7ztf17X) (]4)
T
H (2| X). (15)

The framewise posterior distribution, p(z;| X ), is conditioned on
all inputs, X, and it is straightforward to be modeled by using

'In CTC and attention-based approaches, the sequence length of hidden
states would be shorter than the original input sequence length (i.e., |Z| < T
in the CTC case) owing to the subsampling technique [10], [24]. However, the
formulation in this paper retains the same index ¢ and length 7" for simplicity.
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bidirectional long short-term memory (BLSTM) [25], [26]:
p(z|X) = Softmax(LinB(h,)),
h, = BLSTM; (X

(16)
). (17)

Softmax(-) is a sofmax activation function, and LinB(-) is a
linear layer to convert the hidden vector, hy, to a (|| + 1) di-
mensional vector (+1 means a blank symbol introduced in CTC)
with learnable matrix and bias vector parameters. BLSTM; ()
accepts the full input sequence and output hidden vector at ¢.

2) CTC Letter Model: p(Z|X) is rewritten by using Bayes’
rule, a probabilistic chain rule, and a conditional independence
assumption as follows:

p(C12) = p(Z]Lfg(C) (s)
- p(©)
1:[ (221, 2 1,C)p(Z) (19)
T
H (2|21, pg (20)

where p(zt]z:-1,C), p(C), and p(Z) are the state transition
probability, letter-based language model, and state prior prob-
ability, respectively. CTC has a letter-based language model,
p(C), and by using a letter-to-word finite state transducer, we
can also incorporate a word-based language model in CTC dur-
ing decoding [16]. ) is not introduced in the original CTC
formulation [15]. However, the theoretical justification and ex-
perimental effectiveness of this factor are shown in [27].

The state transition probability, p(z|z:_1, C), is represented
with the augmented letter ¢; in (11) as follows:

p(Zt |Zt—1 > C)

z = ¢; and z,_1 = ¢ for all possible /

2z =cjand z,_; = ¢, forall possible /

1
1
1 z =c andz_1 = _, forall possible even | -
0 otherwise

21

In (21), the first case denotes the self transition, while the second
case denotes the state transition. The third case is a special state
transition from letter ¢, _, to ¢; by skipping “blank,” where [
is an even number, and cg _4 and cg always denote a letter, as
shown in (10). Note that in the implementation, these transition
values are not normalized over z; (i.e., not a probabilistic value)
[16], [28], similar to the HMM state transition implementation
[29].

With the state transition form in (21), it is obvious that CTC
has the monotonic alignment property, i.e.,

When 2,1 = ¢, Then z; = ¢, where [ > m. (22)

m

This property is an important constraint for ASR, since the
ASR sequence-to-sequence mapping must follow the mono-
tonic alignment unlike machine translation. An HMM/DNN
also satisfies this monotonic alignment property.
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3) Objective: With Eqs. (15) and (20),
p(C|X), is finally represented as

> 10

the posterior,

p(C
) (Zf‘X) (7

~—

p(C|X) ~ (23)

Zf|Zf 15

Lpae(CIX)

Although (23) has to deal with a summation over all possible
Z, it is efficiently computed by using dynamic programming
(Viterbi/forward—backward algorithm) thanks to the Markov
property. We also define the CTC objective function, pe(C|X),
used in the later formulation, which does not usually include
p(C)/p(2).

The CTC formulation is similar to that of an HMM/DNN,
except that it applies Bayes’ rule to p(C|Z) instead of p(W|X).
As a result, CTC has three distribution components similar to
the HMM/DNN case, i.e., the framewise posterior distribution,
p(2¢|X), transition probability, p(z|z:_1, C), and (letter-based)
language model, p(C). CTC also uses several conditional in-
dependence assumptions (Markov assumptions), and does not
fully utilize the benefits of end-to-end ASR, as discussed in
Section I. However, compared with HMM/DNN systems, CTC
with the character output reprsentation still possesses the end-
to-end benefits that it does not require pronunciation dictionaries
and omits an HMM/GMM construction step.

C. Attention Mechanism
Compared with the HMM/DNN and CTC approaches, the

attention-based approach does not make any conditional in-
dependence assumptions, and directly estimates the posterior,
p(C|X), on the basis of a probabilistic chain rule, as follows:

L
- Hl:l

p(C|X> p(C[|Cl,...,Cl,17X), (24)

épau(ch)

where p,(C|X) is an attention-based objective function.

p(alery ..., c-1,X) is obtained by
h; = Encoder(X), (25)
ContentAttention(q;—1, hy)
aiy = . . T ) (26)
LocationAttention({a;—1 };_, /-1, ht)
T
r; = Zauhn 27
t=1
p(elery ... ¢-1,X) = Decoder(r;, q;—1,¢1—1). (28)

Egs. (25) and (28) are encoder and decoder networks, respec-
tively. a;; in (26) is an attention weight, and represents the
soft alignment of the hidden vector, h,, for each output, ¢,
based on the weighted summation of hidden vectors to form
the letter-wise hidden vector r; in (27). ContentAttention(-) and
LocationAttention(+) in (26) are based on a content-based at-
tention mechanism with and without convolutional features [9],
respectively. We will explain each module in more detail below.

