
Function Block
Programming
Manual

1336 FORCE
PLC
Communications
Adapter

(Cat. No. 1336T–GT1EN)

Allen-Bradley

Solid state equipment has operational characteristics differing from
those of electromechanical equipment. “Safety Guidelines for the
Application, Installation and Maintenance of Solid State Controls”
(Publication SGI-1.1) describes some important differences between
solid state equipment and hard–wired electromechanical devices.
Because of this difference, and also because of the wide variety of
uses for solid state equipment, all persons responsible for applying
this equipment must satisfy themselves that each intended
application of this equipment is acceptable.

In no event will the Allen-Bradley Company be responsible or liable
for indirect or consequential damages resulting from the use or
application of this equipment.

The examples and diagrams in this manual are included solely for
illustrative purposes. Because of the many variables and
requirements associated with any particular installation, the
Allen-Bradley Company cannot assume responsibility or liability for
actual use based on the examples and diagrams.

No patent liability is assumed by Allen-Bradley Company with
respect to use of information, circuits, equipment, or software
described in this manual.

Reproduction of the contents of this manual, in whole or in part,
without written permission of the Allen-Bradley Company is
prohibited.

Throughout this manual we use notes to make you aware of safety
considerations.

!
ATTENTION: Identifies information about practices
or circumstances that can lead to personal injury or
death, property damage, or economic loss.

Attentions help you:

• identify a hazard

• avoid the hazard

• recognize the consequences

Important : Identifies information that is especially important for
successful application and understanding of the product.

1336 FORCE, SCANport, and DH+ are trademarks of Allen-Bradley Company, Inc.
PLC is a registered trademark of Allen-Bradley Company, Inc.

Important User Information

Manual Overview P–1.
Product Overview P–1.
Terminology P–3.
Function Block Components P–4.

Chapter 1

Chapter Objectives 1–1.
Sawtooth Application Operation 1–2.
Getting Started Using DriveBlockEditor 1–3.
Getting Started Using a PLC 1–15.

Chapter 2

Chapter Objectives 2–1.
Execution List Overview 2–1.
Creating an Execution List 2–4.
Adding Events to the Execution List 2–4.
NO–OP Events 2–4.
Example Execution Lists 2–5.
Linking Events 2–5.
Link Operation During Execution 2–6.
Deleting Events from the Execution List 2–7.
Downloading and Compiling the Execution List 2–8.
Understanding Function Block I/O Nodes 2–9.
DriveBlockEditor Node References 2–10.
Understanding PLC and Drive Node References 2–10.
Examples of Function Block I/O Node References 2–11.
Node Data Types 2–12.
Creating Links Between Nodes 2–12.

Chapter 3

Chapter Objectives 3–1.
The Function Block BRAM Functions 3–1.
The Function Block Init Command 3–2.
The Function Block Store Command 3–2.
The Function Block Recall Command 3–3.
Linear Parameter BRAM Functions and Links 3–3.
Power Up Sequence 3–5.
Compiler Modes and Terminal Operation Differences 3–6.
Compiler Modes 3–6.
Initial Compile Mode 3–6.
Subsequent Compile Mode 3–7.

Table of Contents

Preface

Getting Started

System Component Detail

System Interactions

Table of Contentsii

DriveTools’ DriveBlockEditor Download and Compile Operation 3–9. . . .
Graphic Programming Terminal 3–10.
PLC Block Transfer 3–10.
Understanding Multiple Execution List Copies 3-10.
Task Status Service 3–11.
Link Processing Faults 3–12.
Performance Issues Involving Links 3–13.
Link Processing Sequence 3–14.

Chapter 4

Chapter Objectives 4–1.
Function Block Overview 4–1.
Double Word Function Block Caution 4–2.
Function Block Index 4–3.
BIN2DEC 4–6.
COMPHYST 4–8.
DEC2BIN 4–10.
DELAY 4–12.
DERIV 4–14.
DIVIDE 4–16.
FILTER 4–20.
FUNCTION 4–24.
INTEGRATOR 4–27.
MULTIPLY 4–36.
PI CTRL 4–39.
PULSE CNTR 4–43.
RATE LIMITER 4–45.
SCALE) 4–47.
UP/DWN CNTR 4–53.

Chapter 5

Chapter Objectives 5–1.
Block Transfer Descriptions 5–1.
Block Transfer Status Word 5–2.
Application Status Services: Event List Checksum 5–4.
Event List Checksum 5–5.
Application Status Services:

Read Task Name 5–6.
Write Task Name 5–7.
Total Number of Events in Application 5–8.
Total Number of I/O Nodes 5–9.
Read Task Status 5–10.
Fault Status Read 5–12.

Function Block Library

Block Transfer Services

Table Of Contents iii

Template revised June 23, 1995 Pub number and date go in this shared area

Program Limits Information:
Library Description 5–14.
Scheduled Task Interval (mS) 5–15.
Maximum Number of Events per Application 5–16.
Number of Function Block Task Files in Product 5–17.
Maximum Number of I/O Nodes Allowed per Application 5–18.

Application Control Commands:
BRAM Functions: Store, Recall, and Initialize 5–19.
Download and Compile 5–21.
Read Single Event 5–26.
Clear/Process Links 5–28.
Download Service Init 5–30.

Node Adjustment:
Read Block Value 5–31.
Write Block Value 5–33.
Read Block Link 5–35.
Write Block Link 5–36.
Read Full Node Information 5–38.
Read Node Value 5–41.
Write Node Value 5–42.
Read Node Link 5–43.
Write Node Link 5–45.

Chapter 6

Chapter Objectives 6–1.
Handling Function Block Faults and Warnings 6–1.
Accessing the System Fault and Warning Queues 6–3.
Handling Download Service Errors 6–3.
Handling Compile Faults 6–4.
Link Processing Fault 6–5.
I/O Node Limit Fault 6–5.
Memory Limit Fault 6–5.
BRAM Checksum Fault 6–6.
Using the Task Status Service 6–7.
Using the Fault Status Service 6–8.
Download Errors 6–8.
Invalid Link Fault Condition 6–8.
Clear Faults Command 6–9.
Fault Codes 6–10.

Handling Exceptions ––
Faults and Warnings

Table of Contentsiv

End of Table of Contents

PrefaceP–1

1336 FORCE – 5.9 August 1995

Preface

This manual attempts to accommodate users who are unfamiliar with
the function block system as well as more experienced users. When
read from front to back, this manual provides an increasing level of
detail, with each chapter building upon information presented in the
previous chapter.

Chapter 1 is an introductory chapter. It provides general information
on the function block system by walking you through a sample
application. The application is represented by an event list and it’s
associated function nodes and links.

Chapters 2 and 3 discuss the pieces of the function block system —
How function blocks operate and how they interact with the rest of
the drive.

Chapters 4 and 5 provide a function block library and explain the
block transfer services provided for programming & maintaining
applications.

Beginning users should be able to learn the function block system by
reading the Product Overview and using one of the Getting Started
examples in Chapter 1 . More experienced users may want to skip
Chapter 1 and begin directly with Chapter 2 or 3 to obtain
detailed information.

Important: Due to their complexity and use, certain concepts will
be purposely repeated in this manual.

The function block system allows you to customize drive operation
to your specific application. The function block software contained
in the PLC Comm Adapter Board provides several advantages.

❒ On larger system applications the loading of the PLC control
system will be reduced.

❒ On smaller stand-alone operations, programming will be carried
out completely within the drive, redefining the term standalone
drive.

Function blocks are integral to drive operation and can be combined
together to operate on almost any part of the drive functionality. The
flexibility of the function block system allows blocks to be used with
the drive’s velocity or current control parameters, drive-to-drive
parameters, as well as analog and remote I/O parameters.

Manual Overview

Product Overview

 PrefaceP–2

1336 FORCE – 5.9 August 1995

Shown below are a portion of the function blocks that are available
viewed through DriveTools DriveBlockEditor. By scrolling forward,
the 28 different function blocks that currently make up the function
block library may be viewed. Functions range from logical function
blocks (AND, OR, XOR and NOT) — to math function blocks
(ADD, SUB, MULT and SCALE) — to more involved functions,
including Proportional/Integral Control and Rate Limiter. Control
functions such as Monostable, Compare with Hysteresis, Delay,
Multiplexer, and Pulse Counter are available, as well as conversion
functions like Binary-to-Decimal and Decimal-to-Binary.

Currently any combination of function blocks up to a maximum of
128 events are executed with a 20mS task interval. A function block
application can be created and set up by any of the three terminals
compatible with the PLC Communications Adapter Board. These
terminals are a PC using DriveTools DriveBlockEditor, a Graphic
Programming Terminal, or a PLC.

The function block application is created by programming an
execution list of function blocks, and then downloading the
execution list to the drive where it is compiled into a function block
program. When the drive compiles the function block program, it
also creates the functionality and data sets within the drive. Once the
execution list has been successfully downloaded, I/O nodes at each
function block can be further manipulated to control the function
block application.

The 1336FORCE when equipped with a PLC Comm Board has 497
fixed parameters which are referred to as linear parameters. The
function block program allows 799 new dynamic node parameters.
Dynamic parameters are not fixed and can be modified and
manipulated to meet the needs of your particular application.

Preface P–3

1336 FORCE – 5.9 August 1995

Application — An application is represented by an event list and it’s
associated function, nodes and links.

Block Type Number — The block type number specifies one of the
28 different types of function blocks currently installed in the
function block library. You can use each type of function block as
many times as required in an execution list.

Block ID# — A block ID# is a unique number assigned to a function
block when it is entered into an execution list. The number is used to
identify each individual function block.

BRAM — This is the function block’s hard memory storage which is
battery backed up. This is often referred to as EPROM or EE storage.
EE functions and BRAM functions are synonymous.

Compiling — Compiling creates the program and data sets within
the drive. This is a background operation in the drive that involves a
series of checks before the drive accepts a downloaded function
block execution list.

Event — An event is a function block that has been assigned both a
block ID and a block type number. Both are required to enter a
function block into an execution list.

Execution List — An execution list is the list of events that will be
sent to the drive in a predetermined sequence. A maximum of 128
events are allowed in an execution list.

Input — Input refers to the data provided for a function block
operation.

Linear Parameter — A linear parameter is a fixed parameter from
1-497 that resides in the drive parameter table. These parameters
always exist and cannot be deleted from the drive, as opposed to
function blocks which can be created within the drive and
subsequently deleted from the drive.

Linking — Linking refers to the software connections between
function block nodes, or fixed drive parameters and function block
nodes.

Node or Node Parameter — A node is a dynamic, non-fixed
parameter that can be created and manipulated using the function
block program.

RAM — This is the function block’s scratch pad memory where the
application is compiled and runs. Random Access Memory is not
backed up and clears each time there is a power loss or a BRAM
initialization.

Output — The result of a function block operation.

Terminology

 PrefaceP–4

1336 FORCE – 5.9 August 1995

Developing and successfully entering a new function block
application in your 1336FORCE involves four distinct steps. These
steps are shown below and on the following pages of this chapter
using DriveTools.

Step 1 — Create an Execution List.

You can create an execution list by entering function blocks into an
on screen display. The execution list entries are shown on the left
side of the DriveBlockEditor screen shown below.

Execution
List

Sequence ID # Type

These events or function blocks (Limit, Set Reset FF, Multiplexer,
etc.) are chosen from the function block library. You may enter any
combination of events up to a total of 128 in your execution list.
Events are executed in the order in which you enter them in the list.
A full description of each available function block can be found in
Chapter 4 .

Step 2 — Enter Block Values

Once you have entered all events into your execution list, you may
want to adjust the values of the node parameters of the function
blocks. These values are entered in the Value column on the right
side of the DriveBlockEditor screen as shown on the next page.
Node values must be within the range specified by the maximum and
minimum limits. Chapter 2 provides detailed examples on entering
function block nodes.

Function Block
Components

Preface P–5

1336 FORCE – 5.9 August 1995

Value Entries

Limit
Node
Group

Link Entries

Step 3 — Enter Links

You can now use links to alter an application by connecting function
block inputs and outputs to other nodes or linear parameters in the
drive. Links are accomplished by entering block ID’s and nodes in
the Link To column on the right side of the DriveBlockEditor screen.

In the example shown below, Rate Limit output node 5 (4:5) is
linked to Limit Block node 0 (1:0).

Node 0 – Input 1

Node 1 – Max Val

Node 2 – Min Val

LIMIT

ID # 1

Node 3 – Max Lim

Node 4 – Min Lim

Node 5 – Output

Node 0 – Lim In

Node 1 – Lim Set

Node 2 – Lim Data

RATE LIMITER

ID # 4

Node 4 – Lim @ Lim

Node 3 – Lim Rate Node 5 – Lim Out

Step 4 — Download and Compile

Once you have established your execution list with all values and
links, you can download this list from the PC to the drive. The
service will run a series of tests on your execution list before
accepting and compiling the function block task you have
established. Compiling will create the program data sets within the
drive. The DriveBlockEditor will wait until the compile is complete
before sending node values and link connections to the drive.

 PrefaceP–6

1336 FORCE – 5.9 August 1995

End of Preface

Chapter 1
 1–1

1336 FORCE — 5.9 August 1995

Getting Started

This chapter introduces you to an application using function block
programming. The exercises in this chapter take you through the
programming of the sawtooth generator application shown below.

Input 1

Max Value (+32765)

Min Value (–32765)

LIMIT

ID # 1

Max Lim

Output

Min Lim

Set

Reset

SR FLIP FLOP

ID # 2

Out1

Out 2

Output
MULTIPLEXER

ID # 3

In1 (+32767)

In4

In2 (–32767)

In3

Lim @ Lim

RATE LIMITER

ID # 4

Lim In

Lim Out Lim Rate (65535)

Lim Set

Lim Data

Sel0

Sel1

Sawtooth Signal Output

Square Wave Input

The first exercise begins on page 1–3. Getting Started Using
DriveTools DriveBlockEditor creates the application using the
DriveTools DriveBlockEditor Program.

The second exercise begins on page 1–15. Getting Started Using
a PLC creates the same application using PLC Block Transfer
Services.

These two exercises are solely step-by-step basic programming
instructions. The following two chapters explain in detail the pieces
of the system, their operation, and their interactions with the rest of
the drive.

Chapter Objectives

 1–2 Getting Started

1336 FORCE — 5.9 August 1995

The output from the RATE LIMITER function block will be a sawtooth
signal. The value of the RATE LIMITER output will ramp up to the
value specified by the MULTIPLEXER input #1 (+32767). When the
RATE LIMITER output reaches the maximum value specified by the
LIMIT block t1 (+32765), the max limit flag will set the SR FLIP
FLOP output, which in turn selects the MULTIPLEXER input #2. The
RATE LIMITER output will then ramp down to this new value of
– 32767.

Max Value

Min Value

Max Value

Min Value

Out 1

RATE LIMIT

LIM

MULTIPLEXER Out
Lim In
RATE LIMITER

t1�

Input
LIMIT

Set
SR FLIP FLOP INPUTS

Reset

A

B

C

� t2

� t2

When the RATE LIMITER output reaches the minimum value specified
by the LIMIT block (– 32765), the min limit flag will clear the SR
FLIP FLOP output (t2), which in turn selects the MULTIPLEXER input
#1. The RATE LIMITER output will continue to ramp up and down
between the LIMIT block minimum and maximum values.

Sawtooth Application
Operation

 1–3Getting Started

1336 FORCE — 5.9 August 1995

To start DriveTools:

❒ Enter DriveTools.

❒ Select DriveBlockEditor.

❒ Select the New option from the DriveBlockEditor’s pull-down
File menu to create a new execution list. The display shows a
function block library list similar to the one shown on the next
page.

❒ Select the file.

❒ Click on OK.

Getting Started Using
DriveBlockEditor

 1–4 Getting Started

1336 FORCE — 5.9 August 1995

Step 1 — Add a Limit Block

1. Select the Add Block option from the Function Blocks
pull-down menu.

2. Double click on Limit — [Lib ID: 12].

❒ Click on CLOSE.

As shown below, the DriveBlockEditor software now enters one
Limit function block in your new execution list with an ID# of 1.

3. Enter the maximum value by clicking on the Value field for
Node 1 and entering +32765. Press enter to save the value as
shown below.

 1–5Getting Started

1336 FORCE — 5.9 August 1995

4. Enter the minimum value by clicking on the Value field for
Node 2 and entering –32765. Press enter to save the value as
shown above.

You have now created the first function block and set the input node
value limits as shown below.

NODE#
BLOCK ID#

Input 1 1:0

Max Val (32765) 1:1
LIMIT

ID # 1

@ Max Lim 1:3

@ Min Lim 1:4

Output 1:5Min Val (–32765) 1:2

Step 2 — Enter a Set/Reset FF Block

To add a Set Reset FF function block:

1. Move the cursor to the left side of the execution list and click.

2. Select the Add Block option from the Function Blocks
pull-down menu.

3. Double click on Set Reset FF — [Lib ID: 22].

4. Click on Close.

As shown below, the DriveBlockEditor software now enters a Set
Reset Flip Flop function block and gives it an ID # of 2.

 1–6 Getting Started

1336 FORCE — 5.9 August 1995

You can now link the Set Reset Flip Flop inputs to the outputs of the
Limit function block entered in Step 1 .

5. Link the Set Reset FF’s set input (node 0), to the maximum limit
flag of the Limit function block (node 3).

Click on the Link To field for Node 0 and enter 1:3.

Press enter to save the value as shown below.

6. Link the Set Reset FF’s reset input (node 1), to the minimum limit
flag of the Limit function block (node 4).

Click on the Link To field for Node 1 and enter 1:4.

Press enter to save the value as shown above.

With the Set Reset FF function block and links added, the function
block diagram now appears like this.

Input 1 1:0

Max Val (32765) 1:1
LIMIT

ID # 1

@ Max Lim 1:3

@ Min Lim 1:4

Output 1:5Min Val (–32765) 1:2

Set Reset FF

ID # 2

Set 2:0

Reset 2:1

Out1 2:2

Out2 2:3

 1–7Getting Started

1336 FORCE — 5.9 August 1995

Step 3 — Enter a Multiplexer Block

To add a Multiplexer function block:

1. Move the cursor to the left side of the execution list and click.

2. Select the Add Block option from the Function Blocks
pull-down menu.

3. Double click on Multiplexer — [Lib ID: 21].

4. Click on CLOSE.

As shown below, the DriveBlockEditor software now enters a
Multiplexer function block and gives it an ID # of 3.

5. Enter a value for input 1 by clicking on the Value field for Node
0 and entering +32767.

Press enter to save the value as shown below.

6. Enter a value for input 2 by clicking on the Value field for Node
1 and entering –32767.

Press enter to save the value as shown above.

 1–8 Getting Started

1336 FORCE — 5.9 August 1995

7. Link the Multiplexer’s sel0 input (node 4), to the Set Reset FF’s
output (node 2).

Click on the Link To field for Node 4 and enter 2:2.

Press enter to save the value as shown below.

With the Multiplexer function block values and link added, the
function block diagram now appears like this.

Input 1 1:0

Max Val (32765) 1:1
LIMIT

ID # 1

@ Max Lim 1:3

@ Min Lim 1:4

Output 1:5Min Val (–32765) 1:2

Set Reset FF

ID # 2

Set 2:0

Reset 2:1

Out1 2:2

Out2 2:3

Output 3:6 In1 (32767) 3:0

In2 (–32767) 3:1

In3 3:2

In4 3:3

Sel0 3:4

Sel1 3:5

Multiplexer

ID # 3

 1–9Getting Started

1336 FORCE — 5.9 August 1995

Step 4 — Enter a Rate Limit Block

To add a Rate Limit function block:

1. Move the cursor to the left side of the execution list and click.

2. Select the Add Block option from the Function Blocks
pull-down menu.

3. Double click on Rate Limiter — [Lib ID: 19].

4. Click on CLOSE.

As shown below, the DriveBlockEditor software now enters a Rate
Limiter function block and gives it an ID # of 4.

