
13 THIN-WALLED METAL CONSTRUCTION 
Thin-walled metallic members are used in a significant number of structural applications: 
buildings, bridges, storage tanks, cars, ships, aircraft, etc. Here thin-walled metal construction 
refers primarily to civil engineering applications, with particular focus on building structures. 
Thin-walled metallic members are employed as the primary framing system in low-rise and mid-
rise construction, and as the secondary framing system in high-rise or long span construction, 
such members are also commonly used in specialty structures such as storage racks, 
greenhouses, and others. 

Cold-formed steel, stainless steel, and aluminum members, either by the use of thin sheet 
material or the inherent nature of the stress-strain response of the base material, all qualify as 
thin-walled metallic members. Example cross-sections include tubular members (Fig. 4.1b), I-
sections (Fig. 4.1h), channels, Z-sections, hat sections (Fig. 4.1i), T-sections (Fig. 4.1m), and 
panels (Fig. 4.1o, p, q). The depth of such members generally ranges from 1 to ~12 in. (25 to 
305mm), and the thickness of material ranges from about 0.003 to 0.5 in. (0.076 to 12.7mm) or 
thicker (particularly for aluminum).  

In thin-walled metal construction understanding stability behavior and accounting for, or 
mitigating, this behavior in design plays a dominant role in successful engineering. In a thin-
walled member local plate buckling and cross-section distortion must be treated as an essential 
part of member design. These complications also provide certain opportunities, as local plate 
buckling, in particular, has the capacity for beneficial post-buckling reserve that can be drawn 
upon for increased strength in design. As a result, the ultimate efficiency, e.g. in terms of 
strength-to-weight ratio, can be quite high for thin-walled metallic members. The challenge for 
any design method is to incorporate as many of these complicated phenomena, that are largely 
ignored in conventional design of ‘compact’ metal sections, into as simple and familiar a design 
method as possible. Further complicating the creation of simple design methods for thin-walled 
members is the lack of symmetry in many cross-sections, the enhanced possibility of limit states 
related directly to the use of thin sheet such as web crippling, and other unique characteristics of 
their manufacture and application. 

Thin-walled cold-formed steel enjoys a wide and growing base of application in civil 
structures. For a number of years cold-formed steel members have been a mainstay of metal 
building systems serving as purlins, girts, and the building skin. Also, in high-rise construction 
cold-formed steel panels are widely used as floor decking. Today high-rise construction also uses 
a significant amount of cold-formed steel for curtain walls and partition walls. In addition, load 
bearing cold-formed steel for low-rise and mid-rise buildings has seen significant growth in the 
last two decades, where cold-formed steel members frame the walls, floors, and roof (including 
trusses). Along with this increase in applications has come research to support the new 
applications and new challenges to overcome. 

The emphasis in this Chapter is on design and stability related to cold-formed steel 
construction. Stainless steel and aluminum members are covered in the last two sections of this 
Chapter. The first requirement for any thin-walled metallic member is to determine the elastic 
stability modes of the member: local, distortional, and global – this is covered in Section 13.1. 
Two design methods currently exist for cold-formed steel the classical Effective Width Method 
and the newly developed Direct Strength Method. These important design approximations are 
the focus of Sections 13.2 and 13.3 respectively. Other design approaches such as Reduced 
Stress, Effective Thickness, the Q-(or form-)factor approach, and more recently the Erosion of 
Critical Bifurcation Load (Ungureanu and Dubina 2004) are not detailed here. As the focus of 



the presented design methods (Sections 13.2 and 13.3) is columns and beams, section 13.4 
provides the additional stability and strength limit states that must also be considered for a 
successful cold-formed steel member. Much of the current research focuses on cold-formed steel 
systems, in Section 13.5 the stability and strength of such assemblies is discussed.  



13.1 MEMBER STABILITY MODES (ELASTIC) 
A distinguishing feature of thin-walled members is that cross-section stability must be 
considered in their design, as it often contributes to, or dominates, the observed behavior under 
load. This section presents and discusses the elastic stability modes of thin-walled members, 
namely: local, distortional, and global buckling. Historically, closed-form expressions have been 
employed by engineers in design, and today this trend continues, though some relief using 
computational methods is typically allowed. Given the historical importance of the closed-
formed expression for the stability modes Sections 13.1.2, 13.1.3, and 13.1.4 cover the analytical 
expressions in use for local, distortional, and global buckling, respectively. Finally, in Section 
13.1.5 computational tools for thin-walled member stability, with particular emphasis on the 
finite strip method, are discussed. 

13.1.1 Local, distortional, and global buckling 
Thin-walled members typically have at least three stability modes that are of interest in design: 
local, distortional, and global buckling. The AISI Specification (2007) provides definitions for 
the three buckling modes of a flexural member as follows: Local Buckling: buckling of elements 
only within a section, where the line junctions between elements remain straight and angles 
between elements do not change; Distortional Buckling: a mode of buckling involving change in 
cross-sectional shape, excluding local buckling, and Lateral-torsional Buckling: Buckling mode 
of a flexural member involving deflection out of the plane of bending occurring simultaneously 
with twist about the shear center of the cross-section.. 

As an example consider the three stability modes for a cold-formed steel lipped channel 
in bending as provided in Fig. 13.1. In the example, the local buckling moment is 67% of the 
yield moment (My), and the buckling mode shape has a half-wavelength of 5 in., the distortional 
modes is 65% of My with a 25 in. half-wavelength, and the global mode is lateral-torsional 
buckling with only one half-wave along the length relevant. Given the magnitude of the buckling 
moments (significantly less than My) all three buckling modes, and potentially their interactions, 
may be involved in the design of this member. This is typical in thin-walled member design. 

Examination of the buckled shapes provided in Fig. 13.1 provides support for the AISI  
definitions; however particularly for distortional buckling, the provided definitions are limited in 
their application. From a practical standpoint the modes may often be identified by the 
characteristics of the buckled shape and their appearance at a given half-wavelength. Getting 
beyond heuristics, mechanics-based definitions of the three modes have been proposed and 
implemented in the context of generalized beam theory (Silvestre and Camotim 2002a; Silvestre 
and Camotim 2002b) and the finite strip method.(Adany and Schafer 2006a; Adany and Schafer 
2006b). These methods provide the potential for automatic identification of the three primary 
buckling modes. 

The “signature curve” of a thin-walled cross-section as given in Fig. 13.1 was pioneered 
and popularized by Hancock (see e.g. (Hancock 1978) and the figures in Chapter 4, Section 4.6). 
This “signature curve” of a cross-section has become an organizing principle for understanding 
the behavior of thin-walled sections. This curve was generated using the finite strip method and 
is discussed further in Section 13.1.5 below. Further, the implications of, and ease with which, 
such information can now be obtained was the motivating tool for a new design method: the 
Direct Strength Method, discussed in Section 13.3 below. 



10
0

10
1

10
2

10
3

0

0.5

1

1.5

half−wavelength (in.)

M
cr

 / 
M

y 

C−section (AISI 2002 Ex. I−8)

M
y
=126.55kip−in.

Local M
cr

/M
y
=0.67

Distortional M
cr

/M
y
=0.85

Lateral−torsional

 

         variation along the member length

half-wavelength

5 in.     Local

25 in.   Distortional

200 in. Lateral-torsional

variation along the member length

half-wavelength

5 in.     Local

25 in.   Distortional

200 in. Lateral-torsional

 
Fig. 13.1 Normalized buckling moment vs. buckling mode half-wavelength for a lipped channel 

13.1.2 Local buckling via plate stability 
As discussed at length in Chapter 4, the classical method for determining local stability of thin-
walled cross-sections is to break the section into a series of plates. For a lipped channel in 
compression the procedure is illustrated in Fig. 13.2. The web (part A) is a stiffened element and 
may be idealized as a plate simply supported on all four sides. The plate buckling stress is: 
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where k = 4.0, via case 1 of Fig. 4.2, and E is the Young’s modulus, ν the Poisson’s ratio, t the 
thickness, and w the plate width. The lip (part C) is an unstiffened element and may be idealized 
as a simply supported plate with one longitudinal edge free, k = 0.425, via case 4 of Fig. 4.2. 



 
Fig. 13.2 Breakdown of a thin-walled cross-section into elements for plate buckling evaluation 

The flange (part B) is an edge stiffened element and represents a potentially more 
complicated condition. For pure local buckling the buckling mode shape (see inset of Fig. 13.1) 
of the flange is similar to the web – and may be approximated as a plate simply supported on 
four sides with a k of 4.0. However, if the lip is short, then the edge stiffened element may 
behave more like an unstiffened element; hence the reason the flange is referred to as an “edge 
stiffened” element instead of simply a “stiffened” element. Treatment of this mode of buckling 
has varied significantly over the years, but today is known as distortional buckling (again, see 
inset buckled shapes of Fig. 13.1) and will be discussed in detail in the next Section. 

If the lipped channel of Fig. 13.2 is under bending instead of compression then the plate 
buckling coefficients (k’s) must be suitably modified. Stiffened elements under stress gradients 
and unstiffened elements under stress gradients are handled by the expressions reported in 
Section 4.2.2 of Chapter 4 (Bambach and Rasmussen 2004; Peköz 1987). In addition, the 
influence of moment gradient on the local plate buckling may also be considered as reported in 
Section 4.2.7 of Chapter 4 (Yu and Schafer 2007a). 

Interaction of elements in local buckling 
As first discussed in Section 4.6 of Chapter 4 the classical approach to local buckling using 
isolated plates violates equilibrium and compatibility of the cross-section. Consider for instance 
the cross-section of Fig. 13.1, but now under the simpler case of pure compression. The 
centerline dimensions (ignoring corner radii) are h = 8.94 in. (227.1 mm), b = 2.44 in. (62.00 
mm), d = 0.744 in. (18.88 mm), and t = 0.059 in. (1.499 mm), the critical buckling stress, fcr of 
each element using the classical plate stability approach are as follows: 

lip:  k = 0.43, fcrl-lip= 0.43[π2E/(12(1-μ2))](t/d)2  = 72.1 ksi (497 MPa) 
flange: k = 4,   fcrl-flange= 4.0[π2E/(12(1-μ2))](t/b)2  = 62.4 ksi (430 MPa) 
web: k = 4,   fcrl-web= 4.0[π2E/(12(1-μ2))](t/h)2  =   4.6 ksi (32.0 MPa) 

Each element predicts a different buckling stress, even though the member is a connected group. 
The high flange and lip buckling stresses have little relevance given the low web buckling stress. 
A finite strip analysis (see Section 13.1.5 for more on computational solutions), which includes 
the interaction amongst the elements, shows that the flange aids the web significantly in local 



buckling, increasing the web buckling stress from 4.6 ksi (32.0 MPa) to 6.6 ksi (45.4 MPa), but 
the buckling stress in the flange and lip are much reduced due to the same interaction.  

It is possible to approximate the local buckling stress as the minimum of the element 
buckling stresses, but this method is typically overly conservative as demonstrated in the 
preceding example and discussed further in Section 4.6 of Chapter 4. The nomographs and 
references of Section 4.6 of Chapter 4 provide a means to determine the local buckling stress 
including the interaction for many simple shapes. Analytical expressions for flange-web and 
flange-lip local buckling interaction do exist for beams (Schafer and Peköz 1999) and columns 
(Schafer 2002). However, by far the simplest method for including the interaction of the 
connected elements (plates) in local buckling is to use one of the computational methods 
discussed in Section 13.1.5. 

13.1.3 Distortional buckling expressions 
Edge stiffeners 

Analytical models for the elastic critical distortional buckling stress (see Fig. 13.1) have 
proven to be relatively complicated. The deformations involved include both membrane 
deformations, primarily in the flange and lip, and bending deformations, primarily in the web. 
Desmond et al. (1981a) provided expressions for the plate buckling coefficient (k) of the flange 
that are a function of the flange width and lip stiffener moment of inertia, and these are provided 
in AISI (2007). However, they have been shown to be poor predictor of the elastic distortional 
buckling stress (Schafer and Peköz 1999) and are only intended to be used in conjunction with 
specific effective width expressions provided (that is to say the k’s provided by Desmond et al. 
1981 are not actually elastic buckling k’s, but empirically modified). 

An alternative approach has been to account for the distortional mode of buckling as a 
compressed strut on an elastic foundation where the elastic foundation is represented by a spring 
that depends upon the bending stiffness of adjacent parts of plane elements and on the boundary 
conditions of the element. This procedure has been adopted in Eurocode 3, Part 1.3 (Eurocode 
2004). The method accounts for the elastic restraint of all elements in the section, including the 
web by incorporation of their flexibility in the elastic spring restraint. A detailed discussion of 
this method applied to channel sections is given in Buhagiar et al. (1992). Another interesting 
alternative approach is the analytical application of Generalized Beam Theory to determining 
closed-formed expressions for distortional buckling (Silvestre and Camotim 2004a; Silvestre and 
Camotim 2004b; Silvestre and Camotim 2004c).   

The analytical model in widest use is Lau and Hancock’s (1987a) and is based primarily 
on the assumption that the flange acts as an isolated column undergoing flexural-torsional 
buckling, while the web provides elastic restraint to the flange, as shown in Fig. 13.3. This model 
was first considered by aluminum researchers (Sharp 1966) and subsequently improved to 
include more consistent treatment of the web by Lau and Hancock (1987a). Schafer and Peköz 
(1999) further improved this model to allow for the impact of applied stresses on the web’s 
rotational stiffness; thus allowing for the case when distortional buckling is triggered by 
instability of the web as opposed to the flange. Teng et al. (2003) examined the method’s 
application to beam-columns. Lau and Hancock’s treatment is used in the Australian cold-
formed steel standard (AS/NZS:4600 2005) and Schafer and Peköz’s in the AISI (2007) 
Specification.  

