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13.  AN INTRODUCTION TO FOUNDATION ENGINEERING 

 

 

13.1 TYPES OF FOUNDATIONS 

 

 The foundation is that portion of a structure that transmits the loads from the structure to 

the underlying foundation material.  There are two major requirements to be satisfied in the 

design of foundations: 

 

(a) Provision of an adequate factor of safety against failure of the foundation material.  

Failure of the foundation material may lead to failure of the foundation and may also 

lead to failure of the entire structure. 

 

(b) Adequate provision against damage to the structure which may be caused by total or 

differential settlements of the foundations. 

 

 In order to satisfy these requirements it is necessary to carry out a thorough exploration 

of the foundation materials together with an investigation of the properties of these materials by 

means of laboratory or field testing.  Using these physical properties of the foundation materials 

the foundations may be designed to carry the loads from the structure with an adequate margin of 

safety.  In doing this, much use may be made of soil mechanics but to a large extent foundation 

engineering still remains an art.  This chapter will be largely concerned with the contributions that 

may be made by soil mechanics to foundation engineering. 

 

 There are four major types of foundations which are used to transmit the loads from the 

structure to the underlying material.  These foundations types are illustrated in Fig. 13.1.  The 

most common type of foundation is the footing which consists of an enlargement of the base of a 

column or wall so that the pressure transmitted to the foundation material will not cause failure or 

excessive settlement.  In order to reduce the bearing pressure transmitted to the foundation 

material the area of the footing may be increased.  As the size of the footing increases however, 

the deeper the effect of footing pressure extends as was illustrated in Geomechanics 1. 

 

 If the foundation material cannot withstand the pressure transmitted by the footings the 

pressure may be reduced by combining all of the footings into a single slab or raft covering the 

entire plan area of the structure as illustrated in Fig. 13.1.  Raft foundations are also used to bridge 

localised weak or compressible areas in the foundation material.  They are also used where it is 

desirable to reduce the differential settlements that may occur between adjacent columns. 
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FIGURE 13.1  FOUNDATION TYPES 
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 At a building site, firm foundation material may be overlain by strata of weak or 

compressible soil.  In this case a pile foundation may be a satisfactory solution to transmit the 

structural loads through the weak material to the firmer underlying material.  The piles may be 

driven steel, concrete or timber sections or may be made of cast in place concrete.  These 

foundations are often classified either as end (or point) bearing piles or friction piles depending 

upon the major source of the support. 

 

 Piers are sometimes used for the transmission of large loads to firm foundation material 

which may be overlain by poorer material.  Piers may be considered generally as large diameter 

cast in place piles.  Piers are sometimes constructed as caissons in which the foundation members 

are sunk through the soil.  With open caissons the hole is advanced by means of internal dredging 

and in the case of pneumatic caissons excavation is carried out under compressed air to prevent 

the entry of water and mud into the working chamber. 

 

13.2 SETTLEMENT ANALYSES 

 

 Foundations of structures may experience movements through a number of causes, 

among which may be listed: 

 
  (a) elastic and inelastic compression of the sub-soil due to the weight of the structure, 

  (b) ground water lowering, producing an increase in effective stress beneath the foundation, 

  (c) vibration due to pile driving, machinery vibrations etc. which is of particular importance 

in granular soils, 

  (d) seasonal swelling and shrinking of expansive clays, 

  (e) adjacent excavation and construction which may cause movement of the foundations, 

  (f) regional subsidence or movement. 

 

 This section will be concerned mainly with settlement  which is caused by changes in 

load such as the weight of a building. 

 

 For conditions of one dimensional compression the calculation of the amount of 

settlement and the rate at which it occurs have been covered in Geomechanics 1.  This technique, 

which is based upon the results of oedometer tests will be referred to as the conventional method 

in the following discussion. Unfortunately, in foundation engineering practice, one dimensional 

compression conditions are not frequently encountered and consequently the use of the 

conventional method for the calculation of the amount and rate of settlement may not be reliable.  

This is illustrated in Figs. 13.2 and 13.3 which show comparisons between calculated and 

observed settlements for the Waterloo Bridge, London, and the Monadnock Block, Chicago.  In 
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these two instances both the amount and rate of settlement calculated by means of a conventional 

method considerably underestimate the values observed. 

 

 In calculating the rate of settlement of a structure it is necessary to determine the 

boundary conditions in relation to drainage, then to use the appropriate theoretical solution that 

satisfies the actual boundary conditions. 

 

 Regarding the calculation of the amount of settlement it is widely observed, as illustrated 

in Figs. 13.2 and 13.3, that a settlement occurs during the period of construction which is not 

predicted by the conventional one dimensional method.  This type of observation has led to the 

two components of settlement being considered separately.  The first component is an immediate 

settlement which occurs immediately following the application of load and the second component 

is a consolidation settlement which occurs as the pore pressure dissipates.  The stress changes 

which take place in the soil as the immediate and consolidation settlements occur are quite 

different from those when settlement takes place under one dimensional conditions only. 

 

 The stress path followed by a sample of soil undergoing one dimensional consolidation 

is illustrated in Fig. 13.4.  The stress paths that are drawn in this figure are for a representative 

element of soil beneath a foundation and beneath the water table.  Points M and N indicate the 

initial effective and total stress points separated by an initial value of pore pressure ui.  Following 

erection of the structure a vertical stress increase represented by the distance NP will be applied to 

the soil.  This means that the total stress path will move from point N to point P.  If the time of 

construction is very short in relation to the consolidation time then point M will remain unmoved.  

This means that the effective stresses will be initially unchanged and the pore pressure in the soil 

will increase from the initial value ui to a value represented by the distance MP. 

 

 As consolidation proceeds the value of the total major principal stress σ1 will remain 

constant since it is governed by the externally applied foundation load, and the minor principal 

stress σ3 will decrease.  That is, the total stress path will move from point P to point R.  At the 

same time the effective stress on the sample will increase as the pore pressure dissipates.  The 

effective stress path will move along what is referred to as the Ko line from point M to point Q.  A 

Ko line is a locus of the tops of the effective Mohr circles which possess a constant ratio between 

the minor and major principal stresses.  It is along this line that effective stress paths move when a 

soil is being compressed under one dimensional conditions.  Consolidation is complete when the 

excess pore pressure has fully dissipated the the pore pressure in the sample returns to the initial 

value. 
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Fig 13.2  Settlement of Waterloo Bridge, London 

 

 

 

 

    

Fig 13.3  Settlement of Monadnock Block, Chicago 
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Fig 13.4  Stress Paths for One Dimensional Consolidation 

 

 

 

    

 

Fig 13.5  Stress Paths for Typical Settlement Situation 
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 For a typical settlement situation in which one dimensional compression conditions are 

not present, the stress paths are illustrated in Fig. 13.5.  Again, points M and N represent the 

initial effective and total stress points which are separated by an initial pore pressure, ui.  