5. Enter a value for the rate by clicking in the Value field for Node
3 and entering 65535.

Press enter to save the value as shown below.

You can now link the Rate Limiter input to the output of the
Multiplexer function block entered in Step 3 .

6. Link the Rate Limiter’s input (node 0), to the Multiplexer’s
output (node 6).

Click on the Link To field for Node 0 and enter 3:6.

 1–10 Getting Started

1336 FORCE — 5.9 August 1995

Press the enter key to save the value as shown below.

Step 5 — Modify the Limit Block

1. Move to the Limit function block node entry field by clicking on
ID # 1. Link the Limit’s input (node 0), to the Rate Limiter’s
output (node 5).

Click on the Link To field for Node 0 and enter 4:5.

Press the enter key to save the value as shown below.

The block diagram is now complete and should appear as shown
below with the Rate Limiter function block added.

Input 1 1:0

Max Val (32767) 1:1
LIMIT

ID # 1

@ Max Lim !:3

@ Min Lim 1:4

Output 1:5Min Val (–32767) 1:2

Set Reset FF

ID # 2

Set 2:0

Reset 2:1

Out1 2:2

Out2 2:3

Output 3:6 In1 (32767) 3:0

In2 (–32767) 3:1

In3 3:2

In4 3:3

Sel0 3:4

Sel1 3:5

Multiplexer

ID # 3

Lim @Lim 4:4 Lim In 4:0

Lim Set 4:1

Lim Data 4:2

Lim Rate 4:3 (65535)

Lim Out 4:5
Rate Limiter

ID # 4

 1–11Getting Started

1336 FORCE — 5.9 August 1995

Step 6 — Check Links

Once all function blocks and their links have been established, node
connections in the program should be validated by using a Check
Node Connections command from the Function Blocks
pull-down menu. This function is performed by the
DriveBlockEditor, not the drive.

If all links are correct, the following display will be shown.

If any errors were made, a Connection Errors Dialog Box will detail
the errors.

Step 7 — Download the Program

Once the links have been checked, the execution list must be
downloaded to the drive to enable the function block program.

1. Select the Download to Drive option from the
DriveBlockEditor’s pull-down Drive menu. If you know the
station number, enter it at this time. If the Station number is
unknown, use the WHO menu option shown below to scan for
active DH+ stations.

2. During the download process, the drive checks function block
links and node values. A message will appear telling you whether
the download was successful.

 1–12 Getting Started

1336 FORCE — 5.9 August 1995

3. Upon completion, select the Connect to Drive option from the
DriveBlockEditor’s pull-down Drive menu and re-enter the
station number to go online.

4. Once online, verify that values are changing at the Rate Limiter
function block’s output node.

Step 8 — Link Analog Output Parameters to Function
 Block Nodes

Enter the DriveManager program to link linear parameters.

1. Enter a scale factor value of 2048 for Parameters 401 and 405.
The value 2048 will be shown in the Internal units field shown
below.

 1–13Getting Started

1336 FORCE — 5.9 August 1995

2. Enter an offset value of 0 for Parameters 400 and 404. This
allows a value of ±32767 to traverse the entire ±10V range for
both analog outputs.

3. Within the link window at the bottom of the screen, double click
on the Par # field associated with Parameter 387.

Link analog output #1, Parameter 387, to Rate Limiter output
node Output (4:5).

The window shown below should appear with entry boxes.

4. Enter a Task Number of 1.

Enter a Block Number of 4.

Enter a Node Number of 5.

Click on OK.

Link analog output #3, Parameter 389, to Rate Limiter input node
Input 1 (4:0).

 1–14 Getting Started

1336 FORCE — 5.9 August 1995

5. Double click on the Par # field associated with Parameter 389.

The window shown below should appear with entry boxes.

6. Enter a Task Number of 1.

Enter a Block Number of 4.

Enter a Node Number of 0.

Click on OK.

If desired, you can now use DriveMonitor or an oscilloscope to view
the analog outputs in a graphic format.

Important: DriveMonitor can be used to monitor any function block node
directly. Function block nodes do not need to be linked to
analog outputs when using DriveManager.

Step 9 — Modify Node Values

Return to DriveBlockEditor to modify function block node values in
an on-line application.

1. Adjust the Limit function block values.

Set the Max Lim input node value to 200.

Set the Min Lim input node value to –200.

This will cause the output of the Rate Limiter function block to ramp
up and down between 200 and –200.

2. Adjust the value of the Rate Limiter Rate (block 3, node 4) to
change the slope of the sawtooth signal.

 1–15Getting Started

1336 FORCE — 5.9 August 1995

Shown below is a sample program that will transfer data to a drive
that is set up as Rack 1. The block transfers are executed by toggling
input I:00/00. The Block Transfer Write sends the information in
data file N57:0 to the drive. The data in these addresses determines
what type of operation is performed. The Block Transfer Read
instruction receives information from the drive and places it in data
file N57:100. This data contains the status of the operation being
performed and any data (if applicable) that is returned from the
drive.

End of File

(EN)

(DN)

(ER)

BTW

Group
Rack

Control Block
Data File
Length
Continuous

Module

BLOCK TRANSFER WRITE
1
0
0

N57:0
64
N

BT50:0

Toggle switch #0 to initiate the Block Transfer Read/Write pair. File N57:0 contains the data that is transfered to the drive.

Block Transfer to Drive Rack 1

(EN)

(DN)

(ER)

BTR

Group
Rack

Control Block
Data File
Length
Continuous

Module

BLOCK TRANSFER READ
1
0
0

N57:100
64
N

BT50:1

Block Transfer to Drive Specified as Rack 1

ung 5:1

15

ung 5:2

ung 5:3

00

Toggle
Switch
I:000

Available
I:010

Toggle Switch

00

BT Read
Data Available
I:000

BT Write

Important: If a PLC 5/15 or 5/25 is used, the control block must use an
integer data type, not the Block Transfer (BT) data type.

Getting Started Using a PLC

 1–16 Getting Started

1336 FORCE — 5.9 August 1995

Step 1 — Initialize the Function Blocks

Initialize the function block BRAM to clear the current function
block application.

1. Toggle bit I:00/00 to indicate the block transfer.

2. Verify that the initialization was successful.

3. If N57:101 = 0F02hex (Block Transfer Read Data), there are no
errors.

BTW
Data File

N57:0 0000 8F02 0000 0003 0000 0000 0000 0000 0000 0000

0 1 2 3 4 5 6 7 8 9

Words N57:0 – N57:3 will be sent to the drive. Values are displayed in
hexadecimal format.

Step 2 — Download and Compile the Program

Thirty-two events can be downloaded in each block transfer. Because
this example consists of only (4) events, only (1) block transfer
routine is required to download the execution list.

1. Type the data shown in the table below into addresses N57:0 —
N57:9. The Block Transfer Write Data specifies a download
operation and contains the events in the execution list. Values are
displayed in hexadecimal format.

BTW
Data File

N57:0 0000 8F03 4000 0000 0004 0A4A 010C 0216 0315 0413

0 1 2 3 4 5 6 7 8 9

Words N57:0 – N57:5 are the Block Transfer Header Information

Words N57:6 – N57:9 are the Execution List

2. Toggle bit I:00/00 to initiate the block transfer routine which
downloads block transfer data and the execution list.

3. Verify that the write was successful. If N57:101 = 0F03hex (Block
Transfer Read data), there are no errors.

 1–17Getting Started

1336 FORCE — 5.9 August 1995

Step 3 — Write Node Values

One node value is downloaded in each block transfer routine. The
same block transfer routine is used in each download, but
information in the data file is changed for each node value that is
transferred. As shown below, the data in word N57:2 specifies the
block and node that is being written to, while word N57:3 specifies
the value that is being sent. Data is entered in hexadecimal format.

— Enter the 1st Value at the Function Block Node

BTW
Data File

N57:0 0000 8F01 8101 7FFD 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

1. Set the Limit block Max value (block 1, node 1) to 7FFDhex =
32765dec.

2. Toggle bit I:00/00 to initiate the block transfer routine which
downloads the node value.

3. Verify that the write was successful. If N57:101 = 0F01hex (Block
Transfer Read data), there are no errors.

— Enter the 2nd Value at the Function Block Node

BTW
Data File

N57:0 0000 8F01 8201 8003 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

4. Set the Limit block Min value (block 1, node 2) to 8003hex =
–32765dec.

5. Toggle bit I:00/00 to initiate the block transfer routine which
downloads the node value.

6. Verify that the write was successful. If N57:101 = 0F01hex (Block
Transfer Read data), there are no errors.

 1–18 Getting Started

1336 FORCE — 5.9 August 1995

— Enter the 3rd Value at the Function Block Node

BTW
Data File

N57:0 0000 8F01 8003 7FFF 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

7. Set the Multiplexer block Input 1 value (block 3, node 0) to
7FFFhex = 32767dec.

8. Toggle bit I:00/00 to initiate the block transfer routine which
downloads the node value.

9. Verify that the write was successful. If N57:101 = 0F01hex (Block
Transfer Read data), there are no errors.

— Enter the 4th Value at the Function Block Node

BTW
Data File

N57:0 0000 8F01 8103 8001 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

10.Set the Multiplexer block Input 3 value (block 3, node 1) to
8001hex = –32767dec.

11.Toggle bit I:00/00 to initiate the block transfer routine which
downloads the node value.

12.Verify that the write was successful. If N57:101 = 0F01hex (Block
Transfer Read data), there are no errors.

— Enter the 5th Value at the Function Block Node

BTW
Data File

N57:0 0000 8F01 8304 FFFF 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

13.Set the Rate Limit block Rate value (block 4, node 3) to FFFFhex
= 65535dec.

14.Toggle bit I:00/00 to initiate the block transfer routine which will
download the node value.

15.Verify that the write was successful. If N57:101 = 0F01hex (Block
Transfer Read data), there are no errors.

 1–19Getting Started

1336 FORCE — 5.9 August 1995

Step 4 — Write Links

One node link is downloaded in each block transfer routine. The
same block transfer routine is used in each download, but
information in the data file is changed for each node link that is
transferred. The data in word N57:2 specifies the block and node that
receives the data, while word N57:3 specifies the block and node that
provides the data. Data is entered in hexadecimal format.

— Link the Limit Block Input to the Rate Limit
Output

BTW
Data File

N57:0 0000 8F04 8001 8504 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

1. Link the Limit block Input (block 1, node 0) to the Rate Limit
Output (block 4, node 5).

2. Toggle bit I:00/00 to initiate the block transfer routine which will
download the link.

3. Verify that the write was successful. If N57:101 = 0F04hex (Block
Transfer Read data), there are no errors.

— Link the SR FF Block Set to the Limit Max Limit
Flag

BTW
Data File

N57:0 0000 8F04 8002 8301 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

4. Link the SR FF block Set (block 2, node 0) to the Limit Max
Limit Flag (block 1, node 3).

5. Toggle bit I:00/00 to initiate the block transfer routine which will
download the link.

6. Verify that the write was successful. If N57:101 = 0F04hex (Block
Transfer Read data), there are no errors.

 1–20 Getting Started

1336 FORCE — 5.9 August 1995

— Link the SR FF Block Reset to the Limit Min
Limit Flag

BTW
Data File

N57:0 0000 8F04 8102 8401 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

7. Link the SR FF block Reset (block 2, node 1) to the Limit Min
Limit Flag (block 1, node 4).

8. Toggle bit I:00/00 to initiate the block transfer routine which will
download the link.

9. Verify that the write was successful. If N57:101 = 0F04hex (Block
Transfer Read data), there are no errors.

— Link the Multiplexer Block Sel 0 to the SR FF
Output 1

BTW
Data File

N57:0 0000 8F04 8403 8202 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

10.Link the Multiplexer block Sel 0 (block 3, node 4) to the SR FF
Output 1 (block 2, node 2).

11.Toggle bit I:00/00 to initiate the block transfer routine which will
download the link.

12.Verify that the write was successful. If N57:101 = 0F04hex (Block
Transfer Read data), there are no errors.

— Link the Rate Limiter Input to the Multiplexer
Output 1

BTW
Data File

N57:0 0000 8F04 8004 8603 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

13.Link the Rate Limiter block Input (block 4, node 0) to
Multiplexer Output 1 (block 3, node 6).

14.Toggle bit I:00/00 to initiate the block transfer routine which will
download the link.

15.Verify that the write was successful. If N57:101 = 0F04hex (Block
Transfer Read data), there are no errors.

 1–21Getting Started

1336 FORCE — 5.9 August 1995

Step 5 — View Node Values

Drive analog outputs can be linked to function block nodes. Analog
scale factors can be set and the analog outputs can be linked to the
function block nodes by using the same block transfer routine. A
device such as an oscilloscope can be connected to the analog
outputs to monitor the operation of the function block program.

— Set the Analog Output 1 Scale Factor and
Download to Drive

BTW
Data File

N57:0 4 8301 191 800 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

Words N57:2 contains the parameter number in hexadecimal format. Word
N57:3 contains the desired value in hexadecimal.

1. Set the Analog Output 1 Scale Factor (Parameter 401) to a value
of 2048.

2. Toggle bit I:00/00 to initiate the block transfer routine which
processes all function block links.

3. Verify that the write was successful. If N57:101 = 0301hex (Block
Transfer Read data), there are no errors.

— Set the Analog Output 3 Scale Factor and
Download to Drive

BTW
Data File

N57:0 4 8301 195 800 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

1. Set the Analog Output 3 Scale Factor (Parameter 405) to a value
of 2048.

2. Toggle bit I:00/00 to initiate the block transfer routine which
processes all function block links.

3. Verify that the write was successful. If N57:101 = 0301hex (Block
Transfer Read data), there are no errors.

 1–22 Getting Started

1336 FORCE — 5.9 August 1995

— Link Analog Output 1 to the Rate Limit Output

BTW
Data File

N57:0 4 8900 183 8504 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

1. Link Analog Output 1 (Parameter 387) to the Rate Limit output
(Block 4, Node 5).

2. Toggle bit I:00/00 to initiate the block transfer routine which
processes all function block links.

3. Verify that the write was successful. If N57:101 = 0900hex (Block
Transfer Read data), there are no errors.

— Link Analog Output 3 to the Rate Limit Input

BTW
Data File

N57:0 4 8900 185 8004 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

1. Link Analog Output 3 (Parameter 389) to the Rate Limit Input
(block 4, node 0).

2. Toggle bit I:00/00 to initiate the block transfer routine which
processes all function block links.

3. Verify that the write was successful. If N57:101 = 0900hex (Block
Transfer Read data), there are no errors.

Chapter 2
 2–1

1336 FORCE — 5.9 August 1995

System Component Detail

This chapter provides information about the following system
component concepts:

❒ Execution lists and their events

❒ Downloading and compiling function block applications

❒ Understanding function block I/O nodes

❒ Connecting or linking blocks

An execution list provides a way for you to organize the function
blocks, or events, in the order that you want the drive to execute the
events. Within an execution list, you may have up to 128 events in
any combination. Each event is defined by a block type number and
a block ID number.

❒ The block type number specifies one of the 28 function types to
create and execute. Chapter 4 provides information about the
available function types.

❒ The block ID identifies each event as being unique. The block ID
does not indicate when the event will be executed. Instead, the
drive uses the block ID to differentiate one event from another
event with the same block type number. The block ID must be
between 1 and 254.

For example, you could have an event that has a block type number
of 8, which would specify a FILTER function block, and a block ID of
12. If you include a second FILTER function block with different
input parameters, the second entry requires a new block ID; such as
27. By doing this, the compiler can distinguish between the FILTER
function blocks, even if you later change the position of the events
within the execution list.

Once a block ID is assigned to a certain event with a specific type,
that ID number cannot be used again within the same list with a
different type number. In the same execution list, you could not
assign a block ID of 12 to an event with a block type of 20
(specifying a SCALE function).

The position of each event in the execution list implies an associated
execution sequence number. The execution number specifies the
order in which the event is to be executed. When you use a PLC, the
execution numbers are not visible, but the events are executed in the
order that they are listed in the PLC data table.

Chapter Objectives

Execution List Overview

 2–2 System Component Detail

1336 FORCE — 5.9 August 1995

When you use DriveTools, block names are displayed in place of
block type numbers. Basically, a block name uses words to identify
the block type. Therefore, the block name always corresponds to the
same block type number.

DriveTools shows the execution order number in the left column.
The following is an example execution list from the DriveTools’
DriveBlockEditor.

Event values are easier to understand when they are represented by a
hexadecimal value. Hexadecimal (or hex) representation is a base 16
numerical system, where the letters A through F represent the
numbers 10 through 15.

An event is stored in the drive memory as a word. The FILTER event
would be stored as the following:

ID # Type #Event X =

1 Byte

ID = 12 ; 0C FILTER = 8 = Event Value = 0C08

Single event word

1 Byte

Dec Hex Hex

 2–3System Component Detail

1336 FORCE — 5.9 August 1995

Within the drive, the execution list is stored as an array of words.
Internally, the execution list for the sawtooth example can be
represented as follows:

Event 1 ID = 01 Type = Limit 010C

Hex Value

0 0 0

0 0 0

0 0 0

Stored in drive

Dec Hex=12 =0C

Event 2 ID = 02 Type = SRFF 0216Dec Hex=22 =16

Event 3 ID = 03 Type = Multiplexer 0315Dec Hex=21 =15

Event 4 ID = 04 Type = Ratelim 0413Dec Hex=19 =13

The same execution list using a PLC data table is shown here:

0 1 2 3 4 5 6 7 8 9

N57:0 0000 8F03 4000 0000 0004 0A4A 010C 0216 0315 0413

ID Type

Event 1Block Transfer Header Information Event 2 Event 3 Event 4

Once you complete an execution list, you need to download it to the
drive and compile it to create an application. Only one execution list,
or application, is operating in a drive at any given time.

When the drive enables a function block application, the events are
executed every 20 milliseconds, regardless of how long it actually
takes to execute the application. For example, if it takes the
processor 5 milliseconds to execute your application, the drive’s
processor will not start to execute the application again until the full
20 milliseconds have elapsed. This is referred to as a 20 millisecond
task interval.

 2–4 System Component Detail

1336 FORCE — 5.9 August 1995

Creating an Execution List

The steps needed to create an execution list vary depending on the
type of terminal you are using. You should refer to the appropriate
documentation for information specific to your terminal. However,
general steps for creating an execution list are included here.

❒ If you are using the DriveTools software, you can create an
execution list offline by selecting the New option from the
DriveBlockEditor’s pull–down File menu.

❒ If you are using a PLC terminal, you can create an execution list
by developing a block transfer routine. Chapter 5 provides
information about block transfer routines.

Adding Events to the Execution List

Once you have created your execution list, you can add events to it.
When adding events to your execution list, keep the following
information in mind:

❒ Events are executed in the order in which they appear in the list.
Therefore, you need to add an event at the point in the list where
you want the function block to be executed.

❒ Each event that you add requires a unique block ID.

In DriveTools, you can add multiple events or a single event to an
execution list by selecting the name(s) to add from the Function
Block Library window.