1) Encoder Network: Eq.(25) converts the input feature vec-
tors, X, into a framewise hidden vector, h;, and BLSTM is often
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used as an encoder network, i.e.,
Encoder(X) £ BLSTM; (X). (29)

Note that the outputs are often subsampled to reduce the com-
putational complexity of the encoder network [9], [10].

2) Content-Based  Attention  Mechanism: In (26),
ContentAttention(-) is represented as follows:

eir = g ' tanh(Lin(q;_1) + LinB(hy)), (30)

ai; = Softmax({e;; }_,). (31)

g is a learnable vector parameter. {e;; }7_; is a T-dimensional
vector, i.e., {e; }1_, = [en, €, ..., er] . tanh(-) is a hyper-
bolic tangent activation function, and Lin(-) is a linear layer with
learnable matrix parameters, but without bias vector parameters.

3) Location-aware Attention Mechanism: The content-
based attention mechanism is extended to deal with a con-
volution (location-aware attention). When we use a; | =
{a; 1Y, =[a-11,---,a-17]", LocationAttention(-) in
(26) is represented as follows:

{0, =Kxa (32)

e;r = g ' tanh(Lin(qy_1) + Lin(h;) + LinB(f)), (33)
(34)

* denotes one-dimensional convolution along the input feature
axis, t, with the convolution parameter, K, to produce the set of
T features {f;}7_.

4) Decoder Network: The decoder network in (28) is another
recurrent network conditioned on the previous output ¢;_; and
hidden vector q;_1, similar to an RNNLM, in addition to the
letter-wise hidden vector, r;. We use the following unidirectional
LSTM:

ap = Softmax({elt}thl).

Decoder(-) £ Softmax(LinB(LSTM;(+))). (35)

LSTM;(+) is a unidirectional LSTM unit, which outputs the
hidden vector q; as follows:

q = LSTM; (r, qi—1, ¢—1). (36)

This LSTM accepts the concatenated vector of the letter-wise
hidden vector, r;, and the one-hot representation of the previous
output, ¢;_1, as an input.

5) Objective: The training objective of the attention model is
approximately computed from the sequence posterior p,y(C|X)
in (24) as follows:

L
pacC1X) = [ pleilet, - iy X) 2 pl(CIX), (3T)
=1

where ¢; is the ground truth of the previous characters. This is
the strong assumption of the attention-based approach that (37)
corresponds to a combination of letter-wise objectives based on
a simple multiclass classification with the conditional ground
truth history ¢j, ..., c/_; in each output, [, and does not fully
consider a sequence-level objective, as pointed out by [10].

In summary, attention-based ASR does not explicitly sepa-
rate each module, and potentially handles the all five issues pre-
sented in Section I. It implicitly combines acoustic, lexicon, and

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 11, NO. 8, DECEMBER 2017

Fig. 1. Hybrid CTC/attention-based end-to-end architecture. The shared en-
coder is trained by both CTC and attention model objectives simultaneously.
The shared encoder transforms our input sequence, {X; - - - X7 }, into the high
level features, H = {h; ---hy }, and the attention decoder generates the letter
sequence, {c - --cp, }.

language models as encoder, attention, and decoder networks,
which can be jointly trained as a single network. However, com-
pared with an HMM/DNN and CTC, which has a reasonable
monotonic alignment property, as discussed in Section II-B2,
the attention mechanism does not maintain this constraint. The
alignment is represented by a weighted sum over all frames, as
shown in (27), and often provides irregular alignments. A ma-
jor focus of this paper is to address this problem by proposing
hybrid CTC/attention architectures.

III. HYBRID CTC/ATTENTION

This section explains our CTC/attention architecture, which
utilizes both benefits of CTC and attention during the training
and decoding steps in ASR.

A. Multiobjective Learning

The proposed training method uses a CTC objective function
as an auxiliary task to train the attention model encoder within
the multiobjective learning (MOL) framework [19]. Fig. 1 illus-
trates the overall architecture of the framework, where the same
BLSTM is shared with the CTC and attention encoder networks
(i.e., Egs. (17) and (29), respectively). Unlike the sole attention
model, the forward—backward algorithm of CTC can enforce
a monotonic alignment between speech and label sequences
during training. That is, rather than solely depending on data-
driven attention methods to estimate the desired alignments in
long sequences, the forward—backward algorithm in CTC helps
to speed up the process of estimating the desired alignment. The
objective to be maximized is a logarithmic linear combination
of the CTC and attention objectives, i.e., pe (C|X) in (23) and
P (C]X) in (37):

Lyor = Aogpee (C|X) + (1 — A)logpi (C1X),  (38)
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where the tunable parameter, A, satisfies 0 < A < 1. Another ad-
vantage of (38) is that the attention objective is an approximated
letter-wise objective, as discussed in Section II-C5, whereas the
CTC objective is a sequence-level objective. Therefore, this
multiobjective learning could also mitigate this approximation
with the sequence-level CTC objective, in addition to helping
the process of estimating the desired alignment. This multiob-
jective learning strategy in end-to-end ASR is also presented
in [30], which combines segmental conditional random field
(CRF) and CTC.

B. Joint Decoding

The inference step of our hybrid CTC/attention-based end-
to-end speech recognition is performed by label synchronous
decoding with a beam search similar to conventional attention-
based ASR. However, we take the CTC probabilities into ac-
count to find a hypothesis that is better aligned to the input
speech, as shown in Fig. 1. Hereafter, we describe the general
attention-based decoding and conventional techniques to miti-
gate the alignment problem. Then, we propose joint decoding
methods with a hybrid CTC/attention architecture.