Following erection of a structure both principal stresses in the soil will change and, in general, the 

total stress path will move along a line represented by NR. 

 

 Immediately following erection, the effective stress path will move from point M to 

some point O.  At the same time the pore pressure will increase from the initial value ui to a value 

represented by the distance OR.  In contrast to the one dimensional case the effective stresses 

change immediately following the application of the load.  In response to this change in stresses 

the soil will undergo a settlement known as the immediate settlement. 

 

 From point O the effective stress path will move horizontally to point Q as the excess 

pore pressure ∆u dissipates.  Consolidation will be complete when the pore pressure in the soil 

returns to the initial value.  During the movement of the effective stress path from point O to 

point Q the consolidation settlement will take place. 

 

EXAMPLE 

 

 A circular pervious footing having a radius of 1.0m is located on the surface of a clay 

stratum 10m thick, which is underlain by a rigid impermeable base.  Compare the value of t90 for 

one dimensional consolidation with the value based upon the more realistic assumption that the 

consolidation is three dimensional. 

 

 one dimensional cv  =  10-3 cm2/sec 

 

 The time factors for the one dimensional and three dimensional cases may be taken from 

Fig. 10.16. Geomechanics 1. 

 

One Dimensional 

 

 T90 = 0.848  = cvt90/H2 

 

 ∴ t90 = 
0.848 x 102

10-3 x 10-4   sec = 26.9 yr 

 

Three Dimensional 

 

The curve corresponding to a (h/a) value of 20 should be used (Fig. 10.16). 
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 T90 = 2 x 10-2   = cv t90/h2 

 

 ∴ t90 = 
2 x 10-2 x 102

10-3 x 10-4   sec = 0.63 yr 

 

 This indicates that the assumption that the consolidation occurs under one dimensional 

conditions leads to a significant over estimate of consolidation time. 

 

 

13.3 THE SKEMPTON-BJERRUM METHOD OF SETTLEMENT ANALYSIS 

 

 As discussed in Chapter 9, Geomechanics 1, the settlement which occurs in a soil layer 

of thickness h when the compression takes place under one dimensional conditions, may be 

expressed as 

 

 ρ = ρoed = mv∆σ1dz

o

h

∫     (13.1) 

 

where mv is the one dimensional compressibility as determined in the oedometer test 

 

 ∆σ1 is the stress change at depth z imposed by the applied load. 

 

 This one dimensional (oedometer) settlement may be considered as the total final 

settlement provided the loading conditions are strictly one dimensional.  As discussed in section 

13.2, loading conditions are commonly three dimensional, so the final settlement should be re-

expressed as follows: 

 

 ρfinal = ρi + ρc                                                              (13.2) 

 

 where ρi is the immediate settlement which occurs immediately following the application 

of load, and ρc is the consolidation settlement which occurs as the pore pressure dissipates. 

 

Note:  A more general expression for the final settlement includes the secondary compression 

component  ρs which occurs after consolidation is complete.  Secondary compression has been 

described in section 10.7.1.  Geomechanics 1.  The expression for final settlement would then 

read 

 

 ρfinal = ρi + ρc + ρs 
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 The settlement ρt which occurs at any time t between the time of construction and the 

completion of consolidation is given by the following expression 

 

 ρt = ρi + Uρc                                                         (13.3) 

 

where U is the degree of settlement which was discussed in section 10.6.  Geomechanics 1. 

 

 For the calculation of the immediate settlement (ρi) the use of elastic theory is 

considered to be applicable.  The elastic displacement equation which may be used for this 

calculation and which was discussed in section 13.2 Geomechanics 1 is: 

 

 ρi = 
qB(1− v2 )Iρ

E
           (13.4) 

 

where q is the pressure applied by the footing to the foundation material 

 B is the width or diameter of the footing 

 ν is the Poisson’s ratio of the soil 

 Iρ is the appropriate influence coefficient for settlement 

 E is the relevant value of the Young’s modulus for the soil. 

 

 For the calculation of the immediate settlement of a saturated fine grained soil the 

relevant value of the Poisson’s ratio is 0.5.  The relevant value of the influence factor Iρ may be 

obtained from a number of tabulations or figures which are available (for example, see Terzaghi 

(1943), Fox (1948), Egorov (1958), Scott (1963), Harr (1966), Christian & Carrier (1978), Das 

(1984)).  Influence factors have been evaluated for smooth or rough rigid footings of various 

shapes and the centre, corner and average of flexibly loaded areas.  Some information on 

influence factors has been provided in Chapter 9 Geomechanics 1 and further data is contained in 

Table 13.1. 

 

 For the calculation of the consolidation settlement (ρc) in equations (13.2) and (13.3), 

Skempton and Bjerrum (1957) proposed the following expression 

 

 ρc = mv∆u dz

o

h

∫      (13.5) 

 

where mv is the one dimensional compressibility of the soil 

 h is the layer thickness 

 ∆u is the pore pressure change developed by the application of load and may be 

determined from equation (7.9) Geomechanics 1 (∆u = B [∆σ3 + A (∆σ1 - ∆σ3)]). 

 



13-10 

 

TABLE 13.1 

INFLUENCE FACTORS FOR SETTLEMENT OF SMOOTH RIGID 

FOOTINGS ON THE SURFACE OF AN ELASTIC SOLID - RIGID BASE AT DEPTH H 

 

Length of Footing = L 

Width of Footing = B 

 

          ρ    =     
qBIρ (1-ν2)

E   

 

VALUES OF Iρ 

 

 

H/B 

Circle 

(Diameter 

= B) 

RECTANGLE Infinite 

Strip L/B 

= ∞ 

  L/B = 1 L/B = 2 L/B = 3 L/B = 5 L/B = 10  

0 

0.1 

0.25 

0.5 

1.0 

1.5 

2.5 

3.5 

5.0 

∞ 

0.000 

0.096 

0.225 

0.396 

0.578 

0.661 

0.740 

0.776 

0.818 

0.849 

0.000 

0.096 

0.226 

0.403 

0.609 

0.711 

0.800 

0.842 

0.873 

0.946 

0.00 

0.098 

0.231 

0.427 

0.698 

0.856 

1.010 

1.094 

1.155 

1.300 

0.000 

0.098 

0.233 

0.435 

0.727 

0.910 

1.119 

1.223 

1.309 

1.527 

0.000 

0.099 

0.236 

0.441 

0.748 

0.952 

1.201 

1.346 

1.475 

1.826 

0.000 

0.099 

0.238 

0.446 

0.764 

0.982 

1.256 

1.442 

1.619 

2.246 

0.000 

0.100 

0.239 

0.452 

0.784 

1.018 

1.323 

1.532 

1.758 

∞ 

(after Egorov, 1958) 

 

 For a saturated soil the pore pressure parameter B is unity so equation (7.9) simplifies to: 

 

 ∆u = ∆σ3 +      A(∆σ1   -   ∆σ3) 

 

  = ∆σ1{(A + 
∆σ3

∆σ1
   (1 - A) )}                                                    (13.6) 

