Pour 51.0 mL of $2.00 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$ into 50.0 mL of $2.00 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$

1. Is there a Limiting Reagent?

If so, what is it?
2. What is the Theoretical Yield
of water in grams?
3. If 5.85 grams of NaCl is formed, what is the \% Yield?

How are Moles determined from Molarity?
Moles of Solute $=$ Molarity x (Volume in Liters)
Calculate the number of moles of HCl in 50.0 mL of $2.00 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$
Moles $=\mathrm{MxV}=(0.0500) \mathrm{x}(2.00)=0.100$

Calculate the number of moles of NaOH in 51.0 mL of 2.00 M NaOH
Moles $=\mathrm{Mx} \mathrm{V}=(0.0510) \mathrm{x}(2.00)=0.102$

Brief Review for Exam 3
 Chapter 5
 Thermo chemistry
 Chapter 6
 Electrons
 Chapter 7
 Size of Atoms \& lons

Chapter 5 Thermo chemistry

Units of Energy: $1 \mathrm{cal}=4.184$ joule
Energy is constant (system + surroundings)
$\underline{\text { System }}=$ the portion of the universe that we single out for study

Surroundings $=$ everything outside the system

The $1^{\text {st }}$ Law of Thermodynamics states that the energy of the universe is constant

$$
\Delta U_{\text {universe }}=\Delta U_{\text {system }}-\Delta U_{\text {surrounding }}=0
$$

Energy can be transferred
from system to surroundings (or vice versa) but it can't be created or destroyed

$$
\Delta U_{\text {system }}=\Delta U_{\text {surrounding }}
$$

A more useful form of the first law:

$$
\Delta U_{\text {system }}=q+w
$$

```
The change in the internal energy of a system is equal
to the sum of the heat ....(gained or lost fy the system)
and the work ..............(done by or on the system)
    \Delta\mp@subsup{\mathbf{U}}{\mathrm{ system }}{}=\mathbf{q}+\mathbf{w}
For q
        + means system GAINS heat (endothermic)
        - means system LOSES heat (exothermic)
        + means work done ON system
For w
        - means work done BY system
        + means system GAINS energy
For }\Delta\mp@subsup{U}{\mathrm{ sys }}{}\mathrm{ - means system LOSES energy
For \(\Delta \mathrm{U}_{\text {sys }} \quad\) - means system LOSES energy
```


Most important concept in Chap 5

HEAT LOST $=$ HEAT GAIN
Something is gaining Heat
While Something else looses Heat.
If you know one of these
then you know the other

How much energy is involved when 1.0 grams of ice melts? (the heat of fusion is $6.01 \mathrm{~kJ} / \mathrm{mole}$)
$\left(1.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}\right) \times \frac{1}{18.0} \frac{\text { mole }}{g}=0.0555$ mole
$(0.0555$ mole $) \times \frac{6.01}{1} \frac{\mathrm{KJ}}{\mathrm{mole}}=0.3338885 \mathrm{KJ}$

$$
\Delta \mathrm{H}=0.33 \mathrm{~kJ}
$$

III. SOLID

Physical Changes Part 2

Energy Change WITHIN a state \{No Phase Change $\}$
Specific Heat: heat required to raise the temperature of one gram of a substance by one degree C

Specific heat $=\frac{\text { Joules of heat transferred }}{(\text { grams of substance }) \mathrm{x} \text { (temperature change) }}$

For Water:S.H. $=4.18 \frac{\mathrm{JOULES}}{(\mathrm{Grams})(\Delta \mathrm{T})}$

How much Energy required to heat 1.0 gram of water at $0^{\circ} \mathrm{C}$ to water at $100^{\circ} \mathrm{C}$

Let UNITS solve the problem.
Joules $=($ Specific Heat $) \mathbf{x}($ grams $) \mathbf{x}($ change in Temp $)$
$=(4.18) \times(1.0) \times(100)=418$ Joules
$=4.2 \times 10^{2}$ Joules
What is delta H ?