NO–OP Events

You can specify that an event in your execution list have both an ID
number and a type number of zero. This is called a NO-OP event, or
no-operation event. NO-OPs are typically used as placed markers
that place a NULL event within the executed application.

If you assign a non–zero value to either the ID number or the type
number, you must also assign a non–zero value to the other number.
For example, if you assign an ID number of 25 to a function block,
you cannot assign it a type number of 0. Likewise, if you assign a
valid type number to a function block, you cannot assign the function
block an ID number of 0.

 2–5System Component Detail

1336 FORCE — 5.9 August 1995

Important: If you insert a NO-OP event when using the
DriveTools’ DriveBlockEditor, the DriveBlockEditor
appears to assign an ID number to a NO-OP event block
when added to an off–line file. However, the ID number
is not sent to the drive during download for NO-OP
blocks. When an on–line file is uploaded, all NO–OP
blocks have an ID number of 0.

Example Execution Lists

Important: In the following examples, the block type text is used in
place of the block type number for clarity.

The following example shows a valid execution list, with each block
type having a unique block ID.

Exec# Block Block Type
ID

1 22 ABS
2 23 AND4
3 24 BIN2DEC
4 25 COMPHY
5 30 DEC2BIN
6 27 FILTER

The following example shows an invalid execution list. The
execution list is invalid because block ID 22 cannot be assigned to
both the ABS function and the DELAY function in the same execution
list. Keep in mind that you cannot assign the same block ID to more
than one block type or block name within any given execution list.

Exec# Block Block Type
ID

1 22 ABS
2 23 AND4
3 24 BIN2DEC
4 25 COMPHY
5 30 DEC2BIN
6 22 DELAY

Chapter 3 contains additional examples of execution lists.

Linking Events

To use the output of one function block as the input of another
function block, you can create a link between the two function
blocks. A link is a software connection between two data points.
You can also use links if you want to use the same input values for
two different function blocks, or if you want to link drive linear
parameters to function block nodes.

 2–6 System Component Detail

1336 FORCE — 5.9 August 1995

For example, if you want to use the output, or result, of an ADD2
function block as an input to a SCALE function block, you can create
a link between the two function blocks as shown here.

Input OutputADD2 SCALEInput Output

Link between nodes

You can also create a function block that is linked to a linear
parameter, such as the velocity feedback parameter. In addition, if
you have two function blocks that both use the drive’s velocity
feedback parameter, you can link their input parameters together so
that both function blocks receive the same input data.

When you link two function blocks, the information about the link
(source reference number) is stored with the function block that
receives the information (destination) and not with the function
block that provides the information (source). In the example above,
the information about the link is stored at the input to the SCALE
function block.

Link Operation During Execution

During execution, the drive processes the function block links one
function block at a time. If two function block inputs are both linked
to the same linear drive parameter, the drive transfers the data from
the required parameter twice. Because the drive parameters are
updated every one to two milliseconds, the values for the same drive
parameter may be different during the same pass through the
application.

In the following example, the LIMIT and MULTIPLY function blocks
both receive input from the same drive parameter. However, they
may receive a different value from the drive parameter during the
same pass through the application.

LIMIT

MULTIPLY

Velocity Feedback
from the drive

Input

Input

Event 1

Event 24

 2–7System Component Detail

1336 FORCE — 5.9 August 1995

If you want both function blocks to receive the same value for a
drive parameter, you should link the first function block’s input node
to the drive parameter. You should link all subsequent inputs using
this drive parameter should be linked to the first function block node
that is linked to the drive parameter.

In this second example, you want the MULTIPLY function block to
receive the same value from the drive parameter as the LIMIT
function block. Here, you would link the input to the MULTIPLY
function block to the input to the LIMIT function block instead of
linking the MULTIPLY function block to the drive parameter itself.

LIMIT

MULTIPLY

Velocity Feedback
from the drive

Input

Input

Event 1

Event 24

Refer to Chapter 3 for additional information about links and
performance.

Deleting Events from the Execution List

If you delete an event from an execution list, you need to remove all
links that reference the block that is being deleted. You need to do
this because the link information is stored with the function block
that receives the information.

Referring to the second example, if you delete the LIMIT function
block, you need to remove the link that is stored with the MULTIPLY
function block and re-establish the input to the MULTIPLY function.

If you do not remove the link, you will receive an error when you
download the execution list if you are using DriveTools, or the drive
will generate a fault if you are using a PLC.

�

 2–8 System Component Detail

1336 FORCE — 5.9 August 1995

While you are creating your execution list, you are generally
working on a terminal using DriveTools, a PLC, or a GPT. At this
point, the execution list is an array of words that the software you are
using can understand. You need to download and compile your
execution list before the drive can execute it.

The download process sends a copy of the execution list array from
the terminal to the drive. The compile process uses the execution list
in the drive to create an application which contains the functionality
and data within the drive. The drive can then execute the application.

The process that takes place when you download and compile your
execution list is as follows:

1. The terminal device (DriveBlockEditor, GPT, or PLC) writes or
downloads a new execution list.

2. The drive software checks the execution list for errors.

3. After the initial service checks have been completed
satisfactorily, the drive acknowledges the download service and
prepares the execution list to compile as a background task.

4. The drive disables any currently active (executing) function block
application and calls the function block compiler.

5. The compiler moves sequentially through the execution list
creating and initializing the function block objects. A function
block event object associates a certain functional operation to be
performed with the appropriate information and data.

6. All links associated with the function blocks are processed.

7. If no errors are encountered, the drive begins executing the
application.

When the drive enables a function block application, the events are
executed every 20 milliseconds, regardless of how long it actually
takes to execute the application. For example, if it takes the
processor 5 milliseconds to execute your application, the drive’s
processor does not start to execute the application again until the full
20 milliseconds have elapsed. This is referred to as a 20 millisecond
task interval.

Refer to Chapter 3 for more information about the compile process.
Chapter 5 provides more information on the PLC block transfer
service for the download and compile operation.

Downloading and
Compiling the Execution
List

 2–9System Component Detail

1336 FORCE — 5.9 August 1995

Once you have properly downloaded and compiled your execution
list, you can access the I/O (input/output) nodes associated with each
function block. An I/O node is a parameter that provides information
to or from a function block.

The function block I/O nodes are different from the standard linear
parameters. While the linear parameters always reference the same
information, the I/O nodes are dynamic. The drive allocates memory
for the function block parameters (I/O nodes) depending on the
execution list. Thus, the drive only allocates as much memory as you
need to execute your application.

Because the I/O nodes are dynamic, you cannot use fixed numbers
(such as parameter 723) to refer to function block nodes. Instead,
function block parameters are referenced by block ID number and
node number. The block ID number and node number are also
application dependent.

As the execution list is compiled, the drive allocates the I/O nodes
associated with each event as a group. You can have a maximum of
799 I/O nodes per execution list.

The function block type defines the required number of I/O nodes
and the characteristics of each node for a particular function block.
I/O nodes are numbered from zero up to the proper number of nodes,
with the input nodes numbered first. A function block with six
nodes, numbered from zero to five, is shown below.

Node 0

Node 1

Node 2

Node 3

Node 4

Node 5

Output 1

Output 2

Input

Enable

On mS

Off mS

Delay

To reference a specific node of a particular function block, you need
the block ID number and the node number. Using the figure shown
above, if you want to access the I/O node for Output 1, the node
number would be 4.

The way you reference the block ID and node number depends on
whether you are using DriveTools or a PLC. DriveTools allows you
to use a decimal format to reference nodes, while PLC block transfer
uses a single word value.

Understanding Function
Block I/O Nodes

 2–10 System Component Detail

1336 FORCE — 5.9 August 1995

DriveBlockEditor Node References

If you are using DriveTools, you can reference a specific node of a
particular function block by specifying the block ID:node number.
For example, to reference block number 6, node 2, you would enter
6:2.

Even though the DriveTools’ DriveBlockEditor allows you to
reference I/O nodes as block ID:node number, the DriveBlockEditor
software converts the decimal information into the single word
reference number. DriveTools uses emulated block transfer services
because it uses the Data Highway Plus protocol. Block transfer
services are covered in Chapter 5.

Understanding PLC and Drive Node References

Node references are easier to understand when you use hexadecimal
values. The drive and PLC block transfers both reference the node
number and block ID as a single word in the following form:

15 14 13 8 7 0

0 Node # Block ID

MSB

1

LSB

MSB = Most Significant Bit
LSB = Least Significant Bit

Bit Description

15

0 – The value or link reference represents a standard linear Motor Control
board or a PLC Communication board file parameter number.

1 – The value or link reference represents a function block I/O node
reference.

14 0

8–13 Contains the I/O node reference.

0–7 Contains the block ID number.

The upper-most four bits, bits 12 – 15, typically have a value of 8Hex

for most function block node references. The value will not exceed
8Hex unless you reference a node number of 16 or greater.

 2–11System Component Detail

1336 FORCE — 5.9 August 1995

Examples of Function Block I/O Node References

The first example represents output node 2 of an ADD function block
that has a block ID of 6. You can convert this information to either a
decimal value or a hexadecimal value.

1 0 0 0 0 0 111 0 0 0 0 0 0 0

15 14 13 8 7 0

2 (6 bits) 6Decimal

Hex 8 2 0 6

Node # ID #

Node 0

Node 1

ADD
ID = 6 Dec Node 2

ADD block output reference = 8206Hex via PLC Block Transfer
= 6:2Dec via DriveTools

The second example represents output node 3 of an XOR2 function
block that has a block ID of 26.

1 0 0 0 0 0 101 1 0 0 0 1 1 0

15 14 13 8 7 0

3 26Decimal

Hex 8 3 1 A

Node # ID #

Node 0

Node 1

Node 2

Node 3

XOR2
ID = 26 Dec

1A Hex

XOR #26 output reference = 831AHex via PLC Block Transfer
= 26:3Dec via Drive Tools

The third example represents output node 16 of the BIN2DEC
function block that has a block ID of 14. Notice that the first number
in hex for this example is 9. Normally, you can recognize a function
block by an initial hex number of 8, unless the seventeenth I/O node
(node number 16) is being referenced.

Node 0
Node 1
Node 2
Node 3
Node 4
Node 5
Node 6
Node 7
Node 8
Node 9
Node 10/A
Node 11/B
Node 12/C
Node 13/D
Node 14/E
Node 15/F

Node 16/10

1 0 0 1 0 0 110 0 0 0 0 0 1 0

15 14 13 8 7 0

16 14Decimal

Hex 9 0 0 E

Node # ID #BIN2DEC
ID = 14 Dec

0E Hex

BIN2DEC block #EHex output reference = 900EHex via PLC Block
 Transfer
= 14:16Dec via DriveTools

 2–12 System Component Detail

1336 FORCE — 5.9 August 1995

Node Data Types

The value of a function block I/O node will be one of the following
types:

❒ A signed decimal integer with a value range of ±32767.

❒ An unsigned decimal integer with a value range of 0 – 65535.

❒ A logical value where 0 = False and any non-zero value = True.

Some nodes have additional range restrictions. For example, a node
may be a signed integer with a range of ±16383 instead of ±32767.

In addition, nodes may be linkable or non–linkable. A linkable node
is a node which is able to receive information from another source,
while a non–linkable node cannot receive information from another
source. Input nodes may be either linkable or non-linkable. Output
nodes are not linkable. However, you can use output nodes to
provide data for inputs to other function blocks or to drive linear
parameters.

When you connect function blocks, you need to be careful. Linkable
inputs can get data from any function block node or linear parameter,
regardless of its data type. As an example, you could link a logical
input to a signed decimal output.

The characteristics of the destination node determine how the input
value is interpreted. In the case where a signed decimal output is
linked to a logical input, the value would be interpreted as a true
value unless the source value (such as a velocity or position
feedback) was equal to zero.

 2–13System Component Detail

1336 FORCE — 5.9 August 1995

Creating Links Between Nodes

When you create a link between two function blocks, you are
actually creating a connection between a node on one function block
and a node on another function block. The information about the link
is stored at the destination node, which is the node that receives the
data.

In the following example, the link between the LIMIT function block
and the Set Reset FF function block is located between Node 3 of the
LIMIT function block and Node 0 of the Set Reset FF function block.
The information about the link is stored with Node 0 of the Set Reset
FF function block. Therefore, when you create the link, you need to
create it at Node 0 (2:0), not Node 3 (1:3).

Node 0 – Input 1
Set Reset FF

Node 1 – Max Val

ID # 2Node 2 – Min Val

Node 0 – Set

Node 1 – ResetLIMIT

ID # 1

Node 3 – Max Lim

Node 4 – Min Lim

Node 5 – Output

Node 2 – Out1

Node 3 – Out2

If you are using DriveTools, you would create this same link by
doing the following:

1. Click on the Set Reset FF function block ID number. The nodes
for the Set Reset FF function block are displayed on the right side
of the DriveTools screen as shown here.

2. Click on the Link To field for the Set node.

3. Enter 1:3 to specify that you are linking Node 3 of the function
block having a block ID of 1 (in this case, the LIMIT function
block) to this node.

4. Press the enter key to save the value.

 2–14 System Component Detail

1336 FORCE — 5.9 August 1995

If you are using a PLC, you would create this same link by doing the
following:

1. Set up your block transfer read and write blocks.

2. Create your data table. For this example, your data table would
look like the following:

BTW
Data File

N10:10 0 8F04 8002 8301

0 1 2 3 4 5 6 7 8 9

Write Link
Service
Request

Destination
Node

Source
Node

The 8002 in column 2 specifies that Node 0 of Block ID 2 (the
Set Reset FF function block) is receiving information. The 8301
specifies that Node 3 of Block ID 1 (the LIMIT function block) is
providing the information.

3. Perform a link processing service request.

Chapter 3
 3–1

1336 FORCE — 5.9 August 1995

System Interactions

This chapter provides information about the following topics:

❒ The function block BRAM functions

❒ The power up sequence

❒ The compiler modes and terminal operation differences

❒ Multiple execution list copies

❒ The task status services

❒ The link processing faults

❒ The performance issues that concern links

Function block applications use two kinds of memory: RAM and
BRAM.

❒ RAM, or Random Access Memory, is the working memory area
where information is stored while the system is powered up. Any
information that is in RAM is lost when you remove the power,
perform a system reset, or performs a function block Init. When a
function block application is properly set up, the application
executes partially out of RAM and manipulates data stored in
RAM.

❒ BRAM, or Battery backed up RAM (also known as EEPROM), is
memory which is retained when the power is removed from the
system. You can copy your function block application from RAM
to BRAM by saving it. If you save your function block
application in BRAM, it is transferred from BRAM to RAM
when the power is cycled or a drive reset occurs.

The following are descriptions of the function block Init (initialize),
function block Store (save), and function block Recall (restore)
operations.

Chapter Objectives

The Function Block BRAM
Functions

 3–2 System Interactions

1336 FORCE — 5.9 August 1995

A function block Init operation effectively removes any previous
function block application from the working RAM area. However, it
does not actually clear out the BRAM itself; it only clears the
function block application out of the working RAM area. To truly
initialize the BRAM area, you need to perform both an initialization
service and a function block Store operation.

When requested, a function block Init does the following:

1. Clears out the application that is currently executing from RAM.

2. Releases all allocated system RAM back to the system.

3. Dissolves any previous links to or from function block nodes.

A function block Init goes through the linear drive parameter link
reference table and dissolves those links for any linear parameter
inputs that are using information from a function block node. The
function block Init does not otherwise influence the linear parameter
data.

When the Init operation is complete, no function block application
will exist in the drive.

After you initialize the function block system, you cannot access
function blocks or I/O nodes until you either recall the application
stored in BRAM or download a new execution list from a terminal
device. If you try to read data from or write data to an I/O node
before you place another execution list in memory, your request will
be rejected. Trying to link a linear parameter to a function block I/O
node will also be rejected.

A function block Store writes the function block application in active
RAM memory to the drive’s BRAM. When requested, a function
block Store does the following:

1. Stores the current valid execution list.

2. Stores the function block node values. The linear parameter
values are not stored.

3. Stores the function block link references. The linear parameter
links in the linear parameter reference table are not stored.

4. Calculates and stores a new function block application checksum.

Note: In the DriveBlockEditor, the function block Store operation is
referred to as EEPROM SAVE.

The Function Block Init
Command

The Function Block Store
Command

�

 3–3System Interactions

1336 FORCE — 5.9 August 1995

A function block Recall copies the function block application that is
currently stored in BRAM into RAM. This application is then stored
in RAM and is available for execution. When requested, a function
block Recall does the following:

1. Verifies the function block data checksum before performing a
function block RAM initialization.

2. Restores the execution list values, all node values, and link
references to the appropriate RAM data tables from their
associated counterparts within BRAM.

3. Activates the function block compiler.

4. Processes links first and then goes over the linear parameters and
adjusts links of linear parameter inputs to function block nodes.

5. If there are no function block soft faults after this processing,
execution of the 20 millisecond function block application is
activated, and drive enable is allowed.

After all Recall and power up operations, automatic recompilation
and processing of function block links occurs.

Important: You cannot perform a Recall while the drive is enabled.

In a 1336FORCE drive with a PLC Communication Board, the 497
linear parameters are stored separately from the function block node
parameters. Therefore, the functions for initializing, saving, and
restoring data for the function blocks are separate from the linear
parameter BRAM functions.

This effects the link information. The information about a link is
stored with the parameter or node that is receiving the information.
Therefore, if you have a link between a function block node and a
linear parameter and you perform a BRAM function for either the
function blocks or the linear parameters, you may create an invalid
link. This is due to the way that the Init and Recall functions work
between the function blocks and the linear parameters.

The Function Block Recall
Command

Linear Parameter
BRAM Functions and Links

 3–4 System Interactions

1336 FORCE — 5.9 August 1995

For example, if your RAM area is as shown below, a linear
parameter BRAM Init would clear links A and B, while a function
block BRAM Init would clear all function blocks as well as links B,
C, and D.

Links A and B are made
using DriveManager or linear
parameter Block Transfer
services.

Links C and D are made from
DriveBlockEditor or function
block Block Transfer
services.

P#01
P#02
P#03

P#298
P#299
P#300

P#301
P#302
P#303

P#495
P#496
P#497

Not#3 Input
Not#3 Output
And4#2 In1
And4#2 In2
And4#2 In3
And4#2 In4

Drive Parameters

Adaptor Parameters

Function Block Nodes

A

B

C

.

..

.

..

.

..

D

And4#2 Out1
And4#2 Out2

If a linear parameter is receiving information from a function block
node (as shown by link B) and you request a function block Init, the
link information exists in the linear parameter area of BRAM, but the
function block area was initialized and all function blocks were
cleared. Link B is removed.

In this example, if you initialize both the linear parameter area and
the function block area, you need to be careful when you restore the
information. When you do a Recall on the linear parameter area,
links A and B are restored. When you do a Recall on the function
block area, links C and D are restored along with the function blocks.
With this type of link information, you need to restore the function
block area before restoring the linear parameter area. If you do a
function block Recall first, the function blocks and links C and D are
restored. You can then execute a linear parameter Recall to restore
links A and B.

 3–5System Interactions

1336 FORCE — 5.9 August 1995

If you do a Recall on the linear parameter area before doing a Recall
on the function block area, no function blocks will exist in RAM.
When the linear parameter Recall is executed, it cannot build link B
because the function block that provides the data to the linear
parameters does not yet exist in RAM. This will cause a drive soft
fault to occur.

The system does not automatically clear a link that was valid but has
become invalid. You need to clear the link or adjust the link to point
to a valid parameter or node before you can clear the fault.