 

 If equation (13.6) is substituted into equation (13.5) the consolidation settlement may 

then be expressed as: 

 ρc = ∫ −
∆

∆
+∆

h

o

v dzAAm ))1((
1

3
1

σ

σ
σ              (13.7) 
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That is: 

 ρc = µ ρoed                                                                     (13.8) 

where 

 µ = 

dzm

dzAAm

h

o

v

h

o

v

1

1

3
1 ))1((

σ

σ

σ
σ

∆

−
∆

∆
+∆

∫

∫
                       (13.9) 

 

 If mν and A are assumed to be constant with depth 

 

 µ = A + α (1 - A) 

 

     where α = 

⌡⌠

   o

 h

    ∆σ3 dz

⌡⌠

   o

 h

    ∆σ1  dz

  

 

∴ ρfinal = ρi + µ ρoed                                                          (13.10) 

 

 The tabulation of α values for circular and strip footings is given in Table 13.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 13.2 



13-12 

 

 

VALUES OF α IN SKEMPTON-BJERRUM SETTLEMENT ANALYSIS 

(H  =  depth to rigid stratum) 

 

H/B Circular Footing 

(diameter = B) 

Strip Footing 

(width = B) 

0 

0.25 

0.5 

1.0 

2.0 

4.0 

10.0 

∞ 

1.00 

0.67 

0.50 

0.38 

0.30 

0.28 

0.26 

0.25 

1.00 

0.74 

0.53 

0.37 

0.26 

0.20 

0.14 

0.00 

 

 Skempton and Bjerrum have prepared a plot relating the µ factor to the pore pressure co-

efficient A for circular and strip footings and for various ratios of layer depth to footing width.  

This plot has been modified by Scott (1963) and this modified diagram has been reproduced as 

Fig. 13.6. 

 

 If the foregoing procedures are used for the calculation of the immediate settlement (ρi) 

and the consolidation settlement (ρc), equations (13.2) and (13.3) respectively may be used for the 

calculation of the final settlement (ρfinal) and the settlement (ρt) at any time during consolidation.  

From comparisons between observed and calculated settlements, it is possible to determine 

whether equation (13.2) provides a better prediction of settlement that that provided by the 

conventional oedometer method in equation (13.1).  Skempton and Bjerrum (1957) showed that 

their method (equation (13.2)) gave, on average, a calculated settlement almost equal to the 

observed settlement for structures on both normally and overconsolidated clay deposits.  In 

contrast the conventional method (equation (13.1)) tended to underestimate settlement for 

normally consolidated clay deposits and overestimate the observed settlement for 

overconsolidated clay deposits.  However there was a noticeable scatter of results of the 

calculated to observed settlement ratio with both methods. 

 

 While the Skempton-Bjerrum method does provide an improved technique for the 

calculation of settlement when compared with the conventional method, it is not, strictly 

speaking, a truly three-dimensional method and therefore cannot be expected to yield accurate 

estimates of settlement in all situations.  More valid and potentially more accurate methods for 

calculating settlement have been presented by Lambe (1964) and by Davis and Poulos (1968). 
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Fig 13.6  Values of Factor µµµµ (After Scott, 1963) 

 

 

EXAMPLE 

 

 Estimate the immediate and total final settlement of a 2m square rigid concrete footing 

supporting a load of 280 kN.  The footing is underlain by a uniform deposit of saturated clay with 

solid rock at a depth of 6m.  The properties of the clay are: 

 

 one dimensional compressibility mν = 0.6m2/MN 

 pore pressure parameter A = 0.5 

 undrained Youngs modulus Eu = 1.5MN/m2 

 

IMMEDIATE SETTLEMENT 

 

 ρi = 
q B Iρ (1 - ν2)

Eu
  

since the clay is saturated ν = 0.5 

 

and from Table 13.1 for H/B = 3 and L/B = 1, 
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 Iρ = 0.82 

 q = 280/(2 x 2) = 70kPa 

 

 ∴ ρi = 
70 x 2 x 0.82 (1 - 0.25)

1.5 x 1000   

  = 57.4mm 

 

CONSOLIDATION SETTLEMENT 

 

This will be calculated by means of equation (13.8).  The oedometer settlement (ρoed) will be 

calculated by means of the 2:1 stress transmission approximation. 

 

stress change at depth z 

 

∆σz = 280/(z + B)2 

 

ρoed = Σ mν ∆ σz h 

  where h is the layer thickness 

 

The calculations based on three 2m thick clay layers are tabulated below. 

 

Depth (z) 

(m) 

(z + B) 

(m) 

(z + B)2 �σσσσz 

(kPa) 

ρρρρoed 

(mm) 

1.00 3.0 9 31.1 37.3 

3.0 5.0 25 11.2 13.4 

5.0 7.0 49 5.7 6.8 

                                                                       Total 57.5 

 

 A more accurate assessment of ρoed may be made if the calculation is carried is carried 

out by integration 

 

ρoed = ⌡⌠

   0

 6

    mν  ∆σz dz  

 = ⌡⌠

   0

 6

    0.6 x (280/(2 + z)2)  dz  

 = -0.6 [280/(2 + z)]
6
0  

 = 63.0mm 
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From Table 13.2, the value of α for a circular footing may be used for the square footing in this 

problem. 

 

For (H/B) = 6/2  =  3.0 

α = 0.29 approx. 

∴ µ = A + α (1 - A) 

 = 0.5 + 0.29 (1 - 0.5) 

 = 0.65 

∴ ρc = 0.65 ρoed  =  0.65 x 63.0 

 = 40.6mm 

 

total final settlement = ρi  +  ρc 

 = 57.4  +  40.6 

 = 98mm 

 

 

 

13.4 SETTLEMENT OF STRUCTURES ON SANDY SOILS 

 

 Because of the difficulty of obtaining undisturbed samples of sandy soil and carrying out 

laboratory tests to measure the soil compressibility, calculations of settlement of structures on 

sandy soil are usually based upon field tests.  Some techniques are based upon penetration 

resistance readings of the soil.  One commonly used measure of penetration resistance is the so 

called standard penetration resistance, N, which is obtained in a dynamic penetration test in which 

the penetrometer consists of a split barrel sampler.  With this test the sampler is driven by means 

of a 63.5 kilogram mass falling a distance of 760mm to the top of the drill rods, the number of 

blows required to drive the sampler a distance of 300mm being recorded as the standard 

penetration resistance N. 