CHEMICAL REACTIONS	Part 1
Reactants \rightarrow Products	$+/-$ ENERGY

Determination of Heats of Reaction Using
THE DIRECT METHOD
EXPERIMENTAL
Go to Lab and use a Calorimeter
1.435 g of naphthalene $\left(\mathrm{C}_{10} \mathrm{H}_{8}\right)$ was burned in a constant volume bomb calorimeter. The temperature of the water rose from 20.17 to $25.84{ }^{\circ} \mathrm{C}$. If the mass of the water was exactly 2000 g and the heat capacity of the calorimeter was $1.80 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$ find the heat of combustion

Write and balance reaction
$1 \mathrm{C}_{10} \mathrm{H}_{8}+12 \mathrm{O}_{2} \rightarrow 10 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}+\mathrm{HEAT}$
Heat Lost by $=$ Heat Gain by
Chemical 1. Water +
Reaction 2. Calorimeter

HEAT LOST $=$ HEAT GAIN

1. $\underline{\text { Heat Gain by Water }}=\mathrm{S} . \mathrm{H} . \mathrm{x}$ grams x Temp
$\mathrm{q}_{\text {water }}=(4.184)(2000)(25.84-20.17)=4.74 \times 10^{4} \mathrm{~J}$
2. $\underline{\text { Heat Gain by Calorimeter }}=$ Heat Cap x Temp Change
$\mathrm{q}_{\text {Calorimeter }}=(1800)(25.84-20.17)=1.02 \times 10^{4} \mathrm{~J}$
Total Heat Gained $=$ Water + Calorimeter

$$
=4.74 \times 10^{4}+1.02 \times 10^{4}=5.76 \times 10^{4} \mathrm{~J}
$$

$$
1 \mathrm{C}_{10} \mathrm{H}_{8}+12 \mathrm{O}_{2} \rightarrow 10 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}=? ?
$$

Heat lost by 1.435 g of naphthalene $=5.76 \times 10^{4} \mathrm{~J}$ MW of naphthalene $\left(\mathrm{C}_{10} \mathrm{H}_{8}\right)=128.2 \mathrm{~g} / \mathrm{mol}$ $1.435 \mathrm{~g} /(128.2 \mathrm{~g} / \mathrm{mol})=0.01119 \mathrm{~mole}$ How much heat for 1 mole of naphthalene? $5.76 \times 10^{4} \mathrm{~J} / 0.01119 \mathrm{~mole}=5.1458895 \times 10^{6} \mathrm{~J} / \mathrm{mol}$ Heat of combustion of naphthalene
$\Delta \mathrm{H}=-5.15 \times 10^{3} \mathrm{~kJ} / \mathrm{mole}$

EXPERIMENTAL

Two (2) types of Calorimeters

In Both Types

Heat LOST = Heat GAINED

1. OPEN $\{$ to the atmosphere
\&
2. CLOSED \{to the atmosphere
(mainly for gas reactions)

Example 1: Calculate the heat given off for reaction
$\mathrm{N}_{2}($ gas $)+3 \mathrm{H}_{2}($ gas $) \rightarrow 2 \mathrm{NH}_{3}$ (gas)

Given: $\Delta \mathrm{H}_{\mathrm{f}}$ for $\mathrm{NH}_{3}(\mathrm{gas})=-46.19 \mathrm{~kJ} /$ mole

$$
\Delta \mathrm{H}_{\mathrm{f}} \text { for } \mathrm{N}_{2}(\mathrm{gas})=?
$$

$$
\Delta \mathrm{H}_{\mathrm{f}} \text { for } \mathrm{H}_{2}(\mathrm{gas})=?
$$

