### 13.3 Permutations and Combinations



There are 6 people who want to use an elevator. There is only room for 4 people. How many ways can 6 people try to fill this elevator (one at a time)?

There are 6 people who want to use an elevator. There is only room for 4 people. How many ways can 6 people try to fill this elevator (one at a time)?
$\underline{6} \times \underline{5} \times \underline{4} \times \underline{3}$
$=360$

## Permutations

DEFINITION A permutation is an ordering of distinct objects in a straight line. If we select $r$ different objects from a set of $n$ objects and arrange them in a straight line, this is called a permutation of $n$ objects taken $r$ at a time. The number of permutations of $n$ objects taken $r$ at a time is denoted by $P(n, r)$.

$$
\begin{aligned}
& \text { Preminds you of the } \\
& \text { word permutation. } \\
& n \text { is the number of objects } \\
& \text { from which you may select. }
\end{aligned}
$$

There are 6 people who want to use an elevator. There is only room for 4 people. How many ways can 6 people try to fill this elevator (one at a time)?
$P(6,4)=$
$\underline{6} \times \underline{5} \times \underline{4} \times \underline{3}$
$=360$

## Permutations

- Example: How many permutations are there of the letters $a, b, c, d, e, f$, and $g$ if we take the letters three at a time? Write the answer using $P(n, r)$ notation.


## Permutations

- Example: How many permutations are there of the letters $a, b, c, d, e, f$, and $g$ if we take the letters three at a time? Write the answer using $P(n, r)$ notation.



## $P(n, r)$ describes a slot diagram.

$\mathrm{n}=$ number in first slot $r=$ number of slots

$$
\frac{n}{1^{\text {st }}} \frac{(n-1)}{2^{\text {nd }}} \frac{(n-2)}{3^{\text {rd }}} \frac{(n-3)}{4^{\text {th }}} \quad \cdots \quad \frac{(\text { last \#) }}{r^{\text {th }}}
$$

| 1st <br> number | 2nd <br> number |  | 3rd <br> number |
| :---: | :---: | :---: | :---: |
| $\mathbf{7}$ | $\times$ | $\mathbf{6}$ |  |$\times$| $\mathbf{5}$ |
| :---: |
| Use any <br> letter | | Can't repeat |
| :---: |
| letter |$~$| Can't repeat |
| :---: |
| letters |



How many ways are there to arrange 5 books on a bookshelf?

How many ways are there to arrange 5 books on a bookshelf?
$P(5,5)=$
$\underline{5} \times \underline{4} \times \underline{3} \times \underline{2} \times \underline{1}$
$=120$

## Shortcut/Defintion

DEFINITION If $n$ is a counting number, the symbol $n!$, called $n$ factorial, stands for the product $n \cdot(n-1) \cdot(n-2) \cdot(n-3) \cdots \cdot 2 \cdot 1$. We define $0!=1$.

## Example: $5!=5 \times 4 \times 3 \times 2 \times 1$

## Example:

Compute (5-2)!

## Example:

Compute (5-2)!
$(5-2)!=3!=3 \times 2 \times 1=6$

## Factorial Notation

- Example: Compute $\frac{8!}{5!3!}$.


## Factorial Notation

- Example: Compute $\frac{8!}{5!3!}$.
- Solution:

$$
\frac{8!}{5!3!}=\frac{8 \cdot 7 \cdot 6 \cdot 8 \cdot 4 \cdot 8 \cdot 2 \cdot x}{\underbrace{8 \cdot 4 \cdot 8 / 2 \cdot x \cdot 8 \cdot 2 \cdot x}_{\text {Cancel } 5!.} \quad \text { Cancel 3!, which equals } 6 .}=8 \cdot 7=56
$$

## Factorial Notation

FORMULA FOR COMPUTING $P(n, r)$

$$
P(n, r)=\frac{n!}{(n-r)!}
$$

There are 6 people who want to use an elevator. There is only room for 4 people. How many ways can 6 people try to fill this elevator (one at a time)?
$P(6,4)=$
$=360$

When we care about the order of objects, like books on a bookshelf, we have a permutation.

When we do not care about the order of objects, like 2 people wining a raffle, we have a combination.

## Combinations

FORMULA FOR COMPUTING $C(n, r)$ If we choose $r$ objects from a set of $n$ objects, we say that we are forming a combination of $n$ objects taken $r$ at a time. The notation $C(n, r)$ denotes the number of such combinations. ${ }^{\dagger}$ Also,

$$
C(n, r)=\frac{P(n, r)}{r!}=\frac{n!}{r!\cdot(n-r)!}
$$

Example: A person would like to run 4 errands, but only has time for 2 . How many pairs of errands could be tried?

Example: A person would like to run 4 errands, but only has time for 2 . How many pairs of errands could be tried?

Order does not matter = combination.

$$
C(4,2)=\frac{4!}{(4-2)!2!}=\frac{4 \times 3 \times 2 \times 1}{2 \times 1 \times 2 \times 1}=6
$$

## Combinations

- Example: How many three-element sets can be chosen from a set of five objects?
- Solution: Order is not important, so it is clear that this is a combination problem.

$$
C(5,3)=\frac{5!}{3!\cdot(5-3)!}=\frac{5 \cdot 4 \cdot z \cdot 2 \cdot x}{3 \cdot 2 \cdot x \cdot 2 \cdot 1}=\frac{20}{2}=10
$$

## Combinations

- Example: How many four-person committees can be formed from a set of 10 people?


