
© 2007 David S. Rosenblum

Advanced Analysis and Design
Architectural Styles

Professor David S. Rosenblum
Department of Computer Science

http://www.cs.ucl.ac.uk/staff/D.Rosenblum/

© 2007 David S. RosenblumAdvanced Analysis & Design (GS02/4022)

Architectural Styles

‘A set of design rules that identify the kinds of components
and connectors that may be used to compose a system or
subsystem, together with local or global constraints on
the way the composition is done’

— Shaw & Clements, 1996

• A family or class of architectures sharing a common
pattern of structural organization

© 2007 David S. RosenblumAdvanced Analysis & Design (GS02/4022)

The Pantheon
Rome, Italy

Analogy with Civil Architecture
The Classical Style

© 2007 David S. RosenblumAdvanced Analysis & Design (GS02/4022)

Nôtre-Dame Cathedral
Paris, France

Analogy with Civil Architecture
The Gothic Style

© 2007 David S. RosenblumAdvanced Analysis & Design (GS02/4022)

Irvine, California, USA

Analogy with Civil Architecture
The Mediterranean Style

© 2007 David S. RosenblumAdvanced Analysis & Design (GS02/4022)

Common Software Architectural Styles
Shaw & Garlan, 1996 (1)

• Dataflow Systems
 Batch sequential
 Pipes and filters

• Call-and-Return Systems
Main program and subroutines
Object-oriented systems
Hierarchical layers (onion layers)

• Independent Components
Communicating processes (client/server and peer-to-peer)
 Event systems
 Implicit invocation

© 2007 David S. RosenblumAdvanced Analysis & Design (GS02/4022)

Common Software Architectural Styles
Shaw & Garlan, 1996 (2)

• Virtual Machines
 Interpreters
 Rule-based systems

• Data-Centered Systems (Repositories)
Databases
Hypertext systems
 Blackboards

© 2007 David S. RosenblumAdvanced Analysis & Design (GS02/4022)

Characterising Architectural Styles

• Component and connector characteristics
• Allowed configurations
• Underlying computational model
• Stylistic invariants
• Common examples of its use
• Advantages and disadvantages
• Common specialisations

© 2007 David S. RosenblumAdvanced Analysis & Design (GS02/4022)

• Components
 Individual programs transforming input data to output data

• Connectors
 Unidirectional or bidirectional data streams

• Configurations
 Parallel linear composition of program invocations

• Underlying computational model
 Sequential data flow and transformation

• Stylistic invariants
 Every component has one input predecessor connector and one output

successor connector
• Common specializations

 Pipelines: single linear composition of pipes and filters
 Bounded pipes, typed pipes

The primary architectural style supported by UNIX

The Pipe-and-Filter Style

© 2007 David S. RosenblumAdvanced Analysis & Design (GS02/4022)

% pic mydoc.t | eqn | tbl | troff | lpr

pic eqn tbl troff lpr

Component ConnectorLegend:

Pipe-and-Filter Example
UNIX Text Processing

© 2007 David S. RosenblumAdvanced Analysis & Design (GS02/4022)

Pipe-and-Filter
Advantages and Disadvantages

• Advantages
 Simple, intuitive, efficient composition of components
High potential for reuse
 Easy to evolve and enhance
 Potential for limited amount of concurrency

• Disadvantages
 Batch-oriented processing
Must agree on lowest-common-denominator data format
 Limited application domain: stateless data transformation

© 2007 David S. RosenblumAdvanced Analysis & Design (GS02/4022)

The Layered System Style

• Components
 Programs or subprograms

• Connectors
 Procedure calls or system calls

• Configurations
 ‘Onion’ or ‘stovepipe’ structure, possibly replicated

• Underlying computational model
 Procedure call/return

• Stylistic invariants
 Each layer provides a service only to the immediate layer ‘above’

(at the next higher level of abstraction) and uses the service only
of the immediate layer “below” (at the next lower level of
abstraction)