Therefore heat given off $=46.19 \mathrm{~kJ} \times 2=\mathbf{9 2 . 3 8 k J}$

Example 3: Calculate [using Hess' Law] the heat of reaction for $\mathrm{CO}(\mathrm{g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$					
What DATA Do You Need From Table ?					
Sobstance	Formula	$\underset{(\mathrm{al} / \mathrm{mol})}{\mathrm{anf}}$	Substance	Fommala	$\underset{(\mathrm{akj} / \mathrm{mol})}{(\mathrm{anf}}$
Aecylee	C. H , (3)	267	Hydrogendoonde	$\mathrm{HCO}_{(6)}$	-220
Ammenia Bename		-4619	Hydrogen luoride		-
Calcium cartonte	$\mathrm{CaCO}_{(5)}$	-12071		$\mathrm{CH}_{4}(\mathbf{s})$	-748
Calcum oride	caoss	-635	Methmol	CH애()	-2386
		${ }_{-}^{-3935}$	${ }_{\substack{\text { Propue } \\ \text { Sluedthride }}}$	$\mathrm{CH}_{\text {chers }}$	${ }_{-}^{-12385}$
Carkenmoxaside Dimmod	${ }_{\text {cos }}^{(9)}$	$\xrightarrow{-1105}$	Sther duride Sdiumbicatonte		-1270 -977
Eture	CH4(8)	-4/68	Sodium artonte	$\mathrm{Na}_{2}(\mathrm{CO}(4)$	-11399
Ethusel	($\mathrm{H} \mathrm{HOH(1)}$	-273	Sadium doroside	NaCls	-4109
Eablene	C, $\mathrm{H}_{4}(\mathrm{~s})$	5230		$\mathrm{C}_{\mathrm{H}_{4} \mathrm{H}_{2} \mathrm{O}_{1}(4)}$	
${ }_{\text {Cluase }}^{\substack{\text { Cluase } \\ \text { Hydrogmbunide }}}$		${ }_{-123}^{-123}$	${ }_{\text {Wexter }}^{\text {Wepx }}$		-2358 -2418

$\Delta \mathrm{H}_{\mathrm{f}}$ From Table

WRITE AND BALANCE REACTIONS

Formation of $\mathrm{CO}(\mathrm{g})$ is :

1. $\mathrm{C}_{(\mathrm{s})}+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g}) \Delta \mathrm{H}=-110.5 \mathrm{~kJ}$

Formation of $\mathrm{CO}_{2}(\mathrm{~g})$ is :
2. $\mathrm{C}_{(\mathrm{s})}+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \Delta \mathrm{H}=-393.5 \mathrm{~kJ}$

From Enthalpy of Formation Table

| Substance | Formula | $\underline{\Delta \mathrm{H}_{\underline{f}}(\mathrm{~kJ} / \mathrm{mol})}$ |
| :--- | :--- | :--- | :--- |
| | CO_{2} | -393.5 |
| Carbon dioxide | | -110.5 |

Write \& Balance FORMATION Reactions

1. $\mathrm{C}_{(\mathrm{s})}+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g}) \Delta \mathrm{H}=-110.5 \mathrm{~kJ}$
2. $\mathrm{C}_{(\mathrm{s})}+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \Delta \mathrm{H}=-393.5 \mathrm{~kJ}$
\(\left.\begin{array}{c}Want \mathrm{CO}(\mathrm{g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})

1. \mathrm{C}_{(\mathrm{s})}+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g}) \Delta \mathrm{H}=-110.5 \mathrm{~kJ}

REWRITE Eq 1\end{array}\right\}\)| also |
| :---: |
| 1b. $\mathrm{CO}(\mathrm{g}) \rightarrow \mathrm{C}_{(\mathrm{s})}+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=+110.5 \mathrm{~kJ}$ |
| 2. $\mathrm{C}_{(\mathrm{s})}+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \Delta \mathrm{H}=-393.5 \mathrm{~kJ}$ |

$$
\begin{gathered}
\mathrm{CO}(\mathrm{~g}) \rightarrow \mathrm{C}_{(\mathrm{s})}+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=+110.5 \mathrm{~kJ} \\
\mathrm{C}_{(\mathrm{s})}+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \Delta \mathrm{H}=-393.5 \mathrm{~kJ}
\end{gathered}
$$