1) Attention-Based Decoding in General: End-to-end
speech recognition inference is generally defined as a problem
to find the most probable letter sequence C given the speech
input X, i.e.

C' = argmax log p(C|X). (39)
Ceur

In attention-based ASR, p(C|X) is computed by (24), and (' is

found by a beam search technique.

Let €; be a set of partial hypotheses of the length [. At the
beginning of the beam search, {2 contains only one hypothesis
with the starting symbol, <sos>.For! = 1to Ly, each partial
hypothesis in €2;_; is expanded by appending possible single
letters, and the new hypotheses are stored in €);, where L.«
is the maximum length of the hypotheses to be searched. The
score of each new hypothesis is computed in the log domain as

a(h, X) = a(g, X) +logp(clgi-1, X), (40)

where g is a partial hypothesis in €;_1, ¢ is a letter appended
to g, and h is the new hypothesis such that h =¢g-c. If cis a
special symbol that represents the end of a sequence, <eos>,
h is added to €2 but not ;, where () denotes a set of complete
hypotheses. Finally, C is obtained by

C' = argmax a(h, X).
heQ

(41)

In the beam search process, €; is allowed to hold only a limited
number of hypotheses with higher scores to improve the search
efficiency.

Attention-based ASR, however, may be prone to include dele-
tion and insertion errors (see Fig. 3 and related discussions)
because of its flexible alignment property, which can attend to
any portion of the encoder state sequence to predict the next
label, as discussed in Section II-C. Since attention is generated
by the decoder network, it may prematurely predict the end-
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of-sequence label, even when it has not attended to all of the
encoder frames, making the hypothesis too short. On the other
hand, it may predict the next label with a high probability by
attending to the same portions as those attended to before. In this
case, the hypothesis becomes very long and includes repetitions
of the same label sequence.

2) Conventional Decoding Techniques: To alleviate the
alignment problem, a length penalty term is commonly used
to control the hypothesis length to be selected [9], [31]. With
the length penalty, the decoding objective in (39) is changed to

¢ = arg max {log p(C|X) +1|Cl}, 42)
where |C| is the length of sequence C, and ~ is a tunable pa-
rameter. However, it is actually difficult to completely exclude
hypotheses that are too long or too short even if -y is carefully
tuned. It is also effective to control the hypothesis length by
the minimum and maximum lengths to some extent, where the
minimum and maximum are selected as fixed ratios to the length
of the input speech. However, since there are exceptionally long
or short transcripts compared to the input speech, it is difficult
to balance saving such exceptional transcripts and preventing
hypotheses with irrelevant lengths.

Another approach is the coverage term recently proposed in
[14], which is incorporated in the decoding objective in (42) as

C = arg max {log p(C|X) 4+ v|C| + n - coverage(C|X)},
(43)

where the coverage term is computed by

T T L
coverage(C|X) = Z l ay > T] ) (44)
=1

t=1

n and 7 are tunable parameters. The coverage term represents
the number of frames that have received a cumulative attention
greater than 7. Accordingly, it increases when paying close
attention to some frames for the first time, but does not increase
when paying attention again to the same frames. This property
is effective for avoiding looping of the same label sequence
within a hypothesis. However, the coverage term has no explicit
mechanism for avoiding premature prediction of the end-of-
sequence label, which makes the hypothesis too short and causes
a lot of deletion errors. Moreover, it is still difficult to obtain a
common parameter setting for v, 7, 7, and the optional min/max
lengths so that they are appropriate for any speech data from
different tasks.

3) Joint Decoding: Our hybrid CTC/attention approach
combines the CTC and attention-based sequence probabilities
in the inference step, as well as the training step. Suppose
Pete (C X)) in (23) and pyy (C| X)) in (24) are the sequence proba-
bilities given by CTC and the attention model, respectively. The
decoding objective is defined similarly to (38) as

C = arg max {Mog pec (C1X) + (1 — 1) log pau(C| X))} .
(45
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The CTC probability enforces a monotonic alignment that does
not allow large jumps or looping of the same frames as dis-
cussed in Section II-B2. Furthermore, it can avoid premature
prediction of the end-of-sequence label, which is not handled
by the coverage term. Accordingly, it is possible to choose a
hypothesis with a better alignment and exclude irrelevant hy-
potheses without relying on the coverage term, length penalty,
or min/max lengths.

In the beam search process, the decoder needs to compute
a score for each partial hypothesis using (40). However, it
is nontrivial to combine the CTC and attention-based scores
in the beam search, because the attention decoder performs
it output-label-synchronously while CTC perfomrs it frame-
synchronously. To incorporate the CTC probabilities in the hy-
pothesis score, we propose two methods.