© 2007 David S. Rosenblum

Application

Presentation

Session

Transport

Network

Data Link

Physical

Application

Presentation

Session

Transport

Network

Data Link

Physical

Network

Data Link

Physical

Network

Data Link

Physical

Layered System Example
OSI Protocol Stack

© 2007 David S. RosenblumAdvanced Analysis & Design (GS02/4022)

Layered System
Advantages and Disadvantages

• Advantages
 Effective separation of concerns
Well-defined levels of abstraction
 Reduced impact of change when changes don’t affect layer

interfaces

• Disadvantages
 Performance degrades with too many layers
Can be difficult to assign functionality cleanly to the ‘right’ layer

© 2007 David S. RosenblumAdvanced Analysis & Design (GS02/4022)

The Blackboard Style

• Components
 Blackboard client programs

• Connector
 Blackboard: shared data repository, possibly with finite capacity

• Configurations
Multiple clients sharing single blackboard

• Underlying computational model
 Synchronised, shared data transactions, with control driven

entirely by blackboard state

• Stylistic invariants
All clients see all transactions in the same order

© 2007 David S. RosenblumAdvanced Analysis & Design (GS02/4022)

Chat TranscriptChat Client Chat Client

Chat Client Chat Client

Chat Client

Blackboard Example
An Online Chat Room

© 2007 David S. RosenblumAdvanced Analysis & Design (GS02/4022)

Blackboard
Advantages and Disadvantages

• Advantages
General style suitable for network-based applications, including

network database servers

• Disadvantages
 Blackboard becomes a bottleneck with too many clients

© 2007 David S. RosenblumAdvanced Analysis & Design (GS02/4022)

Event-Based Systems and the
Implicit Invocation Style

• Components
 Programs or program entities that announce and/or register

interest in events
» Events represent happenstances inside an entity that may (or

may not) be of interest to other entities

• Connectors
 Direct registration with announcing entities
 Or, explicit event broadcast and registration infrastructure

• Configurations
 Implicit dependencies arising from event announcements and

registrations

• Underlying computational model
1. Event announcement is broadcast
2. Procedures associated with registrations (if any) are invoked

© 2007 David S. RosenblumAdvanced Analysis & Design (GS02/4022)

Debug events

Interactive
Program
Debugger

Application
Program

Breakpoint
Routine

Set breakpoint line 10

Implicit Invocation Example
Program Debugging (1)

© 2007 David S. RosenblumAdvanced Analysis & Design (GS02/4022)

Debug events

Interactive
Program
Debugger

Application
Program

Breakpoint
Routine

line 10

Implicit Invocation Example
Program Debugging (2)

© 2007 David S. RosenblumAdvanced Analysis & Design (GS02/4022)

Interactive
Program
Debugger

Application
Program

Breakpoint
Routine

Line 8 reached
Debug events

line 10

Implicit Invocation Example
Program Debugging (3)

© 2007 David S. RosenblumAdvanced Analysis & Design (GS02/4022)

Interactive
Program
Debugger

Application
Program

Breakpoint
Routine

Line 10 reached
Debug events

line 10

Implicit
Invocation!

Implicit Invocation Example
Program Debugging (4)

© 2007 David S. RosenblumAdvanced Analysis & Design (GS02/4022)

Implicit Invocation
Advantages & Disadvantages

• Advantages
Allows for decoupling and autonomy of components
 Enhances reuse and evolution

» Easy to introduce new components without affecting existing
ones

• Disadvantages
Components announcing events have no guarantee of getting a

response
Components announcing events have no control over the order of

responses
 Event abstraction does not cleanly lend itself to data exchange
Difficult to reason about behaviour of an announcing component

independently of components that register for its events

© 2007 David S. RosenblumAdvanced Analysis & Design (GS02/4022)

What other styles can you think of?

Some Criteria for
Selecting and Comparing Styles

• Control flow
• Data flow
• Application
• Distribution
• Scalability
• what else?