 

 Using this standard penetration resistance, Terzaghi and Peck (1948) prepared a design 

chart based on the assumption that the allowable maximum settlement of a footing was 25mm.  It 

is now appreciated that this design chart was too conservative and Peck, Hanson and Thornburn 

(1974) have prepared a more realistic design chart which is shown in Figure 13.7.  The horizontal 

lines in the figure indicate the soil pressure corresponding to a settlement of 25mm.  The chart is 

based on the observed behaviour of footings located at depths of 3 to 5 metres below the ground 

surface.  The N values governing the footing behaviour therefore corresponded to an effective 

overburden pressure of approx. 0.1MPa.  Some engineers apply a factor of 1.5 to the allowable 

soil pressures obtained from Fig. 13.7, arguing that this figure is still overconservative.  In the 

design of proposed footings, if the overburden pressure differs greatly from 0.1MPa the N values 

should be corrected before the correlation in Figure 13.7 is used. 
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 Gibbs and Holtz (1957) in an extensive laboratory study showed the way in which the 

standard penetration resistance is influenced by overburden pressure (Fig. 13.8).  Gibbs and Holtz 

suggested that N values could be corrected for the effects of oberburden pressure by means of this 

diagram.  If the N value at a depth corresponding to an effective overburden pressure of 0.1MPa is 

considered to be a standard, the correction factor, CN, recommended by Peck, Hanson and 

Thornburn (1974) is given by: 

 

 CN = 0.77 log10 (2/p')                                                        .      (13.11) 

 

where p' is the effective overburden pressure in MPa.  The equation is valid for p' ≥ 25 kPa.  

Equation (13.11) with a modification for low overburden pressures, is illustrated graphically in 

Fig. 13.9 Peck, Hanson and Thornburn (1974) have suggested that correction factors within the 

range 0.8 to 1.2 may be ignored without serious error. 

 

 The lines in Fig. 13.7 are drawn for the condition that the water table is at great depth.  If 

the water table is located at a depth below the ground surface of less than (D + B), Peck, Hanson 

and Thornburn (1974) have recommended that the soil pressures must be multiplied by a 

correction factor (Cw) as follows: 

 

 Cw = 0.5 + 0.5   






Dw

D + B      (13.12) 

 

where Dw is the depth to the water table 

D is the depth to the underside of the footing 

B is the footing width. 

 

Another measure of penetration resistance which is widely used is that obtained from a cone 

penetration test.  (AS1289 F13.1).  In this test, the point resistance is measured as the conical 

point of the penetrometer is gradually pushed into the ground.  Meyerhof (1956) has suggested 

that the relationship between the cone penetration resistance (qc) and the standard penetration 

resistance N is given by the following expression 

 

 qc = 400N KPa                                                                    (13.13) 

 

where N is the uncorrected SPT value.  In contrast Meigh and Nixon (1961) have shown that qc 

varies from 430 N to 1930 N kPa. 
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Fig 13.7  Design Chart for Proportioning Shallow Footing on Sand  

(after peck, hanson and thornburn, 1974) 

 

 

 

 

 

Fig 13.8 Influence of Overburden Pressure on Penetration Resistance in Sands  

(After Gibbs and Holtz, 1957) 
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Fig 13.9  Chart for Correction Of N - Values in sand for influence of Over-Burden Pressure 

(After Peck, Hanson and Thornburn, 1974) 

 

 

 If the Young’s modulus of a sand deposit can be evaluated or estimated, settlement may 

be determined by means of the elastic displacement equation (13.4), the same one that was used 

for the calculation of immediate settlement.  From the cone penetration resistance (qc) the 

Young’s modulus (Es) of sandy soil may be determined by means of the following empirical 

expression 

 

 Es = 2.5qc                                                                                   (13.16) 

 

With this value of Es the settlement of a structure, supported on square footings on sand may also 

be determined by means of a semi-empirical procedure described by Schmertmann (1970, 1978). 

 

 Correlations have been developed between the compressibility (mv) and the cone 

penetration resistance (qc).  Expressions relating the two are often of the form 

 

 mv = 1/(αqc)                                                                               (13.17) 
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where α is a constant depending largely on the type of soil.  This form of expression is widely 

used for clay soils.  Tabulations of α values to be used with this expression have been given by 

Sanglerat (1972). 

 

 

 

Fig 13.10  Definitions of Settlement 

 

 

EXAMPLE 

 

 The results of standard penetration tests in a medium-coarse sand are: 

 
 

HOLE NO. 
 

1 
 

2 
 

3 
 

4 
 

 
DEPTH (m) 

 
                                  Corrected N values 
 

1.0 

2.0 

3.0 

4.0 

5.0 

6.0 

10.0 

3 

15 

14 

21 

27 

30 

52 

5 

12 

18 

24 

22 

34 

47 

4 

13 

14 

18 

20 

38 

60 

7 

20 

22 

18 

31 

36 

42 

                                                                                                                  (water table at 12 m) 

 

 Comment upon the proposal to place a 3 m by 4 m footing at a depth of 2.0 m to carry a 

load of 1.0 MN, if the settlement of the footing is to be limited to 25 mm. 

 

 For each hole the average N value over a depth below the proposed founding level equal 

to the footing width B should be determined.  The average N values between depths of 2 m and 5 

m are 19, 19, 16 and 22 for holes 1, 2, 3 and 4 respectively.  The minimum N value of 16 is the 

one on which the assessment of the allowable soil pressure should be based. 
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 From Fig. 13.7 for B = 3 m, D/B = 0.67 and N = 16 allowable soil pressure = 0.16 MPa. 

 

∴ load which can be safely carried by the footing 

 

 = 0.16 x 3 x 4 

 = 1.92 MN 

 

Since the allowable load exceeds the actual load, the footing settlement should not exceed 25mm.  

Based upon settlement considerations the footing could be reduced in size. 

 

 

 

13.5 ALLOWABLE SETTLEMENT 

 

 The stability and safety of a structure depends much more critically upon the distortion 

of the structure as a result of differential movements of the foundations than upon the absolute 

magnitude of the overall settlement of the foundation.  Many buildings have experienced large 

settlements (even meters of settlement) without having undergone significant structural damage.  

In discussing allowable settlement of structures four measures of settlement are frequently used: 

 

(a) ρmax the maximum settlement of any portion of the foundation 

(b) ∆ the maximum differential settlement between any two portions of the foundation 

(c) (δ/l) the maximum angular distortion of buildings with columns, where δ is the 

differential settlement between the adjacent column footings and l is the column 

spacing 

(d)  relative deflection which is the ratio of the maximum settlement to the length of 

the structure. 

 

Some of these definitions are illustrated in Fig. 13.10. 