3) Rescoring: The first method is a two-pass approach, in
which the first pass obtains a set of complete hypotheses using
the beam search, where only the attention-based sequence prob-
abilities are considered. The second pass rescores the complete
hypotheses using the CTC and attention probabilities, where
the CTC probabilities are obtained by the forward algorithm for
CTC [15]. The rescoring pass obtains the final result according
to

C = argmax {rage(h, X) + (1 — Mage(h, X)},  (46)
hef)
where
aclh, X) 2 log puc(h|X
Qere ( ) N 0g Petc (b X) 7
Oéan(h,X) = logpan(th)

3) One-Pass Decoding: The second method is one-pass de-
coding, in which we compute the probability of each partial
hypothesis using CTC and an attention model. Here, we uti-
lize the CTC prefix probability [32] defined as the cumulative
probability of all label sequences that have h as their prefix:

pctc(ha-~- |X) — Z pctc(h'l/lX)v (48)
ve(UUU{<eos>})*
and we define the CTC score as
ace(h, X) £ log pee(h, .. .| X), (49)

where v represents all possible label sequences except the empty
string. The CTC score cannot be obtained recursively as in
(40), but it can be computed efficiently by keeping the forward
probabilities over the input frames for each partial hypothesis.
Then it is combined with c(h, X) using A.

The beam search algorithm for one-pass decoding is shown
in Algorithm 1. €; and Q) are initialized in lines 2 and 3 of
the algorithm, which are implemented as queues that accept
partial hypotheses of the length | and complete hypotheses,
respectively. In lines 4-25, each partial hypothesis ¢ in €;_;
is extended by each label c in the label set /. Each extended
hypothesis, h, is scored in line 11, where CTC and attention-
based scores are obtained by () and ay(). After that, if
¢ =<eos>, the hypothesis h is assumed to be complete and
stored in €2 in line 13. If ¢ =# <eos>, h is stored in §2; in line
15, where the number of hypotheses in €2; is checked in line 16.
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Algorithm 1: Joint CTC/attention One-pass Decoding.
1: procedure ONEPASSBEAMSEARCH (X, Lax)
20 Qg {<sos>}

3 Q—10

4: for! =1... Ly, do

5: Ql — @

6: while ;_; # 0 do

7 g < HEAD(€); 1)

8: DEQUEUE(€);_1)

9: for each c € U U {<eos>} do
10: h—g-c
11: a(h) «— rage(hy, X) + (1 = M)y (h, X)
12: if c =<eos> then
13: ENQUEUE({2, h)
14: else
15: ENQUEUE(§Y;, h)
16: if || > beamWidth then
17: REMOVEWORST(£; )
18: end if
19: end if
20: end for
21: end while
22: if ENDDETECT((2, 1) = true then
23: break > exit for loop
24 end if
25: end for
26:  return argmax,, ¢ «(C)

27: end procedure

If the number exceeds the beam width, the hypothesis with the
worst score in ), i.e.,
hworst = arg min a(h, X),
heq
is removed from {2; by REMOVEWORST() in line 17.

We can optionally apply an end detection technique to reduce
the computation by stopping the beam search before [ reaches
Lmax. Function ENDDETECT(Q, [) in line 22 returns true if
there is little chance of finding complete hypotheses with higher
scores as [ increases in the future. In our implementation, the
function returns true if

M -1
Z max  a(h,X) —maxa(h,X) ¢ < Dena| = M,
m—0 heQ:lh|=l-m h'e)

(50)

where Deyq and M are predetermined thresholds.

This equation becomes true if scores of recently completed
hypotheses are all small enough compared to the best score of all
the completed hypotheses up to the present in the decoding pro-
cess. In the summation of (50), the first maximum corresponds
to the best score in the complete hypotheses recently gener-
ated, whose length |h|is — m, wherem = 0,..., M — 1 (e.g.,
M = 3). The second maximum corresponds to the best score in
all the complete hypotheses in ). The Iverson bracket [-] returns
1 if the difference between these maximum scores is smaller
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Algorithm 2: CTC Label Sequence Score.

1: function o h, X
2: g,c < h > split h into the last label c and the rest

g

3: if c =<eos> then ,

4: return log{+\"’ (9) + 7" (9)}

5: else ( X)

. (n) p(z1 =c|X) if g = <sos>

6: n(h) < {O otherwise

7 () o0

8: T — " (h)

9: fort=2...Tdo »

0 if last(g) = ¢
10: P~ )
“m(g)F fyff%(g) otherwise
1: W (h) — (%) (h) + ®)p(z = | X)
12: W () = (32 )+ (B))p(z = <b>
1X)

13: U — T+ p(z =c|X)
14: end for
15: return log(7)
16: end if

17: end function

than threshold Deyg (€.2., Deng = —10), otherwise it returns 0.
Hence, the summation results in M if all the differences are less
than the threshold.

In line 11, the CTC and attention model scores are com-
puted for each partial hypothesis. The attention score is eas-
ily obtained in the same manner as (40), whereas the CTC
score requires a modified forward algorithm that computes
it label-synchronously. The algorithm performs the function,
tee(h, X), as shown in Algorithm 2. Let v, (h) and 4" (h)
be the forward probabilities of the hypothesis, h, over time
frames 1. .. t, where the superscripts (n) and (b) denote differ-
ent cases in which all CTC paths end with a nonblank or blank

symbol, respecitively. Before starting the beam search, 7,5") O

and 'y,Fb) () are initialized fort = 1,...,T as

(”)(<sos>) 0, (5D

t
(b (<sos>) H’yT 1(<s08>) - p(z; =<b> |X), (52)

where we assume that *yéb) (<sos>) =1 and <b> is a blank
symbol. Note that the time index ¢ and input length 7" may differ
from those of the input utterance X owing to the subsampling
technique for the encoder [10], [24].

