For Example Pour 51.0 mL of 2.00 M NaOH(aq) into 50.0 mL of 2.00 M HCl(aq)

- 1. Is there a Limiting Reagent ? If so, what is it?
- 2. What is the Theoretical Yield of water in grams?
- 3. If 5.85 grams of NaCl is formed, what is the % Yield ?

How are Moles determined from Molarity?

Moles of Solute = Molarity x (Volume in Liters)

Calculate the number of moles of HCl in 50.0 mL of 2.00 M HCl(aq) Moles = M x V = (0.0500)x(2.00) = 0.100

Calculate the number of moles of NaOH in 51.0 mL of 2.00 M NaOH Moles = M x V = (0.0510)x(2.00) = 0.102

Write & Balance Reaction 1 HCl (aq) + 1 NaOH (aq) \rightarrow 1 H ₂ O + 1 NaCl (aq) ex 0.1 HCl(aq) + 0.102 NaOH(aq) \rightarrow 0.1 H ₂ O + 0.1 NaCl(aq)			
What is the Limiting Reagent ? HCI(aq)			
What is the Theoretical Yield of water?	0.1 mole = 1.8 grams		
5.85 grams of NaCl formed, % Yield is	5.85 g NaCl = 0.1 mole Therefore 100% yield		

Chapter 5 Thermo chemistry

Units of Energy: 1 cal = 4.184 joule

Energy is constant (system + surroundings)

<u>System</u> = the portion of the universe that we single out for study

<u>Surroundings</u> = everything outside the system

and the wo	ork(<u>done by</u> or <u>on</u> the system)
	$\Delta U_{\text{system}} = \mathbf{q} + \mathbf{w}$
For q	+ means system GAINS heat (endothermic)
	- means system LOSES heat (exothermic)
_	+ means work done ON system
For w	- means work done BY system
	+ means system GAINS energy
For ΔU_{sys}	- means system LOSES energy

<u>CHEMICAL REACTIONS</u> Part 1 Reactants → Products +/-<u>ENERGY</u>

Determination of Heats of Reaction Using

THE DIRECT METHOD

EXPERIMENTAL Go to Lab and use a Calorimeter

1.435 g of naphthalene ($C_{10}H_8$)was burned in a constant volume bomb calorimeter. The temperature of the water rose from 20.17 to 25.84 °C. If the mass of the water was exactly 2000 g and the heat capacity of the calorimeter was 1.80kJ/°C find the heat of combustion

Write and balance reaction 1 $C_{10}H_8$ + 12 $O_2 \rightarrow 10 CO_2$ + 4 H_2O + HEAT

Heat Lost by=Heat Gain byChemical1. Water +Reaction2. Calorimeter

HEAT LOST = HEAT GAIN

- 1. <u>Heat Gain by Water</u> = S. H. x grams x Temp q_{water} = (4.184)(2000)(25.84 - 20.17) = 4.74 x 10⁴ J
- 2. <u>Heat Gain by Calorimeter</u> = Heat Cap x Temp Change $q_{Calorimeter} = (1800)(25.84 - 20.17) = 1.02x \ 10^4 \text{ J}$

Total Heat Gained = Water + Calorimeter = $4.74 \times 10^4 + 1.02 \times 10^4 = 5.76 \times 10^4 \text{ J}$

$1 \text{ C}_{10}\text{H}_8 + 12 \text{ O}_2 \rightarrow 10 \text{ CO}_2 + 4 \text{ H}_2\text{O} \quad \Delta\text{H} = ??$

Heat lost by 1.435 g of naphthalene = $5.76 \times 10^4 \text{ J}$ MW of naphthalene (C₁₀H₈) = 128.2 g / mol1.435 g / (128.2 g / mol) = 0.01119 mole How much heat for 1 mole of naphthalene ?

$5.76 \text{ x } 10^4 \text{ J} / 0.01119 \text{ mole} = 5.1458895 \text{ x } 10^6 \text{ J/mol}$

Heat of combustion of naphthalene

 $\Delta H = -5.15 \text{ x } 10^3 \text{ kJ/mole}$

CHEMICAL REACTIONS Part 2

Determination of Heats of Reaction Using

THE INDIRECT METHOD

MATHEMATICAL Using HESS'S Law: ENTHALPY CHANGES ARE ADDITIVE Example 1: Calculate the heat given off for reaction $N_2(gas) + 3 H_2(gas) \rightarrow 2 NH_3 (gas)$

Given: ΔH_f for NH₃ (gas) = -46.19 kJ / mole ΔH_f for N₂(gas) = ? ΔH_f for H₂(gas) = ? Therefore heat given off = 46.19 kJ x 2 = **92.38kJ**