 



  
Fig. 13.3 Lau and Hancock’s model for distortional buckling: Flange elastically restrained along flange/web 
junction (a) original column section (b) isolated flange (Lau and Hancock 1987b) 

Treatment of the flange as a column requires that separate section properties (I, J, Cw, 
etc.) for the flange-lip components be calculated. These section properties are then used in the 
torsional-flexural buckling problem, which itself requires the solution to a quadratic equation 
(see Eq. 13.3). The involved nature of these calculations make computational solutions far more 
attractive, and indeed the AISI (2007) Specification makes it explicitly clear that rational elastic 
buckling analysis is allowed for in determining the elastic distortional buckling stress.  

Intermediate stiffeners 
To a certain extent the elastic distortional buckling treatment of intermediate stiffeners has 
developed in a manner similar to edge stiffeners. Desmond provided a method for predicting k as 
a function of the plate width and stiffener moment of inertia (Desmond et al. 1981b) that was 
employed from the 1986-1996versions of the AISI Specification. Eurocode employs the model 
of a compressed strut on an elastic foundation (Eurocode 2004). Based on the classical 
expressions for stiffened plates (See Section 4.4 of Chapter 4) AISI (2001) adopted new 
expressions for plates with intermediate stiffeners (Schafer and Peköz 1998a) that are provided 
in Section 4.4.1 of Chapter 4. The primary difference in expressions for elastic distortional 
buckling of intermediate stiffeners, as opposed to edge stiffeners, is that the interaction of the 
elements (e.g., web-flange) is typically ignored and the focus remains only on the element with 
the intermediate stiffeners (the classic stiffened plate). 

Edge and intermediate stiffeners 
Analytical expressions for distortional buckling of sections with both intermediate and edge 
stiffeners are essentially too involved to be practical. The only potential exception to this is the 
case of single mode generalized beam theory solution – if the generalized beam theory cross-
section parameters are known then the resulting analytical expressions are tractable (Silvestre 
and Camotim 2004c). However, even the calculation of the cross-section properties is essentially 
a computational method. Computational solutions for sections with edge and intermediate 
stiffeners pose no particularly unique problem for computational solutions and are discussed 
further in 13.1.5, and recommended for the design of such sections. 



13.1.4 Global/Flexural–Torsional buckling 
Columns 
Concentrically loaded columns can buckle by (1) flexure about one of the principal axes, (2) 
twisting about the shear center (torsional buckling), or (3) a combination of both flexure and 
twisting, called flexural–torsional buckling. Torsional buckling is a possible failure mode for 
point symmetric sections. Flexural–torsional buckling must be checked for open sections that are 
singly symmetric and for sections that have no symmetry. Open sections that are doubly 
symmetric or point symmetric are not subject to flexural–torsional buckling because their shear 
center and centroid coincide. Closed sections also are immune to flexural–torsional buckling. 
Flexural-torsional buckling is common in thin-walled construction and is thus the focus of the 
discussion here, see Chapter 3 for further discussion on flexural column buckling.  

One can explain the nature of flexural–torsional buckling with the aid of Fig. 13.4. At 
buckling, the axial load can be visualized to have a lateral component (qdz) as a consequence of 
the column deflection. The torsional moment of this lateral component about the shear center of 
the open section shown in Fig. 13.4 causes twisting of the column. The degree of interaction 
between the torsional and flexural deformations determines the amount of reduction of the 
buckling load in comparison to the flexural buckling load. Therefore, as the distance between the 
shear center and the point of application of the axial load increases, the twisting tendency 
increases and therefore the flexural–torsional buckling load decreases. Flexural–torsional 
buckling can be a critical mode of failure for thin-walled open sections because of their low 
torsional rigidity. The theory of elastic flexural–torsional instability is well developed (Goodier, 
1942; Vlasov, 1959; Timoshenko and Gere, 1961; Galambos, 1968). Flexural–torsional buckling 
of singly symmetric thin-walled open sections under concentric and eccentric loading also has 
been studied in detail, and design aids have been devised (Klöppel and Schardt, 1958; Pfluger, 
1961; Chajes and Winter, 1965; Chilver, 1967; Peköz, 1969; Peköz and Winter, 1969). The AISI 
specification since 1980 has contained flexural–torsional buckling provisions based on the work 
of Chajes et al. (1966), Peköz (1969), and Peköz and Winter (1969). 



 
Fig. 13.4 Forces causing flexural-torsional buckling. 

Differential equations of equilibrium for the general case of biaxial eccentricities have been 
solved by Thurlimann (1953), Vlasov (1959), Dabrowski (1961), Prawel and Lee (1964), Culver 
(1966), and Peköz and Winter (1969) using different procedures of solution. If the section is 
singly symmetric, such as the sections shown in Fig. 13.5, and is acted on by an axial load not in 
the plane of symmetry; or if the section is not symmetric, the solution of the differential 
equations indicates that as the axial load increases the member continuously twists and deflects 
biaxially. The principal axes, twist angle φ and deflections u and v are shown in Fig. 13.6. 
Analogous to small deflection flexural beam-column theory, infinite deflections and rotation are 
predicted for a certain value of the axial load. 

However, if the section is singly symmetric and the axial load is applied through the 
centroid, the behavior of the member is described by three homogeneous differential equations, 
two of which are coupled. If the member is assumed to be hinged at both ends, namely, u” = v” = 
φ“ = 0, the solution of the one uncoupled equation gives the critical load for buckling in the 
direction of the symmetry axis (taken here as the x-axis): 
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where Iy is the moment of inertia about the y-axis and L is the length of the column. K11 and other 
K values determined by the Galerkin method for various boundary conditions are given by Peköz 
(1969). The discussion here will be limited to hinged ends. 



 

 
Fig. 13.5 Some singly symmetric sections and coordinate axis orientation. 

 

 
Fig. 13.6 Principal axes and deflection components. 

The two coupled equations describing deformations v and φ result in a single buckling 
load PTF for the flexural–torsional mode. The same buckling mode also occurs in the more 
general case of the load acting eccentrically in the plane of symmetry. Then the member 
continuously deflects as a beam-column in the plane of symmetry (x-direction), but is subject to 
flexural–torsional buckling out of this plane under load PTF given in this case by Eq. 13.3. (The 
solution for a concentric load is obtained by setting es = 0 in this equation.) 
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and where 
ex = eccentricity with respect to the center of gravity 
X0 = x-coordinate of the shear center 
Ix = moment of inertia about the x-axis 
I0 = polar moment of inertia about the shear center 
A = area of the cross section 
Cw, J = warping and St.-Venant torsional constants for the cross section, respectively. 

The parameter Pφe has the physical meaning that it is the concentric torsional buckling load if the 
displacements u and v are prevented, P’φe is the corresponding value for eccentric loading, and 
Pxe designates the load for buckling in the direction of the y-axis if displacements φ and u are 
prevented. A simplified expression for PTF is employed in the AISI Specification. 

Beams 
For doubly- and mono-symmetric sections global lateral-torsional buckling is discussed in 
Chapter 5. For thin-walled metal construction, the critical stress for lateral buckling of an I-beam 
having unequal flanges can be determined by the following formula (Winter, 1943, 1970): 
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where 
Ssc = compressive section modulus of the entire section about the major axis 
Iyc, Iyt = moments of inertia of the compression and tension portion, respectively, of a 
     section about its centroidal axis parallel to the web 
E = modulus of elasticity 
G = shear modulus 
J = torsional constant of the section 
d = depth of the section 
L = unbraced length 
For thin-walled steel sections, the first term under the radical in Eq. 13.10 usually 

exceeds the second term by a considerable margin (Winter, 1947). If the second term is omitted 
and considering that Iy = Iyc + Iyt, the following equation  can be obtained for determination of 
critical stress for lateral buckling in the elastic range: 
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where Cb is a bending coefficient to account for moment gradient (see Chapter 5 or the AISI 
Specification). In the AISI Specification the lateral buckling strength for I-section beams in the 
elastic range is based on Eq. 13.11. For Z-section beams, Eq. 13.11 is divided by 2, a 
conservative approximation to the actual lateral-torsional buckling stress of a Z.  

For singly-symmetric sections (Fig. 13.5) the torsional-flexural buckling solution of the 
previous section can be extended. When there is no axial load, the Galerkin method solution 
(Peköz, 1969) of the general differential equations of equilibrium gives the following expression 
for the critical moments, MCR: 
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where R = Pφe/Pxe. For singly and doubly symmetric section bending about the symmetry axis 
perpendicular to the web and introducing the notation used in the AISI Specification (as opposed 
to Peköz 1969) including the moment gradient Cb factor, then the elastic critical lateral-torsional 
buckling moment may be expressed as:  
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and where 
rx and ry = radii of gyration of the cross section about the centroidal principal axis;  
x0 = distance from shear center to centroid along principal x-axis, taken as negative;  
A = the full cross-sectional area. 
Ky, Kt = effective length factors for bending about the y-axis and for twisting 
Ly, Kt = unbraced length for bending about the y-axis and for twisting 

For laterally unbraced hat sections bent about the x-axis, no stress reduction is necessary if Iy > 
Ix, because there is no tendency to buckle. When Iy < Ix a conservative estimate of the critical 
elastic stress may be determined by regarding the compression portion of the section as an 
independent strut, which gives 
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where ry is the radius of gyration about the vertical axis of that portion of the hat section which is 
in compression. A more accurate analysis for such hat-shaped sections and for any other singly 
symmetric section is to use the equations given in Chapter 5. This is the approach required in the 
AISI specification for the design of singly symmetric section. The AISI Design Manual (2002) 
and Yu (2000) provide design aids for calculation of the necessary section properties for 



common thin-walled shapes. However, due to the involved nature of the preceding expressions it 
is not uncommon for computational tools to be employed to (a) determine the necessary section 
properties and (b) implement and provide solutions for PTF and MCR. 

13.1.5 Computational elastic buckling solutions 
Complete analytical expressions for local, distortional, and global buckling exist, as detailed in 
the previous sections, but even though the underlying mechanics is relatively straight forward 
(this is after all just elastic bifurcation buckling, no large deformations or inelasticity) the 
resulting expressions are significantly involved. Today, computational solutions offer a powerful 
alternative – particularly for elastic buckling where the solution sensitivity is not so great. A 
variety of numerical methods: finite element, finite differences, boundary element, generalized 
beam theory, finite strip analysis, and others, provide accurate elastic buckling solutions for thin-
walled beams and columns. (See also Chapter 21 for additional discussion.) 

Traditional finite element analysis using thin plate or shell elements may be used for 
elastic buckling prediction. Due to the common practice of using polynomial shape functions, the 
number of elements required for reasonable accuracy can be significant. Finite element analysis 
books such as Cook et al. (1989) and Zienkiewicz and Taylor (1989, 1991) explain the basic 
theory; while a number of commercial implementations can provide accurate elastic buckling 
answers if implemented with a modicum of care. Finite difference solutions for plate stability are 
implemented by Harik et al. (1991) and others. The boundary element method may also be used 
for elastic stability (Elzein, 1991). Generalized beam theory, developed originally by Schardt 
(1989, 1994) with contributions from Davies et al. (1994) and Davies and Jiang (1996, 1998) and 
significant extensions in recent years by Silvestre and Camotim (2002a, 2002b) who have also 
recently provided a free user-friendly software implementation (Bebiano et al. 2008).  

Finite strip analyses, such as presented in Fig. 13.1 and Fig. 13.7, are a specialized 
variant of finite element analysis. For elastic stability of thin-walled sections, finite strip is one of 
the most efficient and popular methods. The specific version of the finite strip method which can 
account for both plate flexural buckling and membrane buckling in thin-walled members was 
developed by Plank and Wittrick (1974). Cheung and Tham (1998) explain the basic theory. 
Hancock and his collaborators (see Hancock et al., 2001 for full references and descriptions) 
pioneered the use of finite strip analysis for stability of cold-formed steel members and 
convincingly demonstrated the important potential of finite strip analysis in both cold-formed 
steel design and behavior. Consider, for example the results of Fig. 13.7: local, distortional, and 
global buckling loads (or moments) along with the corresponding mode shapes are identified in 
the figure. All of the instabilities that need to be considered in basic thin-walled member design  
of these members are presented in one compact result. 

Finite strip analysis is a general tool that provides accurate elastic buckling solutions with 
a minimum of effort and time. Finite strip analysis, as implemented in conventional programs, 
does have limitations, the two most important ones are: the model assumes the ends of the 
member are simply supported, and the cross-section may not vary along its length. These are not 
limitations of the method per se, but rather the implementations which are commonly available  
(Papangelis and Hancock 1995; Schafer and Adany 2006). Despite these limitations the tool is 
useful, and a major advance over plate buckling solutions and plate buckling coefficients (k’s) 
that only partially account for the important stability behavior of thin-walled members. 
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Fig. 13.7 Example finite strip analysis results for local, distortional, and global buckling of (a)-(d) Z-section 
under different loading conditions and (e)-(h) rack post section under different loading conditions 



13.2 EFFECTIVE WIDTH MEMBER DESIGN 
Since the first cold-formed steel specification the concept of effective width reductions to 
account for local buckling and post-buckling strength has been central to capacity determination 
of members. Until the 1986 Specification in addition to effective width, reduced stress, and form 
factor (or Q-factor) approaches were also in use. In 1986 reduced stress methods were replaced 
with effective width methods for webs and unstiffened elements, and the Q-factor approach for 
local-global interaction was replaced with a novel extension to the effective width approach, 
under what is now known as the unified Effective Width Method (Peköz 1987). 

Today the AISI Specification (2007) provides two alternative procedures for strength 
determination of cold-formed steel members: the unified Effective Width Method in the main 
body of the Specification, and the Direct Strength Method in Appendix 1 of the Specification. 
There is significant overlap between the two approaches. Further, not all material in the main 
body of the Specification directly uses the concept of effective width. This Section provides an 
examination of beams and columns by the Effective Width Method, while the following Section 
examines the Direct Strength Method. 