In Algorithm 2, hypothesis h is first split into the last label, c,
and therest, g, inline 2. If cis <eos>, it returns the logarithm of
the forward probability assuming that / is a complete hypothesis
in line 4. The forward probability of & is given by

Pete (R X) (53)

n b
=7 (g) + 1 (9)
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TABLE I
ASR TASKS

CHIME-4 [35] #utterances  Length (h)
Training 8,738 18
Development 3,280 5.6
Evaluation 2,640 4.4

WSIJ [33], [34] #utterances  Length (h)
Training (WSJO si84) 7,138 15
Training (WSJ1 si284) 37,416 80
Development 503 1.1
Evaluation 333 0.7

CSJ [36] #utterances  Length (h)
Training (100k) 100,000 147
Training (Academic) 157,022 236
Training (Full) 445,068 581
Evaluation (task 1) 1,288 1.9
Evaluation (task 2) 1,305 2.0
Evaluation (task 3) 1,389 1.3
HKUST [37] #utterances  Length (h)
Training 193,387 167
Training (speed perturb.) 580,161 501
Development 4,000 4.8
Evaluation 5,413 4.9

according to the definition of %fn)() and 7@(). If ¢ is not
<eos>, it computes forward probabilities 'yf(m (h) and 'y(b> (h),
and the prefix probability, U = pe(h, . ..|X), assuming that h
is not a complete hypothesis. The 1n1t1ahzat10n and recursion
steps for those probabilities are described in lines 6—14. In this
function, we assume that whenever we compute the probabili-
ties, 7" (h), 4\"’ (h) and T, the forward probabilities v\"’ (g)
and 'y,@ (g) have already been obtained through the beam search
process because g is a prefix of h such that |g| < |h|. Accord-
ingly, the prefix and forward probabilities can be computed
efficiently for each hypothesis, and partial hypotheses with ir-
relevant alignments can be excluded by the CTC score during
the beam search. Thus, the one-pass search method hopefully
reduces the number of search errors with less computation com-
pared to the rescoring method.

IV. EXPERIMENTS

We demonstrate our experiments using four different ASR
tasks, as summarzied in Table I. The first part of the experi-
ments used famous English clean speech corpora, WSJ1 and
WSIJO0 [33], [34], and a noisy speech corpus, CHiME-4 [35].
CHiME-4 was recorded using a tablet device in everyday envi-
ronments: a cafe, a street junction, public transport, and a pedes-
trian area. The experiments with these corpora are designed to
focus on the effectiveness of the multiobjective learning part
(Section III-A) of our hybrid CTC/attention architecture with
various learning configurations thanks to the relatively small
sizes of these corpora.

The second part of the experiments scaled up the size of the
corpora by using the Corpus of Spontaneous Japanese (CSJ) [36]
and HKUST Mandarin Chinese conversational telephone speech
recognition (HKUST) [37]. These experiments mainly show the
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TABLE II
COMMON EXPERIMENTAL HYPERPARAMETERS

Parameter initialization

# of encoder BLSTM cells
# of encoder projection units
Encoder subsampling

uniform distribution [—0.1, 0.1]
320

320

2nd and 3rd bottom layers
(skip every 2nd feature,

yielding 4/T")
# of decoder LSTM cells 320
Optimization AdaDelta
Adadelta p 0.95
Adadelta € 10°8
Adadelta e decaying factor 1072
Gradient norm clip threshold 5
Maximum epoch 15
Threshold to stop iteration 1074
Sharpening parameter -y 2
Location-aware # of conv. filters 10
Location-aware conv. filter widths 100
End detection length threshold Depg  log le~ 10
End detection score threshold M 3

effectiveness of our joint decoding, as discussed in Section I1I-B.
The main reason for choosing these two languages is that these
ideogram languages have relatively shorter lengths (i.e., L) for
letter sequences than those in alphabet languages, which greatly
reduces the computational complexities, and makes it easy to
handle context information in a decoder network. Actually, our
preliminary investigation shows that Japanese and Mandarin
Chinese end-to-end ASR can be easily scaled up, and shows
reasonable performance without using various tricks developed
for large-scale English tasks.

Table II lists the common experimental hyperparameters
among all experiments. The task-specific hyperparameters
are described in each experimental section. This paper also
strictly followed an end-to-end ASR concept, and did not use
any pronunciation lexicon, language model, GMM/HMM, or
DNN/HMM. Our hybrid CTC/attention architecture was imple-
mented with Chainer [28].

A. WSJ and CHIME-4

As presented in Table I, the evaluation was performed for
1) “eval92” for WSJO and WSJ1 and 2) “etO5_real_isolated_
Ich_track” for CHiME-4, while hyperparameter selection
was performed for 1) “dev93” for WSJO and WSJ1 and 2)
“dt05_multi_isolated_1ch_track” for CHiME-4.