Add Equations To Get :

$$
\mathrm{CO}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})
$$

Add $\Delta \mathrm{H}$'s To Get :

$$
\Delta \mathrm{H}=+110.5 \mathrm{~kJ}-393.5 \mathrm{~kJ}=-283 \mathrm{~kJ}
$$

> Do you like M\&M candy? A pound contains 96 g fat, 320 g carbohydrate and 21 g protein How many calories in a 1.5 oz serving $(42 \mathrm{~g})$
> $1^{\text {st }}$ Calculate the fuel value in a pound of M\&M's

Values from table $5.4 \quad 96 \mathrm{~g}$ fat $\mathrm{x} 9 \mathrm{kcal} / \mathrm{g}=864 \mathrm{kcal}$
320 g carbohydrate $\mathrm{x} 4 \mathrm{kcal} / \mathrm{g}=1280 \mathrm{kcal}$ 21 g protein $\times 4 \mathrm{kcal} / \mathrm{g}=\underline{84 \mathrm{kcal}}$
Total fuel value in one pound of $\mathrm{M} \& \mathrm{M}=2228 \mathrm{kcal}$

$$
2228 \frac{k c a l}{l b} \times \frac{1}{453.6} \frac{l b}{g} \times \frac{42 g}{\text { serving }}=206
$$

Review		
	of electrons	Electron Configuration
H	(1)	$1 \mathrm{~S}^{1}$
He	(2)	$1 \mathrm{~S}^{2}$
Li	(3)	$1 \mathrm{~S}^{2} \quad 2 \mathrm{~S}^{1}$
Be	(4)	$1 \mathrm{~S}^{2} \quad 2 \mathrm{~S}^{2}$
B	(5)	$1 \mathrm{~S}^{2} 2 \mathrm{~S}^{2} 2 \mathrm{P}^{1}$
C	(6)	$1 \mathrm{~S}^{2} 2 \mathrm{~S}^{2} 2 \mathrm{P}^{2}$

ORBITAL DIAGRAMS

1S
H (\uparrow)
$\mathrm{He}(\uparrow \downarrow)$
Li ($\uparrow \downarrow) \quad(\uparrow)$
$\operatorname{Be}(\uparrow \downarrow) \quad(\uparrow \downarrow)$
B ($\uparrow \downarrow$) ($\uparrow \downarrow$) ($\uparrow)()()$
$C(\uparrow \downarrow) \quad(\uparrow \downarrow) \quad(\uparrow)(\uparrow)() \quad$ NOTE!

P 6.62 How many unpaired electrons in

 each of the following atoms ?(a) C
(a) 2 unpaired
(b) Cl
(b) 1 unpaired
(c) Ti
(c) 2 unpaired
(d) Ga
(d) 1 unpaired
(e) Rh
(e) 3 unpaired
(f) Po
(f) 2 unpaired

QUANTUM NUMBERS

Each electron is assigned FOUR

1. The Principal Quantum Number,
n
n = 1, 2, 3, 4, 5, 6, or 7
2. The Angular Momentum Quantum Number ℓ $\ell=n-1, n-2, \ldots$
3. The Magnetic Quantum Number,
$\mathbf{m}=-\boldsymbol{\ell}$ to $+\boldsymbol{\ell}$
4. The Spin Quantum Number

P6.56 What is the maximum number of electrons in an atom that can the following quantum numbers
(a) $n=2 m=1 / 2$
(a) 0
(b) $n=5 \quad l=3$
(b) 14
(c) $\mathrm{n}=4 \quad \ell=3 \mathrm{~m}=-3$
(c) 2
(d) $n=4 \quad \ell=1 \quad m=1$
(d) 2

If an atom absorbs energy, an electron in a lower energy level will jump to a higher energy level.

RELATIONSHIP BETWEEN

$$
\begin{aligned}
& C \lambda \text { and } v \\
& C=\lambda \times v
\end{aligned}
$$

UNITS Solve Problems !!

$$
\frac{\text { meters }}{\mathrm{sec}}=\text { meters } \times \frac{1}{\mathrm{sec}}
$$

Which wave has the higher frequency?