The focus of this section is to provide the Effective Width Method solution to the 
strength of columns and beams which are subject to the member elastic stability modes 
addressed in the Section 13.1. Namely, how does one determine the strength in local, 
distortional, and global buckling – as well as the potential interactions amongst these modes? 
Local buckling, which is the focus of the effective width method is treated first, followed by 
global buckling, local-global interaction, and finally distortional buckling. Comparison between 
the Effective Width Method and the Direct Strength Method are provided in Section 13.3 

13.2.1 Local buckling strength 
Columns 

The role of local buckling in cold-formed steel columns has been studied since the 1940’s 
with Winter (1949) summarizing U.S. contributions (e.g., Winter 1940, Winter 1943) and 
Chilver (1951, 1953) and Harvey (1953) work in the U.K. After sixty years of progress, modern 
column research is still similar to Chilver’s work: elastic stability solutions for local plate 
buckling and “effective width” for the ultimate strength. The elastic plate buckling solution of 
Chilver and Harvey was based on Lundquist and Stowell (1943) who extended the work of 
Timoshenko and Gere (1936) by providing practical methods for calculating the stability of 
connected plates. The “effective width” solution was based on von Kármán et al. (1932) and the 
experimental corrections of Winter (1947). Notably, both Chilver and Harvey properly included 
the interaction of elements in determining the local buckling stress. 

The basic premise of the effective width method for local buckling is to reduce each plate 
comprising a cross-section to an effective plate (Fig. 13.8). The effective plate is an 
approximation of the longitudinal normal stress distribution in the real plate, where the effective 
plate can carry the full applied stresses, but only in the effective portions. This method has long 
been used for flat plates in compression and is fully detailed in Section 4.3.3. 
 



 
Fig. 13.8 Lipped channel : effective section, effective width of component plates, gross section 

The actual expressions used to determine the effective width, b, of a given element with 
gross width, w, (i.e. see Fig. 13.2 or Fig. 13.8 for typical elements of a cross-section) are given, 
for instance, by AISI (2007) as: 
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and f is the uniform stress in the effective portions (f = fy for the maximum plate or section 
capacity), k is the plate buckling coefficient, E is the modulus of elasticity, ν is Poisson’s ratio, 
and t is the plate thickness. The expression for ρ is identical to Eq. 4.30. The key step in the 
implementation of this effective width is the determination of, k, which is detailed in Section 4.2. 
The 5th Ed. of this Guide provides further information on minor changes in formatting with 
regard to the presentation of the effective width expression over the years in the AISI 
Specification, and Section 4.3.3 provides the complete history of the development of this 
expression. 

The summation of the effective plates also creates an effective cross-section, as shown in 
Fig. 13.8. This effective cross-section provides an initial means to understand why local-global 
interaction is so important in thin-walled members: if the moment of inertia of the section is 
effectively reduced, then so must the global flexural buckling stress, more on this in Section 
13.2.3. If the applied stress on the elements, f, is set to the yield stress, fy, then the effective 
cross-section is an estimate of the stiffness at collapse. If the applied stress on the elements, f, is 
set to the stresses on the section under service loads, then the effective cross-section is an 
estimate of the stiffness for serviceability considerations.  

Beams 
Use of effective width expressions for beams actually came significantly later than that for 
columns and was initiated by an extensive experimental program (LaBoube and Yu 1982). The 
traditional approach, prior to the advent of the Unified Effective Width Method (Peköz 1987) 



was to use effective width for compression flanges and average stress for webs. The unified 
effective width method provided expressions for the effective width of webs (i.e., elements under 
a stress gradient ) based on Cohen and Peköz (1987) that were adopted by AISI. During 
development of the North American version of the cold-formed steel specification (AISI 2001) it 
was determined that significant differences existed between the methods adopted from Cohen 
and Peköz (1987) – the U.S. (AISI 1996) adopted a more liberal set of effective width 
expressions than Canada’s (CSA:S136 1994) though both were from the same source document. 
A comprehensive study comparing strength predictions with test data demonstrated 
unconservative predictions for AISI (1996) with members with tall webs and narrow flanges 
(Schafer and Trestain 2002) and as a result the AISI (1996) method was adopted for h/b less than 
4 and the CSA:S136 (1994) method for h/b > 4. 

A complication of the effective width method applied to beams is the necessity for 
iteration. The gross neutral axis is unlikely to be at the same location as the effective neutral axis 
once effective width’s have been introduced into all the plate elements. Since the effective width 
of the web is a function of the neutral axis location, iteration is required. Complete design 
examples are provided in texts (Yu 2000, Hancock et al. 2001) and the AISI Design Manual 
(AISI 2002). 

13.2.2 Global buckling strength 
The global buckling strength of cold-formed steel columns and beams is generally treated in two 
steps. First, the strength without consideration of local or distortional buckling is determined. 
Then, the strength considering interactions is examined. Since cold-formed steel sections often 
offer torsionally weak, open profiles, and singly-, point-, and un-symmetric sections are 
common, even the basic (compact cross-section) global buckling strength can be relatively 
involved. The basic global buckling strength is not dependent on the choice of Effective Width 
Method or the Direct Strength Method. Nonetheless, since global buckling strength is found in 
the main body of the AISI Specification (as is the Effective Width Method) the material is 
presented in this Section.  

Columns 
The global buckling strength of thin-walled cold-formed steel columns (via AISI) uses 

the same simplification of SSRC curve 2P (Chapter 3) for all columns as AISC (2005). That is 
the global buckling strength (inelastic or elastic) is expressed at stress Fn as follows: 
 For λc < 1.5 yn FF c

2

658.0 λ=  (13.22) 

                      For λc >1.5 ( ) eycn FFF 877.0/877.0 2 == λ  (13.23) 
where 
 eyc FF /=λ  (13.24) 
and Fy is the yield stress and Fe is  the least of the elastic flexural, torsional and flexural-torsional 
buckling stress of the section. Eq’s 13.22 and 23 were shown to provide adequate strength 
predictions when originally adopted (Peköz 1987) as well as in more recent studies (Schafer 
2002). This is somewhat surprising given the vastly different state of initial imperfections and 
residual stresses in cold-formed steel members (Moen et al. 2008; Schafer and Peköz 1998b; 
Weng and Pekoz 1990) when compared with hot-rolled steel members as well as the prevalence 
of flexural-torsional limit states in cold-formed steel members as opposed to flexural limit states 
in hot-rolled steel members. However, as Fig. 3.22 illustrates a single column curve is by 



definition a crude instrument when compared against real data, so the choice of the same column 
curve for hot-rolled (AISC) and cold-formed (AISI) steel is as much a matter of convenience on 
the part of AISI as demonstration of theoretical agreement. 

Suggesting that global buckling strength begins and ends with the selection of an 
empirical column curve is to miss the real complexities that underlie the behavior of such 
sections; particularly for the common singly symmetric sections undergoing flexural-torsional 
buckling. For the inelastic domain, approximate approaches have been developed and adequately 
substantiated by tests (Chajes et al., 1966). The AISI specification (since 1980) contains 
flexural–torsional buckling provisions based on the work of Chajes and Winter (1965), Peköz 
(1969), and Peköz and Winter (1969). 

It is assumed that for the thin-walled sections in question, the attainment of the yield 
stresses represents the limit of load-carrying capacity; that is, the plastic reserve capacity, if any, 
is negligible in torsional-flexural buckling. This point has been verified experimentally (Peköz 
1969; Peköz and Winter, 1969). Therefore, elastic flexural torsional buckling is a possible mode 
of failure only if the axial load Pyd that causes incipient yielding (e.g., as predicted by the secant 
formula) is larger than PTF (Eq. 13.3). Extensive numerical studies were carried out on a variety 
of singly symmetric open sections and are reported by Peköz (1969). Fig. 13.9 is a typical 
sample of the plots given in that reference that illustrates the complex behavior of such 
compression members. For positive eccentricities, numerical studies indicate that both yielding 
and instability need to be considered. The following expression is shown to give very 
satisfactory results: 
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in which PTF is the flexural–torsional buckling load for an eccentricity ex; PTFO the flexural–
torsional buckling load for concentric loading, regardless of whether it is the governing mode; 
and MCR+ the positive critical moment when there is no axial load, regardless of whether it is the 
governing mode (see Eq. 13.12). With the aid of charts given by Peköz (1969) for computing 
PTFO and MCR+, this equation is much more convenient to use than Eq. 13.3. 
 



 
Fig. 13.9 Failure modes and loads (Peköz, 1969). 

For negative eccentricities greater than x0 – that is, if the point of application of the axial 
load is on the side of the shear center opposite from the center of gravity—numerical studies on 
hat, channel, lipped channel, angle, and lipped angle sections of typical dimensions and yield 
stresses below 50 ksi (345 MPa) indicate that flexural–torsional buckling is not a governing 
mode of failure. For such eccentricities, these members fail by yielding after deflecting in the 
direction of the symmetry axis as a beam-column. However, for singly symmetric I-sections both 
yielding and flexural–torsional buckling need to be investigated. For these sections, the 
following interaction equation may be used: 
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in which MCR– is the negative critical moment when there is no axial load, regardless of whether 
it is the governing mode (see Eq. 13.12). 

If a section when concentrically loaded can fail in flexural–torsional buckling, then 
flexural–torsional buckling is also a possible mode of failure for some range of eccentricities 
between the centroid and the shear center. It is seen from Fig. 13.9 that in this region, between 
shear center and centroid, the two branches of the failure curve (yielding on the left and flexural–
torsional buckling on the right) show a definite and sharp peak. This means that small changes or 
inaccuracies in eccentricity can produce large reductions in load capacities. For this reason it 
seems reasonable and conservative, in design, to disregard the uncertain high carrying capacity 
in the region of the peak, and to base design values on the dashed straight cutoff shown in Fig. 
13.9. In this range of eccentricities, the following linear interpolation formula between the axial 
load, PS, applied at the shear center, which causes yielding or buckling and the concentric 



flexural–torsional buckling load, PTFO, gives a realistic and conservative flexural–torsional 
buckling load, PF. 
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For singly symmetric I-sections, PS  is the smaller of the yield load Pyd or the buckling load Pxe, 
whereas for the other open sections, only yielding need be considered, as explained previously. 
In addition to the points discussed in the preceding section, the following need to be considered 
in the design of thin-walled members to resist flexural–torsional buckling. 

First is the inelastic stability behavior for members of relatively low slenderness ratios. 
Chajes et al, (1966) studied this problem and reported that an expression similar to SSRC curve 
2P is satisfactory for concentric flexural–torsional buckling. The AISI specifications reflect this 
approach for both concentric and eccentric loading. 

Second is the frequent case of unequal eccentricities at opposite ends of the member. 
Peköz (1969) presents the results of an extensive study of this subject and makes the conclusion 
that application of a modification factor, CTF, to the second term of Eq. 13.25 is quite accurate. 
The value CTF is the same as Cm discussed in Chapter 8, except that it does not have 0.4 as its 
lower limit. 

Third, the influence of pre-critical beam-column deflections on the flexural–torsional 
buckling load is an important consideration. Again, on the basis of an analytical and 
experimental treatment of the subject, Peköz (1969) recommends the use of an amplification 
factor 1/(1 – P/Pye) for the moments. 

Fourth, is the wandering centroid problem where centrally loaded, singly symmetric 
columns become beam-columns upon local buckling and the shifting of the neutral axis. In an 
extensive statistical study, Peköz (1987) established good correlation with test results if a 
concentrically loaded column is defined as a member loaded through its effective centroid. The 
effective centroid is calculated at the reduced column stress Fn from Eq. 13.22-23. This approach 
is used in the AISI Specification. 

Fifth, is the behavior of biaxially loaded beam-columns. Prior to 1986 the AISI 
specification did not permit the calculation of singly symmetric beam-columns bending about the 
symmetry axis. The designer had to resort to tests. Based primarily on the work of Loh (1985), 
Mulligan and Peköz (1983), and Peköz (1987), the AISI Specification determines the capacity of 
biaxially loaded open sections using an interaction equation with eccentricities measured from 
the effective centroid. (The method is similar to procedures adopted previously by the RMI 
(1979) standard and followed in the CSA (1989) standard.) Lipped channel sections used in the 
endwalls of metal buildings and the columns in industrial storage racks are a few examples of 
members subjected to such loads. 

Beams 
The lateral-torsional buckling strength uses an empirical expression, similar in spirit to the 
column curve: consisting of yield plateau, inelastic buckling regime, and elastic buckling regime: 
the strength is expressed as an extreme fiber stress, Fn, that may be carried in the three regimes: 
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 For Fe < 0.56Fy   en FF =  (13.30) 



where Fy is the yield stress and Fe is elastic lateral-torsional buckling stress. The stress Fn may be 
expressed in terms of a moment by multiplying by the gross section modulus. The solid curve in 
Fig. 13.10 shows the variation of this moment, M (SgFn), with the unbraced length. The three 
regimes: yielding (Eq. 13.28), inelastic buckling (Eq. 13.29), and elastic buckling (Eq. 13.30) are 
clearly delineated. 

 
For a given / ycL dI  ratio, a Z-section (or any point-symmetric section) will buckle 

laterally at a lower stress than will an I-beam (doubly-) or a channel (singly-symmetric) section. 
A conservative design approach has been used in the AISI specification since (1986), in which 
the critical moments for Z-sections in the elastic range are one-half of those permitted for I-
beams or channels at the same / ycL dI  ratio. The lateral buckling curve for Z-shaped beams is 
shown as the dashed line in Fig. 13.10. Functionally, this is enabled in the AISI Specification by 
using ½Fe for the lateral-torsional buckling stress of point-symmetric sections. 