As input features, we used 40 mel-scale filterbank coefficients
with their first- and second-order temporal derivatives to obtain a
total of 120 feature values per frame. For the attention model, we
used only 32 distinct labels: 26 characters, apostrophe, period,
dash, space, noise, and sos/eos tokens. The CTC model used the
blank instead of sos/eos, and our MOL model used both sos/eos
and the blank. The encoder was a four-layer BLSTM with 320
cells in each layer and direction, and the linear projection layer
with 320 units is followed by each BLSTM layer. The second
and third bottom LSTM layers of the encoder read every second
state feature in the network below, reducing the utterance length
by a factor of four, i.e., 7/4. The decoder was a one-layer
unidirectional LSTM with 320 cells. The other experimental
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TABLE III
CHARACTER ERROR RATES (CERS) FOR THE CLEAN CORPORA WSJO AND
‘WSJ1, AND THE NOIsY CorpUs CHIME-4

Model CER (valid)  CER (eval)
WSJ1 SI284 (80h) dev93 eval92
CTC 11.48 8.97
Attention (content-based) 13.68 11.08
Attention (+location-aware) 11.98 8.17
MOL (A = 0.2) 11.27 7.36
MOL (A = 0.5) 12.00 8.31
MOL (A = 0.8) 11.71 8.45
WSJO SI84 (15h) dev93 eval92
CTC 27.41 20.34
Attention (content-based) 28.02 20.06
Attention (+location-aware) 24.98 17.01
MOL (A = 0.2) 23.03 14.53
MOL (» = 0.5) 26.28 16.24
MOL (A = 0.8) 32.21 21.30
CHiME-4 (18h) dt05_real et05_real
CTC 37.56 48.79
Attention (content-based) 43.45 54.25
Attention (+location-aware) 35.01 47.58
MOL (A = 0.2) 32.08 44.99
MOL (» = 0.5) 34.56 46.49
MOL (2 = 0.8) 3541 48.34
100
= e ————— == = =S enf— e —— -
£ 90 i
E '.._ i -— = - -——w— a7
z 80 e P e
S 70 f
oy :
© / PP --\WSJ0 SI84 Attention
3 60 A= =WSJ0 5184 MOL (4=0.2)
= ' WSJ1 51284 Attention
g 50 = WSI1 51284 MOL (4=0.2)
c i --CHIME-4 Attention
5 = CHIME-4 MOL (4=0.2)
30
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Training Epoch
Fig. 2. Learning curves: location-aware attention model and MOL with 1 =

0.2. Note that the approximated accuracies of the attention and our MOL were
obtained given the ground truth history, as discussed in Section II-C5.

setup is summarized in Table II. For our MOL, we tested three
different task weights A: 0.2, 0.5, and 0.8.

For the decoding of the attention and MOL models, we used a
conventional beam search algorithm similar to [38] with a beam
size of 20 to reduce the computational cost. For CHIME-4, we
manually set the minimum and maximum lengths of the output
sequences to 0.1 and 0.18 times the input sequence lengths,
respectively, and the length penalty v in (42) was set to 0.3.
For WSJ, the minimum and maximum lengths were set to 0.075
and 0.2 times the input sequence lengths, respectively, without a
length penalty (i.e., v = 0). For the decoding of the CTC model,
we took the Viterbi sequence as a result.

The resutls in Table III show that our proposed model MOL
significantly outperformed both CTC and the attention model
with regards to the CER for both the noisy CHiME-4 and
clean WSJ tasks. Our model showed relative improvements of
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(b)
(2)

Fig. 3.
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Comparison of the speed in learning alignments between characters (y axis) and acoustic frames (x axis) between the location-based attention model (1st

row) and our model MOL (2nd row) over the training epochs (1, 3, 5, 7, and 9). All alignments are for one manually chosen utterance (FO5_442C020U_CAF_REAL)
in the noisy CHiME-4 evaluation set. (a) Attention 1 epoch; (b) Attention 3 epoch; (c) Attention 5 epoch; (d) Attention 7 epoch; (e) Attention 9 epoch; (f) MOL 1

epoch; (g) MOL 3 epoch; (h) MOL 5 epoch; (i) MOL 7 epoch; (j) MOL 9 epoch.

6.0\hbox{-}8.4% and 5.4\hbox{-}14.6% for the validation
and evaluation sets, respectively. We observed that our hybrid
CTC/attention MOL achieved the best performance when we
used A = 0.2 for both the noisy CHiME-4 and clean WSJ tasks.
As a reference, we also computed the word error rate (WER)
of our model MOL (A = 0.2), which scored 18.2% and was
slightly better than the WER of the model in [39].

Apart from the CER improvements, MOL can also be very
helpful in accelerating the learning of the desired alignment.
Fig. 2 shows the learning curves of the character accuracy for the
validation sets of CHIME-4, WSJO SI84, and WSJ1 SI284 over
the training epochs. Note that the approximated accuracies of
the attention and our MOL with A = 0.2 were obtained given the
ground truth history cj, ..., ¢/_,, as discussed in Section II-C5,
and we cannot directly compare the absolute values of the vali-
dation character accuracy between MOL and the attention owing
to the approximation. However, from the learning curve behav-
iors, we can argue that MOL training converged more quickly
compared with the attention one.

Fig. 3 shows the attention alignments between characters and
acoustic frames over the training epochs. We observed that our
MOL learned the desired alignment in an early training stage,
the 5th epoch, whereas the attention model could not learn the
desired alignment even at the 9th epoch. This result indicates
that the CTC loss guided the alignment to be monotonic in our
MOL approach.