Example 3: Calculate [using Hess' Law] the heat of reaction for $CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$					
What	DATA	Do You	Need Fro	m Table	?
TABLE 5.3 Standard	Enthalpies of Forn	nation, $\Delta H_{\rm f}^2$, at 298 K			
Substance	Formula	ΔH_f° (kJ/mol)	Substance	Formula	ΔH_f° (kJ/mol)
Acetylene	C2H2(g)	226.7	Hydrogen chloride	HCl(g)	-92.30
Ammonia	NH3(g)	-46.19	Hydrogen fluoride	HF(g)	-268.6
Benzene	$C_{4}H_{4}(l)$	49.0	Hydrogen iodide	HI(g)	25.9
Calcium carbonate	CaCO ₃ (s)	-1207.1	Methane	$CH_4(g)$	-74.8
Calcium oxide	CaO(s)	-635.5	Methanol	CH ₁ OH(l)	-238.6
Carbon dioxide	CO2(g)	-393.5	Propane	$C_3H_8(q)$	-103.85
Carbon monoxide	CO(g)	-110.5	Silver chloride	AgCl(s)	-127.0
Diamond	C(s)	1.88	Sodium bicarbonate	NaHCO ₃ (s)	-947.7
Ethane	C3H4(g)	-84.68	Sodium carbonate	Na-CO-(s)	-1130.9
Ethanol	C ₃ H ₄ OH(I)	-277.7	Sodium chloride	NaCl(s)	-410.9
Ethylene	$C_3H_4(q)$	52.30	Sucrose	C12H22O11(5)	-2221
Glucose	C4H12O4(5)	-1273	Water	H-O(1)	-285.8
Hydrogen bromide	HBr(g)	-36.23	Water vapor	H2O(g)	-241.8

From Enthalpy of Formation Table				
Substance	<u>Formula</u>	ΔH_{f} (kJ/mol)		
Carbon dioxide	CO_2	- 393.5		
Carbon monoxide	CO	- 110.5		
Write & Balance FORMATION Reactions				
1. $C_{(s)}^{+ \frac{1}{2}} O_2(g) \rightarrow CO(g) \Delta H = -110.5 \text{ kJ}$				
2. $C_{(s)}^+ O_2(g) \rightarrow C$	$\Delta O_2(g) \Delta H$	= - 393.5 kJ		

$\Delta H_{f} \text{ From Table}$ **WRITE AND BALANCE REACTIONS**Formation of CO (g) is : 1. $C_{(s)}$ + $\frac{1}{2} O_{2}(g) \rightarrow CO(g) \Delta H = -110.5 \text{ kJ}$ Formation of CO₂(g) is : 2. $C_{(s)}$ + $O_{2}(g) \rightarrow CO_{2}(g) \Delta H = -393.5 \text{ kJ}$

Want CO (g) +
$$\frac{1}{2} O_2(g) \rightarrow CO_2(g)$$

1. $C_{(s)}$ + $\frac{1}{2} O_2(g) \rightarrow CO(g) \Delta H = -110.5 \text{ kJ}$
REWRITE Eq 1
1b. CO (g) $\rightarrow C_{(s)}$ + $\frac{1}{2} O_2(g) \Delta H = +110.5 \text{ kJ}$
also
2. $C_{(s)}$ + $O_2(g) \rightarrow CO_2(g) \Delta H = -393.5 \text{ kJ}$

 $CO(g) \rightarrow C_{(s)} + \frac{1}{2}O_2(g) \quad \Delta H = +110.5 \text{ kJ}$ $C_{(s)} + O_2(g) \rightarrow CO_2(g) \quad \Delta H = -393.5 \text{ kJ}$ Add Equations To Get : $CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$ $Add \Delta H \text{ 's To Get :}$ $\Delta H = +110.5 \text{ kJ} - 393.5 \text{ kJ} = -283 \text{ kJ}$

Do you like M&M candy? A pound contains		
96 g fat, 320 g carbohydrate and 21 g protein		
How many calories in a 1.5 oz serving (42 g)		
1st Calculate the fuel value in a pound of M&M's		
Values from table 5.496 g fat x 9 kcal/g = 864 kcal		
320 g carbohydrate x 4 kcal/g = 1280 kcal		
21 g protein x 4 kcal/g = $\underline{84 \text{ kcal}}$		
Total fuel value in one pound of $M\&M = 2228$ kcal		
2228 $\frac{kcal}{lb} x \frac{1}{453.6} \frac{lb}{g} x \frac{42 g}{serving} = 206$		

Review			
Nu	nber of electrons	Electro	n Configuration
Н	(1)	$1S^{1}$	
He	(2)	$1S^{2}$	
Li	(3)	$1S^{2}$	$2S^{1}$
Be	(4)	$1S^{2}$	$2S^{2}$
В	(5)	$1S^{2}$	$2S^2 2P^1$
С	(6)	$1S^{2}$	$2S^2 2P^2$

