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CHAPTER 13 LECTURE NOTES 
 
Spectroscopy is concerned with the measurement of (a) the wavelengths (or 
frequencies) at which molecules absorb/emit energy, and (b) the amount of 
radiation absorbed at these various wavelengths (or frequencies).  A plot of the 
amount of radiation absorbed (or emitted) as a function of wavelengths or 
frequencies is called a spectrum.  The basis for measuring the amount of radiation 
absorbed is the Lambert-Beer law. 
 
13.1. Lambert-Beer Law 

Consider a light source that produces light of 
intensity I0.  This light is allowed to pass through 
a cell containing a sample, say a solution of 
concentration c.  The path length of the beam of 
light is l.  Let the intensity of the transmitted light 
beam be I. 
Then, the Lambert-Beer law states that the 
variation of the intensity of the incident beam as 
it passes through the cell is proportional to the 
concentration and the path length: 

 ,dI cdx
I

κ− =  

where the negative sign indicates that the 
intensity decreases with length dx, and κ is the proportionality constant.  
Integrating both sides, we get 
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which gives 
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Note that we have switched from natural logarithms to log10.  This also requires a 
re-definition of the proportionality constant, which is now called the molar 
absorption coefficient.  The left hand side is called the absorbance of the sample.  
This equation, Eq. (13.16) in the text, is the statement of the Lambert-Beer law. 
Example 13.2, Problems: 13.4�13.6, 13.10. 
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13.3. Pure Rotational Spectrum of Molecules 
Recall that a molecule, which is a quantum system, can only absorb or emit 
radiation in discrete amounts, given by hν.  The magnitude of the frequency 
depends on the energy difference between the initial and final states.  In the case of 
rotational spectra, these frequencies typically correspond to the microwave region 
of the electromagnetic spectrum. 

The quantum mechanical model we will 
adopt for studying the rotational spectra 
of diatomic and linear triatomic 
molecules is the rigid rotor model.  The 
distance to the two masses from the 
center of mass defines the moment of 
inertia I: 

 2 2 2
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where the interatomic distance (or bond 
length) r0 = r1 + r 2 and the reduced mass µ = m1m2/(m1+m2).  Thus, the rotation of 
the two masses m1 and m2 of a diatomic molecule about the axis of rotation is 
equivalent to the rotation of a single mass µ at a distance of r0 from the origin. 
From our earlier treatment of the particle on a sphere problem, the energy of such a 
system is well-known: 
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where we used the letter J rather than l for the quantum number, in order to 
conform to common convention. 
In the case of the rigid rotor, it is possible to show that the most probable rotational 
transitions are those for which ∆J = ±1.  This is known as the selection rule in 
rotational spectroscopy. 
Consider the energy difference between a given energy level labeled by J and the 
next higher energy level, labeled by J+1: 
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Now, ∆E = hν.  In rotational spectroscopy, the traditional units of energy is the 
wave number, cm�1, defined as ∆E/(hc) and denoted as �ν , where the velocity of 
light is in units of cm s�1.  Therefore, we get 
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 (13.62) 

The constant B is called the rotational constant, and its definition is obvious from 
the first equation above. 
The figures below show the pure rotational (or microwave) spectrum of CO and 
the linear triatomic molecule N2O.  The spectra show transmittance, defined as I/I0 
or 

 10log (1/ ) .T A=  (13.11) 

So, the amount of transmitted light decreases sharply at regular intervals along the 
frequency axis, indicating that the molecules absorb radiation at these frequencies. 

According to Eq. (13.62), the 
absorption of radiation occur at 
frequencies 2B, 4B, 6B, 8B, �. 
corresponding to transitions 0 → 1, 
1 → 2, 2 → 3, 3 → 4, etc..  The 
spacing between adjacent lines is 
constant, at 2B, a characteristic 
pattern of a rigid rotor. [To the 
extent that real molecules are not 
�rigid,� the observed patterns do not 
exhibit a truly constant spacing over 
broad frequency ranges.] 
The observed line spacings in 
microwave spectra for almost all 
known diatomic and linear triatomic 

molecules can be readily matched with existing databases so that the compound 
can be identified.  Since, from a microwave spectrum, we can get the (average) 
value of the rotational constant, B, the definition of B above can be used to 
calculate the moment of inertia and thus the interatomic distance r0. 
Example 13.7, Problems 3.18�20. 
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The factors affecting the intensity of absorption lines 
The spectra shown above do not consist of lines of equal intensities.  The variation 
of the intensities of the lines is, of course, due to the variation of the absorbance.  
Since the path length, l, through the sample is a constant and the molar absorption 
coefficient, ε, does not vary with rotational state, we are led to the conclusion that 
the variation must be due to the changes in the concentration, c, from one 
rotational state to another. 
This variation can be attributed to two factors, namely, the degeneracy factor and 
the energy factor.   
The degeneracy factor is due to the fact that rigid rotor states are described by 
spherical harmonics ( , )M

JY θ φ .  At each energy level EJ, there are (2J+1) states, 
corresponding to the allowed values of M.  The larger the degeneracy, the greater 
the availability of states for the molecules to occupy.  So, this factor causes the 
concentration of molecules at a given energy level to increase with J. 