B. Corpus of Spontaneous Japanese (CSJ)

CSJ is a standard Japanese ASR task based on a collection of
monologue speech data including academic lectures and simu-
lated presentations. It has a total of 581 hours of training data
and three types of evaluation data, where each evaluation task
consists of 10 lectures (5 hours in total), as summarized in
Table I. The experimental setup was similar to the previous

TABLE IV
CHARACTER ERROR RATES (CERS) FOR CONVENTIONAL ATTENTION AND THE
PROPOSED HYBRID CTC/ATTENTION END-TO-END ASR FOR THE CORPUS OF
SPONTANEOUS JAPANESE SPEECH RECOGNITION (CSJ) TASK

Model Taskl  Task2  Task3
Attention (147h) 20.1 14.0 32.7
MOL (147h) 16.9 12.7 28.9
Attention (236h) 16.3 12.2 24.7
MOL (236h) 13.4 10.1 21.5
Attention (581h) 114 7.9 9.0

MOL (581h) 10.5 7.6 8.3

MOL + joint decoding (rescoring, 581h) 10.1 7.1 7.8
MOL + joint decoding (one pass, 581h) 10.0 7.1 7.6
MOL-large + joint decoding (rescoring, 581h) 8.4 6.2 6.9
MOL-large + joint decoding (one pass, 581h) 8.4 6.1 6.9

GMM-discr. [40] (236h for AM, 581h for LM) 11.2 9.2
HMM/DNN [40] (236h for AM, 581h for LM) 9.0 7.2 9.6
CTC-syllable [27] (581 h) 94 7.3 7.5

English experiments, and we used 40 mel-scale filterbank coef-
ficients with their first- and second-order temporal derivatives
as an input feature vector. Further, we used a four-layer BLSTM
and one-layer LSTM for the encoder and decoder networks, re-
spectively. We used 3315 distinct labels including Kanji, two
types of Japanese syllable characters (hiragana and katakana),
alphabets, and Arabic numbers, with the “blank” symbol for
CTC and the eos/sos symbol for the attention.

Table IV first compares the CERs for conventional attention
and MOL-based end-to-end ASR without joint decoding for
various amounts of training data (147, 236, and 581 hours). A
in (38) was set to 0.1. When decoding, we manually set the
minimum and maximum lengths of the output sequences to
0.1 and 0.5 times the input sequence lengths, respectively. The
length penalty v in (42) was set to 0.1. MOL significantly out-
performed attention-based ASR in all evaluation tasks for all
amounts of training data, which confirms the effectiveness of
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Fig. 4. Effect of CTC weight A in (45) on the CSJ evaluation tasks.
MOL in our hybrid CTC/attention architecture. The results in
Table IV also show that the proposed joint decoding, described in
Section III-B, further improved the performance without setting
any search parameters (maximum and minimum lengths, length
penalty), but only setting a weight parameter A = 0.1 in (45),
similar to the MOL case. Fig. 4 also compares the dependency
of A on the CER for the CSJ evaluation tasks, and shows that A
was not too sensitive to the performance if we set A around the
value we used for MOL (i.e., 0.1).

We also compare the performance of the proposed method
of a larger network (a five-layer encoder network, MOL-large)
with the conventional state-of-the-art techniques obtained by
using linguistic resources including a morphological analyzer,
pronunciation dictionary, and language model. The state-of-the-
art CERs of the GMM discriminative training and HMM/DNN-
sMBR (sMBR: state-level minimum Bayes risk) systems are
obtained from the Kaldi recipe [40] and a system based on
syllable-based CTC with MAP decoding [27]. The Kaldi recipe
systems used academic lectures (236 h) for AM training and
all training-data transcriptions for LM training. Note that since
the amount of training data and experimental configurations
of the proposed and reference methods were slightly different,
it is difficult to compare the performance listed in the table
directly. However, since the CERs of the proposed method were
comparable to or better than those of the best reference results,
we can state that the proposed method achieves state-of-the-art
performance.

C. HKUST Mandarin Telephone Speech

HKUST Mandarin Chinese conversational telephone speech
recognition [37] has 5 hours of recording for evaluation, and we
extracted an additional 5 hours from the training data as a de-
velopment set, and used the rest (167 hours) as a training set, as
summarized in Table I. We used A = 0.5 for training and decod-
ing instead of 0.1 on the basis of our preliminary investigation,
80 mel-scale filterbank coefficients with pitch features as sug-
gested in [42], and a five-layer BLSTM and two-layer LSTM for
the encoder and decoder networks, respectively. The rest of the
experimenal conditions were the same as those in Section IV-B
and Table II. We used 3653 distinct labels with “blank” for CTC
and eos/sos for the attention. For decoding, we also added the
result from coverage-term-based decoding [14], as discussed in
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TABLE V
CHARACTER ERROR RATES (CERS) FOR CONVENTIONAL ATTENTION AND THE
PROPOSED HYBRID CTC/ATTENTION END-TO-END ASR FOR THE HKUST
MANDARIN CHINESE CONVERSATIONAL TELEPHONE SPEECH
RECOGNITION TASK

Model Dev  Eval
Attention 40.3  37.8
MOL 38.7 36.6
Attention + coverage 394 37.6
MOL + coverage 369 353
MOL + joint decoding (rescoring) 359 342
MOL + joint decoding (one pass) 355 339
MOL-large (speed perturb.) + joint decoding (rescoring) ~ 31.1  30.1
MOL-large (speed perturb.) 4 joint decoding (one pass) 31.0 299
MOL + CNN + LSTML (speed perturb.)