The function block fault read service returns the reference of the first
node with an invalid link reference. You may clear links individually,
or you can clear all links at once.

When using DriveTools, you can access the function block BRAM
functions from DriveBlockEditor EEPROM selection and the linear
parameter BRAM functions from DriveManager. For additional
information about the linear parameter value, link, and BRAM
services, refer to the PLC Communications manual.

Whenever you power up the system, the drive does the following:

1. Performs a linear parameter BRAM Recall function to restore the
linear links and parameter values from BRAM to RAM

2. Builds the linear parameter link scanner. While building this list,
links which reference function block nodes are skipped. No
function blocks exist yet.

3. Performs a function block Init.

4. Performs a function block Recall to restore the execution list
values, all node values, and link references to the appropriate
RAM data tables from their associated counterparts within
BRAM.

5. Activates the function block compiler.

6. Processes all function block links when the compilation is
complete.

7. Goes over the linear parameters and adjust links from linear
parameters to function block nodes. This step processes any linear
destination parameters that were not linked in step 2 because they
referenced function blocks.

8. Activates the 20 millisecond function block application and
allows drive enable if no function block soft faults occur during
processing.

Power Up Sequence

 3–6 System Interactions

1336 FORCE — 5.9 August 1995

You can use any of the three supported terminal devices to create and
update your function block applications:

❒ DriveTools’ DriveBlockEditor

❒ Graphic Programming Terminal (or GPT)

❒ PLC block transfer

The three terminal devices use different compiler modes due to
differences in the amount of their available RAM. Depending on
how you change your execution list, you may receive an error when
using one terminal device, but not when you use another terminal
device. This section describes the compiler modes that are used and
information specific to the individual terminal devices to help you
use function blocks more effectively.

Regardless of which terminal device you are using, an application is
created when you compile your execution list. You should also note
the following information:

❒ The application executes partially out of RAM.

❒ The application executes within a 20 millisecond task interval and
is integral to the system operation.

❒ The compiler resides on the PLC Communication Adapter board
as part of its AP or Application Processor code PROM.

The two basic compiler modes used for function blocks are the initial
compile mode and the subsequent, or comparison, compile mode.
You do not select which mode to use; the compile mode is
automatically determined by the terminal device and whether or not
an application already exists in the RAM area of the drive.

Initial Compile Mode

With the initial compile mode, no events exist in the drive when the
execution list is downloaded, and all the objects are created from
scratch.

The DriveTools’ DriveBlockEditor always uses the initial compile
mode for its download and compile service. The DriveBlockEditor
forces an initial compile mode by initializing the function block’s
RAM before downloading the new execution list for compilation.

Compiler Modes and Terminal
Operation Differences

Compiler Modes

 3–7System Interactions

1336 FORCE — 5.9 August 1995

Subsequent Compile Mode

With the subsequent compile mode, a new execution list is compared
against the current application in the drive to selectively create and
delete function block objects. This compile mode is automatically
enabled when a previously valid application exists in the drive.

Common event blocks will retain previous node values and links.
Only the new event blocks need to be adjusted.

The GPT uses the subsequent compile mode for its download and
compile service.

The subsequent mode of operation is a bit more involved and
requires that you remove any links from blocks that receive input
from an object to be deleted before downloading and compiling the
new list. Processing links is the compiler’s last step. If you do not
remove links to objects that are to be deleted, you will get an error.

Examples of Subsequent Compile Mode Operations

Important: In the following examples, the block type name is used
in place of the block type number for clarity.

The following example shows a valid subsequent compile. In this
example, no new blocks were created and no existing block was
deleted; only the execution sequence was changed.

Exec# Block Block Type
ID

1 1 ABS
2 2 AND4
3 3 BIN2DEC
4 4 COMPHY
5 5 DEC2BIN
6 6 DELAY

Exec# Block Block Type
ID

1 6 DELAY
2 5 DEC2BIN
3 4 COMPHY
4 3 BIN2DEC
5 2 AND4
6 1 ABS

Existing, valid application New (subsequent) event list

The following example is also valid. Block ID’s 23 and 26 were
removed from the original program, and blocks 38 and 46 were
newly created and need to be set up. The blocks which are common
to both lists will retain all previous links and values.

Exec# Block Block Type
ID

1 21 ABS
2 22 AND4
3 23 BIN2DEC
4 24 COMPHY
5 25 DEC2BIN
6 26 DELAY

Exec# Block Block Type
ID

1 21 ABS
2 22 AND4
3 38 Integral
4 24 COMPHY
5 25 DEC2BIN
6 46 DELAY

Existing, valid application New (subsequent) event list

 3–8 System Interactions

1336 FORCE — 5.9 August 1995

The following example is not valid because block ID 23 was re–used
for a new event when it was already assigned to a BIN2DEC function
block.

Exec# Block Block Type
ID

1 21 ABS
2 22 AND4
3 23 BIN2DEC
4 24 COMPHY
5 25 DEC2BIN
6 26 DELAY

Exec# Block Block Type
ID

1 21 ABS
2 22 AND4
3 23 Integral
4 24 COMPHY
5 25 DEC2BIN
6 26 DELAY

Existing, valid application New (subsequent) event list

In this last example, the second execution list is invalid only in the
subsequent compile mode. If the first application was cleared with a
function block Init, the second (new) execution list would be valid
during an initial mode compile. This is a major difference between
using the DriveBlockEditor and a GPT to compile your execution
list. The following sections contain additional information about the
different terminals.

You can do either an initial compile mode or a subsequent compile
mode when you use the PLC block transfer mechanism.

Because a PC running DriveTools has significantly more available
RAM than a hand-held GPT, the PC running DriveTools can store
more information. Besides maintaining its own copy of an execution
list (when in ONLINE mode), a PC running DriveTools also holds a
one word value for every node to be created and a one word link
reference for every linkable input node.

The DriveTools’ DriveBlockEditor uses the Data Highway Plus
protocol to perform emulated block transfer commands. It uses the
same block transfer services available to a PLC from one of the
adapter’s RIO ports.

DriveTools’ DriveBlockEditor
Download and Compile
Operation

 3–9System Interactions

1336 FORCE — 5.9 August 1995

During a download operation, the DriveTools’ DriveBlockEditor
does the following:

1. Performs a function block Init which effectively removes the
function block application from the system. This initialization
goes over the linear parameter link reference table and clears any
links to function block source nodes. These links are not rebuilt
until you make a call to the linear parameter Recall function.

Important: In DriveTools, use DriveBlockEditor to access
the function block BRAM operations. You must
use DriveManager to access the linear parameter
BRAM operations.

2. Downloads the new execution list. An initial mode compile is
performed because the initialization step removed the existing
function block application from the drive.

3. Reads the Task Status byte until the execution list has finished
compiling.

4. Downloads all function block node values.

5. Downloads all function block node links.

6. If an ONLINE window is open and the execution list has
changed, the ONLINE window detects a difference in the
executing checksum and prompts you for an upload.

Note: If an error occurs while downloading the new list and this
operation is terminated, there will be no function block application in
RAM because it was initialized.

Because the Graphical Programming Terminal (GPT) does not have
as much RAM memory as the DriveTools’ PC, the GPT cannot
retain all the possible node value and link information. Therefore, the
GPT relies on a subsequent or comparison mode of the drive’s
compiler to retain the node value and link information for common
event blocks between subsequent compiles.

When using a GPT, you need to remove the links that refer to the
blocks to be deleted before downloading and compiling to prevent an
invalid function block link fault.

The PLC has the flexibility to use either mode and perform every bit
of functionality the other terminals use via the block transfer
services. PLC block transfers are explained in more detail in Chapter
5 of this manual.

�

Graphic Programming
Terminal

PLC Block Transfer

 3–10 System Interactions

1336 FORCE — 5.9 August 1995

Only one function block application is active within the drive at any
one time. However, multiple execution lists can be present in the
terminal devices attached to the drive. You can connect up to seven
terminal devices to the PLC Communications Adapter board, and
each terminal device can have its own copy of an execution list. In
addition, the DriveBlockEditor can even have multiple OFFLINE
execution lists in RAM or stored in the PCs hard drive.

Even though multiple execution lists can appear to be on the system,
only one function block application is active within the drive at any
one time. The drive’s execution list reflects what is currently
running. The only other execution list stored within the drive is a
copy in BRAM, which is used during BRAM recall or power up.

Terminal devices such as the DriveTools’ DriveBlockEditor and the
GPT maintain their own copies of the execution list. Because you
can initiate download and compile operations from any of the
terminal devices, do not initiate download and compile operations
from different terminal devices at the same time.

The drive uses a checksum value to differentiate between the running
application and the application stored in BRAM. If the checksum
values are the same, then the current application has not been
modified.

Understanding Multiple
Execution List Copies

 3–11System Interactions

1336 FORCE — 5.9 August 1995

The compile operation performed during the function block Recall
and the download and compile services are performed as background
tasks. Even though you can perform other service requests while the
execution list is compiling, you should avoid making node value
write requests and link requests during the compilation process.

You can use the Task Status service to determine the current state of
the compiler and the application execution status. The following are
possible states for the compiler:

Value Task Status Description

0 Run Mode The application is executing within the 20
millisecond task interval. No faults have occurred
within the function block portion of functionality.

1 Download in Progress The previously compiled application is still enabled
and executing within the function block task interval.
One or more downloaded packets have been
received for a new function block program and the
function block system is waiting for more data. The
currently active application is not interrupted until all
packets have been received and the data has been
verified for the new function block program before
compilation.

2 Compilation in
Progress

All packets have been downloaded and the data
verified. The service has initiated a compile.
Compilation can take seconds when a large
application is used.

3 Link Processing The application is disabled and links between
function blocks and drive parameters are being
established

4 Recall in Progress A Recall is in progress.

0x00FF Fault Mode A function block application has a faulted status.
Function block compile time errors create a soft fault
condition within the drive. The 1336T system
architecture contains a system fault queue that
describes the nature of the fault. SCANport provides
two fault reporting values should the Task Status
word indicate a faulted mode.

The previous application is disabled and will not run
until you correct the fault. You cannot clear function
block compiler faults with the clear faults command
until you correct the function block fault.

You can read the fault queue via GPT, PLC block transfer, or
DriveManager.

Important: A function block BRAM Init is recommended after any
function block fault other than a function block link
processing fault. If you do perform an Init, you must
also perform a Recall or download a new program.

Task Status Service

 3–12 System Interactions

1336 FORCE — 5.9 August 1995

��
� ���� �
 ����� ���
�� �� �
 ����
��
	 �� ���� �� �

	������	 ��	 ������
 ��
������� �
 ����� ��
 ��������

����
��
	 ���
� �
 ����������� �� �����
�
� �
 ��� ����
��
��

��������� ��	 �������� ��
 �
�����
� �
�
���
� �� �
 	���
 ���	�

� �������� ����� ���� ����� ���
� � ������
� ��	 �� ��
� ��������

����� ������
� ������ ��
 ��	����
	 �� �
 ����� ��
�
� ��� ���

�	���� �
 ���� ������ �
��������� �

�
������ ����� �
 �
�� ��

���� ����������� ���� ����� �
 ����	�

A link processing error is indicated by the first function block fault
status word having bit 1 set or a value of 0x002Hex. If a link
processing error occurs, the second fault word, which is designated
the code identifier, holds a reference to the first input parameter or
node it found which has an invalid link reference. You can read the
status words from the drive via the block transfer services.

Chapters 5 and 6 provide additional information about the clear
function block links service and reading status words.

You cannot clear function block faults with a clear fault operation
without first addressing the problem. The function block system will
not make an assumption about what to do with an illegal link. You
are forced to either clear the link to this node or reconnect the node
to a valid node. After you do this, the clear faults mechanism can
clear the faults and allow the drive to run.

If multiple link faults occur, you can either remove all the function
block links with the clear function block links service and then clear
the faults, or you can continue reading the code identifier to find the
individual link errors and correct each link, one at a time.

Link Processing Faults

 3–13System Interactions

1336 FORCE — 5.9 August 1995

A drive with a connected PLC Communication Board has two link
processing mechanisms. One link processing mechanism operates
specifically upon linear parameter links, and the other mechanism
processes the function block links.

As the application executes, the function block links are processed
block by block. The inputs for each individual block are checked for
links. If a link is found, the link processor goes to the source
parameter or node and copies the data from the source to the
destination node. Once all data for the links to one function block is
gathered, the function block algorithm is executed. The system can
then begin processing the next function block. Because the function
block application is executed every 20 milliseconds, the data for an
individual link is also updated every 20 milliseconds.

Currently, the link mechanism for the linear parameters executes
every 1 to 2 milliseconds. This updates all of the linear parameter
links (up to the maximum of 50) every 1 to 2 milliseconds.
Therefore, two function block nodes that receive input from the same
linear parameter may receive different data values within the same
task interval.

For example, if you have an application with 115 events that takes 12
milliseconds to execute and the input for event 1 and event 115 are
linked to the feedback, event 115 may receive a value that is
different than the value event 1 received during the same execution
task interval pass.

LIMIT

MULTIPLY

Feedback
from the drive

Input

Input

Event 1

Event 115

L1

L2

In this example, L1 represents the first transfer of data, which occurs
when Event 1 is processed. L2 represents the second transfer of data,
which occurs when Event 115 is processed. The data transferred in
L1 and L2 may have different values.

Performance Issues Involving
Links

 3–14 System Interactions

1336 FORCE — 5.9 August 1995

To make nodes linked to a common linear parameter operate upon
the same value every 20 milliseconds, you can link the input of the
second event to the input of the first event. As shown here, you could
link the input of event 115 to the input of event 1.

LIMIT

MULTIPLY

Feedback
from the drive

Input

Input

Event 1

Event 115

T1

T2

T1 in this example represents the first transfer of data, and T2
represents the second transfer of data. The data transferred during T2
is the same value that was captured and transferred during T1.

When you create your links, you do not always need to transfer data
from a function block that is executed before the function block that
is receiving the data. For example, if you have a FILTER function
block that has an execution number of 25, the FILTER function block
could receive data from a SCALE function block with an execution
number of 50:

FILTER

SCALE

Drive Parameter
P146

Input

Input

Event 25

Event 50

In this example, you should be aware that even though the FILTER
function block receives data from the SCALE function block, the
drive executes the FILTER function block before the SCALE function
block. The first time the drive executes the FILTER function block, it
uses the input node’s initial or default value because the SCALE
function block has not yet been executed. During subsequent passes,
the FILTER function block always receives the data that the SCALE
function block received during the previous pass. For example, if the
SCALE function block received a value of 56 from the drive during
the fourth time that the drive executes the application, the FILTER
function block will not receive a value of 56 until the fifth time it is
executed.

Link Processing Sequence

Chapter 4
 4–1

1336 FORCE — 5.9 August 1995

Function Block Library

Detailed in this chapter are the (28) function blocks that make up the
PLC Comm Board function block set.

Each function block is a firmware subroutine stored in PLC Comm
Board Memory. Each type of function block has a unique Block type
number that identifies the functionality and the nodes that are
associated with the block. Function blocks can be linked together to
perform the same functions as equivalent analog or digital circuits.
Function blocks are executed in the order in which they are entered
in the execution list. Each function block type can be used any
number of times.

For each function block shown, the value of an I/O node will be one
of the following:

1. A signed decimal integer with a value range of ±32767.

2. An unsigned decimal integer with a value range of 0 – 65535.

3. A logical value where 0 = False and any non-zero value = True.

Important: The use of integer math causes the truncation of any
fractional remainder resulting from a divide operation.

In addition, nodes used for input may be either linkable or
non-linkable.

4. Linkable input nodes are indicated by a in the function block
diagram.

5. Non–linkable input nodes are indicated by a in the function
block diagram.

6. The nodes used for output are not linkable and are indicated by a
 in the function block diagram. However, you can use output
nodes to provide data for inputs to other function blocks or to
drive linear parameters.

When you connect function blocks, you need to be careful. Linkable
inputs can get data from any function block node or linear parameter,
regardless of its data type. As an example, you could link a signed
decimal output to a logical input. The characteristics of the
destination node determine how the input value will be interpreted.
In the case where a signed decimal output is linked to a logical input,
the value would be interpreted as a true value unless the source value
(such as a velocity or position feedback) passed through zero.

Chapter Objectives

Function Block Overview

Function Block Library 4–2

1336 FORCE — 5.9 August 1995

The only library function blocks that have double word input or
output nodes are Multiply, Divide and Scale. These three function
blocks are intended to be used together. Special handling may be
required when using any of these three blocks with other function
blocks.

Double word nodes can present difficulties since the system
architecture does not have 32 bit integrity. When double word
parameters are manipulated by DriveTools or a PLC, each 16 bit
node must be handled separately. However the function algorithm
uses both words together when interpreting these double word
values.

The output range of multiplied input values can be critical. The range
of a double word (32 bit) value is ±2,147,483,647. The range of the
more common, signed single-word 16 bit node is ±32767. If only
one word of the Multiply or Scale function block output were used,
the output would appear to roll over or under should the product
exceed +32767 or go negative.

31 16 15 0

Most Significant Word Least Significant Word

As shown above, the sign bit for 32 bit values is the most significant
bit, #31. The sign bit for a single word value is the most significant
bit, #15.

Should the DIVIDE function block’s LSW input node (Node 0) be
used without manipulating the MSW node (node 1), difficulties can
occur should a signed word be linked to the inputs. False results may
be output if the signed input value goes negative. Range checking
and possible limiting may need to be performed. Special
manipulation of the MSW (Most Significant Word) may be required.
The double word characteristic of each of these three blocks is
detailed further in the individual block descriptions.

Double Word Function Block
Caution

Function Block Library 4–3

1336 FORCE — 5.9 August 1995

FUNCTION
BLOCK
TYPE DESCRIPTION PAGE

ABS 1 An absolute value function block whose output is the
positive value.

4–4

BIN2DEC 3 A binary to decimal function block that takes (16) input
words and produces (1) decimal output word.

4–5

COMPHYST 4 Compare with hysteresis function block that checks for
input = preset value with a hysteresis around the value.

4–7

DEC2BIN 5 A decimal to binary function block that takes (1) decimal
input word and produces (16) binary output words.

4–9

DELAY 6 A time delay function block that echoes a logic input after a
delay.

4–11

DERIV 7 A derivative function block that calculates the change in
input per second.

4–13

DIVIDE 23 A divide function block that divides (2) signed integers. 4–15

EXOR2 25 An exclusive OR function that takes (2) inputs and
provides (2) output values — The XOR of those values
and the NOT of the output value.

4–18

FILTER 8 A first order low pass algorithm filter, with a programmable
bandwidth in tenths of radians per second.

4–19

4AND 2 An and function that takes (4) inputs and performs a
logical and.

4–21

4OR 16 An or function that takes the logical or of (4) inputs. 4–22

FUNCTION 9 A ”function” function block that with a user approximation
for a function, linearly interpolates between (2) of (5)
possible points.

4–23

INTEGRATOR 10 An integrator function block that does trapezoidal
integration.

4–26

LIMIT 12 A limiter function block that limits an input to programmed
minimum and maximum values.

4–30

LNOT 15 A logical not function. 4–31

MINMAX 13 A minimum or maximum function block that can be
programmed to take the minimum or maximum of two input
values.

4–32

MONOSTABLE 14 A one shot monostable function block that elongates a
rising edge signal for a specified time duration.

4–33

MULTIPLEXER 21 A select function block that multiplexes one of four inputs
based on the state of the selector inputs.