ORBITAL DIAGRAMS				
1S	2S	2P	3S	
H (↑)				
пе(↑↓) Li(↑↓)	(↑)			
Be (↑↓)	(↑↓)	•		
B (↑↓) C (↑↓)	(↑↓) (↑↓)	$(\uparrow)()()()$	NOTEI	
0 (14)	(+•)		<u>NOTE:</u>	

P 6.62 How many unpaired electrons in each of the following atoms ?			
(a) C	(a)2 unpaired		
(b) Cl	(b) 1unpaired		
(c) Ti	(c) 2 unpaired		
(d) Ga	(d) 1 unpaired		
(e) Rh	(e) 3 unpaired		
(f) Po	(f) 2 unpaired		

	QUANTUM NUMBERS Each electron is assigned FOUR	
1.	The Principal Quantum Number, n = 1, 2, 3, 4, 5, 6, or 7	n
2.	The Angular Momentum Quantum Number $\ell = n - 1, n - 2, \dots$	t e
3.	The Magnetic Quantum Number, $\mathbf{m} = -\boldsymbol{\ell}$ to $+\boldsymbol{\ell}$	m_{ℓ}
4.	The Spin Quantum Number $S = + \frac{1}{2}$ or $- \frac{1}{2}$	S

Quantum Numbers				
N (7) 1s ²	2s ²		2p ³	
(↑↓)	$(\uparrow\downarrow)$	(1)	(1)	(1)
n = 1 1	2 2	2	2	2
$\boldsymbol{\ell} = 0 0$	0 0	1	1	1
m = 0 0	0 0	-1	0	+1
$S = \frac{1}{2} - \frac{1}{2}$	1/2 - 1/2	1/2	1/2	1/2

P6.56 What is the maximum number of electrons in an atom that can the following quantum numbers			
(a) n = 2 m = ½	(a) 0		
(b) n = 5 <i>l</i> = 3	(b) 14		
(c) n = 4 <i>l</i> = 3 m = -3	(c) 2		
(d) n = 4 <i>l</i> = 1 m = 1	(d) 2		

$\frac{\text{RELATIONSHIP BETWEEN}}{\text{C} \ \lambda \text{ and } \nu}$			
$C = \lambda \times v$ UNITS Solve Problems !!			
$\frac{meters}{\sec} = meters \times \frac{1}{\sec}$			

What frequency of electromagnetic radiation has enough energy to break a C- H bond (bond enthalpy is 413 kJ/mol)

$$\mathcal{E} = h v$$
 or $v = \mathcal{E} / h$

$$v = E / h = 413 \text{ kJ/mol} / 6.627 \text{ x } 10^{-34} \text{ J-s/photon}$$

 $v = E / h = 413 \text{ x } 10^3 \text{ J/mol} / 6.627 \text{ x } 10^{-34} \text{ J-s/photon}$

$$v = 62.32 \times 10^{37} \text{ photon/mol-sec}$$

- $v = 62.32 \times 10^{37}$ photon/mol-sec / 6.02 x 10²³ photon/mol
- $v = 1.032 \times 10^{15} sec^{-1}$

7.3 SIZES OF ATOMS

<u>BUT !!</u>

As we move <u>ACROSS</u> a period, {left to right} atoms become <u>SMALLER</u>

<u>WHY ?</u>

the principal quantum number remains constant, but the nuclear charge increases

Which of the following ATOMS is largest				
Na or K	К			
S or O	S			
Na or Cl	Na			
Na , Mg , Al	Na			
N , O , F	Ν			

P7.18 Using only the periodic table, arrange the following atoms in increasing radius				
(a) Cs K	Rb	K < Rb < Cs		
(h) In To	Sn	4/1 5/1 6/1		
	511	5/16 5/50 5/13		
(c) P Cl	Sr	CI < P < Sr		
		3/17 3/15 5/2		

Which of the following is largest

Na⁺ or K⁺	K⁺
Na⁺ , Na or K⁺	K+
Na ⁺ or Mg ²⁺	Na⁺
S ²⁻ or O ²⁻	S ^{2–}
S ²⁻ , S or O ²⁻	S ^{2–}
O^{2-} or F^{-}	O ^{2–}

Problem 7.24 Select the ions or atoms that are isoelectronic with each other			
(a) K ⁺ Rb ⁺ Ca ⁺²	(a) K ⁺ Ca ⁺²	18e	
(b) Cu ⁺ Ca ²⁺ Sc ³⁺	(b) Ca ²⁺ Sc ³⁺	18e	
(c) S ²⁻ Se ²⁻ Ar	(c) S ²⁻ Ar	18e	
(d) Fe^{2+} Co ³⁺ Mn ²⁺	(d) Fe ²⁺ Co ³⁺	24e	