+ joint decoding (one pass) [41] 29.1 280
HMM/DNN - 35.9
HMM/LSTM (speed perturb.) - 33.5
CTC with language model [42] - 34.8
HMM/TDNN, lattice-free MMI (speed perturb.) [24] - 28.2

Section III-B (n = 1.5, 7 = 0.5, and v = —0.6 for the attention
model and n = 1.0, 7 = 0.5, and 7 = —0.1 for MOL), since it
was difficult to eliminate the irregular alignments during decod-
ing by only tuning the maximum and minimum lengths and the
length penalty (we set the minimum and maximum lengths of
the output sequences to 0.0 and 0.1 times the input sequence
lengths, respectively, and set v = 0.6 in Table V).

The results in Table V show the effectiveness of MOL and
joint decoding over the attention-based approach, especially
showing a significant improvement for joint CTC/attention
decoding. The results also show that our joint decoding
“MOL+joint decoding (one pass)” works better than the cov-
erage term “MOL+coverage,” where the CER was reduced
from 35.3% to 33.9% 2. Similar to the CSJ experiments in
Section IV-B, we did not use the length-penalty term or cover-
age term in joint decoding. This is an advantage of joint decoding
over conventional approaches that require many tuning param-
eters. Moreover, Fig. 5 again shows that A was not too sensitive
to the performance if we set A around the value we used for
MOL @.e., 0.5).

Finally, we generated more training data by linearly scaling
the audio lengths by factors of 0.9 and 1.1 (speed perturb.). The
final model achieved 29.9% without using linguistic resources,
which defeats moderate state-of-the-art systems including CTC-
based methods?.

2We further conducted an experiment of joint decoding with both CTC and
the coverage term. Although we tuned decoding parameters including the length
penalty, its CER was 34.2%, which was slightly worse than that of joint decod-
ing, i.e., 33.9%

3 Although the proposed method did not reach the performance obtained by a
time delayed neural network (TDNN) with lattice-free sequence discriminative
training, this method fully utilizes linguistic resources, including phonetic rep-
resentations and phoneme-based language models, in the discriminative training
[24]. Moreover, our recent work scored 28.0%, and outperformed the lattice-
free MMI result with advanced network architectures [41].
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D. Decoding Speed

We evaluated the speed of the joint decoding methods de-
scribed in Section III-B3 for our hybrid CTC/attention architec-
ture, where ASR decoding was performed with different beam
widths of 1, 3, 5, 10, and 20, and the processing time and CER
were measured using a computer with Intel(R) Xeon(R) pro-
cessors, E5-2690 v3, 2.6 GHz. Although the processors were
multicore CPUs and the computer also had GPUs, we ran the
decoding program as a single-threaded process on a CPU to
investigate its basic computational cost.

Figs. 6 and 7 show the relationships between the real-time
factor (RTF) and the CER for the CSJ and HKUST tasks, re-
spectively. We evaluated the rescoring method with and without
end detection, and the one-pass method with end detection. For
the both tasks, we can see that end detection successfully re-
duces the RTF without any accuracy degradation. Furthermore,
the one-pass method achieves faster decoding with a lower CER
than the rescoring method. With one-pass decoding, we achieved
1xRT with a small accuracy degradation, even if it was a single-
threaded process on a CPU. However, the decoding process has
not yet achieved real-time ASR since CTC and the attention
mechanism need to access all of the frames of the input utter-
ance even when predicting the first label. This is an essential
problem of most end-to-end ASR approaches and will be solved
in future work.
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V. SUMMARY AND DISCUSSION

This paper proposes end-to-end ASR by using hybrid
CTCl/attention architectures, which outperformed ordinary
attention-based end-to-end ASR by solving the misalignment
issues. This method does not require linguistic resources, such
as a morphological analyzer, pronunciation dictionary, and lan-
guage model, which are essential components of conventional
Japanese and Mandarin Chinese ASR systems. Nevertheless,
the method achieved comparable performance to state-of-the-
art conventional systems for the CSJ and HKUST tasks. In
addition, the proposed method does not require GMM/HMM
construction for the initial alignments, DNN pre-training, lattice
generation for sequence discriminative training, complex search
during decoding (e.g., an FST decoder or a lexical-tree-search-
based decoder). Thus, the method greatly simplifies the ASR
building process, reducing code size and complexity. Currently,
training takes 7-9 days using a single GPU to train the net-
work with full training data (581 hours) for the CSJ task, which
is comparable to the entire training time of the conventional
state-of-the-art system owing to simplification of the building
process.

Future work will apply this technique to the other languages
including English, where we have to solve the issue of long
sequence lengths, which requires a large computational cost and
makes it difficult to train a decoder network. Actually, recent
sequence-to-sequence studies have handled this issue by using
a subword unit (concatenating several letters to form a new
subword unit) [13], [43], which would be a promising direction
for our end-to-end ASR. Another future work is to make use
of existing conventional HMM/DNN when it is available apart
from an end-to-end concept. It would be interesting to combine
conventional HMM/DNN instead of or in addition to CTC in
our framework (e.g., as another training objective) since they are
complementary. Further investigation of CTC usage in training
and decoding is also an interesting direction for future work.
We could compare different cases of CTC usage, for example,
the case when CTC is used only for pre-training the encoder
of the attention model and the case when CTC is used only for
decoding but not for training.
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