 

 A number of observational studies have been carried out in an attempt to define the 

allowable settlement for buildings.  From the results of a study of a large number of buildings, 

Skempton and MacDonald (1956) have recommended a range of maximum allowable settlements 

for structures.  This information has been set out in Table 13.3.  In this same table, Polshin and 

Tokar (1957) have quoted the recommended maximum average settlement values which are given 

in the Russian building code.  The maximum settlements quoted in Table 13.3 are greater than the 

25mm value on which Fig. 13.7 is based.  Although Fig. 13.7 may provide a conservative design, 

differential settlement rather than maximum settlement provides a more logical criterion for 

design as mentioned earlier. 
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TABLE 13.3 

 

MAXIMUM ALLOWABLE SETTLEMENTS FOR BUILDINGS AND LOAD BEARING 

WALLS 

 
  

Footings 
 

Rafts 
 

Maximum Settlement (mm) Clays 

 Sands 

75 

50 

75 to 125 

50 to 75 

Maximum Differential Clays 

Settlement (mm) Sands 

45 

30 

                                                                                       (after Skempton & MacDonald, 1956) 

 

Structure Maximum Average 

Settlement (mm) 

Buildings with plain brick walls on continuous and separate 

foundations (L = wall length, H = wall height) 

L/H ≥ 2.5 

L/H ≤ 1.5 

 

 

80 

100 

Buildings with brick walls reinforced with reinforced 

concrete or reinforced brick 

150 

Framed buildings 100 

Solid reinforced concrete foundations of blast furnaces, 

smoke stacks, silos, water towers, etc. 

300 

                                                                                                 (after Polshin & Tokar, 1957) 

 

 The maximum settlement of a foundation is relatively easy to determine by means of one 

of the techniques previously discussed.  The maximum differential settlement, however, is quite 

difficult to quantify.  Fig. 13.11 has been prepared from a study of a large number of buildings 

located on both sandy and clayey soils.  This diagram presents upper boundaries to the observed 

maximum differential settlements for particular values of observed maximum settlements.  This 

figure indicates that in situations where the seat of settlement is located immediately beneath the 

foundation as in the case of sands the maximum differential settlement is almost identical with the 

maximum settlement.  Smaller relative values of maximum differential settlement, however, are 

observed for structures founded on clay soils. 

 

 Observations of building settlements have indicated that the maximum angular distortion 

may be related in an approximate way to the maximum differential settlement as illustrated in Fig. 

13.12.  By making use of Figs. 13.11 and 13.12 a very rough idea of the maximum angular 
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distortion corresponding to a particular calculated value of the maximum settlement of a 

foundation may be obtained. 

 

 Regarding the maximum allowable values of angular distortion a number of 

recommendations have been made.  Terzaghi (1935) from a study of the settlement of six 

buildings with load bearing brick walls concluded that the limiting angular distortion was in the 

vicinity of 1/280.  Skempton and McDonald (1956) have suggested that cracking of the panels in 

frame buildings is likely to occur if the angular distortion exceeds 1/300.  Other values of the 

angular distortion corresponding to a range of criteria are presented in Table 13.4.  These figures 

apply to a sagging mode of distortion.  Burland et al (1979) showed that if the deformation mode 

was hogging cracking occurred at much lower values of angular distortion. 

 

 

 

Fig 13.11  Envelopes of Maximum Observed Differential Settlements  

(After Bjerrum, 1962) 
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Fig 13.12  Observed relationship between Max. Differential Settlement and Max. Angular 

Distortion 

 

 

TABLE 13.4 

LIMITS OF ANGULAR DISTORTION OF BUILDINGS 

(after Bjerrum, 1963) 

Criterion Angular Distortion 

(δδδδ/1) 

Structural damage to building 1/150 

Safe limit for flexible brick walls    








H/L < 
1
4   1/150 

Considerable cracking in panel walls and brick walls 1/150 

Difficulties with overhead cranes to be expected 1/300 

First cracking in panel walls to be expected 1/300 

Safe limit for buildings where cracking is not permissible 1/500 

Danger limit for frames with diagonals 1/600 

Limit where difficulties with machinery sensitive to 

settlements to be feared 

1/750 
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Values of the recommended maximum allowable angular distortion taken from the Russian 

building code have been presented in Table 13.5. 

 

 

TABLE 13.5 

 

MAXIMUM ALLOWABLE ANGULAR DISTORTION OF BUILDINGS AND LOAD 

BEARING WALLS 

(after Polshin & Tokar, 1957) 

 

 

 Sand and Hard Clay Plastic Clay 
 

Angular distortion for: 
 
(a) steel and reinforced concrete frame 

structures 
 
(b) end rows of columns with brick cladding 
 

 
 

.002 
 
 

.007 

 
 

.002 
 
 

.001 

Relative deflection of plain brick walls for: 
 
(a) multi storey buildings 
 L/H ≤ 3 
 L/H ≥ 5 
 
 (L = length of deflected part of wall, 
 
 H = wall height) 
 
(b) one storey mills 

 
 
 

.0003 

.0005 
 
 
 
 
 

.001 

 
 
 

.0004 

.0007 
 
 
 
 
 

.001 
 

 

 

13.6  BEARING CAPACITY OF STRIP FOOTINGS 

 

 The maximum bearing pressure that a foundation can support before the foundation soil 

fails is widely referred to as the ultimate bearing capacity.  General shear failure of the foundation 

soil for a continuous or strip footing is considered to occur as shown in Fig. 13.13.  The surface of 

sliding is along line KLM with a similar surface of sliding on the opposite side of the footing.  A 

number of solutions for the ultimate bearing capacity (qult), in which various simplifying 

assumptions are made, have been developed.  Prandtl (1921) has produced a solution for a surface 

footing (D = 0) in which the foundation soil is assumed to be weightless.  For this solution, which 

was carried out by means of the theory of plasticity, and angle ψ is equal to (45˚ + φ/2). 
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 With the Prandtl solution the underside HJ of the footing is smooth and three zones may 

be identified within the failure region.  The zone indicated in Fig. 13.13 by the triangle JHK is an 

active Rankine zone, the zone indicated by the region KJL is a zone of radial shear with the line 

KL being a portion of a log spiral and the zone indicated by the triangle JLM is a passive Rankine 

zone. 

 

 If a surcharge pressure q is considered to act on the surface of the ground, level with the 

underside of the foundation, an additional component is added to the ultimate bearing capacity.  

Reissner (1924) provided a solution for this surcharge component, which was also based on the 

theory of plasticity.  These two bearing capacity components have been represented by means of 

the expression 

 

 qult = cNc  +  qNq                                                                    (13.18) 

 

 where Nc and Nq are bearing capacity factors which are given by the following 

expressions: 

 

 Nq = tan 2 (45˚  +  φ/2)  eπ tan φ                                              (13.19) 

 

 Nc = (Nq - 1) cot φ                                                                 (13.20) 

 

 In the analyses by Prandtl and Reissner, it was assumed that the soil was weightless and 

the underside of the footing was perfectly smooth.  In reality, however, soils possess weight and 

the underside of a footing is rarely smooth.  These two aspects of the problem were taken into 

account in the solution presented by Terzaghi (1943).  He assumed that the underside of the 

continuous footing was rough and the angle ψ in Fig. 13.13 was equal to the angle of shearing 

resistance φ.  With the Terzaghi approach the wedge of soil JHK beneath the footing is treated as 

part of the footing.  A surcharge or overburden pressure (q) will be present if the footing is located 

a distance below the ground surface.  Terzaghi assumed that the soil above the foundation level 

HJM could be simply represented by the equivalent surcharge pressure q.  The ultimate bearing 

capacity (qult) is determined  
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Fig 13.13  Assumed Mode of Failure for a Strip Footing 

 

 

 

 

 

Fig 13.14  Terzaghi Bearing Capacity Factors for a Strip Footing 

 

from considerations of vertical force equilibrium at the underside of the footing, and is usually 

made up of three components, a cohesion term, a surcharge term and a weight term, as follows 

 

     qult  =      cNc  +  ρgDNq  +  0.5ρg BNγ                                                               (13.21) 
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The dimensionless bearing capacity factors Nc, Nq and Nγ are functions of the friction angle (φ), 

the Terzaghi values being given in Fig. 13.14.  Several sets of bearing capacity factors are in 

current use in addition to the Terzaghi values.  Vesic (1973) has identified many theoretical 

solutions for shallow foundations and a detailed discussion of some of these solutions has been 

presented by Bowles (1988). 