 
Fig. 13.10 Allowable compressive stress for lateral buckling of beams (Winter, 1970) 

Fig. 13.10 shows a yield plateau at the yield moment, My, as opposed to the fully plastic 
moment Mp (common in locally stable cross-sections). This is not a completely accurate 
representation of inelastic reserve capacity in thin-walled sections. If the cross-section can 
sustain the larger strains associated with capacities greater than My then larger capacities are 
possible. Inelastic reserve (M>My) is treated as a strength reserve in local buckling, and 
provisions are provided in the AISI Specification on an element basis for stiffened elements 
(Yener and Pekoz 1985) and unstiffened elements (Bambach and Rasmussen 2004). 

13.2.3 Local-global interactive strength 
Columns 
Although local buckling may have significant post-buckling reserve the deformations and re-
distribution of stresses that are associated with that reserve change the global buckling response 
of the member (column or beam). Study of this local-global interaction has included 
experimental testing and nonlinear finite element analysis using shell element models. 



Recognizing and accounting for local-global interaction in the design of thin-walled members 
was one of the fundamental steps towards making thin-walled construction practical. 

Results of early studies on interaction between local and global buckling were presented 
by Bijlaard and Fisher (1952a,b). Across the world, column research in the 1970’s focused on the 
interaction between local and overall (i.e, global – flexural, torsional, flexural-torsional) buckling 
modes (DeWolf 1974, Klöppel and Bilstien 1976, Rhodes and Harvey 1977, Peköz 1977, 
Loughlan 1979). In the 1980’s Hancock (1981) and Sridharan and Benito (1984) investigated the 
interaction problem using the finite strip method. Muliigan (1983) specifically examined local 
buckling interaction. In Europe, researchers continued to provide strong evidence for interaction 
of local and overall column buckling (Batista et al. 1987, Rhodes and Loughlan 1980, Zaras and 
Rhodes 1987). More recently Rasmussen and Hancock (1991) showed the importance of 
different end fixity on the post-buckling behavior and Young (1997) experimentally 
demonstrated that fixed ended columns do not suffer the same interaction problems as pin ended 
columns.  

The first widely used design method, and the one still employed in the AISC (2005) 
Specification, is the form factor, or Q-factor, approach. The 3rd Ed. of this Guide provides a 
detailed summary of this method. The basic idea is to increase the long column (global) 
slenderness used in the column strength curve (λc in Eq. 13.24) as a function of the local 
slenderness of the stiffened and unstiffened elements. The procedure is simple and as 
implemented typically conservative; the difficulties primarily arise with unstiffened elements and 
the nature of the reductions. Comparisons with cold-formed steel columns demonstrated that the 
method could be excessively conservative (particularly for sections with slender unstiffened 
elements), but could also be unconservative and the approach was abandoned in favor of an 
effective width based method (Peköz 1987) in the AISI Specification.  

The original adaptation of the effective width method for local-global interaction 
envisioned using effective section properties, primarily the effective moment of inertia, in the 
calculation of the column buckling stress; and then using that buckling stress in the typical 
column strength curve (e.g., DeWolf et al. 1974, 1976, Kalyanaraman et al. 1977). Such a 
procedure requires iteration because the effective cross-section properties are a function of the 
applied stresses. What is now known as the unified Effective Width Method was begun by 
Springfield and Trestain, who developed a column design method for the 1984 Canadian 
Standards Association (CSA) Cold-Formed Steel Standard (CAN3-S136-M84). For design office 
use, the iterative approach utilizing effective section properties was deemed unsuitable. The key 
features of the new method were the use of gross section properties to determine slenderness and 
buckling stress, and the determination of effective area at this buckling stress rather than at Fy as 
used previously. Another unique feature was the use of effective width for both stiffened and 
unstiffened elements. The column curve developed by Lind for the 1974 CSA standard was 
retained; this curve is geometrically similar to the AISC column curve. The method predicted the 
DeWolf et al. (1974) test results with remarkable accuracy (Trestain 1982).  

The 1984 CSA method was incorporated into the unified approach proposed by Peköz 
(1987) for the 1986 AISI specification. The 1986, and later, AISI specification follows this 
method using an effective cross-sectional area, as follows: 
 Pn = AeFn (13.31) 
where Ae is the effective area (summation of the effective width of the elements times the 
thickness) at stress Fn, and Fn is the ultimate stress determined from Eq. 13.22-23. Further 
evaluation by Peköz led to further refinement: in particular, the use of the effective centroid 



rather than the gross centroid as the origin for determination of eccentricity of load. The singly 
symmetric column which is not fully effective is a unique and difficult problem. Not only are the 
effective section properties reduced by local buckling, but the effective centroid shifts along the 
axis of symmetry. Thus an initially concentrically loaded column becomes a beam column. 
Testing such a column which is truly concentrically loaded throughout its loading history 
appears difficult if not impossible. Furthermore, the centrally loaded singly symmetric column 
appears to exist in practice only if it is fully effective and is loaded at its ends uniformly around 
the periphery. In practice, it may be difficult to be assured that such conditions will exist. 
Consequently, many columns that have no obvious moment applied to their ends may be, in 
actual fact, beam columns. 

The method (Eq. 13.31) works well for local-global interaction but has been shown to be 
a poor predictor when distortional buckling is involved, see section 13.2.4 and 13.3.1 for further 
information on this point. 

Beams 
Based on the unified method (Peköz 1987) the effective width approach to local-global 
interaction in beams is essentially the same as for columns. The effective section modulus (as 
opposed to effective area for columns) is determined at the design stress Fn which is based on a 
beam strength curve that is a function of the global beam slenderness as calculated from gross 
properties: 
 Mn = SeFn (13.32) 
where Se is the effective section modulus (appropriate summation of the effective width of all of 
the elements) at stress Fn, and Fn is the ultimate stress determined from the beam curve, Eq.’s 
13.28 - 30. The method generally works well for local-global interaction but has been shown to 
be a poor predictor when distortional buckling is involved, see section 13.2.4 and 13.3.1.  

13.2.4 Distortional buckling strength 
Extension of the effective width method for distortional buckling has proven difficult in many 
situations. The same complications with predicting the elastic buckling stress are exacerbated 
when determining the strength: the deformations involved include both membrane deformations, 
primarily in the flange and lip, and bending deformations, primarily in the web. Effective width 
expressions for edge stiffeners and intermediate stiffeners were developed in the 1980’s and in 
use in the AISI Specification until 2001 (Desmond et al. 1981a; Desmond et al. 1981b). 
However, the expressions were found to be in poor agreement with columns and beams failing in 
pure distortional buckling (Hancock et al. 1994; Kwon and Hancock 1992; Rogers and Schuster 
1997; Schafer 2001; Schafer and Peköz 1998a; Schafer and Peköz 1999; Yu and Schafer 2006; 
Yu and Schafer 2007b). New distortional buckling provisions, adopted in 2007 for the AISI 
Specification, follow a methodology that is consistent with the Direct Strength Method and are 
thus detailed in that section (13.3.1). The Eurocode method uses a combination of effective 
width and reduced thickness methods to determine the distortional buckling strength, they extend 
their beam on elastic foundation model and assume the stiffeners follow a basic column curve for 
strength (thus, no post-buckling capacity is allowed). 

Distortional-global, local-distortional interaction 
If distortional buckling is treated with effective width’s, as was completed for a number of years 
in the AISI Specification, one advantage is automatic inclusion of the potential for distortional-
global interaction, at least in some approximate form. The distortional buckling effective width’s 



are calculated at the long column, or long beam stress (Fn), and thus the potential for this 
interaction is allowed. 

Local-distortional interaction is more difficult to include in the effective width method if 
an effective width for local buckling and an effective width for distortional buckling are to both 
be determined (for the same element!). Eurocode combines a reduced thickness approach with 
traditional effective width local buckling reduction to account for this potential phenomenon. 



13.3 DIRECT STRENGTH MEMBER DESIGN 
Instead of focusing on the elements which comprise a cross-section, as is done in the Effective 
Width Method, in the Direct Strength Method the key to the solution is an accurate elastic 
stability analysis (Fig. 13.1, Fig. 13.7), including local buckling with interaction, distortional, 
and global buckling. The premise is, that if an engineer determines all of the elastic instabilities 
for the gross section, e.g. for a column:  local (Pcrl), distortional (Pcrd), and global buckling (Pcre), 
and also determines the load that causes the section to yield (Py), then the strength can be directly 
determined with simple functions, i.e.:  
 Pn = f (Pcrl, Pcrd, Pcre, Py).  (13.33) 
where f designates the unknown functions that are the “Direct Strength” prediction equations. 
For example in global column buckling if we multiply the expressions of Eq.’s 13.22-23 by the 
gross area, Ag, then they provide the column strength, Pn, as a function of Pcre=AgFcre and 
Py=AgFy. In this example Eq.’s 22-23 are the “Direct Strength” prediction equation for global 
buckling. Thus, the Direct Strength Method may be understood as an extension of the use of 
column curves for global buckling, but now new expressions (new f’s for Eq. 13.33) are 
employed for local and distortional buckling instabilities with appropriate consideration of post-
buckling reserve and interaction in these modes. In 2004 the AISI Specification adopted the 
Direct Strength Method as an alternative design method, see Appendix 1 of AISI (2004, 2007). 

It is important to recognize in any discussion regarding the Effective Width Method, the 
Direct Strength Method, or other semi-empirical design methods for thin-walled construction 
that none of these design methods are theoretically correct. Rather, a complicated nonlinear 
problem is simplified in some manner so that engineers may have a working model to design 
from without resorting to testing every individual member. These models serve us well when 
backed up by the application of reliability to incorporate uncertainty in their predictive powers. 
A full discussion of reliability, development of the Direct Strength Method, and summary of 
current related research is proved in Schafer (2008). 

Distortional buckling is covered first in this Section because it is of special significance 
in the Direct Strength Method. The design prediction equations which were proposed by 
Hancock for strength in distortional buckling modes may be viewed as the genesis for the Direct 
Strength Method. Distortional buckling is followed by global buckling in Section 13.3.2, and 
local and local-global interaction in Section 13.3.3. Since the Direct Strength Method is a new 
procedure it is contrasted directly with the Effective Width Method (Section 13.3.3). Finally, this 
Section on the Direct Strength Method closes with a look at current research, including the 
consideration of interaction amongst the buckling modes. 

13.3.1 Distortional buckling strength 
In any explanation of the Direct Strength Method distortional buckling is of prominent 
importance since much of the Direct Strength Method development centered around finding 
adequate design solutions to the complicated problem of elastic buckling and strength 
determination in open singly- and point-symmetric cold-formed steel cross-sections undergoing 
distortional buckling. 

Columns 
Today the distortional buckling strength (Pnd) may be predicted with a simple expression: 

for λd 561.0≤    Pnd = Py (13.34) 
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where   λd   = crdy PP  (13.36) 
Pcrd = Critical elastic distortional column buckling load 

  Py = is the squash load for the column, Agfy. 
Seemingly, the only complication of significance in Eq.’s 13.34-36 is the determination of the 
critical elastic distortional column buckling load, Pcrd. However, the research and design 
decisions required to arrive at this point are far more significant than the equations reveal. Using 
the preceding approach (which has been adopted in AISI 2007 in both the main Specification as 
an additional check on local buckling, and in Appendix 1 the Direct Strength Method) assumes 
the following: (a) distortional buckling may be treated on the whole section as opposed to its 
component elements, (b) post-buckling in distortional buckling is specific to the mode (and not 
the same as local or global buckling), (c) interaction of distortional buckling with other modes 
need not be considered. The research to arrive at these conclusions includes a number of 
significant contributions as summarized in the following, but the third point (c) is still actively 
under study and discussed further in Section 13.3.4 below. 

Distortional buckling has been long recognized as a potential problem: Chilver (1951, 
1953) stated that the reinforcing “lip” in a lipped channel should be sufficiently stiff to insure 
local buckling (and thus avoid distortional buckling), but gave no criteria for achieving this. 
Desmond et al. (1981a; 1981b) studied the distortional mode in detail, referring to the mode as 
“stiffener” buckling. Desmond et al. recognized that elastic buckling criteria, i.e, ensuring that 
“stiffener” buckling is a higher critical stress than local buckling, does not meet Chilver’s 
criteria. Instead, using experimental data Desmond et al. empirically formulated rules for an 
“adequate” stiffener and the plate buckling coefficient, k, when the stiffener is only partially 
effective. As a result, distortional buckling was incorporated into the AISI Specification (1986-
2004) as a local mode, implicitly assuming post-buckling reserve in distortional buckling was the 
same as in local buckling. Additionally, Desmond et al.’s experimental work employed members 
with back-to-back specimens, this avoided web local buckling, but artificially elevated the 
distortional buckling stress. 

Distortional buckling has long been observed in testing, but often removed before given 
further consideration. In Sweden, Thomasson (1978) performed experiments on lipped channels 
with slender webs. To increase the local buckling stress of the webs small intermediate (groove) 
stiffeners were folded in. This eliminated local buckling, but created what Thomasson called a 
“local-torsional” problem, i.e, distortional buckling. Thomasson considered this “local-torsional” 
mode undesirable and thus put closely spaced braces from lip to lip, insuring that distortional 
buckling did not occur and therefore making the local mode again dominant. Mulligan (1983) 
encountered the same “local-torsional” mode in testing, and observed that Desmond et al.’s 
adequate stiffener criteria did not appear to restrain distortional buckling in many cases. 
Subsequently, Mulligan followed Thomassons’s experimental modification and provided braces 
which restricted distortional buckling. 

Another attempt at understanding distortional buckling focused on isolating the flange 
from the rest of the section (as is traditionally done in effective width design). Isolated edge 
stiffeners were studied experimentally and analytically by physically replacing the web/flange 
juncture with a simple support, thus providing known boundary conditions (Kloppel and Unger 



1970, Lim 1985, Lim and Rhodes 1986). The “torsional” mode (distortional buckling) for these 
flanges may be accurately predicted due to the special boundary conditions. 

