

Chapter 13

Design of Experiments (DoE)

Contents

- Introduction to DoE
- Types of experimental designs
- 2^k Factorial design
- $2^{k}r$ Factorial design with replications
- 2^{k-p} Fractional factorial design

Introduction to DoE

Design of Experiments

- Example: Study the performance of a system in respect to particular parameters
 - System: routing algorithm for a MANET
 - Parameters:
 - Number of nodes: N = {10, 20, 50, 100, 1000, 10000}
 - Mobility: M = {1 m/s, 3 m/s, 5 m/s, 10 m/s}
 - Packet size: P = {64 byte, 256 byte, 512 byte, 1024 byte}
 - Number of parallel flows: $F = \{1, 3, 5, 7, 10\}$
 - Parameter space: $N \times M \times P \times F = 6 \times 4 \times 4 \times 5 = 480$

 Question: how to perform the experiments to understand the effects of the parameters?

Design of Experiments

- Answer: Design of Experiments (DoE)
 - The goal is to obtain

maximum information with the minimum number of experiments

Terminology

Response variable:	The outcome of an experiment					
Factor:	Each variable that affects the response variable and has several alternatives					
Level:	The values that a factor can assume					
Primary Factor:	The factors whose effects need to be quantified					
Secondary Factor:	Factors that impact the performance but whose impact we are not interested in quantifying					
Replication:	Repetition of all or some experiments					
Experimental Unit:	Any entity that is used for the experiment					
Interaction:	Two factors A and B interact if the effect of one depends upon the level of the other					

Interaction of factors

Design

- Design: An experimental design consists of specifying the number of experiments, the factor level combinations for each experiment, and the number of replications.
- In planning an experiment, you have to decide
 - 1. what measurement to make (the response)
 - 2. what conditions to study
 - 3. what experimental material to use (the units)

• Example

- 1. Measure goodput and overhead of a routing protocol
- 2. Network with n nodes in chain
- 3. Routing protocol, type of nodes, type of links, traffic

Types of experimental designs

Types of experimental designs: Simple design

- Simple design
 - Start with a configuration and **vary one factor** at a time
 - Given k factors and the *i*-th factor having n_i levels
 - The required number of experiments

$$n = 1 + \sum_{i=1}^{k} (n_i - 1)$$

- Example:
 - $k=3, \{n_1=3, n_2=4, n_3=2\}$
 - n = 1 + (2 + 3 + 1) = 7

Types of experimental designs: Full factorial design

- Full factorial design
 - Use all possible combinations at all levels of all factors
 - Given k factors and the *i*-th factor having n_i levels
 - The required number of experiments

$$n = \prod_{i=1}^{k} n_i$$

- Example:
 - $k=3, \{n_1=3, n_2=4, n_3=2\}$
 - $n = 3 \times 4 \times 2 = 24$

Types of experimental designs Fractional factorial design

- Fractional factorial design
 - When full factorial design results in a huge number of experiments, it may be not possible to run all
 - Use subsets of levels of factors and the possible combinations of these
 - Given k factors and the *i*-th factor having n_i levels, and selected subsets of levels $m_i \le n_i$.
 - The required number of experiments

$$n = \prod_{i=1}^{k} m_i$$

- Example:
 - $k=3, \{n_1=3, n_2=4, n_3=2\}$, but use $\{m_1=2, m_2=2, m_3=1\}$
 - $n = 2 \times 2 \times 1 = 4$

Types of experimental designs

• Comparison of the design types

Design Type	Factors	Number of experiments
Simple design	k=3, { n_1 =3, n_2 =4, n_3 =2}	7
Full factorial design		24
Fractional factorial design	Use subset $\{m_1=2, m_2=2, m_3=1\}$	4

2^k Factorial Designs

2^k Factorial Designs

- A 2^k factorial design is used to determine the effect of k factors
 - Each factor has two levels
- Advantages
 - It is easy to analyze
 - Helps to identify important factors
 reduce the number of factors
 - Often effect of a factor is unidirectional, i.e., performance increase or decrease
 - Begin by experimenting at the minimum and maximum level of a factor
 + two levels

2^k Factorial Designs Example for k=2

- Study impact of memory and cache on performance of a workstation
- Memory size, two levels
- Cache size, two levels
- Performance of workstation as regression model

 $y = q_0 + q_A x_A + q_B x_B + q_{AB} x_A x_B$

2^k Factorial Designs Example for k=2

- Regression model
 - $y = q_0 + q_A x_A + q_B x_B + q_{AB} x_A x_B$
- Substitute the results into the model

$$y_1 = q_0 - q_A - q_B + q_{AB}$$

$$y_2 = q_0 + q_A - q_B - q_{AB}$$

$$y_3 = q_0 - q_A + q_B - q_{AB}$$

 $y_4 = q_0 + q_A + q_B + q_{AB}$

• Solve equantions for q_i

$$q_{0} = \frac{1}{4}(y_{1} + y_{2} + y_{3} + y_{4})$$

$$q_{A} = \frac{1}{4}(-y_{1} + y_{2} - y_{3} + y_{4})$$

$$q_{B} = \frac{1}{4}(-y_{1} - y_{2} + y_{3} + y_{4})$$

$$q_{AB} = \frac{1}{4}(y_{1} - y_{2} - y_{3} + y_{4})$$

$$y = 40 + 20x_{A} + 10x_{B} + 5x_{A}x_{B}$$

Experiment	A	B	У	AB
1	-1	-1	У ₁	1
2	1	-1	y ₂	-1
3	-1	1	У ₃	-1
4	1	1	y ₄	1

2^k Factorial Designs Example for k=2: Sign table method

• Sign table contains the effect of factors

Ι	A	B	AB	У
1	-1	-1	1	15
1	1	-1	-1	45
1	-1	1	-1	25
1	1	1	1	75
160 40	80 20	40 10	20 5	Total Total/4