 

 Equation (13.21) may be used with either total or effective stresses.  For short term 

bearing capacity calculations total stresses and undrained strength parameters, cu and φu, should 

be used.  For long term conditions effective stresses and drained strength parameters, cd and φd, 

should be used.  The density (ρ) in the surcharge term applies to the soil above foundation level, 

and the ρ in the weight term applies to the soil below foundation level. 

 

 The greatest shortcoming of available theories lies in the assumption of incompressibility 

of the foundation soil.  This means that the theories should be applied only to soils which are 

dense or stiff.  Only in this way will the general failure pattern depicted in Fig. 13.13 and referred 

to as a general shear failure, develop.  For softer or looser soils the footing tends to punch into the 

soil and the general failure pattern shown in that figure does not develop.  There is no reliable 

theory which adequately takes into account the effect of soil compressibility in the calculation of 

bearing capacity.  However, a footing on compressible soil may settle significantly under the 

effects of the footing loads and it is quite possible that settlement rather than shear failure may 

become the criterion for the design of the footing. 

 

13.7 EFFECT OF FOOTING SHAPE AND DEPTH ON BEARING CAPACITY 

 

 Equation (13.21), which applies only to strip footings, has to be modified when circular, 

square or rectangular footings are used.  This is usually done by multiplying the bearing capacity 

factors Nc, Nq and Nγ by appropriate semi-empirical shape factors sc, sq and sγ, respectively.  

There have been many suggestions regarding the magnitude of these shape factors.  For example, 

Terzaghi and Peck (1967) have proposed the following expression for a circular footing of 

diameter B. 

 

 qult    =   1.2 cNc  +  ρgDNq  +  0.3 ρg BNγ                                                           (13.22) 

 

and the following for a square footing of width B 

 

 qult   =  1.2 cNc  +  ρgDNq  +  0.4 ρg BNγ                                                             (13.23) 

Shape factors for rectangular footings (B x L) according to Meyerhof (1963) 

 

 sc   =   1  +  0.2 Kp  (B/L)                                                                                         (13.24) 
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 sq =  sγ   =  1  +  0.1 Kp  (B/L) for φ > 10˚                                              (13.25) 

 

 sq=  sγ  =  1   for φ = 0                                                                             (13.26) 

 

where KP   = tan2  (45 + 
φ
2 ) 

 

 For a strip footing on a saturated clay soil the short term bearing capacity factors may be 

evaluated for the value of φu being equal to zero.  For this condition the value of Nq is equal to 

unity and the value of Nγ is zero.  Equation (13.21) then simplifies to the following 

 

 qult   = cNc+  q                                                                                    (13.27) 

 

 For square or rectangular footings, Skempton (1951) has proposed the following 

expression for the bearing capacity factor Nc for the case of φ = 0. 

 

 Nc (rect) =  








1  +  
B
5L    









1  +  
D
5B    Nc (strip)                                        (13.28) 

 

where B is the width of the footing 

 L is the length of the footing 

 D is the depth of the footing below the ground surface. 

 

 With this expression which contains  both shape and depth factors, the maximum value 

of the ratio 
D
B  is 2.5 regardless of the actual value of D.  Skempton has also proposed that with 

this expression the bearing capacity factor Nc for a strip footing may be rounded from the Prandtl 

value of 13.14 to a value of 5.  The Skempton values of the bearing capacity factor Nc for circular 

and square footings are shown in Fig. 13.15. 

 

 Various depth factors (dc, dq, dγ) have been proposed and these are used as multipliers 

for the bearing capacity factors (Nc, Nq, Nγ) in a similar way to the shape factors.  The Meyerhof 

(1963) values, for example, are 

 

 dc = 1  +  0.2 KP (D/ B)            (13.29) 
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Fig 13.15 Short Term Bearing Capacity Factors for Foundations in Saturated Clay (Øu = 0)                       

(After Skempton, 1951) 

 

 

 dq=  dγ  =  1  +  0.1  KP  (D/B)   for φ >10˚                                               (13.30) 

 

 dq=  dγ  =  1  for φ = 0                                                                                    (13.31) 

 

 

 

 

13.8 ALLOWABLE BEARING PRESSURE 

 

 For a strip footing (for purposes of discussion) the allowable bearing pressure (qall), 

which is the pressure used to proportion the footing to support a given load, can be expressed in 

various ways 

 

(a) as the qult (eq. (13.19)), often referred to as the gross ultimate bearing capacity, divided 

by an appropriate factor of safety (F) (Bowles, 1988), 

 

 qall = qult/F                                                                                            (13.32) 
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(b) as the net ultimate bearing capacity, which is defined as the gross ultimate bearing 

capacity less the overburden pressure at foundation level (q), divided by an appropriate factor of 

safety (Das, 1984), 

 

 qall= (qult - q)/F                                                                                        (13.33) 

 

(c) as in (b) but with the addition of the unfactored overburden pressure (Skempton, 1951), 

 

 qall= (qult - q)/F  +  q                                                                               (13.34) 

 

 On logical grounds equation (13.34) is the preferred one to use.  In foundation design a 

value of 3 for F is widely used.  For long term conditions where the analysis is carried out in 

terms of effective stress, Skempton (1951) gives the allowable bearing pressure as 

 

 qall = 
1
F ( )c'Nc + q' (Nq - 1) + 0.5 ρgBNγ   + q                                     (13.35) 

 

where q' is the effective overburden pressure at foundation level 

 

 q is the total overburden pressure at foundation level 

 

and the bearing capacity factors are determined from the effective friction angle (φ'). 

 

If the foundation level is beneath the water table then the terms q' and q will differ.  The use of q 

at the end of equation (13.35) allows for uplift for the submergence or partial submergence of the 

foundation.  Also the density (ρ) in the third term of the bearing capacity expression should be the 

buoyant density. 