Eurocode has taken another approach to distortional buckling calculations. Eurocode 3 
Part 1.3 (1996, 2004) provides a method for predicting the distortional buckling of simple lipped 
sections such as channels accounting for the elastic restraint provided by the web and the flange 
to the lip buckling as a strut.  This method approximately accounts for the distortional 
deformations of the web and flange, but used a global column curve for the failure of the lip, thus 
assuming that there was no post-buckling reserve in the distortional mode. 

At the University of Sydney distortional buckling was directly studied, motivated greatly 
by the prevalence of distortional buckling in high strength cold-formed steel storage racks (e.g., 
Hancock 1985, Lau 1988). This work lead to the refinement of the finite strip method in elastic 
distortional buckling (Lau and Hancock, 1990) the development of unique analytical methods 
(Lau and Hancock, 1987) and strength curves for distortional buckling (Hancock et al. 1994). 
Based on Hancock et al.’s strength curves the Australian Standard for Steel Storage Racking 
(1993) and the Australian/New Zealand Standard for Cold-Formed Steel Structures 
(AS/NZS:4600 1996, 2005) first adopted explicit design rules for distortional buckling in 
compression. Eq. 13.35 adopted in the Direct Strength Method (AISI 2004, 2007) is identical to 
Eq. 4b as presented in Hancock et al. (1994). 

In Kwon and Hancock’s experiments on lipped channels, with and without groove 
stiffeners in the web, the distortional mode was unrestricted and the tests showed that interaction 
of distortional buckling with other modes was weak. Later testing at Sydney, Young (1997) also 
experimentally observed that the interaction of distortional buckling with other modes is weak. 
Using Generalized Beam Theory, Davies and Jiang (1996) argued that distortional buckling has 
weak interactions with other modes and endorsed the strength curves of Hancock et al. (1994) for 
ultimate strength prediction, of which Eq. 13.35 identical to. Further examination against a wider 
body of test data also showed interaction of distortional with other modes to be weak (Schafer 
2002). 

In the University of Sydney tests, distortional buckling was experimentally observed to 
(a) have post-buckling capacity (thus leading to the rejection of the Eurocode strength 
methodology), but (b) to a lesser extent than local buckling (essentially a rejection of the 
prevailing AISI method of the time based on Desmond et al.’s work). The presence of post-
buckling capacity indicates that the distortional mode should not be treated as a global mode for 
strength, while the limitations to the available post-buckling capacity indicate that inclusion in a 
local buckling based effective width approach must be done with care, as use of the standard 
expressions will result in over-prediction of the post-buckling reserve. One explanation for the 
limited post-buckling is that the membrane stress at the flange tips of edge-stiffening lips 
increase dramatically after distortional buckling (Sridharan’s 1982). Using finite strip and 
nonlinear finite element analysis, reduced post-buckling capacity and increased imperfection 
sensitivity for distortional buckling failures, when compared to local buckling, was observed 
both for edge stiffened and intermediately stiffened beams and columns (Schafer 2002; Schafer 
and Peköz 1999).  

Complementary to the extensive work at University of Sydney were studies at the 
University of Strathclyde on “torsional” buckling, i.e., distortional buckling (Seah 1989, Seah et 
al. 1991, Seah and Rhodes 1993, Chou et al. 1996). Hats and channels with compound lips were 
investigated experimentally, hand methods for the prediction of distortional buckling were 
provided, ultimate strength in the distortional mode was treated via the effective width approach 



(rather than the column curve approach proposed by Sydney researchers). Also complementary 
to the work at University of Syndey were tests in Finland (Salmi and Talja, 1993), work in Japan 
on more complicated polygonal cross-sections (Hikosaka, Takami and Maruyama, 1987, 
Takahashi 1988), and tests in the U.S. on Z-sections columns in distortional buckling (Polyzois 
and Sudharampal 1990, Purnadi et al. 1990, Polyzois and Charvarnichborikarn 1993). 

In 2002 an attempt was made to investigate distortional buckling using the entirety of the 
available existing experimental data (Schafer 2002). Hancock et al. (1994) had demonstrated that 
when a section was known to fail in distortional buckling, that for the variety of cross-sections 
tested at University of Sydney, the measured compressive strength correlated well with the 
slenderness in the elastic distortional mode. Data in Schafer (2002) provided additional 
experimental agreement for Hancock’s design expression (Fig. 13.11). In addition, the failure 
mode for specimens collected in Schafer (2002) was generally unknown, thus a variety of 
methods were examined for strength calculation, considering local, distortional, global buckling 
and their potential interactions. The result was a method that both identified the failure mode and 
predicted the strength. The extension to prediction of all failure modes by appropriate 
expressions correlated to elastic slenderness in the various modes (and combinations) was the 
essential step in the development of the Direct Strength Method as a general approach. 

 Hancock et al.’s work provided the essential curve for distortional buckling by the Direct 
Strength Method. As is often the case with attempts to determine an origin, one can go back even 
further as Hancock attributes his methodology to Trahair’s work on the strength prediction of 
columns undergoing flexural-torsional buckling. In this regard it becomes clear that the Direct 
Strength Method is not a new idea, but rather the extension of an old one to new instability limit 
states. 
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Fig. 13.11 Comparison of the Direct Strength Method with test data for columns  

(Equation numbers in the legend refer to Appendix 1 of AISI 2007) 



Beams 
The first mention of the Direct Strength Method occurs in Schafer and Peköz (1998) and was 
closely coupled to the development of the method for beams, in particular, application of the 
large database of sections that was collected to explore two problems: distortional buckling in C- 
and Z-section beams, and local and distortional buckling in deck sections with multiple 
longitudinal intermediate stiffeners in the compression flange. At the same time Hancock and 
related researchers at the University of Sydney demonstrated that distortional buckling failures 
for a wide variety of failures were well correlated with the elastic distortional slenderness 
(Hancock et al. 1994; Hancock et al. 1996). 

The form of the presentation of the Direct Strength Method for beams evolved somewhat 
from Schafer and Peköz (1998,1999). In particular, curve (2) is identical to the distortional 
buckling expression of Eqnuation 4b provided in Hancock et al. (1994), and became the 
distortional buckling Direct Strength curve, where finally in AISI (2004, 2007) Appendix 1 the 
nominal flexural strength, Mnd, for distortional buckling via the Direct Strength Method is: 

for λd 673.0≤    Mnd = My (13.37) 
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where   λd = crdy MM  (13.39) 
Mcrd = Critical elastic distortional buckling moment… 
My = Sgfy and Sg is the gross section modulus referenced to the fiber at first yield. 

Similar to the work on columns in distortional buckling, the test database was expanded 
beyond the original University of Sydney results reported in Hancock et al. (1994) and a method 
for local buckling was also developed, as reported in Schafer and Peköz (1999). The expressions 
are compared with the expanded test database in Fig. 13.12. The end result is that for an arbitrary 
cross-section an engineer can not only determine the strength in distortional buckling, but 
distinguish between the limit states of local and distortional buckling. 

In the development of the Direct Strength Method for C- and Z-section beams separation 
of local and distortional buckling failure modes was initially somewhat difficult and complicated 
by the bracing and boundary conditions used in the testing, which typically restrained 
distortional buckling in part, but not necessarily in full. Nonetheless, expressions were arrived at 
and adopted in AISI (2004, 2007). More recently, a recent series of flexural tests and 
complementary finite element analysis on a variety of C-and Z-sections in local buckling (Yu 
and Schafer 2003, 2007, Yu 2005) and distortional buckling (Yu 2005, Yu and Schafer 2006, 
2007) used specific details to isolate the two modes and unequivocally demonstrated the 
robustness of the Direct Strength Method predictions for C- and Z-sections failing in either the 
local or distortional mode. A summary of the performance of these sections is provided in Fig. 
13.13.  
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Fig. 13.12 Comparison of the Direct Strength Method with tests data for laterally braced beams 

(Equation numbers in the legend refer to Appendix 1 of AISI 2004, 2007) 
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(a) local buckling in beams 
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(b) distortional buckling in beams 

Fig. 13.13 Comparison of Direct Strength Method for beams to tests and nonlinear FE results for C and Z 
sections in (a) local and (b) distortional buckling as reported in (Yu and Schafer 2007b) 

13.3.2 Global buckling strength 
The global buckling strength of columns and beams in the Direct Strength Method is the same as 
in the main body of the AISI Specification (i.e. Eq.’s 13.22-24 and 13.28-30), with two 
exceptions. First, the provisions are provided in terms of load and moment, instead of stress. 
Second, no method is prescribed for the elastic global buckling load or moment, instead in the 
Direct Strength Method (Appendix 1, AISI 2007) rational analysis is allowed and expected for 
these quantities. Consider for example the main body of the AISI Specification’s approach to 
global buckling of Z-sections, it merely takes ½ the buckling stress of I-sections. This is 
excessively conservative, particularly given the ease with which either (a) the classical analytical 
expressions can be solved numerically, or (b) finite strip or finite element solutions may be used 
to find the elastic buckling load or moment with great accuracy. In the DSM Design Guide 
(Schafer 2006) a variety of approaches are demonstrated for global buckling determination. The 
design expressions for columns and beams follow. 

Columns 
Flexural, Torsional, or Torsional-Flexural Buckling 
The nominal axial strength, Pne, for flexural, torsional, or torsional-flexural buckling is  
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where  λc  = crey PP   (13.42) 
Py   =  AgFy  (13.43) 
Pcre= Minimum of the critical elastic column buckling load in flexural, torsional, or 

torsional-flexural buckling …  



Beams 
Lateral-Torsional Buckling 
The nominal flexural strength, Mne, for lateral-torsional buckling is  

for Mcre < 0.56My                       Mne=Mcre (13.44) 
for 2.78My > Mcre > 0.56My     Mne= ( )

cre

y

M36
M10

y9
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for Mcre > 2.78My                     Mne=My (13.46) 
where  My= SfFy , where Sf is the gross section modulus referenced to  (13.47) 

                   the extreme fiber in first yield 
Mcre = Critical elastic lateral-torsional buckling moment… 

13.3.3 Local and Local-global interactive strength 
Columns 
The basis of the Direct Strength Method for local buckling can be understood through an 
examination of Winter’s effective width expression for local buckling of plates. If the 
slenderness parameter, λ, of Eq. 13.20 is substituted into Eq. 13.19 and the resulting expression 
for ρ into Eq. 13.18 the effective width, b,  may be expressed as a function of the gross width, w, 
with the following expression: 
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This shows that the effective width (the strength in local bucking) is a function of fcr and fy; 
which is the reasoning behind the basic premise of the Direct Strength Method: strength as a 
function of elastic slenderness for all modes. Consider now that the local plate buckling critical 
buckling stress, fcr, in Eq. 13.48 is replaced with the cross-section local buckling stress, fcrl (e.g. 
from Fig. 13.7) and the effective width and gross width are replaced by effective area and gross 
area: 
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multiplying both sides by fy (Aefy=Pnl, Agfy=Py), and multiplying numerator and dominator under 
the radical by Ag (Agfcrl=Pcrl, Agfy=Py) and the result is that the strength, Pnl, is predicted by the 
slenderness, as a function of force, i.e., a Direct Strength prediction is provided: 
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Calibration with experimental data (Schafer 2002) shows this expression to be slightly 
conservative and the final expression employed in the Direct Strength Method is: 
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Local-global interaction is fundamental to thin-walled members, in the effective width approach, 
as described in Section 13.2.3, fy, of Eq. 13.49 is replaced with fn from the column curve of Eq. 
13.22-23, i.e. 
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Using the same substitutions as before, and making the same final calibration (Schafer 2002), 
Eq. 13.52 in Direct Strength Method format is expressed as: 
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where Pne=Agfn, and fn is from Eq. 13.22-23, or equivalent Pne is from Eq. 13.40-41. Through this 
simple substitution local-global interaction is included. Where before the maximum strength in 
local bucking was Py, now the global buckling caps the strength at Pne and further reductions are 
made down to Pnl as a function of the local slenderness. The final format in the Specification 
(AISI 2004, 2007) appears as follows, where the nominal axial strength, Pnl, for local buckling is 

for λl 776.0≤    Pnl = Pne (13.54) 
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where   λl  = lcrne PP  (13.56) 

Pcrl =  Critical elastic local column buckling load … 
Pne is defined in Section 1.2.1.1. 

Agreement of Eq. 13.56 with available test data is provided in Fig. 13.11 (Schafer 2002). 
Significant scatter is prevalent (though not more than in effective width implementations) yet the 
overall trends are clear. The choice of the coefficients and exponents of Eq. 13.56 were 
influenced by the solution for the Direct Strength Method for the local buckling strength of 
beams, which preceded that for columns and is discussed further in the following. 

Beams 
Development of the initial Direct Strength prediction equations for local buckling of flexural 
members followed the same basic progression as described for compression members. Beginning 
with Winter’s basic effective width expression in the form of Eq. 13.48, fcr is replaced with the 
cross-section local buckling stress, fcrl (referenced to the compression flange). The effective 
width and gross width are replaced with the effective section modulus, Se, and gross section 
modulus Sg and both sides are multiplied times the yield stress: 
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Stresses under the radical are multiplied times Sg while Sefy is defined as the nominal capacity in 
local buckling, Mnl,  and Sgfy as the yield moment, My, thus resulting in Winter’s effective width 
expression for the bending strength:  
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In Schafer and Peköz (1998) Eq. 13.58 is compared to available data, the basic trend is clear but 
the expression is overly conservative. As a result curve (3) of Schafer and Peköz (1998) was 



employed and the nominal flexural strength, Mnl, for local buckling in the Direct Strength 
Method was found to be: 

for λl 776.0≤   Mnl = Mne (13.59) 
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where  λl = lcrne MM  (13.61) 
Mcrl = Critical elastic local buckling moment… 
Mne is defined in Section 1.2.2.1. 