4–34

MULTIPLY 28 A multiply function block that multiplies (2) signed integers. 4–35

NO-OP 0 A PLC space holder. 4–37

PI CTRL 17 A proportional/integral control function block that takes the
difference between two inputs and performs a PI control
with a proportional and integral gains.

4–38

PULSE CNTR 18 A pulse counter function block that counts rising edges of
an input value.

4–42

RATE LIMITER 19 A ”ramp” function block that limits the rate of change of an
input value

4–44

SCALE 20 A scale function block that uses the following formula: IN1
× (MULTI/DIV).

4–46

SR FF 22 A set-reset flip-flop. 4–48

SUB 27 A subtract function block that subtracts (2) signed
numbers.

4–49

T-FF 11 A toggle flip flop function block, that changes the state of
the input.

4–50

2ADD 26 An add function block that adds (2) signed numbers. 4–51

UP/DWN CNTR 24 An up/down counter function block that increments or
decrements to a specified value in a specified amount of
time.

4–52

Function Block Index

Function Block Library 4–4

1336 FORCE — 5.9 August 1995

ABS
BLOCK TYPE 1 decimal 1 hexadecimal

Absolute

ID = Exec =

Out

NODE 0 Input

NODE 1

IN

DEFINITION

An absolute (+) output value Out derived from a 16-bit signed
(+ or –) 2’s complement input Input.

INPUT

Input — A signed Integer.

OUTPUT

Out — An unsigned integer that is the absolute value of Input.

FUNCTION

Out = |Input|.

PARAMETERS DATA TYPE LINKABLE DEFAULT VALUE RANGE

Input Signed Integer Yes 0 ± 32767

Out Signed Integer Yes — 0 to +32767

EXAMPLES EXAMPLE 1 EXAMPLE 2

Input 4 – 4

Out 4 4

Function Block Library 4–5

1336 FORCE — 5.9 August 1995

BIN2DEC
BLOCK TYPE 3 decimal 3 hexadecimal

Binary to Dec

ID = Exec =

Output

NODE 0 In Bit 0

NODE 1 In Bit 1

NODE 2 In Bit 2

NODE 3 In Bit 3

NODE 4 In Bit 4

NODE 5 In Bit 5

NODE 6 In Bit 6

NODE 7 In Bit 7

NODE 8 In Bit 8

NODE 9 In Bit 9

NODE 10 In Bit 10

NODE 11 In Bit 11

NODE 12 In Bit 12

NODE 13 In Bit 13

NODE 14 In Bit 14

NODE 15 In Bit 15 NODE 16

BIN

DEC

DEFINITION

Combines 16 logical input words In Bit 0 – In Bit 15 into 1 decimal
output word Output.

INPUTS

In Bit 0 – In Bit 15 — Logical input words.

OUTPUT

Output — A decimal output word.

FUNCTION

If In Bit 0 = 0, Output bit 0 = 0.
If In Bit 0 ≠ 0, Output bit 0 = 1.

•
•
•

If In Bit 15 = 0, Output bit 16 = 0.
If In Bit 15 ≠ 0, Output bit 16 = 1.

PARAMETERS DATA TYPE LINKABLE DEFAULT VALUE RANGE

In Bit 0 – 15 Logic Input Yes 0 True/False

Out Output Signed Integer No — ±32767

Function Block Library 4–6

1336 FORCE — 5.9 August 1995

EXAMPLES EXAMPLE 1 Example 2 EXAMPLE 3

In Bit 0 False False False

In Bit 1 True True True

In Bit 2 False False False

In Bit 3 False False True

In Bit 4 False False False

In Bit 5 False False True

In Bit 6 False False True

In Bit 7 False False True

In Bit 8 False False True

In Bit 9 False True True

In Bit 10 False False True

In Bit 11 False False True

In Bit 12 False False True

In Bit 13 False False True

In Bit 14 False False True

In Bit 15 False False True

Output 2 514 – 22

Example 2 — Output = 514 dec = 0202 hex = 0000 0010 0000 0010 binary

0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0

815 14 12 11 10 9 7 6 5 4 3 2 1 013

In Bit 0 (NODE 0) False
In Bit 1 (NODE 1) True
In Bit 2 (NODE 2) False
In Bit 3 (NODE 3) False

 �

 �

 �

 �

 �

 �

 �

 �

 �

 �

In Bit 14 (NODE 14) False
In Bit 15 (NODE 15) False

Bit #

hex 0 2 0 2

Binary

Output decimal value (NODE 16) = 514

BIN2DEC
(continued)

Function Block Library 4–7

1336 FORCE — 5.9 August 1995

COMPHYST
BLOCK TYPE 4 decimal 4 hexadecimal

Compare w/Hyst

ID = Exec =

GT

NODE 0 In1

NODE 1

NODE 5
LT NODE 4
EQ NODE 3

Pre

NODE 2 Hyst

DEFINITION

Compares the input value In1 against a preset value Pre with an
associated hysteresis band Hyst and sets the appropriate indicator
flags.

EQ Output
FALSE

PRESET

FALSETRUE

PRE (+) HYSTPRE (–) HYST

INPUTS

In1 — Input value signed integer.

Pre — Preset value signed integer.

Hyst — Hysteresis band unsigned integer between 0 and +32767.

OUTPUTS

EQ — Equal flag set to true when the input is within the hysteresis
 band.

LT — Less than flag is set to true when In1 < Pre.

GT — Greater than flag is set to true when In1 > Pre.

FUNCTION

1. If In1 ≤ Pre + Hyst and ≥ Pre – Hyst,
then EQ = true, else EQ = false.

2. If In1 > Pre,
then GT = true and LT = false.

3. If In1 < Pre,
then LT = true and GT = false.

Function Block Library 4–8

1336 FORCE — 5.9 August 1995

PARAMETERS DATA TYPE LINKABLE DEFAULT VALUE RANGE

In1 Signed Integer Yes 0 ±32767

Pre Signed Integer No 0 ±32767

Hyst Unsigned Integer No 0 0 to +32767

EQ Logic Output No — True/False

LT Logic Output No — True/False

GT Logic Output No — True/False

EXAMPLES EXAMPLE 1 EXAMPLE 2

In1 8 15

Pre 10 10

Hyst 3 3

EQ True False

LT True False

GT False True

COMPHYST
(continued)

Function Block Library 4–9

1336 FORCE — 5.9 August 1995

DEC2BIN
BLOCK TYPE 5 decimal 5 hexadecimal

Dec to Binary

ID = Exec =

NODE 0 Input

Out Bit 15 NODE 16
Out Bit 14 NODE 15
Out Bit 13 NODE 14
Out Bit 12 NODE 13
Out Bit 11 NODE 12
Out Bit 10 NODE 11
Out Bit 9 NODE 10
Out Bit 8 NODE 9
Out Bit 7 NODE 8
Out Bit 6 NODE 7
Out Bit 5 NODE 6
Out Bit 4 NODE 5
Out Bit 3 NODE 4
Out Bit 2 NODE 3
Out Bit 1 NODE 2
Out Bit 0 NODE 1

BIN

DEC

DEFINITION

Takes 1 unsigned decimal input word Input and produces 16 logical
output words Out Bit 0 to Out Bit 15.

INPUT

Input — A decimal input word.

OUTPUT

Out Bit 0 – Out Bit 15 — Logical output words.

FUNCTION

If Input bit 0 = 0, Out Bit 0 = 0.
If Input bit 0 = 1, Out Bit 0 = 65535.

•
•
•

If Input bit 15 = 0, Out Bit 15 = 0.
If Input bit 15 = 1, Out Bit 15 = 65535.

PARAMETERS DATA TYPE LINKABLE DEFAULT VALUE RANGE

Input Unsigned Integer Yes 0 0 – 65535

Out Bit 0 – 15 Logic Output No — True/False

Function Block Library 4–10

1336 FORCE — 5.9 August 1995

EXAMPLES Example 1 EXAMPLE 2

Input 14 65584

Out Bit 0 False False

Out Bit 1 True False

Out Bit 2 True False

Out Bit 3 True False

Out Bit 4 False True

Out Bit 5 False True

Out Bit 6 False False

Out Bit 7 False False

Out Bit 8 False False

Out Bit 9 False False

Out Bit 10 False False

Out Bit 11 False False

Out Bit 12 False False

Out Bit 13 False False

Out Bit 14 False False

Out Bit 15 False True

Example 1 — Input = 14 dec = 000E hex = 0000 0000 0000 1110 binary

Out Bit 0 (NODE 1) False
Out Bit 1 (NODE 2) True
Out Bit 2 (NODE 3) True
Out Bit 3 (NODE 4) True

 �

 �

 �

 �

 �

 �

 �

 �

 �

 �

Out Bit 14 (NODE 15) False
Out Bit 15 (NODE 16) False

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0

815 14 12 11 10 9 7 6 5 4 3 2 1 013Bit #

hex 0 0 0 E

Binary

Input decimal value (NODE 0) = 14

DEC2BIN
(continued)

Function Block Library 4–11

1336 FORCE — 5.9 August 1995

DELAY
BLOCK TYPE 6 decimal 6 hexadecimal

Delay

ID = Exec =

Out Not

NODE 0 Input

NODE 1

NODE 5
Out NODE 4

Enable

NODE 2 On (ms)

NODE 3 Off ms.

IN

OUT

DEFINITION

The output echoes the logical input after a specified time delay.
Separate time delays of On (ms) and Off ms. are provided for rising
and falling edges. The resolution of the on and off delay times are
calculated and limited by the 20mS task interval.

INPUTS

Input — A logic input.

Enable — When true, enables the delay function. When false,
 holds the output at it’s last state.

On (ms) — On time delay, entered in 20mS increments.

Off ms. — Off time delay, entered in 20mS increments.

OUTPUTS

Out — A logical output that follows Input if Enable is true.

Out Not — A logical output that is the complement of Out.

FUNCTION

1. If Enable � 0:
— For the rising edge of Input, the on delay is in progress and

the On (ms) counter = mS ÷ 20.
— For the falling edge of Input, the off delay is in progress and

the Off ms. counter = mS ÷ 20.

2. For the On (ms) delay:
Decrement the On (ms) counter
If On (ms) counter = 0, then Out is true and Out Not is false.

3. For the Off ms. delay:
Decrement the Off ms. counter
If Off ms. counter = 0, then Out is false and Out Not is true.

Function Block Library 4–12

1336 FORCE — 5.9 August 1995

PARAMETERS DATA TYPE LINKABLE DEFAULT VALUE RANGE

Input Logic Input Yes 0 True/False

Enable Logic Input Yes 0 True/False

On (ms) Unsigned Integer No 0 0 to 65535

Off ms. Unsigned Integer No 0 0 to 65535

Out Logic Output No — True/False

Out Not Logic Output No — True/False

INPUT

t1

Example

ENABLE = TRUE
ON MS = 40mS = t1
OFF MS = 20mS = t2

mS

OUT

OUT NOT

0 20 40 60 80 100 120 140

t2

Important: The on and off timers operate independently.

Once the on delay timer (t1) is initiated, subsequent rising edges are
ignored.

Once the off delay timer (t2) is initiated, subsequent falling edges are
ignored.

1. The on duration time of input pulses should be checked when the ON MS
> OFF MS.

2. The off duration time of input pulses should be checked when the OFF
MS > ON MS.

DELAY
(continued)

Function Block Library 4–13

1336 FORCE — 5.9 August 1995

DERIV
BLOCK TYPE 7 decimal 7 hexadecimal

Derivative

ID = Exec =

Out

NODE 0 In

NODE 1

 t
IN

DEFINITION

The rate of change of input In over a single sample interval. Τhe
sample interval ∆t = .020 seconds. Output Out is clamped at ±32767
and not allowed to over or under flow.

INPUT

In — A signed Integer.

OUTPUT

Out — A signed integer representing the derivative or change in
 input in units per second.

FUNCTION

Out = 50 × [In — In (previous)].

PARAMETERS DATA TYPE LINKABLE DEFAULT VALUE RANGE

In Signed Integer Yes 0 ± 32767

Out Signed Integer Yes — ± 32767

Example 1

0 20

t1

at t1 Out = 5000

at t2 Out = 5000

at t3 Out = 2500

at t4 Out = 2500

t2 t3 t4
t in mS

IN

300

200

100

40 60 80

500

400

100 120

Function Block Library 4–14

1336 FORCE — 5.9 August 1995

Example 2 — Rate = 16383 Units-per-Second (UPS)

– 16383 �

DERIV Out �

– 32767 �

+ 16383 �

Ramp Input Rate = + 16383 UPS �

0 �

In the example above, the rate limit input to the derivative function is set to allow a
16383 UPS change of output. A constant rate-of-change to the input, yields a constant output
level of ±16383, with the output sign changing with the input slope.

DERIV
(continued)

Function Block Library 4–15

1336 FORCE — 5.9 August 1995

DIVIDE
BLOCK TYPE 23 decimal 17 hexadecimal

Divide

ID = Exec =

Output

NODE 0 LSW In

NODE 1 MSW In

NODE 2 Div

NODE 3

DEFINITION

Divides a 32 bit signed integer by a 16 bit signed integer. Any
remainder is truncated. If Div = 0, the calculation is not performed
and Output = 0. The Output is clamped to ±32767 should the result
exceed the limits.

INPUTS

LSW In — A least significant dividend word value representing
 bits 0–15 of a 32 bit dividend value.

MSW In — A most significant dividend signed integer value
 representing bits 16–31 of a 32 bit dividend value.

Div — The signed integer divisor.

OUTPUT

Output — The result of dividing the dividend by the divisor.

FUNCTION

Output = LSW In, MSW In ÷ Div.

PARAMETERS DATA TYPE LINKABLE DEFAULT VALUE RANGE

LSW In Unsigned Integer Yes 0 0 to 65535

MSW In Signed Integer Yes 0 ±32767

Div Signed Integer Yes 0 ±32767

Output Signed Integer No — ±32767

Function Block Library 4–16

1336 FORCE — 5.9 August 1995

DOUBLE WORD VALUES

Both the Most Significant Word and the Least Significant Word are
interpreted together by the function algorithm as one word when
using 32 bit values. The range of a double word value is
±2,147,483,647. The range of the more common, signed single-word
16 bit node is ±32767.

31 16 15 0

Most Significant Word Least Significant Word

Node 1 Node 0

Bit 31 is the sign bit, the most significant bit for 32 bit values. For 16
bit values, bit 15 (the sign bit) is the most significant bit.

EXAMPLES EXAMPLE 1 EXAMPLE 2 Example 3 Example 4

LSW In 15 20 65535 65511

MSW In 0 0 2 – 1
INPUT VALUE 15 20 196607 – 25

Div 4 0 42 5

Output 3 0 4681 – 5

Example 3 — Double Word Input Value = +196607 dec = 0002 FFFF hex

2 dec 65535 dec

0002 hex FFFF hex

Most Significant Word
Node 1

Least Significant Word
Node 0

Example 4 — Double Word Input Value = –25 dec = FFFF FFE7 hex

– 1 dec 65511 dec

FFFF hex FFE7 hex

Most Significant Word
Node 1

Least Significant Word
Node 0

DIVIDE
(continued)

Function Block Library 4–17

1336 FORCE — 5.9 August 1995

Important: If the DIVIDE function block’s LSW input node (node 0) is used without
manipulating the MSW node (node 1), difficulties can occur should a signed
word be linked to the inputs. False results may be output if the signed input
value goes negative.

– 32767 (Lower Waveform) �

� t1

� Signed Single-Word
Input to LSW Node 0

� t2 � t3

� DIVIDE Output

0 (Lower Waveform) �

�

+ 32767 (Upper Waveform) �

0 (Upper Waveform)
+ 32767 (Lower Waveform)

� t1 � t2 � t3

The Lower Waveform is a signed single word input traversing a range of
±32767 units. This is linked to the LSW input node of the DIVIDE block.
The MSW node is unlinked and is set at a value of 0. The divisor (node 2),
has a value of 1. Points t1, t2 and t3 denote where the signed input signal
crosses zero. Note that between time t1 and t2 the output follows the
positive input value exactly. As the input moves negative (at time t2), the
output goes to the positive limit of + 32767.

The signed single word value which represents –1 dec is FFFF hex. The
signed double word value representing –1 dec is FFFF FFFF hex. Without
the upper MSW word (node 1) being manipulated, the DIVIDE block
interprets the double word input as being 0000 FFFF hex which equals
65535 dec.

With the MSW (node 1) always 0, the lower LSW (node 0) is always
interpreted as an unsigned decimal word with a range of 0 to 65535. As the
signed single word RATE LIM Output (which is linked to the DIVIDE LSW
input) goes negative, it’s sign (bit 15) is always set. While bit 15 is set, the
DIVIDE LSW input value is always interpreted as being greater than
+32768 because the LSW is always positive when the DIVIDE MSW input
is 0.

DIVIDE
(continued)

Function Block Library 4–18

1336 FORCE — 5.9 August 1995

EXOR2
BLOCK TYPE 25 decimal 19 hexadecimal

Exclusive OR

ID = Exec =

Out #2

NODE 0 In #1

NODE 1 In #2

NODE 3
Out #1 NODE 2

DEFINITION

An exclusive OR function that takes (2) inputs In #1 and In #2,. and
provides the XOR and XNOR — Out #1 and Out #2.

INPUTS

In #1 — A logical input value.

In #2 — A logical input value.

OUTPUTS

Out #1 — A logical output value.

Out #2 — A logical output value.

PARAMETERS DATA TYPE LINKABLE DEFAULT VALUE RANGE

In #1 Logic Input Yes False True/False

In #2 Logic Input Yes False True/False
Out #1 Logic Output No — True/False

Out #2 Logic Output No — True/False

Example

In #1 In #2 Out #1 Out #2

False False False True

False True True False

True False True False

True True False True

Function Block Library 4–19

1336 FORCE — 5.9 August 1995

FILTER
BLOCK TYPE 8 decimal 8 hexadecimal

Filter

ID = Exec =

Out

NODE 0 In

NODE 1 Rad /S

NODE 2

DEFINITION

A first order low pass algorithmic filter with a programmable
bandwidth in increments of .1 radians/second.

INPUTS

In — The signed integer to be filtered.

Rad/S — The bandwidth in .1 radians/second, with a maximum
 value of 400 (40 radians).

OUTPUT

Out — A signed, filtered, output integer that is clamped to ±32767.

FUNCTION

If Rad/S = 0, then Out = In .

If Rad/S ≠ 0, then Out = OutI–1 + k(In – OutI–1).

PARAMETERS DATA TYPE LINKABLE DEFAULT VALUE RANGE

In Signed Integer Yes 0 ±32767

Rad/S Unsigned Integer No 0 0 to 400
Out Signed Integer No — ±32767

Example 1 — (10) Radians-per-Second — Horizontal Scale = 100mS/Division

� 1 Time �
Constant
≈ 63%

≈ 100 mS

+ 32767 �

– 32767 �

FILTER In �

�––– 3 Time Constants –––�
≈ 96% ≈ 300 mS

� FILTER Out

Function Block Library 4–20

1336 FORCE — 5.9 August 1995

Example 2 — (2) Radians-per-Second — Horizontal Scale = 500mS/Division

+ 32767 �

– 32767 �

� FILTER OutFILTER In �

� 1 Time �
Constant
≈ 63%

≈ 500 mS

�––– 3 Time Constants –––�
≈ 96% ≈ 1.5 S

Example 3 — (1) Radian-per-Second — Horizontal Scale = 500mS/Division

+ 32767 �

– 32767 �

� FILTER In

FILTER Out �

�–– 1 Time –––�
Constant

≈ 63% ≈ 1 S

�–––––––––– 3 Time Constants ≈ 96% ≈ 3 S ––––––––––�

FILTER
(continued)

Function Block Library 4–21

1336 FORCE — 5.9 August 1995

4AND
BLOCK TYPE 2 decimal 2 hexadecimal

Four Input And

ID = Exec =

Out 2

NODE 0 Input #1

NODE 1

NODE 5
Out 1 NODE 4

Input #2

NODE 2 Input #3

NODE 3 Input #4

DEFINITION

Performs a logic AND and NAND of Input #1, Input #2, Input #3,
and Input #4.