 

 For short term conditions where the analysis is carried out in terms of total stresses, the 

allowable bearing pressure for a strip footing on a saturated cohesive soil may be written as 

 

 qall   = 
cu Nc

F    +  q                                                                                                 (13.36) 

 

 

 

EXAMPLE 

 

 Determine the allowable bearing pressure that should be used for design of a square 

footing 3m square.  The footing is to be placed a distance of 2.5m below the surface of a saturated 

clay soil.  The water table is located a distance of 1.0m below the ground surface. 
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Soil properties: 

 

saturated density  = 1.9Mg/m3 

undrained cohesion cu = 110kN/m2 

undrained friction angle φu = 0˚ 

drained cohesion cd = 15kN/m2 

drained friction angle φd = 36˚ 

 

 For determination of the allowable bearing pressure for short term conditions the 

undrained strength parameters should be used.  A factor of safety of 3 will be used.  If the 

Terzaghi & Peck equation (13.23) is used, the ultimate bearing capacity is 

 

 qult    = 1.2 cuNc  +  qNq  +  0.4 ρgBNγ 

 

for φu      = 0˚     from Fig. 14.16 

 

 Nγ      = 0,     Nq  =  1 and Nc  =  5.7 

 

∴ qult    = 1.2 cu Nc  +  q 

 

 qall    = 
1.2 cuNc

F    +  q 

 

          = 
1.2 x 110 x 5.7

3    +  1.9  x  10  x 2.5 

 

           = 251  +  48    = 299 kPa 

 

If, alternatively, the value of Nc was evaluated by means of the Skempton expression  (13.28) 

 

 Nc   = 5 








1 + 
B
5L   









1 + 
D
5B   

        = 5 (1  +  0.2)  








1  +  
2.5

5 x 3   

        = 7.0 

 

∴ qall    = 
cu Nc

F    +  q 

         = 
110 x 7

3    +  48 

         = 257  +  48   = 305 kPa 
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 This value of allowable bearing pressure is only slightly different from the value 

calculated from equation (13.23).  The short term allowable bearing pressure may be taken as 

approx. 300 kPa. 

 

 For long term conditions the calculation should be carried out in terms of effective 

stresses using the drained strength parameters.  For φd  =  36˚ from Fig. 13.14. 

 

 Nc = 63, Nq = 47, Nγ = 51 

 

If the Meyerhof shape and depth factors are used 

 

 KP   = tan2  








45  +  
φ
2                               = 3.85 

 sc     = 1  +  0.2  x 3.85  x 1                      = 1.77 

 sq     = sγ  =  1  +  0.1  x 3.85  x 1             = 1.39 

 dc    = 1 + 0.2 x 3.85   x  (2.5/3)            = 1.33 

 dq   = dγ = 1 + 0.1 x 3.85  x (2.5/3)      = 1.16 

 

 The allowable bearing pressure is given by 

 

 qall = 
1
F  ( )cd Nc sc dc + q'  (Nq - 1) sq dq + 0.5 ρbg BNγ sγ dγ    +  q 

  = 1/3 (15 x 63 x 1.77 x 1.33 + 33 (47 -1) x 1.39 x 1.16 

   + 0.5 x 0.9 x 10 x 3 x 51 x 1.39 x 1.16)  +  48 

  = 1/3  (2225  +  2448  +  1110)  +  48 

  = 1976 kPa 

 

Clearly the footing should be designed for the short term allowable bearing pressure of 300kPa. 
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FIGURE 13.16  COLLAPSE OF SOIL AFTER WETTING 

 

 

13.9 COLLAPSIBLE SOILS 

 

 Metastable or collapsible soils are defined as any unsaturated soil that goes through a 

radical rearrangement of particles and decrease in volume upon wetting with or without additional 

loading.  These soils are generally wind blown (aeolian) deposits in a loose state and often found 

in arid or semi-arid regions.  Typical collapse behaviour is illustrated on the pressure - void ratio 

plot in Fig. 13.16.  As discussed by Clemence and Finbarr (1981) the collapse susceptibility of a 

soil may be determined by means of the collapse potential (CP) which is defined as 

 

 CP = ∆ec  /  (1  +  eo)                                                                              

(13.36) 

 

where the symbols are given in Fig. 13.16.  A guide to the severity of the problem is given in 

Table 13.6. 
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TABLE 13.6 

COLLAPSE POTENTIAL VALUES 

(after Clemence & Finbarr (1981)) 

 

CP 

(%) 

Severity of Problem 

0 - 1 No problem 

1 - 5 Moderate trouble 

5 - 10 Trouble 

10 - 20 Severe trouble 

20 Very severe trouble 

 

 

 

13.10 EXPANSIVE SOILS 

 

 These soils which undergo volume changes upon wetting and drying have been discussed 

in Chapter 2.  Some considerations which may need to be explored in designing foundations on 

these soils include 

 

(a) replacing or chemically stablizing the expansive soil beneath the foundation, 

(b) control the amount of swelling or shrinking by the use of moisture barriers, 

(c) design the foundations and the structures to withstand the ground movements, 

(d) use deep foundations extending to a depth below the active zone of movement, 

(e) load the soil to a pressure intensity to balance the swell pressure. 

 

13.11 SANITARY LANDFILL 

 

 Some of the problems associated with building on sanitary landfill material have been 

discussed by Sowers (1968).  The physical properties of the material are quite difficult to quantify 

and the use of plate load testing has been found to be very helpful (Moore and Pedler, 1977).  

Sanitary landfills have been found to undergo large continuous settlements over a long period of 

time.  Some empirical expression for settlement rate have been developed by Yen and Scanlon 

(1975) based on studies of several landfill sites in California.  A more detailed listing of methods 

of predicting settlement may be found in Oweis and Khera (1990). 
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13.12 PILE FOUNDATIONS 

 

 Pile foundations are commonly divided into two types, end or point bearing piles and 

friction piles depending upon whether the source of support is at the tip of the pile or is derived 

from skin friction around the perimeter of the pile.  Piles may be used to transfer loads to a 

stronger stratum, to compact loose sands, to resist lateral forces, to provide foundations below 

scour level (eg. for a bridge crossing a river) or to provide an economic alternative to surface 

footings.  Piles are commonly less than one meter in diameter and when their diameters are 

greater than this figure they are often referred to piers.  Pile lengths are found to vary from 10 to 

60 meters.  The loads that piles are called upon to carry usually falls within the range of 200kN to 

2000kN. 

 

 Many techniques having varying degrees of reliability may be used for the determination 

of the load carrying capacity of piles.  Probably the most reliable technique is by means of a full 

scale pile load test in which a pile is loaded to failure in the field.  This procedure is extremely 

expensive and would only be seriously considered for large projects.  The results of pile load tests 

are not always conclusive since, as discussed by Chellis (1961) and Fellenius (1980), there are 

many ways in which the results of these tests may be interpreted. 

 

 A much less expensive and, for this reason, more popular method for determination of 

the ultimate load capacity of a pile (Qult), is by consideration of the end bearing and skin friction 

components separately. 