## Combinations

- Example: How many four-person committees can be formed from a set of 10 people?
- Solution: Order is not important, so it is clear that this is a combination problem.

$$
C(10,4)=\frac{10!}{4!\cdot(10-4)!}=\frac{10 \cdot 9^{3} \cdot 8 \cdot 7 \cdot \boxed{6} \cdot 8 \cdot 4 \cdot 8 \cdot 2 \cdot x}{4 \cdot 8 \cdot 2 \cdot x \cdot 6 \cdot 8 \cdot 4 \cdot 8 \cdot 2 \cdot x}=210
$$

Example: At a vation spot there are 7 sites to visit, but you only have time for 5 . How many different combinations do you have to choose from?

Example: At a vation spot there are 7 sites to visit, but you only have time for 5 . How many different combinations do you have to choose from?

Order does not matter = combination.
$C(7,5)=21$

## Combinations

- Example: In the game of poker, five cards are drawn from a standard 52-card deck. How many different poker hands are possible?


## Combinations

- Example: In the game of poker, five cards are drawn from a standard 52-card deck. How many different poker hands are possible?
- Solution:

$$
C(52,5)=\frac{52!}{5!47!}=\frac{\frac{13}{82 \cdot 57} \cdot \frac{17}{57} \cdot \frac{10}{50} \cdot 49 \cdot \frac{24}{48}}{8 \cdot 4 \cdot 8 \cdot 2 \cdot 1}=2,598,960
$$

## Combinations

- Example: In the game of bridge, a hand consists of 13 cards drawn from a standard 52card deck. How many different bridge hands are there?


## Combinations

- Example: In the game of bridge, a hand consists of 13 cards drawn from a standard 52card deck. How many different bridge hands are there?
- Solution:

$$
C(52,13)=\frac{52!}{13!39!}=635,013,559,600
$$

## Combining counting methods.

Sometimes you will have more than one counting idea to find the total number of possibilities.

## Example:

2 men and 2 women from a firm will attend a conference. The firm has 10 men and 9 women to choose from. How many group possibilities are there?

Example:
2 men and 2 women from a firm will attend a conference. The firm has 10 men and 9 women to choose from. How many group possibilities are there?
$1^{\text {st }}$ task : choose 2 men from 10
$2^{\text {nd }}$ task: choose 2 women from 10
Use a slot diagram

$$
\overline{1^{\text {st }}} x \frac{}{2^{\text {nd }}}
$$

## Combining Counting Methods

Stage 1: Select the two women from the nine available.

$$
C(9,2)=\frac{9!}{2!7!}=36 \text { ways }
$$

Stage 2: Select the two men from the ten available.

$$
C(10,2)=\frac{10!}{2!8!}=45 \text { ways }
$$

Thus, choosing the women and then choosing the men can be done in $36 \cdot 45=1,620$ ways.

## Example:

How many different outcomes are there for rolling a die and then drawing 2 cards from a deck of cards?

## Example:

How many different outcomes are there for rolling a die and then drawing 2 cards from a deck of cards?
$1^{\text {st }}$ task : roll a die
$2^{\text {nd }}$ task : draw 2 cards from 52 (order does not matter)

Use a slot diagram

$$
\overline{1}^{\mathrm{st}} \quad \overline{2^{\text {nd }}}
$$

## Example:

How many different outcomes are there for rolling a die and then drawing 2 cards from a deck of cards?
$1^{\text {st }}$ task : roll a die $=6$ ways
$2^{\text {nd }}$ task : draw 2 cards from $52=C(52,2)$ (order does not matter)

Use a slot diagram $\frac{6}{1^{\text {st }}} \times \frac{1326}{2^{\text {nd }}}=7956$

Pascal's Triangle

- numbers are written on diagonals
- on the outsides write '1'
- on the inside each number is the sum of the numbers to its upper left and upper right.



## Combining Counting Methods



## Combining Counting Methods

PASCAL'S TRIANGLE COUNTS THE SUBSETS OF A SET The $n$th row of Pascal's triangle counts the subsets of various sizes of an $n$-element set.

For example, consider the set $\{1,2,3,4\}$ and the $4^{\text {th }}$ row of Pascal's triangle: 14641 .

## Combining Counting Methods

ENTRIES OF PASCAL'S TRIANGLE AS $C(n, r)$ The $r$ th entry of the $n$th row of Pascal's triangle is $C(n, r)$.

For example, consider the $4^{\text {th }}$ row of Pascal's triangle: 14641 .

$$
\begin{aligned}
& C(4,0)=1 \\
& C(4,1)=4 \\
& C(4,2)=6 \\
& C(4,3)=4 \\
& C(4,4)=1
\end{aligned}
$$

## Combining Counting Methods

- Example: Assume that a pharmaceutical company has developed five antibiotics and four immune system stimulators. In how many ways can we choose a treatment program consisting of three antibiotics and two immune system stimulators to treat a disease? Use Pascal's triangle to speed your computations.
- Solution: We will count this in two stages: (a) choosing the antibiotics, (b) choosing the immune system simulators.


## $1^{\text {st }}$ - choose 3 antibiotics from 5

## $2^{\text {nd }}-$ choose 2 immune system simulators from 4



## Combining Counting Methods

Stage 1: Choosing 3 antibiotics from 5 can be done in $C(5,3)$ ways.


Stage 2: Choosing 2 immune system simulators from 4 can be done in $C(4,2)$ ways.


Total: $C(5,3) \times C(4,2)=10 \times 6=60$ ways.