INPUTS

Input #1 — A logic input value.

Input #2 — A logic input value.

Input #3 — A logic input value.

Input #4 — A logic input value.

OUTPUTS

Out 1 — A logic output value.

Out 2 — A logic output value.

FUNCTION

Out 1 = Input #1 & Input #2 & Input #3 & Input #4.

Out 2 = (Not)Out 1.

PARAMETERS DATA TYPE LINKABLE DEFAULT VALUE RANGE

Input #1 Logic Input Yes True True/False

Input #2 Logic Input Yes True True/False

Input #3 Logic Input Yes True True/False

Input #4 Logic Input Yes True True/False
Out 1 Logic Output No — True/False

Out 2 Logic Output No — True/False

EXAMPLES EXAMPLE 1 EXAMPLE 2

Input #1 True True

Input #2 False True

Input #3 False True

Input #4 False True

Out 1 False True

Out 2 True False

Function Block Library 4–22

1336 FORCE — 5.9 August 1995

4OR
BLOCK TYPE 16 decimal 10 hexadecimal

Four Input OR

ID = Exec =

Out #2

NODE 0 Input #1

NODE 1

NODE 5
Out #1 NODE 4

Input #2

NODE 2 Input #3

NODE 3 Input #4

DEFINITION

Performs a logic OR and NOR on four input words.

INPUTS

Input #1 — A logic input value.

Input #2 — A logic input value.

Input #3 — A logic input value.

Input #4 — A logic input value.

OUTPUTS

Out #1 — A logic output value.

Out #2 — A logic output value.

FUNCTION

Out #1 = Input #1 or Input #2 or Input #3 or Input #4.

Out #2 = (Not)Out #1.

PARAMETERS DATA TYPE LINKABLE DEFAULT VALUE RANGE

Input #1 Logic Input Yes False True/False

Input #2 Logic Input Yes False True/False

Input #3 Logic Input Yes False True/False

Input #4 Logic Input Yes False True/False
Out #1 Logic Output No — True/False

Out #2 Logic Output No — True/False

EXAMPLES EXAMPLE 1 EXAMPLE 2 EXAMPLE 3

Input #1 False False True

Input #2 True False True

Input #3 False False True

Input #4 False False True

Out #1 True False True

Out #2 False True False

Function Block Library 4–23

1336 FORCE — 5.9 August 1995

FUNCTION
BLOCK TYPE 9 decimal 9 hexadecimal

Function

ID = Exec =

NODE 0 Input

@Min Lim NODE 8
@Max Lim NODE 9

Output NODE 10

NODE 1 Smp Val1

NODE 5 Smp Val5

NODE 6 Min Val

NODE 7 Max Val

NODE 4 Smp Val4
NODE 3 Smp Val3
NODE 2 Smp Val2

DEFINITION

A function generator that uses:

❒ Sample values Smp Val1—Smp Val5 to define the y-axis
components.

❒ (2) signed integers Min Val & Max Val to describe the x-axis
components spaced in (Max Val—Min Val)/4 increments.

❒ Interpolation between the y-components to calculate the output
Output.

INPUTS

Input — A signed integer specifying an x-axis coordinate.

Smp Val1—Smp Val5 — Signed integers representing the y-axis
 components.

Min Val — A signed integer associated with Smp Val1 that defines
 the smallest x-axis component.

Max Val — A signed integer associated with Smp Val5 that defines
 the largest x-axis component.

OUTPUTS

@Min Lim — A logic value = true when Input < Min Val .

@Max Lim — A logic value = true when Input > Max Val.

Output — A signed integer representing the y-axis value, that
 corresponds to the x-axis value specified by Input.

FUNCTION

1. If Input > Max Val, @Max Lim = true, @Min Lim = false, and
Output = Smp Val5.

2. If Input< Min Val , @Max Lim = false, @Min Lim = true, and
Output = Smp Val1.

Function Block Library 4–24

1336 FORCE — 5.9 August 1995

3. If Min Val < Input and < Max Val:

Calculate xi, xi+1 from Input, where xi ≤ Input ≤ xi+1.

Calculate yi, yi+1 from xi, xi+1.

Output = { [(yi+1 – yi) × (Input – xi)] / (xi+1 – xi)} + yi
@Max Lim = @Min Lim = false.

PARAMETERS DATA TYPE LINKABLE DEFAULT VALUE RANGE

Input Signed Integer Yes 0 ±32767

Smp Val1 – 5 Signed Integer No 0 ±32767

Min Val Signed Integer No 0 ±32767

Max Val Signed Integer No 4 ±32767
@Min Lim Logic Output No — True/False

@Max Lim Logic Output No — True/False

Output Signed Integer No — ±32767

EXAMPLES EXAMPLE 1 EXAMPLE 2 EXAMPLE 3 EXAMPLE 4

Input 2 14 ±32767 ±32767

Smp Val1 2 2 16383 16383

Smp Val2 8 8 32767 32767

Smp Val3 4 4 0 0

Smp Val4 12 12 8192 8192

Smp Val5 10 10 – 16383 – 16383

Min Val 0 0 – 16383 – 32767

Max Val 16 16 +16383 +32767

@Min Lim 0 0 – 16383 – 32767

@Max Lim 16 16 +16383 +32767

Output 5 11 See plot See plot

Examples 1 & 2

2

6

4

2

6 8

10

8

12

Y-Axis

Ex 1 Input

Ex 2 Input

Smp Val5

Smp
Val4

Smp
Val2

Smp
Val3

Smp
Val1

10 12 144

Y-Axis coordinate Smp Val1 is located at X-Axis coordinate Min Val.

Y-Axis coordinate Smp Val5 is located at X-Axis coordinate Max Val.

Smp Val2, Smp Val3, & Smp Val4, are located at equal X-Axis coordinates between Smp Val1 & Smp Val5.

FUNCTION interpolates to determine the Y-Axis coordinate of the Input.

16

X-Axis

FUNCTION
(continued)

Function Block Library 4–25

1336 FORCE — 5.9 August 1995

Example 3

FUNCTION Output
�

+ 32767 �

– 16383 �

Smp Val2
�

�

Smp Val1

�

Smp Val3

�

Smp Val5

– 32767 �

+ 16383 �

FUNCTION Input
�

Smp Val4
�

Example 4

FUNCTION Output
�

FUNCTION Input
�

+ 32767 �

– 32767 �

Smp Val2
�

�

Smp Val1

�

Smp Val5

� Smp Val4

�

Smp Val3

FUNCTION
(continued)

Function Block Library 4–26

1336 FORCE — 5.9 August 1995

INTEGRATOR
BLOCK TYPE 10 decimal 0A hexadecimal

Integrator

ID = Exec =

NODE 0 Input

Lo Lim NODE 6
Hi Lim NODE 7
Output NODE 8

NODE 1 Set

NODE 5 Max
NODE 4 Min
NODE 3 Gain
NODE 2 Preset

t

DEFINITION

Integrates an input value Input over a period of time using
trapezoidal integration. The Output is limited to Min and Max
values that are defined by the user. The integrator can be set to the
Preset value when the Set input is true.

INPUTS

Input — A signed integer signal that will be integrated.

Set — A logic input that forces the Output and integrated internal
 variable to the Preset value when not equal to 0.

Preset — A signed integer that is loaded into the integrator when
 Set is true.

Gain — A scaled, signed integer that is multiplied by the sum of
 the current and last inputs — Scaling 256 = effective gain
 of 1.

Min — A signed integer that is the lower limit on the integrated
 Output.

Max — A signed integer that is the upper limit on the integrated
 Output.

OUTPUTS

Lo Lim — A logic value = true when the integrated value < Min .

Hi Lim — A logic value = true when the integrated value > Max.

Output — A signed value that is the integral of Input with respect
 to time.

Important: The Output is clamped between the Hi and Lo Lim
values and cannot over or under flow. When the Output
reaches either of these limits, the internal accumulator
clamps and will not integrate beyond that limit.

Function Block Library 4–27

1336 FORCE — 5.9 August 1995

FUNCTION

Denominator = 1/2 × ∆t × 1/(divisor gain) = 25600
where: ∆t = a task interval of .020 seconds = 1/50 samples/second.
 divisor gain = 256.

1. If Set = true, accumulator = Preset × denominator.

2. If Set = false,
accumulator = [Gain × (Input i–1 + Input)] +
 previous accumulated value.

3. If accumulator ÷ denominator > Max,
Output = Max, Hi Lim = true, Lo Lim = false.

4. If accumulator ÷ denominator < Min ,
Output = Min , Hi Lim = false, Lo Lim = true.

5. If accumulator ÷ denominator < Max and > Min ,
Output = accumulator ÷ denominator, Hi Lim = false,
Lo Lim = false.

PARAMETERS DATA TYPE LINKABLE DEFAULT VALUE RANGE

Input Signed Integer Yes 0 ±32767

Set Logic Input Yes False True/False

Preset Signed Integer Yes 0 ±32767

Gain Signed Integer No 256 ±16383

Min Signed Integer No 0 0 to –32767

Max Signed Integer No 0 0 to +32767
Lo Lim Logic Output No — True/False

Hi Lim Logic Output No — True/False

Output Signed Integer No — ±32767

Example 1 — Gain = 256 = 1× — Horizontal Scale = 500mS/Division

�

INTEGRATOR Output

+ 32767 �

– 32767 �

INTEGRATOR Input
�

In Example 1, the INTEGRATOR Output accumulates at a rate of 32767 units-per-second,
an amount equal to it’s constant INTEGRATOR Input level. It takes (2) seconds to traverse
the entire range.

INTEGRATOR
(continued)

Function Block Library 4–28

1336 FORCE — 5.9 August 1995

Example 2 — Gain = 512 = 2× — Horizontal Scale = 500mS/Division

�

INTEGRATOR Output

+ 32767 �

– 16383 �

– 32767 �

+ 16383 �

INTEGRATOR Input
�

In Example 2, the Output also changes at a rate of 32767 units-per-second. The Input level
here is only 16383, but input Gain has doubled.

Example 3 — Min & Max = ±16383 — Horizontal Scale = 500mS/Division

�

INTEGRATOR Output

+ 32767 �

– 16383 �

– 32767 �

+ 16383 �

INTEGRATOR Input
�

In Example 3, the Max and Min input limits have been set at ±16383 and the Output is
clamped accordingly. The internal accumulator is also held at these limits and not allowed to
accumulate beyond these limits. This allows the Output to come out of it’s limits as soon as
the input moves in the negative direction.

INTEGRATOR
(continued)

Function Block Library 4–29

1336 FORCE — 5.9 August 1995

Example 4 — Preset Verification — Preset = 0 — Horizontal Scale = 500mS/Division

�

INTEGRATOR Output

+ 32767 �

– 16383 �

– 32767 �

+ 16383 �

INTEGRATOR Set Input
�

Example 4 demonstrates the Preset functionality. When the Set input is raised the Output is
preset to a value of zero. When the Set node is cleared, the integral begins accumulating
from the Preset value, 0.

INTEGRATOR
(continued)

Function Block Library 4–30

1336 FORCE — 5.9 August 1995

LIMIT
BLOCK TYPE 12 decimal 0C hexadecimal

Limit

ID = Exec =

Output

NODE 0 Input 1

NODE 1

NODE 5
Min Lim NODE 4
Max Lim NODE 3

Max Val

NODE 2 Min Val

DEFINITION

Limits an input Input 1 to the programmed maximum Max Val and
minimum Min Val values.

INPUTS

Input 1 — A signed integer that is limited.

Max Val — A signed integer that represents a maximum input value.

Min Val — A signed integer that represents a minimum input value.

OUTPUTS

Max Lim — High limit flag that is true when Input 1 > Max Val.

Min Lim — Low limit flag that is true when Input 1 < Min Val .

Output — A signed integer that results from limiting Input 1.

FUNCTION

1. If Input 1 < Min Val , then Output = Min Val and Min Lim is
true.

2. If Input 1 > Max Val, then Output = Max Val and Max Lim is
true.

3. If Input 1 < Max Val and > Min Val , then both are false and
Output = Input 1.

PARAMETERS DATA TYPE LINKABLE DEFAULT VALUE RANGE

Input 1 Signed Integer Yes 0 ±32767

Max Val Signed Integer Yes 0 ±32767

Min Val Signed Integer Yes 0 ±32767
Max Lim Logic Output No — True/False

Min Lim Logic Output No — True/False

Output Signed Integer No — ±32767

EXAMPLES EXAMPLE 1 EXAMPLE 2 EXAMPLE 3

Input 1 5 11 5

Max Val 10 10 – 10

Min Val – 25 – 25 10

Max Lim False True True

Min Lim False False False

Output 5 10 – 10

Function Block Library 4–31

1336 FORCE — 5.9 August 1995

LNOT
BLOCK TYPE 15 decimal 0F hexadecimal

Logical NOT

ID = Exec =

Output

NODE 0 Input

NODE 1

DEFINITION

Performs a logic inversion of the Input.

INPUT

Input — A logic input value.

OUTPUT

Output — A logic output value.

FUNCTION

Output = (Not)Input.

PARAMETERS DATA TYPE LINKABLE DEFAULT VALUE RANGE

Input Logic Input Yes False True/False
Output Logic Output No — True/False

EXAMPLES EXAMPLE 1 EXAMPLE 2

Input False True

Output True False

Function Block Library 4–32

1336 FORCE — 5.9 August 1995

MINMAX
BLOCK TYPE 13 decimal 0D hexadecimal

Min/Max

ID = Exec =

Output

NODE 0 In #1

NODE 1 In #2

NODE 2 Select

NODE 3

DEFINITION

Chooses the minimum or maximum of two input values In #1, In #2
according to the Select Input.

INPUTS

In #1 — A signed integer that is compared to In #2.

In #2 — A signed integer that is compared to In #1.

Select — When = 0 will select the minimum function.
 When ≠ 0 will select the maximum function.

OUTPUT

Output — A signed integer that is the minimum or maximum of
 In #1 and In #2.

FUNCTION

1. If Select is false and In #1 < In #2, then Output = In #1.

2. If Select is false and In #1 > In #2, then Output = In #2.

3. If Select is true and In #1 < In #2, then Output = In #2.

4. If Select is true and In #1 > In #2, then Output = In #1.

PARAMETERS DATA TYPE LINKABLE DEFAULT VALUE RANGE

In #1 Signed Integer Yes 0 ±32767

In #2 Signed Integer Yes 0 ±32767

Select Logic Input Yes 0 True/False
Output Signed Integer No — ±32767

EXAMPLES EXAMPLE 1 EXAMPLE 2

In #1 5 5

In #2 – 8 – 8

Select 0 1
Output – 8 5

Function Block Library 4–33

1336 FORCE — 5.9 August 1995

MONOSTABLE
BLOCK TYPE 14 decimal 0E hexadecimal

Monostable

ID = Exec =

Out 2

NODE 0 Input

NODE 1 Enable

NODE 2 Time

NODE 4
Out #1 NODE 3

t

DEFINITION

Elongates a rising edge input signal Input for a duration Time. The
output signal Out #1 is true for the duration set by Time. The Time
resolution is limited by the task interval and calculated by counting
20mS task intervals.

INPUTS

Input — A signal that triggers the monostable function.

Enable — A logic input that when ≠ 0 enables the monostable
 function, and when = 0 forces Out #1 = 0.

Time — Represents the time in mS that the input signal Input is
 held high. Time value must be entered in 20mS
 increments.

OUTPUTS

Out #1 — A logic output value.

Out 2 — The inverse of Out #1.

FUNCTION

If delay = 0 then,
 If rising edge input
 Set delay = Time ÷ 20
 Out #1 = true.

Else delay ≠ 0, decrement delay.

If delay = 0, Out #1 = 0, and Out 2 is the compliment of Out #1.

INPUT FALSE

FALSE

TRUE

TRUE

Example ENABLE = TRUE
TIME = 100

mS

OUT 1

OUT 2

0 100

Function Block Library 4–34

1336 FORCE — 5.9 August 1995

MULTIPLEXER
BLOCK TYPE 21 decimal 15 hexadecimal

Multiplexer

ID = Exec =

NODE 0 In 1

Output NODE 6

NODE 1 In 2

NODE 5 Sel 1
NODE 4 Sel 0
NODE 3 In 4
NODE 2 In 3

DEFINITION

Selects one of (4) input values In 1 – In 4 based on selector Sel 0
and Sel 1.

INPUTS

In 1 – In 4 — A signed input integer.

Sel 0 and Sel 1 — Selector inputs that form a two-bit binary value
used to select one of (4) inputs In 1 – In 4.

OUTPUT

Output — A signed integer.

FUNCTION

When Sel 1 is and Sel 0 is Output =

0 0 In 1

0 ≠ 0 In 2

≠ 0 0 In 3

≠ 0 ≠ 0 In 4

PARAMETERS DATA TYPE LINKABLE DEFAULT VALUE RANGE

In 1 Signed Integer Yes 0 ±32767

In 2 Signed Integer Yes 0 ±32767

In 3 Signed Integer Yes 0 ±32767

In 4 Signed Integer Yes 0 ±32767

Sel 0 Logic Input Yes 0 True/False

Sel 1 Logic Input Yes 0 True/False
Output Signed Integer No — ±32767

EXAMPLES EXAMPLE 1 EXAMPLE 2 EXAMPLE 3 EXAMPLE 4

In 1 10 10 10 10

In 2 25 25 25 25

In 3 42 42 42 42

In 4 – 60 – 60 – 60 – 60

Sel 0 False True False True

Sel 1 False False True True
Output 10 25 42 – 60

Function Block Library 4–35

1336 FORCE — 5.9 August 1995

MULTIPLY
BLOCK TYPE 28 decimal 1C hexadecimal

Multiply

ID = Exec =

Out MSW

NODE 0 In 1

NODE 1 In 2

NODE 3
Out LSW NODE 2

DEFINITION

Multiplies two 16 bit inputs. This block calculates a 32 bit result that
is stored in two words Out LSW and Out MSW.

INPUTS

In 1 — A signed input integer.

In 2 — A signed input integer.

OUTPUTS

Out LSW — A least significant result word value representing bits
 0–15 of a 32 bit output value.

Out MSW — A most significant result word value representing bits
 16–31 of a 32 bit output value.

FUNCTION

Out LSW, Out MSW = In 1 × In 2.

PARAMETERS DATA TYPE LINKABLE DEFAULT VALUE RANGE

In 1 Signed Integer Yes 0 ±32767

In 2 Signed Integer Yes 0 ±32767

Out LSW Unsigned Integer No — 0 to 65535

Out MSW Signed Integer No — ±32767

DOUBLE WORD VALUES

Both the Most Significant Word and the Least Significant Word are
interpreted together by the function algorithm as one word when
using 32 bit values. The range of a double word value is
± 2,147,483,647. The range of the more common, signed single-word
16 bit node is ±32767.