 

 Qult   = skin friction component + end bearing component 

          = πB  D  fs  +  Atip  .  qu                                                                                (13.37) 

 

where the symbols are as given in Fig. 13.17.  The skin friction (fs) is not necessarily constant and 

may vary considerably over the depth of the pile.  In this case the skin friction component would 

need to be obtained by means of integration over the embedded length of the pile.  The ultimate 

bearing capacity (qu) for the tip of the pile could be calculated by means of equation (13.22) 

assuming that the pile is circular is cross-section, and using Nc, Nq and Nγ values appropriate for 

deep foundation (Fig 13.18). 

 

 For a cohesive soil the skin friction (fs) is equated to the adhesion (ca) and this is 

commonly related to the undrained cohesion (cu) by means of the expression 

 

 fs= ca      =      α      cu                                                                           (13.38) 

 

where the adhesion factor (α) varies from unity for low cu values to around 0.3 when cu is equal 

to about 200kPa.  More information is given in the SAA Piling Code (AS2159) and in Tomlinson 
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(1986).  Building codes may also specify the allowable skin friction values which may be used for 

design. 

 

 With a uniform cohesive soil with a constant value of the skin friction over the length of 

the pile, the load in the pile is a maximum at the ground surface and decreases linearly with depth 

as illustrated in Fig. 13.17 (b).  The load in the pile does not decrease linearly with depth in the 

case of a cohesionless soil as shown in part (c) of this figure.  The reason for this is that the skin 

friction (fs) is not constant over the entire length of the pile but increases with increasing depth. 

 

 For a cohesionless soil the skin friction (fs) at any depth z below the ground surface may 

be expressed as follows 

 

 fs = σh tan δ 

  = K σv tan δ 

  = Kρgztanδ                                                                                         (13.39) 

where σh is the horizontal stress acting on the pile surface 

 σv is the vertical stress at a depth z below the ground surface 

 δ is the angle of friction for the pile surface 

 K is an earth pressure co-efficient relating the horizontal to the vertical stress. 

 

 

 

Fig 13.17  Load Distribution in Friction Piles 
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 A number of proposals have been put forward regarding the evaluation of the parameters 

K and δ in equation (13.39).  It has been suggested that the magnitude of the (K tan δ) varies from 

a value of 0.25 in loose sand to 1.0 in dense sand.  Potyondy (1961) has shown that the angle δ 

may vary from approximately one-half of the angle of shearing resistance of the soil in the case of 

smooth steel piles in dry sand to a value equal to the angle of sharing resistance of the soil for a 

rough concrete pile in dry sand.  Terzaghi and Peck (1967) have proposed a much simpler 

approach to the evaluation of skin friction and they have proposed values of 25 kN/m2 for long 

piles in loose sand and 100 kN/m2 for short piles in dense sand.  For soil possessing both 

cohesional and frictional characteristics the skin friction may be evaluated by means of the 

following 

 

 fs = ca+σh tan δ                                                                                   (13.40) 

 

 The load capacity of a pile may also be determined by means of a dynamic formula in 

which the ultimate supporting capacity of the pile is assumed to be equal to the ultimate driving 

resistance of the pile with an appropriate allowance for energy loss. 

 

 WH = RS + energy loss                                                          (13.41) 

 

where the term WH is the energy input in which for a drop hammer, W would be the weight of 

the ram, H would be the height of fall.  R is the driving resistance of the pile which is assumed to 

be equal to the ultimate load capacity of the pile and S is the distance driven by the final blow. 

 

 Most dynamic formulas differ in the ways in which the energy loss is taken into account.  

The use of dynamic formulas for the calculation of the ultimate load capacity of a pile is not 

recommended for design although this procedure may be quite useful for construction control 

purposes. 

 

 For point bearing piles the skin friction component is commonly ignored although it is 

quite possible for a significant amount of the supporting capacity of the pile to be derived from 

this source.  The total supporting capacity of a group of point bearing piles is often taken to be the 

sum of the individual supporting capacities of the piles making up the group.  For a group of 

friction piles this is not found to be the case unless the pile spacing is very large in comparison 

with the pile diameter.  For a group of friction piles driven into loose sand the group capacity is 

found to exceed the sum of the individual pile capacities due to the compacting effect of the pile 

driving on the sand.  In the case of soft clay however, the group capacity is found to be less than 

the sum of the individual capacities. 

 

 This ratio of the group supporting capacity to the sum of the individual capacities of piles 

making up the group is referred to as the efficiency of the group.  A number of efficiency 
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formulas have been proposed in an attempt to take this effect into account.  Terzaghi and Peck 

(1967) have proposed that the ultimate supporting capacity of the pile group, Qg, may be checked 

by assuming that the pile group behaves as one solid block or pier.  They propose that the 

following expression should be used. 

 

 Qg = qult BL + sD (2B +  2L)                                                  (13.42) 

 

where B is the width of the pile group 

 L is the length of the pile group 

 s is the average shear strength of the soil over the embedded length D of the pile 

   group. 

 

 This type of block failure is very rarely associated with sandy soils but is much more 

commonly experienced with friction piles in clay soils. 

 

 Techniques for the determination of settlement of single piles and pile groups where the 

soil is assumed to be an elastic solid have been presented by Poulos (1968).  For the calculation of 

settlements of pile groups in clay soils a rough procedure which is often used is one in which the 

group load is assumed to be concentrated either at the location of the pile tips or at a depth equal 

to two-thirds of the pile lengths. 

 

 A detailed presentation of pile foundation behaviour has been given by Poulos (1989). 

 

EXAMPLE 

 

 A group of nine timber piles (3 x 3) is driven 10m into a saturated clay stratum.  The pile 

diameter is 0.5m and the pile spacing (centre to centre) in both directions is 1.0m.  The undrained 

cohesion of the clay is 60 kN/m2.  Determine the ultimate load capacity of the pile group. 

 

 The capacity of a single pile is 

 

 Qult =πBDfs +   Atip    qult                                                                     (13.37) 

 

For cu =60 kPa, the SAA Piling Code suggests an α value of 0.8 

 

∴ fs =ca = 0.8 x 60  =  48 kPa 

 

The net ultimate bearing capacity of the tip of the pile is 

 

 qult = cu  Nc 
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  = 60  x  9  =  540 kPa 

 

 ∴ Qult = π  x 0.5  x  10  x 48  +  
π
4   x 0.52  x  540 

 

  = 754  +  106  =  860 kN 

 

Sum of the ultimate capacities of nine piles 

 

  = 9  x 860  =  7740kN 

 

 The ultimate capacity of the pile group assuming that the group behaves as a solid block 

should now be calculated in accordance with equation (13.42).  The group has a square shape in 

plan with the length of the side of the square being 

 

  = 0.5  +  2  x  1.0  =  2.5m 

 

 ∴ Qg = qult BL +  sD  (2B  +  2L)                                                             (13.42) 

 

  = 540  x  2.52  +  60  x  10  (5  +  5) 

 

  = 3380  +  6000  =  9380kN 

 

Since this calculation yields a capacity greater than that calculated on the basis of the piles being 

considered individually, the ultimate load capacity of the group is 7740kN. 
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