The energy factor is essentially the 
same as the Boltzmann distribution 
discussed in Chapter 1, which 
states that beyond the most 
probable energy, the fraction of 
molecules decreases with 
increasing energy (see Fig. 1.11).  
The competition between these two 
factors are shown in the figure to 
the left (shaded bars represent the 
degeneracy factor and the empty 
bars represent the energy factor).  
This can also be expressed as 
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where cJ is the concentration of 
molecules in the energy level J. 

These factors will be present in all forms of spectra that we examine. 
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13.4. Vibrational-rotational spectra of molecules 
It is impossible to put energy into a molecule�s vibrational modes without affecting 
the rotational modes because, as we shall see below, vibrations and rotations are 
strongly coupled.  So, there is no such thing as �pure vibrational� spectroscopy.  
The terms �vibrational spectroscopy� refers to vibrational-rotational spectroscopy.  
The frequency range for vibrational transitions occurs in the infrared region of the 
spectrum.  So, another term for it is �infrared spectroscopy.� 
The quantum mechanical model for vibrations is the harmonic oscillator.  From 
Chapter 11, the frequency of a harmonic oscillator is given by 
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The energy levels of the harmonic oscillator are given by 

 ν= + =1
2 0( ) ;   0,1,2,...vE v h v  

where we have used the letter v for the quantum number in keeping with 
convention.  The selection rule for transitions in harmonic oscillators is ∆v = ±1.  
The energy difference for a v → v +1 transition is given by 
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For the remainder of our discussion, in keeping with the convention in vibrational 
spectroscopy, the quantity ν0 will be re-labeled asνe, where the subscript refers to 
the equilibrium bond length of the molecule, which will be refered to as re. Also, 
we will denote the transition frequencies in wave numbers by ωe to avoid 
confusing it with the fundamental frequency of the oscillator,νe. 
We will use the lab handout (Lecture Notes Part A) for the analysis of the 
infrared spectrum of HCl for the rest of our discussion of vibrational-rotational 
spectrscopy. 
Problems 13.23, 13.25�13.28, 13.33 
A simple function that approximates the behavior of potential energy with bond-
length in diatomic molecules is the Morse potential function: 

 ( ) 2( ) [1 ] ,er r
p eE r D e α− −= −  

where re is the equilibrium bond distance and De and α are constants whose 
significance we will discuss.
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13.5.  Electronic Spectrum of Molecules 

We examined the electronic configuration of homonuclear diatomic molecules in 
Chapter 12.  For example, from Fig. 12.21(a), the electronic configuration of N2 is 

(1s σg) 2(1s σu
* )2(2s σg) 2(2s σu

* )2(2pπu )4 (2pσg)2. 

This corresponds to the ground state of the molecule, and is denoted as the 1Σg
+  

state (see the handout, Fig. 14.1 from Physical Chemistry, by Silbey and Alberty 
3rd Ed.). 
The convention in electronic spectroscopy is to label electronic states with their 
spin multiplicity (left superscript), the total angular momentum (the upper case 
Greek letter) and the symmetry of the wavefunction (right super- and sub-scripts).  
In addition, ground states are usually designated as the X-state, and the excited 
states are labeled A, B, C, etc., in the order of increasing energy. 
Now imagine that one of the electrons in the 2pσg molecular orbital of N2 is 
provided with sufficient energy to excite it to the 2pπg

*  state.  The electronic 
configuration of the excited state will be 
(1s σg) 2(1s σu

* )2(2s σg) 2(2s σu
* )2(2pπu )4 (2pσg)1 (2pπg

* )1. 

This state is designated as the 3Πg state.  If the electron had been excited to the 
2pσu

* orbital, we would get an excited state with the electronic configuration 

(1s σg) 2(1s σu
* )2(2s σg) 2(2s σu

* )2(2pπu )4 (2pσg)1 (2pσu
* )1, 

which would be designated as the 3Σu
+  state. 

From the handout (Fig. 14.1) it is clear that the 3Σu
+  state is lower in energy than 

the 3Πg state.  This indicates that in the nitrogen molecule, the 2pσu
*  must be lower 

in energy than the 2pπg
*  orbital.  The energy ordering shown in Fig. 12.21 is purely 

schematic and so we must not attach too much significance to this. 
The process by which molecules absorb energy so that electrons are excited from 
the ground electronic state to various excited electronic states is the basis for 
electronic absorption spectroscopy.  The frequency of the radiation required is 
typically in the visible to ultraviolet wavelength range (700-200 nm). 
We will use the lab handout (Lecture Notes Part B) for the analysis of the UV-
Visible spectrum of Iodine for the rest of our discussion of electronic spectrscopy. 