31 16 15 0

Most Significant Word Least Significant Word

Node 3 Node 2

Function Block Library 4–36

1336 FORCE — 5.9 August 1995

Bit 31 is the sign bit, the most significant bit for 32 bit values. For 16
bit values, bit 15 (the sign bit) is the most significant bit.

EXAMPLES Example 1 EXAMPLE 2

In 1 32767 3

In 2 32767 32767

Out LSW 1 32765

Out MSW 16383 1

OUTPUT VALUE 1073676289 98301

Example 1 — Double Word Output Value = 1073676289 = 32767 × 32767

16383 dec 1 dec

3FFF hex 0001 hex

Most Significant Word
Node 3

Least Significant Word
Node 2

Important: The output range of the multiplied values can be critical. Should only one
output word (LSW node) of the MULTIPLY block be used, it will appear to
roll over or under if the product exceeds ±32767.

+ 16383 (Upper Waveform) �

t1 �

MULTIPLY
Out LSW �

MULTIPLY input �
+ 32767 (Upper Waveform) �

0 (Upper Waveform) �

0 (Lower Waveform) �

�
– 32767 (Upper Waveform)
+ 32767 (Lower Waveform)

– 32767 (Lower Waveform) �

In the Upper Waveform above, the MULTIPLY In1 input (node 0), is
multiplied by an In 2 (node 1) value of 2. As the In1 value increases beyond
16383 (time t1), the product increases beyond +32767. Although the Out
LSW output (node 2) has a range of 0 to 65535 (0 to FFFF hex), the analog
input has a single word signed range of ±32767. When the input reaches
16385, the multiplied output of 32770 (8002 hex) is interpreted by the signed
analog output parameter as having a value of –32766 which makes it
appear to roll over.

MULTIPLY
(continued)

Function Block Library 4–37

1336 FORCE — 5.9 August 1995

NO-OP
BLOCK TYPE 0 decimal 0 hexadecimal

No Operation

ID = Exec =

DEFINITION

A PLC place holder.

Function Block Library 4–38

1336 FORCE — 5.9 August 1995

PI CTRL
BLOCK TYPE 17 decimal 11 hexadecimal

IN

PI Controller

ID = Exec =

NODE 0 In +

Lo Lim NODE 9
Hi Lim NODE 10
Output NODE 11
In Dif NODE 12

NODE 1 In -

NODE 5 KI

NODE 6 KP

NODE 7 Min

NODE 8 Max

NODE 4 Gain
NODE 3 Preset
NODE 2 Set

OUT
KP

KI

DEFINITION

A proportional/integral control function block that uses trapezoidal
integration.

INPUTS

IN1+ — A signed input integer to the PI block.

IN1– — A signed input integer to the PI block.

Set — A logic signal that when ≠ 0 sets the integral term’s
 accumulator to the Preset value.

Preset — A signed integer that is preloaded into the integrator’s
 accumulator when Set = true.

Gain — A scaled, signed integer that adjusts the In+ & In–
 summing node. Scaling: 2048 = effective gain of 1.

KI — A word value that represents integral gain.
 Scaling: 4096 = effective gain of 1, max effective gain of 8.

KP — A scaled word value that represents proportional gain.
 Scaling: 4096 = effective gain of 1, max effective gain of 8.

Min — A signed integer that limits the lower value of the output
 and the integral accumulator.

Max — A signed integer that limits the upper value of the output
 and the integral accumulator.

OUTPUTS

Lo Lim — Low limit flag that is true when the calculated
 Output < Min .

Hi Lim — Hi limit flag that is true when the calculated
 Output > Max.

Output — A signed integer representing the output of the PI
 controller.

In Dif — A signed integer that represents the difference between
 In+ & In–. This value is limited to ±32767 and will not
 represent the internal difference if it is not within these
 limits.

Function Block Library 4–39

1336 FORCE — 5.9 August 1995

FUNCTION

1. If set = true
KIouti–1 = Preset
KIval = KIvali–1 = 0.

2. If set = false
sum (limited to ±32767) = Gain × (In+ – In–)/2048
KPout = sum × KP/4096
KIval = sum × KI /4096.

In Dif out = In+ – In–
In Difout is clamped to ±32767.
KIout = KIouti–1 + [(KIval + KIvali–1) × (∆t/2 = 1/100)]

1. If KIout + KPout > Max then,
Output = Max, Hi Lim = true, Lo Lim = false.

2. If KIout + KPout < Min then,
Output = Min , Hi Lim = false, Lo Lim = true.

3. If KIout + KPout is neither 1. nor 2. then,
Output = KIout + KPout.

PARAMETERS DATA TYPE LINKABLE DEFAULT VALUE RANGE

In+ Signed Integer Yes 0 ±32767

In– Signed Integer Yes 0 ±32767

Set Logic Input Yes False True/False

Preset Signed Integer No 0 ±32767

Gain Signed Integer No 2048 ±32767

KI Unsigned Integer No 4096 0 to +32767

KP Unsigned Integer No 4096 0 to +32767

Min Signed Integer No 0 0 to –32767

Max Signed Integer No 0 0 to +32767

Lo Lim Logic Output No — True/False

Hi Lim Logic Output No — True/False

Output Signed Integer No — ±32767

In Dif Signed Integer No — ±32767

PI CTRL
(continued)

Function Block Library 4–40

1336 FORCE — 5.9 August 1995

Example 1 — KI & KP = 1 — Horizontal Scale = 100mS/Division

In Example 1, all gains are at unity — KI and KP are set to 4096, Gain is set to 2048. Preset
is set to –32767.

� PI CTRL Output

+ 32767 �

– 32767 �

PI CTRL Input (+)
�

0 �

�–––––––––––––––––––––––––––––––––––– 1 Second –––––––––––––––––––––––––––––––––––�

When the input difference steps from 0 to +32767, the proportional term responds by going
from –32767 to zero within one task interval. The Output then takes approximately one se-
cond to integrate up to the Max setting of +32767.

Example 2 — KI & KP = 1/4 — Horizontal Scale = 1 S/Division

In Example 2, the KI and KP gains are at 1/4 (1024), while Gain is set to unity (2048). Preset
has been set to –32767.

+ 32767 �

– 32767 �

– 24576 �

�––––––– 3 Seconds ––––�

0 �

� PI CTRL Output

�

PI CTRL Input (–)
�

PI CTRL Output

+ 32767 �

When the input difference steps from 0 to –32767, the proportional term responds by
immediately going to a value of –24576. After 3 seconds, the Output integrates to zero. With
KI at 1/4 gain, it will accumulate at a rate of approximately 8191 units-per-second with an
input difference of +32767. Note that it takes (4) seconds to integrate from 0 to +32767.

PI CTRL
(continued)

Function Block Library 4–41

1336 FORCE — 5.9 August 1995

Example 3 — KI & KP = 1 — Horizontal Scale = 500mS/Division

In Example 3, all gains are at unity — KI and KP are set to 4096, Gain is set to 2048.

� PI CTRL Output

+ 32767 �

– 32767 �

PI CTRL Input
�

0 �

�–– 1 Second –�

+ 16383 �

– 16383 �

� PI CTRL Output

The input difference in this example alternates between ± 16383. The proportional Output
response immediately jumps to 0. The Output takes one second to accumulate to +16383
and two seconds to move from –32767 to +32767.

�–––––––––– 2 Seconds ––––––––––�

Example 4 — KP = 1, KI = 2 — Horizontal Scale = 500mS/Division

Example 4 is similar to Example 3, except that the KI gain is now at 8192, or 2× the value in
Example 3. KP gain is set to unity (4096), and Gain is set to unity (2048).

+ 32767 �

– 32767 �

– 16383 �

0 �

�

PI CTRL Output

+ 16383 �

PI CTRL Input
�

The Output reaches 16383 within 500mS and +32767 within one second. In this Example,
the Output is clamped at the positive and negative limits. The internal accumulator is also
clamped at these limits, and cannot accumulate beyond these limits. This allows the PI
CTRL function to immediately get out of saturation when the function’s input difference
changes polarity.

� 500 mS �

�

PI CTRL Output

�–– 1 Second ––�

PI CTRL
(continued)

Function Block Library 4–42

1336 FORCE — 5.9 August 1995

PULSE CNTR
BLOCK TYPE 18 decimal 12 hexadecimal

Pulse Counter

ID = Exec =

Out

NODE 0 In

NODE 1 Set

NODE 2 Preset

NODE 3

DEFINITION

Counts the rising edges of input signal In .

INPUTS

In — A logic input signal.

Set — A logic level value that preloads the pulse counter
 accumulator with the Preset value when ≠ 0.

Preset — A signed integer that is preloaded into the pulse counter
 accumulator when Set ≠ 0.

OUTPUT

Out — A signed integer that is incremented on every rising edge of
input signal In . Out increments to the positive limit but is
not allowed to roll over.

FUNCTION

If Set is true, then Out = Preset value.

If Set is false, then Out = Out + 1 on rising edge of In .

PARAMETERS DATA TYPE LINKABLE DEFAULT VALUE RANGE

In Logic Input Yes 0 True/False

Set Logic Input Yes 0 True/False

Preset Signed Integer No 0 ±32767
Out Signed Integer No 0 ±32767

Function Block Library 4–43

1336 FORCE — 5.9 August 1995

Example 1 — Preset = 0 — Horizontal Scale = 500mS/Division

PULSE CNTR Input
�

The plot shown in Example 1 shows the pulse counter Output incrementing with every rising
edge of the input signal.

PULSE CNTR Output
�

PULSE CNTR
(continued)

Function Block Library 4–44

1336 FORCE — 5.9 August 1995

RATE LIMITER
BLOCK TYPE 19 decimal 13 hexadecimal

Rate Limiter

ID = Exec =

Lim Out

NODE 0 Lim In

NODE 1

NODE 5
Lim @ Lim NODE 4

Lim Set

NODE 2 Lim Data

NODE 3 Lim Rate

DEFINITION

Limits the rate of change of the input value Lim In by the value of
rate Lim Rate.

INPUTS

Lim In — A signed integer that is rate limited in the positive or
 negative direction.

Lim Set — A logic value that preloads the output with the
 Lim Data value when Lim Set ≠ 0.

Lim Data — A signed integer that the output will be set to when
 Lim Set ≠ 0.

Lim Rate — A word that specifies the Lim Out maximum rate of
 change in units/second.

OUTPUTS

Lim @ Lim — A logic flag that indicates Lim Out is limited by
 Lim Rate.

Lim Out — A signed integer, rate limited to the Lim Rate value.

FUNCTION

1. If Lim Set is true, Lim Out = Lim Data.

2. If Lim Set is false, ∆ = Lim In – Lim Out.

If ∆ is + and > Lim Rate, Lim @ Lim is true and ∆ = Lim Rate.

If ∆ is + and < Lim Rate, Lim @ Lim is false.

If ∆ is – and < –Lim Rate, Lim @ Lim is true.

If ∆ is – and > –Lim Rate, Lim @ Lim is false.

Lim Out = Lim Out + ∆.

Function Block Library 4–45

1336 FORCE — 5.9 August 1995

PARAMETERS DATA TYPE LINKABLE DEFAULT VALUE RANGE

Lim In Signed Integer Yes 0 ±32767

Lim Set Logic Input Yes 0 True/False

Lim Data Signed Integer Yes 0 ±32767

Lim Rate Unsigned Integer No 0 0 to 65535

Lim @ Lim Logic Output No — True/False

Lim Out Signed Integer No — ±32767

Lim @Lim = True
Time

Example 1

+ 32767

0

– 32767
Lim @Lim = False

When Lim Rate = 65535, t1 = 1 sec

When Lim Rate = 32767, t1 = 2 sec

Lim In
Lim Out

t1

RATE LIMITER
(continued)

Function Block Library 4–46

1336 FORCE — 5.9 August 1995

SCALE
BLOCK TYPE 20 decimal 14 hexadecimal

Scale

ID = Exec =

Out MSW

NODE 0 Input

NODE 1 Mult

NODE 2 Div

NODE 4
Out LSW NODE 3

DEFINITION

Multiplies the input Input by Mult and divides by Div. The result is a
two word output consisting of a least significant word Out LSW, and
a most significant signed integer Out MSW. If the result is a value
between 0 and 65535, Out LSW contains the value and Out MSW is
0. For values less than 0 the sign bit that indicates the negative value
is bit 15 of Out MSW. When Div is equal to 0, the result of the scale
block is 0.

INPUTS

Input — A signed integer between ±32767.

Mult — A signed integer between ±32767.

Div — A signed integer between ±32767.

OUTPUTS

Out LSW — A least significant result word value representing bits
 0–15 of a 32 bit output value.

Out MSW — A most significant result word value representing bits
 16–31 of a 32 bit output value.

FUNCTION

Out LSW, Out MSW = (Input × Mult) ÷ Div.

PARAMETERS DATA TYPE LINKABLE DEFAULT VALUE RANGE

Input Signed Integer Yes 0 ±32767

Mult Signed Integer Yes 0 ±32767

Div Signed Integer Yes 1 ±32767

Out LSW Unsigned Integer No — 0 to 65535

Out MSW Signed Integer No — ±32767

DOUBLE WORD VALUES

Both the Most Significant Word and the Least Significant Word are
interpreted together by the function algorithm as one word when
using 32 bit values. The range of a double word value is
±2,147,483,647. The range of the more common, signed single-word
16 bit node is ±32767.

31 16 15 0

Most Significant Word Least Significant Word

Node 4 Node 3

Function Block Library 4–47

1336 FORCE — 5.9 August 1995

Bit 31 is the sign bit, the most significant bit for 32 bit values. For 16
bit values, bit 15 (the sign bit) is the most significant bit.

EXAMPLES Example 1 EXAMPLE 2 EXAMPLE 2

Input 32767 56 – 2

Mult 32767 128 16383

Div 1 10 1

Out LSW 1 716 32770

Out MSW 16383 0 – 1

OUTPUT VALUE 1073676289 716 – 32766

Example 1 — Double Word Output Value = 1073676289 = 32767 × 32767÷ 1

16383 dec 1 dec

3FFF hex 0001 hex

Most Significant Word
Node 4

Least Significant Word
Node 3

Important: The output range of the multiplied values can be critical. Should only one
output word (LSW node) of the SCALE block be used, it will appear to roll
over or under if the product exceeds ±32767.

+ 16383 (Upper Waveform) �

t1 �

SCALE
Out LSW �

SCALE Input �

+ 32767 (Upper Waveform) �

0 (Upper Waveform) �

0 (Lower Waveform) �

�
– 32767 (Upper Waveform)
+ 32767 (Lower Waveform)

– 32767 (Lower Waveform) �

In the Upper Waveform above, the SCALE Input (node 0), is multiplied by a
Mult (node 1) value of 2 and divided by a Div (node 2) value of 1. As the
input value increases beyond 16383 (time t1), the product increases
beyond +32767. Although the Out LSW output (node 3) has a range of 0 to
65535 (0 to FFFF hex), the analog input has a single word signed range of
±32767. When the input reaches 16385, the multiplied output of 32770
(8002 hex) is interpreted by the signed analog output parameter as having a
value of –32766 which makes it appear to roll over.

SCALE
(continued)

Function Block Library 4–48

1336 FORCE — 5.9 August 1995

SR FF
BLOCK TYPE 22 decimal 16 hexadecimal

Set Reset FF

ID = Exec =

Out 2

NODE 0 Set

NODE 1 Reset

NODE 3
Out 1 NODE 2

S

R

Out S

DEFINITION

A set/reset function block where:

Out 1 is false if Reset is true.

Out 1 is true if Reset is false and Set is true.

Out 2 is the inverse of Out 1.

INPUTS

Set — A logic input value

Reset — A logic input value.

OUTPUTS

Out 1 — A logic output value

Out 2 — A logic output value.

FUNCTION

Out 1 is Set or Reset.

PARAMETERS DATA TYPE LINKABLE DEFAULT VALUE RANGE

Set Logic Input Yes False True/False

Reset Logic Input Yes False True/False

Out 1 Logic Output No — True/False

Out 2 Logic Output No — True/False

EXAMPLES EXAMPLE 1 EXAMPLE 2 EXAMPLE 3 EXAMPLE 4

Set False True False True

Reset True False False True

Out 1 False True (Last State) False

Out 2 True False (Last State) True

Function Block Library 4–49

1336 FORCE — 5.9 August 1995

SUB
BLOCK TYPE 27 decimal 1B hexadecimal

Subtract

ID = Exec =

Output

NODE 0 In 1

NODE 1 Sub

NODE 2

DEFINITION

Subtracts two signed integers. Output will be clamped to ±32767
and not allowed to over or under flow.

INPUTS

In 1 — A signed integer between ±32767.

Sub — A signed integer between ±32767.

OUTPUT

Output — A signed integer between ±32767.

FUNCTION

Output = In 1 – Sub.

PARAMETERS DATA TYPE LINKABLE DEFAULT VALUE RANGE

In 1 Signed Integer Yes 0 ±32767

Sub Signed Integer Yes 0 ±32767

Output Signed Integer No — ±32767

EXAMPLES EXAMPLE 1 EXAMPLE 2 EXAMPLE 3

In 1 +10 – 32765 – 5

Sub +15 +2 – 23

Output – 5 – 32767 +18

Function Block Library 4–50

1336 FORCE — 5.9 August 1995

T-FF
BLOCK TYPE 11 decimal 0B hexadecimal

Toggle Flip Flop

ID = Exec =

Out 2

NODE 0 Clock

NODE 2
Out 1 NODE 1

DEFINITION

A flip-flop function block that toggles the rising edge of the Clock
input.

INPUT

Clock — A logic input.

OUTPUTS

Out 1 — A logic output.

Out 2 — A logic output.

FUNCTION

When Clock signal changes from false to true:

Out 1 changes to the opposite state.

Out 2 is the inverse of Out 1.

PARAMETERS DATA TYPE LINKABLE DEFAULT VALUE RANGE

Clock Logic Input Yes False True/False

Out 1 Logic Output No False True/False

Out 2 Logic Output No — True/False

CLOCK

TRUE

TRUE

TRUE

FALSE

FALSE

FALSE

Example

OUT1
OUT2

0 1 2 3 4 5 6 7 8

Function Block Library 4–51

1336 FORCE — 5.9 August 1995

2ADD
BLOCK TYPE 26 decimal 1A hexadecimal

Two Input Add

ID = Exec =

Output

NODE 0 Input #1

NODE 1 Input #2

NODE 2

DEFINITION

Sums two signed numbers Input #1 and Input #2. The output Output
is clamped to ±32767 should the sum exceed these limits.

INPUT

Input #1 — A signed integer between ±32767.

Input #2 — A signed integer between ±32767.

OUTPUT

Output — A signed integer between ±32767.

FUNCTION

Output = Input #1 + Input #2.

PARAMETERS DATA TYPE LINKABLE DEFAULT VALUE RANGE

Input #1 Signed Integer Yes 0 ±32767

Input #2 Signed Integer Yes 0 ±32767

Output Signed Integer No — ±32767

EXAMPLES EXAMPLE 1 EXAMPLE 2 EXAMPLE 3

Input #1 1 32767 – 32767

Input #2 2 4 – 10

Output 3 32767 – 32767

Function Block Library 4–52

1336 FORCE — 5.9 August 1995

UP/DWN CNTR
BLOCK TYPE 24 decimal 18 hexadecimal

Up/Down Counter

ID = Exec =

NODE 0 Set

NODE 1

@Hi Lim NODE 11
Dir NODE 10

Output NODE 13
@Lo Lim NODE 12

Inc

NODE 2 Dec

NODE 3 Max

NODE 4 Min

NODE 5 UD1

NODE 6 UD2

NODE 7 Select

NODE 8 Preset

NODE 9 Time

UD1
UD2

t

DEFINITION

An up/down counter function block that can be programmed to count
up or down in a specified, programmable time period.