Agreement of Eq. 13.59-60 with experimental data is provided in Fig. 13.12 and Fig. 13.13(a). 
Note, for the beam data (as opposed to the column data) all of the Mtest values are normalized 
against the moment at first yield, My. This is due to the fact that all of the test data employed was 
for laterally braced members. It is worth noting that while local-global interaction was 
experimentally examined for columns, and the same methodology applied for beams, local-
global, distortional-global, and local-distortional interactions have not been experimentally 
examined in the context of the Direct Strength Method for beams. Based on the findings for 
columns local-global interaction has been included and local-distortional and distortional-global 
interactions ignored. See Section 13.3.4 for further discussion on modal interaction. The 
performance of laterally un-braced beams deserves further study, not only in the context of the 
Direct Strength Method and potential interactions, but also to better understand how warping 
torsion should be treated. For moderate rotations the influence of the torsional stress on local and 
distortional buckling modes is real (Gotluru et al. 2000) and its potential inclusion in the Direct 
Strength Method (as well as in the main body of the AISI Specification) is worthy of further 
study. 

Finally, it is worth noting that the testing on C- and Z- section beams has focused on strong-
axis bending and associated buckling, extension to weak-axis bending has been assumed. This 
assumption is justified in part by the inclusion of hats and decks in the experimental database, 
these sections are bent about their weak-axis, and are similar in their behavior to a C-section in 
weak axis bending. Further, the major-axis bending modes are considered more critical since the 
primary effect of weak-axis bending in comparison to strong-axis bending is the elimination of 
global lateral-torsional buckling modes. 

Element Interaction 
A significant difference between the Effective Width Method and the Direct Strength Method is 
the replacement of element or plate buckling, fcr with cross-section local bucking, fcrl. In the 
elastic regime the use of cross-section fcrl insure that equilibrium and compatibility around the 
cross-section are maintained. Though both design methods have reasonable levels of overall 
reliability (Schafer 2008) they arrive at that reliability in different ways. In Fig. 13.14 the 
strength predictions of the Effective Width Method and the Direct Strength Method are 
compared as a function of the web slenderness of a C-section column. As web slenderness 
increases the Effective Width Method solution becomes systematically unconservative. This 
behavior is exacerbated by the fact that for typically available C-sections as the web becomes 
deeper the flange width remains at approximately the same width, so high web slenderness is 
strongly correlated with high web-to-flange width ratios (i.e., C-sections which are ‘narrow’). 
This detrimental behavior is primarily one of local web/flange interaction, not distortional 



buckling. Since the Effective Width Method uses an element approach, no matter how high the 
slenderness of the web becomes, it has no effect on the solution for the flange. In contrast the 
Direct Strength Method, which includes element interaction in local buckling (i.e., interaction 
between the flange and the web), performs accurately over the full range of web slenderness. 
Proper inclusion of element interaction is necessary for accurate strength prediction of these 
columns. 

Taken to extremes, inclusion of elastic element interaction can also work against the 
Direct Strength Method, making the method overly conservative. This fundamental limitation of 
the Direct Strength Method was reported in the first paper to propose the approach (Schafer and 
Peköz 1998). When one part (element) of the cross-section becomes extraordinarily slender that 
element will drive the member elastic critical buckling stress to approach zero. The Direct 
Strength Method will assume the member strength, like the member elastic critical buckling 
stress, will also approach zero. In contrast, the Effective Width Method presumes only that the 
element itself (not the member) will have no strength in such a situation. Deck or hat sections in 
bending with low yield stress and very slender (wide) compression flanges without intermediate 
stiffeners tend to fall in this category and thus have unduly conservative predictions by the Direct 
Strength Method, but quite reasonable predictions via the Effective Width Method. However, 
ignoring inter-element interaction, as the Effective Width Method traditionally does, is not 
universally a good idea as illustrated for the C-section columns of Fig. 13.14. 

For optimized deck sections with multiple longitudinal intermediate stiffeners in the web 
and the flange (see e.g., Höglund 1980) the Direct Strength Method is highly desirable over the 
Effective Width Method – here the benefit is primarily convenience not theoretical. If a 
computational solution is employed for determining the elastic buckling stresses (moments) an 
optimized deck section is no more complicated than a simple hat for strength determination; but 
for the Effective Width Method the calculation of effective section properties and accurately 
handling the effective width of the numerous sub-elements leads to severe complication without 
increased accuracy, or worse in the case of many specifications (e.g. AISI 1996, 2001) no design 
approach is even available for such a section using the Effective Width Method. In general, as 
sections are optimized the Direct Strength Method provides a simpler design methodology with 
wider applicability than the Effective Width Method. 

0 50 100 150 200 250 300 350 400 450 500
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

mean =0.94129

st. dev. =0.14696

web height / thickness (h/t)

A
IS

I (
19

96
) t

es
t-t

o-
pr

ed
ic

te
d 

ra
tio

local governs
distortional governs
Regression trend line

0 50 100 150 200 250 300 350 400 450 500
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

mean =1.0165

st. dev. =0.15531

web height / thickness (h/t)

D
S

M
 (A

IS
I 2

00
4 

A
pp

en
di

x 
1)

 te
st

-to
-p

re
di

ct
ed

 ra
tio

Pnl governs

Pnd governs

Regression trend line

(a) Effective Width Method of AISI (1996) (b) Direct Strength Method of AISI (2004) App. 1 
Fig. 13.14 Test-to-predicted ratio for (a) the Effective Width Method of AISI (1996) and (b) the Direct 

Strength Method of AISI (2004) App. 1 for all lipped channel columns used in the development of Direct 
Strength Method predictor equations plotted as a function of web slenderness (h/t) 



13.3.4 Modal interactions 
If thin-walled cross-sections can generally be characterized as having local, distortional, and 
global buckling modes then their exists a potential for any of these modes to interact. For 
example, local-global interaction is known to occur and be of significance, and is thus accounted 
for specifically in design (e.g., Eq. 13.31 or 13.54-56). Interaction of the other modes: local-
distortional, distortional-global, and local-distortional-global have been the subject of research. 

No definitive consensus exits on what it means for a mode to interact, nor when such 
interactions will occur. Definitions depend on whether one is considering a mathematical 
interaction, or evening the coupling of multiple modes, or one is considering observed behavior 
where one buckling mode influences the deformations and strength in a second mode. When 
such interaction will occur is complicated by the varied degree of post-buckling in the modes, 
wavelength of the modes, and the dependence of post-buckling on material properties (e.g., yield 
stress) as buckling modes trigger plastic mechanisms and ultimately failure. 

The Effective Width Method (as implemented in AISI 2007) explicitly includes local-
global interaction. Local-distortional, distortional-global, and local-distortional-global interaction 
are assumed to not occur or be irrelevant for design in the Effective Width Method1. The Direct 
Strength Method (as implemented in AISI 2007) includes only local-global interaction, and 
ignores local-distortional, distortional-global, and local-distortional-global interaction. These 
conclusions were drawn from conflicting data, which nonetheless largely point out that if 
interactions are included for all modes the resulting capacities are not consistent with 
observations. 

Local-Distortional/Distortional-Global interaction  
As summarized in Section 13.3.1 initial analytical and experimental investigations of 

distortional buckling largely indicated that interaction of distortional buckling with other 
buckling modes (local, global) is generally weak. The tests by Kwon and Hancock (1992) on 
lipped channels with and without groove stiffeners in the web were designed to determine 
whether adverse interaction occurred if local and distortional buckling were simultaneous or 
nearly simultaneous. No adverse interaction was found between local and distortional buckling 
for the channel sections tested. However tests of trapezoidal decks by Bernard et al, (1992a,b, 
1993a,b) included sections that underwent local buckling before and after distortional buckling. 
Sections that underwent local buckling well before distortional buckling needed to account for 
local-distortional interaction, while in sections where distortional buckling occurred first no 
similar reduction for local buckling was required. Later testing at Sydney, Young (1997) 
experimentally observed that the interaction of distortional buckling with other modes is weak. 
Using Generalized Beam Theory, Davies and Jiang (1996) argued that distortional buckling has 
weak interactions with other modes. 

Further examination against a wider body of test data also showed interaction of 
distortional with other modes to be weak (Schafer 2002). Interaction of the buckling modes was 
systematically studied for local-global, distortional-global, and local-distortional buckling of the 
columns. Based on overall test-to-predicted ratios, and when available the failure modes noted 
by the researchers in their testing, it was determined that local-global interaction should be 
                                                           
1 This statement is subject to some interpretation, as the empirical expressions of Desmond et al. which are still used 
for the effective width of edge stiffened elements in AISI (2007) includes some amount of local-distortional 
interaction in their development; however it may be shown that the distortional buckling strength using Eq. 13.34-36 
or Eq. 13.37-39 results in lower capacities than Desmond’s expressions; therefore the local-distortional interaction is 
not meaningfully included in AISI (2007). 



included, but not distortional-global, or local-distortional interaction. For example the local-
distortional interactive strength was formulated by replacing Pne of Eq. 13.54-56 with Pnd of Eq. 
of Eq. 13.34-36. Such a strength check results in overly conservative predictions: 169 of the 187 
studied tests would be identified to fail in local-distortional interaction and the average test-to-
predicted ratio would be 1.35 (Schafer 2000, 2002). Neither the failure mode or strength 
prediction is consistent with the observations from the tests when local-distortional interaction is 
included for all columns. As a result, it was recommended to only include local-global 
interaction in the Direct Strength Method.  

Recent experimental and analytical work has left this conclusion somewhat in question. 
Hancock and his students have continued to study the distortional buckling mode for high 
strength steel sections, including lipped channels with intermediate stiffeners (Yang and 
Hancock 2004; Yap and Hancock 2008b), and more unique cross-shaped open sections with 
multiple distortional buckling modes (Yap and Hancock 2008a). They find for these sections that 
the strength does not follow the expected distortional strength curve, i.e. that of the Direct 
Strength Method Eq. 13.34-36 or Hancock et al. (1994) Eq. 4(b), but rather is somewhat reduced. 
(Post-bucking strength is still observed). It is unclear if the reduction should be attributed to 
local-distortional or distortional-global interaction. The best numerical (strength prediction) 
agreement is found with ignoring local-distortional interaction in the calculation and including 
distortional-global interaction by replacing Py in Eq. 13.34-36 with Pne. However, local-
distortional interaction is visually observed in the testing. 

In addition to studying the mechanics of post-bucking in local and distortional buckling 
Silvestre et al. (2006) have also been studying local-distortional interaction in lipped channels. 
Their approach has been to examine cross-sections where Pcrl and Pcrd are at the same or nearly 
the same elastic critical buckling load (moment) and then examine the ultimate strength through 
the use of nonlinear finite element analysis. Comparisons with the Direct Strength Method show 
a decrease from the expected post-buckling strength. Based on their analyses an experimental 
study is now underway to confirm the exact nature of the reductions and when they should be 
applied in design.  



13.4 ADDITIONAL DESIGN CONSIDERATIONS 
The two previous sections cover the design of thin-walled axial and flexural members by either 
the Effective Width Method or the Direct Strength Method. Regardless of the method selected a 
number of additional design considerations must be considered in construction using thin-walled 
members; including: shear, inelastic reserve capacity, web crippling and interactions between 
bending and web crippling, bending and shear, and bending and axial load. 

13.4.1 Shear 
The design expressions for cold-formed steel members in shear closely parallel those of the 
AISC Specification and are based primarily on the experimental work of LaBoube and Yu 
(1978). The 5th Ed. of this Guide provides complete details of the expressions used prior to 2001. 
In 2001 the shear design expressions were modified slightly so that a uniform resistance factor 
could be employed through the three regimes: yield, inelastic buckling, and elastic buckling 
(Craig and Schuster 2000). Development of a Direct Strength Method for shear has sparked more 
recent work (Pham and Hancock 2008; Schafer 2008) 

13.4.2 Bending: Inelastic Reserve 
It is possible, and indeed relatively common, for thin-walled cold-formed steel beams to have 
bending capacities in excess of the moment at first yield. One method for determining the 
capacity in such a situation is to determine the strains that the compressed elements can sustain, 
and then based on that strain determine the capacity in excess of My. The AISI Specification 
provides the strain capacity of stiffened elements (Yener and Pekoz 1985) and unstiffened 
elements (Bambach and Rasmussen 2004) that may be utilized for this calculation. In addition, 
work has begun on a Direct Strength Method approach to inelastic reserve (Shifferaw and 
Schafer 2007). Additional inelastic reserve capacity due to the redistribution of moments in 
statically indeterminate beams and profiled decks was studied by Unger (1973, Yener and Peköz 
(1980), Yu (1981), and Bryan and Leach (1984). The post-local-buckling behavior of continuous 
beams is discussed by Wang and Yeh (1974). 

13.4.3 Web Crippling 
The necessity to check web crippling is an important distinction for thin-walled members. The 
thin webs of beams may cripple due to the high local stresses caused by concentrated loads or 
reactions. Fig. 13.15 shows the types of deformation that occur due to crippling of unrestrained 
single webs and restrained double webs.  
 

 
Fig. 13.15 Web crippling of beams. 

Early experimental work (Winter and Pian, 1946; Rockey et al., 1972; Hetrakul and Yu, 1978) 
indicated that the web crippling strength of thin-walled beams depends on N/t, h/t, R/t, and Fy, 
where t is the web thickness, N the bearing length, h the flat width of the web, Fy the yield stress 



of the steel, and R the inside bend radius. In 2001 all of the web crippling design expressions 
were brought together into one format in the AISI Specification  (Prabakaran and Schuster 
1998): 
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where Pn is the web crippling capacity, θ the web angle and C, CR, CN, and Ch are empirical 
coefficients that are cross-section and loading dependent. 