The lower wave has a longer wavelength (greater distance between peaks).

Since $\lambda \times v=C$ (a constant)
The lower wave has the smaller frequency value The upper one has the higher frequency

What frequency of electromagnetic radiation has enough energy to break a $\mathrm{C}-\mathrm{H}$ bond (bond enthalpy is $413 \mathrm{~kJ} / \mathrm{mol}$)

$$
E=h v \quad \text { or } \quad v=E / h
$$

$v=E / \mathrm{h}=413 \mathrm{~kJ} / \mathrm{mol} / 6.627 \times 10^{-34} \mathrm{~J}-\mathrm{s} /$ photon
$v=E / h=413 \times 10^{3} \mathrm{~J} / \mathrm{mol} / 6.627 \times 10^{-34} \mathrm{~J}$-s/photon
$v=62.32 \times 10^{37}$ photon $/ \mathrm{mol}-\mathrm{sec}$
$v=62.32 \times 10^{37}$ photon $/ \mathrm{mol}-\mathrm{sec} / 6.02 \times 10^{23}$ photon $/ \mathrm{mol}$
$v=1.032 \times 10^{15} \mathrm{sec}^{-1}$

If $\lambda=1000$ meters (AM Radio) what is the frequency (v) of radiation?

UNITS Solve Problems !!
$\mathrm{C}=\lambda \mathrm{x} v$
$3.00 \times 10^{8} \frac{\text { meters }}{\sec }=1000$ meters $\times ? \frac{1}{\mathrm{sec}}$
$v=\frac{\mathrm{C}}{\lambda}=\frac{3.00 \times 10^{8}}{1000} \frac{\mathrm{~m} / \mathrm{s}}{\mathrm{m}}=3.00 \times 10^{5} \mathrm{sec}^{-1}$

Relationship Between Energy wavelength (λ) and frequency (v) $\mathrm{E} \propto v \quad$ (directly)
$\mathrm{E} \propto 1 / \lambda$ (inversely)

7.3 SIZES OF ATOMS

BUT !!

As we move ACROSS a period, \{left to right\} atoms become SMALLER

WHY ?
the principal quantum number remains constant, but the nuclear charge increases

Which of the following ATOMS is largest

Na or K	K
S or O	S
Na or Cl	Na
$\mathrm{Na}, \mathrm{Mg}, \mathrm{Al}$	Na
$\mathrm{N}, \mathrm{O}, \mathrm{F}$	N

P7.18 Using only the periodic table, arrange the following atoms in increasing radius
(a) Cs $\mathrm{K} \quad \mathrm{Rb}$
$\mathrm{K}<\mathrm{Rb}<\mathrm{Cs}$
4/1 $5 / 1 \quad 6 / 1$
(b) In Te Sn
$\mathrm{Te}<\mathrm{Sn}<\mathrm{In}$
5/16 5/50 5/13
(c) $\mathrm{P} \quad \mathrm{Cl} \quad \mathrm{Sr}$
$\mathrm{Cl}<\mathrm{P}<\mathrm{Sr}$
$3 / 17 \quad 3 / 15 \quad 5 / 2$

Which of the following is largest

Na^{+}or K^{+}	K^{+}
$\mathrm{Na}^{+}, \mathrm{Na}$ or K^{+}	K^{+}
Na^{+}or Mg^{2+}	Na^{+}
S^{2-} or O^{2-}	S^{2-}
$\mathrm{S}^{2-}, \mathrm{S}$ or O^{2-}	S^{2-}
O^{2-} or F^{-}	O^{2-}

7.3 In an ISOELECTRONIC series lonic size DECREASES with
INCREASING nuclear charge
-- Increasing nuclear charge \rightarrow
$\mathrm{O}^{2-}<\mathrm{F}^{-}<\mathrm{Ne}<\mathrm{Na}^{+}<\mathrm{Mg}^{2+}<\mathrm{Al}^{3+}$
--- Decreasing ionic radius \rightarrow