2^k Factorial Designs Example for k=2: Allocation of variation

- Determine the importance of a factor
 - Calculate the variance

$$s_{y}^{2} = \frac{\sum_{i=1}^{2^{2}} (y_{i} - \overline{y})^{2}}{2^{2} - 1}$$

• Sum of squares total (SST): Total variation of y

$$y = SST = \sum_{i=1}^{2^2} (y_i - \bar{y})^2$$

• For 2² design, the variation is given by

$$SST = \underbrace{2^{2} q_{A}^{2}}_{SSA} + \underbrace{2^{2} q_{B}^{2}}_{SSB} + \underbrace{2^{2} q_{AB}^{2}}_{SSAB}$$

- SSA: part explained by factor A
- Fraction of variation explained by A: SSA/SST

2^k Factorial Designs The General Case

- In the general case there are k factors, each factor has two levels
- A total of 2^k experiments are required
- Analysis produces 2^k effects (results)
 - k main effects
 - $\binom{k}{2}$ two-factor interactions
 - $\binom{k}{3}$ three-factor interactions
 - ...
- Sign table method is used!

2^k Factorial Designs The General Case

• Sign table, example for k=3

Ι	A ₁	A ₂	A ₃	A ₁ A ₂	A ₁ A ₃	A ₂ A ₃	$A_1A_2A_3$	У
+	-	-	-	+	+	+	-	y ₁
+	+	-	-	-	-	+	+	y ₂
+	-	+	-	-	+	-	+	У ₃
+	+	+	-	+	+	-	-	y ₄
+	-	-	+	+	+	-	+	y ₅
+	+	-	+	-	-	-	-	У ₆
+	-	+	+	-	-	+	-	У ₇
+	+	+	+	+	+	+	+	У ₈

2^k Factorial Designs The General Case

• Sign table

Ι	A ₁	A ₂	A ₃	•••	A ₁ A ₂	A ₁ A ₃	• • •	$A_1A_2A_3$	•••	У
1	-1									y ₁
1	1									y ₂
1	-1									y ₃
SumI SumI/2 ^k										Total Total/2 ^k

2^kr Factorial Design with Replications

$2^{k_{r}}$ Factorial Design with Replications

- Problem with 2^k factorial design is that it does not provide the estimation of experimental errors, since no repetitions
- Solution: Repeat an experiment r times + replication
 - If each of the 2^k experiments is repeated r times
 - → $2^{k}r$ factorial design with replications
- Extended model

$$y = q_0 + q_A x_A + q_B x_B + q_{AB} x_A x_B + e$$
Experimental error

$2^{k_{r}}$ Factorial Design with Replications

• For analysis, the same method is used, except for *y*, the mean of the replications is used.

Ι	Α	B	AB	У	\overline{y}
1	-1	-1	1	(15,18,12)	15
1	1	-1	-1	(45,48,51)	48
1	-1	1	-1	(25,28,19)	24
1	1	1	1	(75,75,81)	77
164 41	86 21.5	38 9.5	20 5		Total Total/4

- Experimental error is given: $e_{ij} = y_{ij} \overline{y}$
- Sum of squared errors (SSE) and the standard deviation of errors:

- When the number of factors is large, a full factorial design requires a large number of experiments
- In that case fractional factorial design can be used
 - Requires fewer experiments, e.g., 2^{k-1} requires half of the experiments as a full factorial design

- Preparing the sign table
 - Choose *k*-*p* factors and prepare a complete sign table.
 ➡Sign table with 2^{k-p} rows and 2^{k-p} columns
 - The first column will be marked I and consists of all 1s
 - The next k-p columns will be marked with the k-p factors that were chosen
 - The remaining columns are simply products of these factors

• Sign table, example for $k=7, p=4 \Rightarrow 2^{7-4}=2^3$

- Confounding
 - with fractional factorial design some of the effects can not be determined
 - only combined effects of several factors can be computed
- A fractional factorial design is not unique
- Design resolution
 - The resolution of a design is measured by the order of effects that are confounded
 - The **order of effect** is the number of factors included in it
 - I = ABC order of 3 \Rightarrow Resolution R_{III}
 - I = ABCD order of 4 \Rightarrow Resolution R_{IV}
 - A design of higher resolution is considered a better design.

Summary

- Design of experiments provides a method for planned experiments
- Goal: Obtain maximum information with minimum experiments
- Basic techniques
 - Factorial design
 - Factorial design with replications
 - Fractional factorial design