The empirical coefficients, C’s, are based on the extensive experimental testing that has 
been completed on web crippling, including significant recent testing (Beshara and Schuster 
2000; Gerges and Schuster 1998; Holesapple and LaBoube 2003; Prabakaran and Schuster 1998; 
Santaputra et al. 1989; Wallace and Schuster 2005; Young and Hancock 2001; Young and 
Hancock 2004) as well as earlier testing as reported in the AISI Specification. Eq. 13.62 has been 
shown to provide reliable predictions across the broad data set (Beshara and Schuster 2002). 

Experimental work is now moving away from testing individual cross-sections and to 
testing structural systems, this trend is particularly evident in lightweight steel framing systems 
where testing as been completed on web crippling in trusses (Ibrahim et al. 1998), headers 
(Stephens and LaBoube 2000), stud-to-track connections (Fox and Schuster 2002), and joist-to-
rim connections (Serrette 2002) and framing members with holes (LaBoube et al. 1999; LaBoube 
et al. 1997; Langan et al. 1994).  

Though it is powerful and simple, Eq. 13.62 is not without its drawbacks. The empirical 
coefficients, vary significantly over the 46 different categories provided in the Specification, and 
not always in a rational fashion. Alternatives to testing include nonlinear finite element analysis 
(Fox and Brodland 2004; Ren et al. 2006b; Sivakumaran 1989) as well as yield-line theory 
(Bakker and Stark 1994). To date these alternatives are too involved for regular design use. 

13.4.4 Bending and Web Crippling 
While web crippling is generally associated with shear loads, the presence of bending demands 
will also decrease the web crippling capacity. The AISI Specification (2007) provides a series of 
interaction equations for checking bending and web crippling, the equations in current use are 
summarized in Wallace et al. (2002). In addition to the experimental work summarized in 
Wallace et al. (2002) recent work on isolated channels (Young and Hancock 2002) and headers 
in light steel framing (Stephens and LaBoube 2002; Stephens and LaBoube 2003) have 
investigated bending and web crippling interaction. Work continues on analytical models to 
understand web crippling and its interaction with bending (Hofmeyer et al. 2001) as well as fully 
computational solutions (Ren et al. 2006a). 

13.4.5 Bending and Shear 
When high bending stresses and high shear stresses act simultaneously, as in cantilever beams 
and at supports of continuous beams, the webs of beams will buckle at a lower stress than if only 
one stress were present. For a combination of bending and shear, Eq. 4.8 can be used to predict 
buckling. 
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where σcb is the actual compressive stress at the junction of flange and web, τc is the actual 
average shear stress, and σ*

cb and τ*
c are the critical stresses for bending and shear, respectively. 

Eq. 13.64 has been adapted for design by replacing the critical stresses for bending and shear 
with permissible design strength values. The equation has also been presented in a load format 
by replacing the shear stress with shear force and bending stress with bending moment: 
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where M and V are the applied moments and shears, and Mn and Vn are the nominal strengths. 
Webs with transverse stiffeners can develop strength in excess of Eq. 13.64 (LaBoube and Yu 
1978) and a slightly more liberal interaction equation is provided for that case in AISI (2007).  

13.4.6 Bending and Axial load 
The design of beam-columns, or members under bending and axial load, has seen much study in 
recent years, see Chapter 8 and Chapter 16 of this Guide for example. Similar to hot-rolled steel 
construction, cold-formed steel now provides a traditional K-factor approach in the main body of 
the Specification (AISI 2007) and a 2nd order analysis approach in the Appendix (AISI 2007, 
App.2). 

The main Specification approach uses a simple linear interaction equation with classical 
moment amplification for P-δ or P-Δ moments: 
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where P, Mx, My are the 2nd order demands, and Pn, Mnx, Mny are the capacities, and φ the 
resistance factor. Demands Mx and My reflect P-δ or P-Δ contributions through amplification of 
the 1st order moments (e.g. Mxo) by the traditional approach: 
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where Cm accounts for the location of Mxo in the amplification and Pcr is the buckling load 
determined through knowledge of the effective length(s), KL(s). Specific provisions are not 
provided for determining K, reference is given to the AISC commentary and earlier editions of 
this SSRC Guide. 

New to the 2007 Specification is Appendix 2 which provides guidelines for the 
application of 2nd order analysis in the determination of Mx and My as opposed to Eq. 13.66 for 
cold-formed steel structures (Sarawit and Pekoz 2006). Initial imperfections, or equivalent 
notional loads, are added to a frame model of the structure and analysis conducted to determine 
the structural demands in the deformed geometry. Since member δ imperfections are inherently 
assumed in the Pn capacity of Eq. 13.22-23 or 13.40-41, such imperfections are not required to 
be explicitly modeled in the 2nd order analysis. In addition, following the procedure in AISC, the 
elastic stiffness, E, in the models are reduced (reducing E is simply a convenient way to reduce 
bending rigidity EI and axial rigidity EA) in an attempt to account for member reliability and 
reduced stiffness due to partial yielding under large axial loads. Further details are provided in 
the AISI commentary, the AISC commentary, and Chapter 16 of this Guide. 



13.5 STRUCTURAL ASSEMBLIES 

13.5.1 Built-up Sections 
Built-up sections are common in light steel framing, but to date the AISI Specification provisions 
remain somewhat rudimental. For built-up columns, to account for reduced shear rigidity in 
built-up sections with discrete fastening, AISI (2007) prescribes a modified slenderness (KL/r)m 
for use in flexural and flexural-torsional buckling calculations: 
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where (KL/r)o is the overall slenderness ratio of the entire section about the built-up member 
axis, a = fastener spacing, and ri is the minimum radius of gyration of an individual shape in the 
built-up member. In addition the fasteners must be designed for 2.5%Pn, the faster spacing is 
limited, and end details are prescribed. The design of built-up cold-formed steel members is 
derived largely from the extension of similar research for built-up hot-rolled steel members and 
further work in this area is needed. 

13.5.2 Bracing 
As discussed in Chapter 12 structural bracing may be divided into two general types, 

according to its function: (1) bracing provided to resist secondary loads on structures, such as 
wind bracing, and (2) bracing provided to increase the strength of individual structural members 
by preventing them from deforming in their weakest direction (Winter, 1958). In the latter 
instance, there are again two different cases: (1) bracing applied to prevent buckling and thereby 
increase the unstable strength of the member, and (2) bracing applied to counteract stable but 
detrimental types of deformation. As examples of the latter, C- and Z-shaped beams loaded in 
the plane of the web twist or deflect laterally, with consequent loss of strength unless they are 
properly braced (Murray and Elhouar, 1985). For C-sections the eccentricity between the shear 
center and the plane of loading creates a torsion demand (a tendency to roll), while for Z-sections 
the difference between the principal (inclined) axes and the geometric axis creates a similar 
torsion demand, in either case bracing maybe used to restrict the movement and appropriate 
expressions for the developed forces are provided in AISI (2007). 

Bracing may be continuous, such as that provided by wall panels, roof decking, or floor 
systems, or it may be noncontinuous or discrete, such as cross-bracing. For discrete bracing the 
spacing of the braced points also is important. Finally, bracing may also be distinguished 
according to its behavior: (1) that which provides restraint through resistance to axial 
deformation, as does cross-bracing, and (2) that which provides restraint through resistance to 
shear deformation, as do diaphragms (Fig. 13.16). 

For bracing against buckling to be effective in an actual situation, it must possess not 
only the requisite strength but also a definite minimum rigidity. However, the required strength 
cannot be computed uniquely, except on the basis of assumed imperfections of shape and/or 
loading of the member to be braced (Winter, 1958). Recognizing this fact lead to the 
development of recent AISC provisions (as discussed in Chapter 12). For cold-formed steel 
explicit adoption of this design philosophy is still underway. In many cases the stiffness is 
assumed and the brace force is assumed to be 2% of the axial load. However, for axial loaded 
members undergoing flexural buckling, research by Green et al. (2006) have lead to recent 



adoption of strength and stiffness bracing provisions in AISI (2007). The provisions require an 
axial brace capacity of 1% of the member axial capacity, and a stiffness based on the discrete 
brace spacing developed directly from Winter’s work. Diaphragm bracing and continuous 
bracing can be quite application specific in thin-walled steel construction and are thus covered in 
that way, as opposed to a general treatment, in AISI (2007). 

13.5.3 Light-frame Construction 
Since the last edition of this Guide the practice of light-frame cold-formed steel construction has 
evolved significantly, particularly with respect to Standards. A significant amount of research 
has gone into the development of a series of new standards for cold-formed steel framing, these 
North American Standards for Cold-Formed Steel Framing include: General Provisions (AISI 
S200-07), Product Data (AISI S201-07), Floor and Roof System Design (AISI S210-07), Wall 
Stud Design (AISI S211-07), Header Design (AISI S212-07), Lateral Design (AISI S213-07), 
and Truss Design (AISI S214-07). These standards attempt, when possible, to treat the system as 
opposed to the individual members. 

General Provisions (AISI S200-07) and Product Data (AISI S201-07) are essentially self-
explanatory. Floor and Roof System Design (AISI S210-07) covers the design of floors and roofs 
by either the discretely braced design or continuously braced design philosophy. For 
continuously braced design prescriptive sheathing requirements are provided (insuring a level of 
rigidity for the brace) along with the forces required to counteract rolling of the joists. The Floor 
and Roof System Design standard also provides a simple means to design clip angle bearing 
stiffeners, based on recent research (Fox 2006). 

The Wall Stud Design standard (AISI S211-07) is similar to the floor and roof provisions 
and covers the design of wall studs by either the all steel design or sheathing braced design 
philosophy. Prescriptive load limits are provided for gypsum sheathed designs based on 
experimental testing (Miller and Pekoz 1994). Sheathing braced design does not imply 
diaphragm-based design methods, which were essentially abandoned for sheathed walls, based 
on the observation that local fastener deformations, not sheathing in shear, dominates the 
response. Also covered in this Standard are stud-to-track connection strength including web 
crippling (Fox and Schuster 2000) and deflection track strength.  

As first discussed in Section 13.5.1, the general built-up section provisions in AISI 
(2007) are rudimentary, but significant research has been conducted on built-up headers used in 
light frame construction (Elhajj and LaBoube 2000; Stephens and LaBoube 2000; Stephens and 
LaBoube 2003) This research has lead to provisions for box headers, double L headers, and 
single L headers covering web crippling, bending and web crippling, and simplified moment 
calculations in the Header Design standard (AISI S212-07). 

The Lateral Design standard (AISI S213-07) has had a significant impact on practice as 
this standard provides a means to determine the lateral strength of cold-formed steel systems 
used in wind and seismic demands. The standard provides compiled test results for cold-formed 
steel shear walls and diaphragms with a variety of sheathing, fastener spacing, stud spacing, etc. 
Specific seismic detailing provisions are provided, for example for strap-braced shear walls (Al-
Kharat and Rogers 2007). In addition to strength, expressions are provided for deflection 
calculations (Serrette and Chau 2006). 

The Truss Design standard (AISI S214-07) provides specific guidance on beam-column 
design for chord and web members of cold formed steel trusses. In addition due to the presence 
of concentrated loads (Ibrahim et al. 1998) in locations with compression and bending a unique 
interaction equation check for compression, bending, and web crippling is provided. Specific 



guidance is also provided for gusset plate design (Lutz and Laboube 2005) and methods for 
testing trusses. 

13.5.4 Diaphragm Construction (Metal Roof and Wall Systems) 
Thin-walled metal panels are often used as wall cladding, roof decking, and floor decking, where 
their primary structural function is to carry loads acting normal to their surface. Properly 
designed and interconnected metal roof, wall, and floor systems are also capable of resisting 
shear forces in their own planes, referred to as diaphragm action. Thus, primary components of 
the lateral force resisting system for wind or seismic may be a properly detailed floor and/or roof 
diaphragm composed of fastened and/or welded thin-walled metal panels. Such a system can be 
highly advantageous, for example, procedures have been developed that recognize the ability of 
diaphragms assembled from such panels to transfer load from a heavily loaded frame to less 
heavily loaded adjacent frames in a single-story structure, thus reducing the required maximum 
frame size (Luttrell, 1967; Bryan and Davies, 1981). The shear strength and rigidity of thin-
walled panels can be utilized in folded plate structures (Nilson, 1960), hyperbolic paraboloids 
(Gergely et al., 1971), and other shell roof structures (Bresler et al., 1968). In addition, theory 
and test results both have shown that the shear strength and rigidity of properly connected 
diaphragms can be effective as bracing for individual beams and columns. 

Diaphragm-Braced Columns 
In the elastic range the predicted weak-axis buckling load of an ideal axially loaded I-section 
column or wall stud with directly attached symmetrical diaphragm bracing (Larson, 1960; Pincus 
and Fisher, 1966) is determined as 
 P = Pyy + Q (13.68) 
where Pyy is the weak-axis buckling load of the unbraced column and Q is the shear rigidity of 
the diaphragm contributing to the support of the column. The shear rigidity can be expressed as 
 Q = AdGeff (13.69) 
where Ad is the cross-sectional area of the diaphragm normal to the column axis and contributing 
to the support of the member and Geff is the effective shear modulus of the diaphragm. Similar 
expressions are also possible for columns undergoing flexural-torsional buckling, or having 
sheeting on only one side, or dissimilar sheeting (Simaan and Pekoz 1976). Of course, Eq. 13.68 
only predicts the increased buckling load for ideal members, initial imperfections and a full 
treatment of the fastener and diaphragm stiffness are still required.  

Due to the complexity of predicting the strength of diaphragm-braced columns the AISI 
Specification (2007) provides empirical methods for compression members with one flange 
attached to metal deck (Glaser et al. 1994), or standing seam roof systems (Stolarczyk et al. 
2002). Strict prescriptive limits define the system and details for the application of these 
expressions. The more general treatment of Simaan and Peköz (1976) was employed in the AISI 
Specification for wall studs (with different sheathing types) from 1981 to 2004, but has been 
replaced by rational engineering analysis in the Wall Stud Standard (AISI S211-07). A key 
requirement for diaphragm action to occur is that the fasteners must be stiff enough to engage the 
diaphragm, in many traditional sheathing materials (as opposed to thin-walled metal panels), this 
does not appear readily possible with conventional detailing (Miller and Pekoz 1993; Miller and 
Pekoz 1994) and it may therefore be difficult to get full diaphragm action engaged. 



