

Rewarding Learning

Candidate Number

ADVANCED
General Certificate of Education 2018

Chemistry

Assessment Unit A2 3
 assessing
 Module 3: Practical Examination
 Practical Booklet B (Theory)

[AC234]

TIME

1 hour 15 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.
You must answer the questions in the spaces provided.
Do not write outside the boxed area on each page or on blank pages.
Complete in black ink only. Do not write with a gel pen.
Answer all three questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 50 .
Question 1 is a practical exercise worth 17 marks.
Question 2 is a practical exercise worth 13 marks.
Question 3 is a planning exercise worth 20 marks.
Quality of written communication will be assessed in Question 3(b).
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A Periodic Table of Elements (including some data) is provided.

1 A student prepared $250 \mathrm{~cm}^{3}$ of a $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of ammonium iron(II) sulfate $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Fe}\left(\mathrm{SO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ by dissolving the solid in $100 \mathrm{~cm}^{3}$ of dilute sulfuric acid and making the solution up to $250 \mathrm{~cm}^{3}$ in a volumetric flask.
(a) Calculate the mass of ammonium iron(II) sulfate required.
\qquad
\qquad
\qquad
\qquad
(b) The student titrated $25.0 \mathrm{~cm}^{3}$ portions of the $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ solution with acidified potassium manganate(VII) and obtained the results given in the table.

titration	initial burette reading/cm ${ }^{3}$	final burette reading $/ \mathbf{c m}^{3}$	volume added $/ \mathbf{c m}^{\mathbf{3}}$
Rough	0.0	30.5	30.5
1	0.4	30.5	
2	0.6	30.5	

(i) Why is indicator not required in this titration?
\qquad
(ii) State the colour change at the end point of this titration.
\qquad
(iii) Complete the results table and calculate the average titre.
\qquad
(c) (i) Write the half-equation for the reduction of acidified manganate(VII) ions to form manganese(II) ions.
\qquad
(ii) Write the half-equation for the oxidation of iron(II) ions to iron(III) ions.
\qquad
(iii) Write the ionic equation for the reaction.
\qquad
(iv) Calculate the concentration of the acidified potassium manganate(VII) solution in gdm^{-3}.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

2 (a) Based on the following observations, make deductions for the organic liquids \mathbf{A}, B and C.

(b) The nmr spectrum of \mathbf{A} contains a quartet, a triplet and a singlet. Suggest a structure for \mathbf{A}.
(c) The nmr spectrum for \mathbf{B} shows that it contains a quartet and a triplet only. Suggest a structure for B.
(d) The mass spectrum of \mathbf{C} shows that the molecular ion occurs at an m / z value of 58 . Suggest a structure for \mathbf{C}.

3 Methyl 3-nitrobenzoate exists as a solid at room temperature. Its melting point is $78-79^{\circ} \mathrm{C}$.

(a) (i) Write the equation for the formation of methyl 3-nitrobenzoate from methyl benzoate using nitric acid.
(ii) Assuming a 60\% yield, calculate the minimum mass of methyl benzoate required to produce 5.43 g of methyl 3-nitrobenzoate.
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Describe the laboratory preparation of methyl 3-nitrobenzoate up to and including the removal of the crude product from the reaction mixture.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Quality of written communication
(c) (i) The crude product is recrystallised before its melting point is determined. Explain why recrystallisation is carried out and, giving experimental details, describe the process of recrystallisation naming a suitable solvent.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) What colour are the crystals?
\qquad
(iii) How could the crystals be dried before the melting point is determined?
\qquad
\qquad
(iv) How would you use the melting point to determine whether the crystals are pure methyl 3-nitrobenzoate?
\qquad
\qquad
(d) The mass spectrum of the product showed two fragment peaks at m / z values of 59 and 150. Suggest the identities of the two fragments.
m / z value of 59
m / z value of 150

THIS IS THE END OF THE QUESTION PAPER

DO NOT WRITE ON THIS PAGE

For Examiner's use only		
Question Number	Examiner Mark	Remark
1		
2		
3		
Total Marks		

Permission to reproduce all copyright material has been applied for.
In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

Periodic Table of the Elements

For the use of candidates taking
Advanced Subsidiary and Advanced Level
Chemistry Examinations

Copies must be free from notes or additions of any kind. No other type of data booklet or information sheet is authorised for use in the examinations.

gce A/AS examinations

chemistry (advanced)