 
Fig. 13.16 Members with diaphragm bracing. 

Diaphragm-Braced Beams 
The same type of diaphragm action is also useful in counteracting lateral-torsional buckling of 
beams. For ideal I-section beams braced directly by diaphragms on the compression flange, the 
critical lateral-buckling moment can be estimated as (Errera et al., 1967) 
 Mcr = M0 + 2Qe (13.70) 
where M0 is the lateral-buckling moment of the unbraced beam, e the distance between the center 
of gravity of the beam cross section and the plane of the diaphragm, and Q the shear rigidity of 
the diaphragm contributing to the support of the member, as defined previously. Again, it is 
emphasized that Eq. 13.70 predicts the buckling load of an ideal member. For real members the 
initial imperfections and the strength of the bracing must be taken into consideration. 

As discussed in Section 13.5.2 above C- and Z-shaped beams have a tendency to twist 
under lateral load applied through the web. When both flanges of such beams are connected to 
deck or sheathing material in such a manner as to restrain lateral deflection effectively, no further 
bracing is required. However, when only one flange is connected the problem can be complex. 
For purlins and girts with one flange connected to sheeting as commonly found in metal 
buildings, design may proceed by either test methods or through empirical procedures (valid only 
within prescriptive limits) as provided by the AISI Specification (2007) both for conventional 
metal sheeting and standing seam roof systems. 

Proper performance of a diaphragm requires adequate anchorage to the structure. 
Determination of the anchorage forces for sloped diaphragms common in metal building systems 
has seen significant investigation in recent years. The key to the recent improvements is the 
consideration of the stiffness of the full system: diaphragm, purlin, and anchorage in 
determination of the forces. Considering anchorage stiffness (as opposed to ideally rigid) reduces 
the forces the anchorage must be designed for, and allows for adequate performance so long as a 
minimum stiffness is provided. Development of the design method included experiments and 
shell finite element analysis (Seek and Murray 2005) as well as creation of a complete rational 
engineering analysis method capable of handling essentially all situations encountered in practice 
(Seek and Murray 2006; Seek and Murray 2007; Seek and Murray 2008). Ultimately this general 
method was simplified somewhat  (Sears and Murray 2007) to that provided in the AISI (2007).  



13.6 STAINLESS STEEL STRUCTURAL MEMBERS 
Cold-formed stainless steel sections have been widely used architecturally in buildings because 
of their superior corrosion resistance, ease of maintenance, and pleasing appearance. Typical 
applications include column covers, curtain-wall panels, mullions, door and window framing, 
roofing and siding, stairs, elevators and escalators, flagpoles, signs, and many others. Since 1968, 
their use for structural load-carrying purposes has been increased due to the availability of the 
AISI and ASCE design specifications (AISI, 1974; ASCE, 1990, 2002). 

The main reason for having a different specification for stainless steel structural members 
is because stainless steel has the following differing characteristics compared with carbon steel: 

1. Anisotropy 
2. Nonlinear stress-strain relationship 
3. Low proportional limit 
4. Pronounced response to cold work 

Fig. 13.17 shows the stress-strain curves of annealed, half-hard, and full-hard stainless steels. 
Because of the differences in mechanical properties and structural uses between stainless steel 
and carbon steel, the ASCE specification for stainless steel design contains modified design 
provisions for (1) local buckling of flat elements, (2) w/t limitations, (3) deflection calculations, 
(4) service stress limitations, (5) lateral buckling of beams, (6) column buckling, and (7) 
connections. In general, the factors of safety used for the allowable stress design of stainless 
steels are somewhat larger than those used for carbon steel. Due consideration has been given to 
the development of the load and resistance factor design criteria (Lin et al. 1992). 

 
 

 
Fig. 13.17 Stress-strain curves of annealed half-hard, and full-hard stainless steels (Wang, 1969; Johnson and 

Kelsen, 1969). 



The first edition of the Specification for the Design of Cold-Formed Stainless Steel 
Structural Members was issued by American Iron and Steel Institute in 1968 on the basis of the 
research conducted by Johnson and Winter (1966) at Cornell University. This specification was 
revised in 1974 to reflect the results of additional research (Wang and Errera, 1971) and the 
improved knowledge of material properties and structural applications. This 1974 edition of the 
AISI specification contained design information on annealed and cold-rolled grades of sheet and 
strip stainless steels, types 201, 202, 301, 304, and 316. In 1990, a new ASCE standard, 
Specification for the Design of Cold-Formed Stainless Steel Structural Members (ASCE, 1990; 
Lin et al., 1992; Yu and Lin, 1992), was published by the American Society of Civil Engineers to 
supersede the AISI specification. This new ASCE specification is based on both limit-states 
design and allowable stress design and is applicable to the use of four types of austenitic stainless 
steels (types 201, 301, 304, and 316) and three types of ferritic stainless steels (annealed types 
409, 430, and 439). In 2002 the ASCE Standard was updated, largely to keep the standards in-
line with the AISI cold-formed carbon steel standards wherever appropriate. Austenitic UNS 
Designation S20400 (annealed and 1/4 hard) stainless steels were added to the 2002 
Specification. Fully developed stainless steel standards also exist in Europe, South Africa, and 
Australia/New Zealand, just to name a few. 

Research on stainless steel members remains active. Fundamental experimental work on 
beam and column strength of stainless steel tubular and hollow sections including high-strength 
sections has provided a wealth of new reliable data for better understanding the section strength 
(Gardner and Nethercot 2004a; Gardner and Nethercot 2004b; Rasmussen 2000; Rasmussen and 
Hancock 1993a; Rasmussen and Hancock 1993b; Van den Berg 1998; Van Den Berg 2000; 
Young 2008; Young and Hartono 2002; Young and Liu 2003; Young and Lui 2005; Young and 
Lui 2006; Zhou and Young 2005). Analytical methods for material modeling including treatment 
of the highly worked corner regions (Ashraf et al. 2005; Rasmussen 2003) and complete 
summaries of imperfections and residual stresses (Cruise and Gardner 2006) are leading to 
improved modeling capabilities. Successful shell finite element models are being use by a wide 
variety of researchers to extend parametric studies and more closely examine the impact of 
differences between stainless steel and carbon steel on the behavior and strength (Ashraf et al. 
2007; Ellobody and Young 2005; Gardner and Nethercot 2004c; Rasmussen et al. 2003; Young 
and Ellobody 2006). Web crippling in stainless steel sections has seen recent study (Zhou and 
Young 2006; Zhou and Young 2007a; Zhou and Young 2007b) as has the performance of 
stainless steel sections at elevated temperatures, i.e., fire conditions (Chen and Young 2006; 
Gardner and Ng 2006; Ng and Gardner 2007; To and Young 2008). 

Development of design methods for stainless steel also remains active, as researchers 
look for robust methods that can accommodate the unique properties of stainless steel, but still 
provide simple solutions for use in conventional design. For example, alternatives to ASCE’s 
iterative column design methods are available with similar reliability (Rasmussen and Rondal 
1997). Improvements to the Effective Width Method to better handle gradual yielding behavior 
of stainless steel sections have been proposed (Rasmussen et al. 2004). Other design method 
improvements have been proposed such as basing the resistance on deformation capacity and the 
use of continuous instead of discrete cross-section classification methods (used in Eurocode) 
(Ashraf et al. 2008; Gardner and Nethercot 2004d; Gardner et al. 2006; Gardner and Theofanous 
2008). Finally, the initial development of the Direct Strength Method for stainless steel has also 
been completed (Becque et al. 2008). 
 



13.7 ALUMINUM STRUCTURAL MEMBERS 
Renumber equations to start with Eq. 13.71 
Consider adding to Alum section 
Kim, Y., Peköz, T. “Flexural strength of aluminum extrusions of arbitrary cross-section.” Proceedings of 

the Annual Stability Conference, Structural Stability Research Council, 455-474. 
Mennink, J. (2002). Cross-sectional stability of aluminium extrusions. Ph.D. Thesis, TU-Eindhoven. 
Zhu, J., Young, B. (2006). “Aluminum alloy tubular columns-Part II: Parametric study and design using 

direct strength method.” Thin-walled Structures, 44 (9) 969-985 
 

13.7.1 Effective Widths 
Postbuckling strengths of thin aluminum plate elements are generally based on the von Kármán 
concept that the width, be, for which the elastic buckling stress (Eq.4.1) 
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is equal to the yield stress gives a limiting capacity which remains constant for all other widths. 
Thus, from Eq. 13.49, 
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For a simply supported plate the buckling coefficient k = 4, so m = 1.63 and 
1.93 / .e yb t E σ=  

This is not entirely consistent with the treatment for buckling of thin walls, which for the 
elastic-plastic range uses the equivalent slenderness ratio, mb/t, in an expression of the type 
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This expression represents an approximation of the true limiting stress (Jombock and 
Clark, 1968), and the maximum load carried by a plate element in the elastic-plastic range is 
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The effective width, defined as that width which when multiplied by the yield stress and 
the thickness, gives the failure load for the element, then becomes 
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As b increases the highest load that can be carried occurs when 
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This load capacity remains reasonably constant for all higher values of b/t. Jombock and 
Clark (1968) provide values for Bp and Dp which can be represented as 
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where 
g = ( )1/ 2

/ yE σ  

α = (1 + 2/g2/3)1/2 for fully heat-treated alloy 
α = (1 + 3/g2/3)1/2 for other alloys 
k = 0.1 for fully heat-treated alloys 
k = 0.12 for other alloys 

The effective width is then 
 ( )/eb b kmb tα α= −  (13.58) 

with a maximum value of 
 3 / 4eb gt mkα=  (13.59) 
Jombock and Clark (1968), on the basis of limiting strain, provided a theoretical foundation for 
the model above, which has been adopted in North American codes (AA, 1994; CSA, 1984). 
This model gives a continuous transition from compact to thin-walled elements without 
discontinuities or changes in the form of the design expression. 

Postbuckling behavior of elements supported on the long, unloaded edges, to which the 
model above applies, differs from that of outstanding, flange-type elements, in that, for the latter, 
initial elastic buckling precipitates the collapse of single unsymmetrical elements, while there 
may be some reserve capacity in symmetrical sections which can be represented by the treatment 
for edge-supported elements using an appropriate value of the coefficient m, usually 5. 

The limiting stress on unstiffened elements of an unsymmetrical section such as a 
channel or Z, is obtained using the expression 
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where the value of m lies between 3 and 5, depending on the degree of edge restraint, and C is 
the slenderness parameter separating elastic and inelastic buckling. 

In symmetrical sections, such as I- and double-channel shapes the effective width will be 
given by Eqs. 13.58 and 13.59 using m = 5, unless local buckling can precipitate overall flexural 
or lateral-torsional buckling, which will occur when the critical stresses for the different buckling 
modes are close in value. 

13.7.2 Effective Section at Service Loads 
A margin of over 1.5 between service loads and the ultimate load is usual; thus the extent of any 
local buckling in service will be small and confined to zones of maximum moment. For this 
reason, the influence of local buckling on deflections under service loads has been neglected in 
some codes. If a calculation is to be made, the difficulty of computing deflections with a varying 
and initially unknown effective moment of inertia is usually resolved by assuming that the 
effective section at the point of highest moment applies throughout. The effective width be of the 
elements comprising the effective section are obtained using the actual width b and the ratio of 



the critical stress σc to the applied stress σ computed on the basis of a fully effective section, 
thus: 
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13.7.3 Torsional Buckling 
13.7.3.1 Angles.  
A single angle may fail by flexure or torsional buckling; only by a special proportion of heavy 
root bulbs and very thin legs can local buckling be made to occur. To optimize shapes, bulbs and 
root fillets are added to increase the torsional rigidity such that the equivalent slenderness ratio 
for torsional buckling is around 60. Because of the interaction of torsion with flexure about the 
stronger axis, is it not effective to design sections of equal inertia about the two principal axes, 
and the optimum is an equal-leg right-angle section for both plain and bulb shapes. This is also 
true of double angles, designed to balance torsional and flexural buckling, in which case equal-
leg angles are again very close to the optimum. 

13.7.3.2 Eccentrically Loaded Columns. 
 Unsymmetrical open sections loaded axially fail in combined torsion and flexure. Should they 
be loaded through the shear center, the modes are uncoupled and torsional buckling can be 
eliminated. Use has been made of this in T-sections for diagonals which, when bolted through 
the flanges, are loaded through the shear center. This allows much thinner sections to be used 
with a considerable increase in efficiency despite the moment due to the eccentricity. The 
optimum form is a lipped shape to control local buckling of the flanges. 

Single angles loaded through one leg fail by lateral-torsional buckling in the manner of a 
beam-column (Marsh, 1969) and the design procedure adopted by CSA (1983) and ASCE (1972) 
treat this interaction by using an effective slenderness ratio: 
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where 5b/t is the slenderness ratio for torsional buckling of angles and KL/rv is the slenderness 
ratio for flexural buckling. 

13.7.3.3 Postbuckling Strength. 
 In general, the critical stress for a column failing by torsional buckling represents the maximum 
capacity of the member. This is always true of pin-ended unsymmetrical sections, as the 
application of the load through the centroid requires a uniform stress in the section for 
equilibrium. Should the column be loaded by fixed platens, the axis of load application can shift 
as the member twists, causing an increase in stress toward the shear center (Smith, 1955). 
Symmetrical sections, such as a cruciform, even when pin-ended, can accept a higher stress at 
the center as the member twists, giving a higher critical load than that obtained for a uniform 
stress. 
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