INPUTS

Set — A logic signal that when ≠ 0 sets the counter output to the
 value of Preset.

Inc — A logical word that specifies the counter is to increment the
 accumulator.

Dec — A logical word that specifies the counter is to decrement the
 accumulator.

Max — A signed integer that limits the upper value of the output.

Min — A signed integer that limits the lower value of the output.

UD1 — An signed integer that together with Time determines
 the Inc/Dec rate.

UD2 — A signed integer that together with Time determines the
 Inc/Dec rate.

Select — An input word value if = 0 selects UD1, if ≠ 0 selects
 UD2.

Preset — A signed integer that can be preloaded into the output if
 Set ≠ 0.

Time — An unsigned word that determines the period where the
UD1/UD2 increment is to be added or subtracted from the
accumulator counter value. The Time value is entered in
mS, with a resolution limited by the task interval —
(Time in) / 20mS.

Function Block Library 4–53

1336 FORCE — 5.9 August 1995

OUTPUTS

Dir — A signed integer that indicates counter direction —
 –1 if decrementing, 0 if no change, 1 if incrementing.

@Hi Lim — A logic value = true only when the accumulator >
 Max.

@Lo Lim — A logic value = true only when the accumulator <
 Min .

Output — A signed integer that is the counter’s output.

FUNCTION

1. If Set ≠ 0, the accumulator = Preset.

2. When Select = 0 and Time = time since last adjustment of
accumulator:
If Inc ≠ 0, the accumulator = accumulator + UD1, and Dir = 1.
If Dec ≠ 0, The accumulator = accumulator – UD1, and Dir = –1.

3. When Select ≠ 0 and Time = time since last adjustment of
accumulator:
If Inc ≠ 0, the accumulator = accumulator + UD2, and Dir = 1
If Dec ≠ 0, The accumulator = accumulator – UD2, and Dir = –1.

4. When the accumulator > Max:
The accumulator = Max, @Hi Lim = true, and @Lo Lim = false.

5. When the accumulator < Min :
The accumulator = Min , @Hi Lim = false, and @Lo Lim = true.

6. When the accumulator is < Max and > Min :
@Lo Lim = @Hi Lim = false.

7. When Output = accumulator, Dir = 0.

PARAMETERS DATA TYPE LINKABLE DEFAULT VALUE RANGE

Set Logic Input Yes False True/False

Inc Logic Input Yes False True/False

Dec Logic Input Yes False True/False

Max Signed Integer No 0 ±32767

Min Signed Integer No 0 ±32767

UD1 Signed Integer No 0 0 to +32767

UD2 Signed Integer No 0 0 to +32767

Select Logic Input No False True/False

Preset Signed Integer No 0 ±32767

Time Unsigned Integer No 0 0 to 65535

Dir Signed Integer No — ±32767

@Hi Lim Logic Input No — True/False

@Lo Lim Logic Input No — True/False

Output Signed Integer No — ±32767

UP/DWN CNTR
(continued)

Function Block Library 4–54

1336 FORCE — 5.9 August 1995

Example 1 — Horizontal Scale = 1S/Division

� UP/DWN CNTR Output

+ 32767 �

– 32767 �

0 �

�–––––––––––––––––––––––– 7.4 Seconds ––––––––––––––––––––––––�

Preset = + 32767
Select = 0
UD1 = 2048
Time = 240 mS
Inc = 1
Dec = 0
Min = – 32767
Max = + 32767

The number of iterations required to decrement the output from it’s Preset value of +32767
to the Min value of –32767 would be:

Total Iterations = Range ÷ Increment = 65534 ÷ 2048 = 31.99 ≈ 31.

The time it takes to traverse from a Max setting of +32767 to –32767 would be:

Total Time = Total Iterations ÷ Time Input = 31 × 240mS = 7.44 S or approximately 7.4S.

Example 2 — Horizontal Scale = 1S/Division

UP/DWN CNTR Output �
+ 32767 �

– 32767 �

0 �

�–––––––––––––––––––––––– 7.4 Seconds ––––––––––––––––––––––––�

Preset = – 32767
Select = 0
UD1 = 2048
Time = 240 mS
Inc = 0
Dec = 1
Min = – 32767
Max = + 32767

Example 2 is similar to Example 1 except the UP/DWN CNTR must count up from a Preset
value of –32767.

UP/DWN CNTR
(continued)

Chapter 5
 5–1

1336 FORCE — 5.9 August 1995

Block Transfer Services

In this chapter, you will read about:

❒ Block transfer descriptions

❒ Block transfer status word

❒ Individual block transfer services descriptions

This chapter contains the message descriptions that you need to set
up data files for the block transfer services using an Allen-Bradley
PLC or SLC-500 (using a 1747 SN adapter with an SLC 503 or 504).
Each block transfer message contains a three word command header
and a data buffer:

Header Word 1

Header Word 2

Header Word 3

Data Word 4

The first three words of a message make up the message header, and
are common to all RIO messages with the 1336T PLC
Communications Adapter Board.

Header word 1 is zero.

Header words 2 and 3 specify which operation you want to perform.

Header and data values vary depending on the operation you are
performing. Also included is a description of the status word that is
returned from the drive and appears in the Block Transfer Read
Header.

Note: The sawtooth generator application presented in Chapter 1 is
an example of using the block transfer services.

Chapter Objectives

Block Transfer
Descriptions

�

 5–2 Block Transfer Services

1336 FORCE — 5.9 August 1995

If a block transfer operation is not successful, header word 2 of the
drive response contains a negative value (that is, bit 15 is set to 1
when an operation fails). The drive also usually returns a Status
Word to indicate the reason for the block transfer failure. The
location of the status word varies depending on the message, but it is
typically header word 4 in the drive response.

The status word codes that the drive may return are as follows:

Value Description

0 No error has occurred.

1
The service failed due to an internal reason, and the drive could not
perform the request. This may be returned if you tried to write with a
read only request or read with a write only request.

2 The requested service is not supported.

3 An invalid value is in block transfer request header word 2.

4 An invalid value is in block transfer request header word 3.

5 An invalid value is in block transfer request header word 2.

6 The data value is out of range.

7 Drive state conflict. The drive is in an incorrect state to perform the function.
The drive cannot be running when you perform certain functions.

Message Data Representation Base

Most services in this chapter use decimal (Base 10) representation,
although certain services are more readily understood by using a
hexadecimal (Base 16) representation. When working with
execution list events and manipulating nodes, hexadecimal
representation is used. The download and compile, read event, node
value, and link services are also explained using hexadecimal
representation.

Block Transfer Status
Word

 5–3Block Transfer Services

1336 FORCE — 5.9 August 1995

The following table summarizes the available block transfer services.
A complete description of the block transfer write header message is
provided on the specified page.

Group Service Type Page

Application Status
Services

Event list check sum
Read user text
Write user text
Total events in application
Total nodes in application
Task status service
Fault status service

RO
RO
RW
RO
RO
RO
RO

5–4
5–6
5–7
5–8
5–9
5–10
5–12

Program Limits
Information

Library description service
Scheduled task interval
Maximum number of events allowed
Number of fb files in product
Maximum number of nodes allowed

RO
RO
RO
RO
RO

5–15
5–16
5–17
5–18
5–19

Application Control
Commands

BRAM Init
BRAM Store
BRAM Recall
Download & compile service
Read individual event
Clear all application links
Process all fb links
Download service Init

WO
WO
WO
WO
RO
WO
WO
WO

5–20
5–20
5–20
5–22
5–27
5–29
5–29
5–31

Node Adjustment

Block value read
Block value write
Block link read
Block link write
Full node information read
Single node value read
Single value write
Single link read
Single link write

RO
WO
RO
WO
RO
RO
WO
RO
WO

5–32
5–34
5–35
5–36
5–38
5–40
5–41
5–42
5–44

RO = Read Only; RW = Read Write; WO = Write Only

 5–4 Block Transfer Services

1336 FORCE — 5.9 August 1995

The Event List Checksum message is a simple word addition of the
valid events in the current application. This does not include node
values or links.

PLC Block Transfer Instruction Data

BTW Instruction Length: 3 Words
BTR Instruction Length: 5 Words

0
Header
Word 1 Header

Word 1
3843

0

3843 –– Message OK

BRAM Event List Checksum

0

Message Structure

Header
Word 2

Data
Word 3

Header
Word 2

Header
Word 3

Data
Word 4

0

PLC Request –– Block Transfer Write
Drive Response –– Block Transfer Read

Execution Data
Word 5Event List Checksum (RAM)

–28925 –– Message Error
Dec

Message Operation

The Event List Checksum message returns the sum of the valid events
in the active application (RAM) and in BRAM. The drive makes a
checksum value available so that you can differentiate between the
running application and the application stored in BRAM.

When you request an Event List Checksum, the drive returns the
BRAM event list checksum in word 4 and the execution list
checksum in word 5. If the checksum values are the same, then the
current application has the same events. However, there may be
differences in the links or node values or in the order of events.

Application Status
Services:
Event List Checksum

 5–5Block Transfer Services

1336 FORCE — 5.9 August 1995

Example

In this example, an Event List Checksum message has been sent to
the drive.

10

N10:10

2 3 4 5 6 7 8 9

N10:90

BTW
Data File

BTR
Data File

Data Format

0

0 28C3

0

0

0F03

0F03 0A4A

BRAM
Checksum

RAM
Checksum

Notice that the BRAM checksum and the RAM checksum are
different. This indicates that the application that is currently
executing in the drive is not the same as the application that is stored
in BRAM.

If you perform a function block BRAM Store operation and then
perform another checksum read, the results would look like the
following:

10

N10:10

2 3 4 5 6 7 8 9

N10:90

BTW
Data File

BTR
Data File

Data Format

0

0 0A4A

0

0

0F03

0F03 0A4A

BRAM
Checksum

RAM
Checksum

Event List Checksum
(continued)

 5–6 Block Transfer Services

1336 FORCE — 5.9 August 1995

The Read Task Name message is used to read a text string from a data
buffer. The text string is the function block task name, and may
contain up to 16 characters.

PLC Block Transfer Instruction Data

BTW Instruction Length: 3 Words
BTR Instruction Length: 11 Words

0
Header
Word 1 Header

Word 1
3846

0

3846 –– Message OK

0

Message Structure

Header
Word 2

Data
Word 3

Header
Word 2

Header
Word 3

0

PLC Request –– Block Transfer Write
Drive Response –– Block Transfer Read

Dec

Data
Word 4

Data
Word 11

Char 2 Char 1

Char 16 Char 15

•
••

•
••

•
••

–28922 –– Message Error

Message Operation

The User ID Text String allows you to read the task name from a data
buffer. The task name can be up to 16 characters.

Example

This example shows the Read Task Name operation in ASCII
representation:

10

N10:10

2 3 4 5 6 7 8 9

N10:90

BTW
Data File

BTR
Data File

Data Format

0

\00\00 rd

0

\00\00

\0F\06

\0F\06 vi e 1#

Application Status
Services:
Read Task Name

 5–7Block Transfer Services

1336 FORCE — 5.9 August 1995

The Write Task Name message is used to write a task name to a data
buffer. The task name may contain up to 16 characters.

PLC Block Transfer Instruction Data

BTW Instruction Length: 11 Words
BTR Instruction Length: 3 Words

Message Structure

0
Header
Word 1 Header

Word 1

0

3846 –– Message OK

0

Header
Word 2

Data
Word 3

Header
Word 2

Header
Word 3

Data
Word 4

0

PLC Request –– Block Transfer Write
Drive Response –– Block Transfer Read

–28922

Data
Word 11

Char 2 Char 1

Char 16 Char 15

–28922 –– Message Error

•
••

•
••

•
••

Message Operation

The User ID Text String allows you to read or write 16 characters of
text from or to a data buffer.

Example

This example shows the Write Task Name operation in ASCII
representation:

10

N10:10

2 3 4 5 6 7 8 9

N10:90

BTW
Data File

BTR
Data File

Data Format

\00\00 rd

\00\00

0

0

\0F\06

\0F\06

vi e 1#

Application Status
Services:
Write Task Name

 5–8 Block Transfer Services

1336 FORCE — 5.9 August 1995

The Total Number of Events in Application message requests the total
number of events in the currently active execution list.

PLC Block Transfer Instruction Data

BTW Instruction Length: 3 Words
BTR Instruction Length: 4 Words

Header
Word 1

PLC Decimal Value
3842

16384

Message Structure

Header
Word 2

Header
Word 3

PLC Request –– Block Transfer Write

Header Word 1

Header Word 2

Header Word 3
16384

0

Data
Word 4

0

PLC Decimal Value
3842 –– Message OK

–28926 –– Message Error

Number of Events
in Execution List

Drive Response –– Block Transfer Read

Message Operation

The PLC requests the number of events (function blocks) that are in
the current execution list. The drive response indicates the total
number of events. An application can have a maximum of 128
events.

Note: Function block types appearing more than once in the
execution list may have different ID numbers.

If the drive returns 0 for the number of events in the execution list,
no application is currently active in the drive.

Note: The value returned does not reflect what may or may not be
stored in BRAM.

Example

In this example, the drive’s response reports that 58 events are in the
drive’s execution list. This example uses decimal values.

10

N10:0

2 3 4 5 6 7 8 9

N10:90

BTW
Data File

BTR
Data File

Data Format

16384

16384 58

0

0

3842

3842

Application Status
Services:
Total Number of Events in
Application

�

�

 5–9Block Transfer Services

1336 FORCE — 5.9 August 1995

The Total Number of I/O Nodes message provides the number of
nodes used in the function block application currently running in the
drive.

PLC Block Transfer Instruction Data

BTW Instruction Length: 3 Words
BTR Instruction Length: 4 Words

Header
Word 1

PLC Decimal Value
3841

–32768

Message Structure

Header
Word 2

Header
Word 3

PLC Request –– Block Transfer Write

Header Word 1

Header Word 2

Header Word 3
–32768

0

Data
Word 4

0

PLC Decimal Value
3841 –– Message OK

–28927 –– Message Error

Number of Nodes
in Execution List

Drive Response –– Block Transfer Read

Dec

Message Operation

The PLC requests the number of nodes that are associated with the
active execution list in the drive. The drive response indicates the
total number of nodes used by all function blocks in the execution
list.

Example

In this example, the PLC has requested the total number of nodes
used. The drive responds that 24 nodes are used in the current
application.

10

N10:10

2 3 4 5 6 7 8 9

N10:90

BTW
Data File

BTR
Data File

Data Format

-32768

-32768 24

0

0

3841

3841

Application Status
Services:
Total Number of I/O Nodes

 5–10 Block Transfer Services

1336 FORCE — 5.9 August 1995

The Read Task Status message requests the current status of the
function block program in RAM.

PLC Block Transfer Instruction Data

BTW Instruction Length: 3 Words
BTR Instruction Length: 4 Words

Header
Word 1

PLC Decimal Value
3844

0

Message Structure

Header
Word 2

Header
Word 3

PLC Request –– Block Transfer Write

Header Word 1

Header Word 2

Header Word 3

Run Mode

Task Status

Download In Progress
Compilation In Progress
Link Processing

Task StatusValue
 0
 1
 2
 3
 4
255

Recall in Progress
Faulted Mode

PLC Decimal Value
3844 –– Message OK

0

–28924 –– Message Error

0
0

Drive Response –– Block Transfer Read

Data
Word 4

Dec

Message Operation

The Read Task Status message returns a code value that indicates the
status of the current function block program.

Application Status
Services:
Read Task Status

 5–11Block Transfer Services

1336 FORCE — 5.9 August 1995

Value Task Status Description

0 Run Mode The application is executing within the 20 millisecond
task interval. No faults have occurred within the
function block portion of functionality.

1 Download in Progress The previously compiled application is still enabled
and executing within the function block task interval.
One or more downloaded packets have been received
for a new function block program and the function
block system is waiting for more data. The currently
active application is not interrupted until all packets
have been received and the data has been verified for
the new function block program before compilation.

2 Compilation in
Progress

All packets have been downloaded and the data
verified. The service has initiated a compile.
Compilation can take seconds when a large
application is used.

3 Link Processing The application is disabled and links between function
blocks and drive parameters are being established

4 Recall in Progress A Recall is in progress.

255 Fault Mode A function block application has a faulted status.
Function block compile time errors create a soft fault
condition within the drive. The 1336T system
architecture contains a system fault queue that
describes the nature of the fault. SCANport provides
two fault reporting values should the Task Status word
indicate a faulted mode.

The previous application is disabled and will not run
until you correct the fault. You cannot clear function
block compiler faults with the clear faults command
until you correct the function block fault.

Example

This BTR indicates that the drive is currently in the Run Mode.

10

N10:10

2 3 4 5 6 7 8 9

N10:90

BTW
Data File

BTR
Data File

Data Format

0

0 0

0

0

3844

3844

Read Task Status
(continued)

 5–12 Block Transfer Services

1336 FORCE — 5.9 August 1995

The Fault Status Read message reads the fault code information from
the drive when a fault is associated with the function block program.
A function block fault is indicated by Task Status of FFHex. To get
the Task Status, use the Read Task Status block transfer routine.

PLC Block Transfer Instruction Data

BTW Instruction Length: 3 Words
BTR Instruction Length: 5 Words

Header
Word 1

PLC Decimal Value
3845

0

Message Structure

Header
Word 2

Header
Word 3

PLC Request –– Block Transfer Write

Header Word 1

Header Word 2

Header Word 3

PLC Decimal Value
3845 –– Message OK

0

–28923 –– Message Error

0

Data
Word 4

Fault Code

Data
Word 5

Code Identifier

0

Drive Response –– Block Transfer Read

Message Operation

Word 4 is the actual (bit encoded) value of the function block fault
status register. You should use this word mainly as a fault flag
during download and compile operations.

The following values are currently valid for Word 4:

Word Value Bit Number Definition

2 1 A link processing error occurred.

4 2 An I/O node limit error occurred.

8 3 A memory allocation error occurred.

32 5 A block number limit error occurred.

128 7 A BRAM checksum error occurred.

256 8
A packet number error occurred because a packet
number was out of range.

1024 10
An event number error occurred. The same ID
number was used with a different block type.

Application Status
Services:
Fault Status Read

 5–13Block Transfer Services

1336 FORCE — 5.9 August 1995

Word 5 is interpreted differently depending on the type of compiler
fault.

❒ If Word 4 is 2, Word 5 contains the function block number for the
first input parameter or node that has an invalid link. A function
block link fault occurs when the compiler is processing links and
encounters a function block node with a link to an invalid output
node.

❒ If Word 4 is clear and a download is incomplete, the first four bits
of Word 5 correspond to the packets the system has received.
The drive sets the bits as it receives up to four packets.

❒ If Word 4 is 0, Word 5 contains the execution number of the first
illegal event in the execution list. This warning occurs when the
compiler is processing a function block program and encounters a
bad event value.

Note: The drive fault queue contains a textual description of the
current fault.

If you receive an I/O node limit error (indicated when Word 4 is 4),
the execution list contains more than the allowable number of nodes.

An invalid node reference can occur if a node does not exist.
Chapter 6 provides information about handling invalid node
references.

Example

The following examples show a drive function block fault.

10

N10:10

2 3 4 5 6 7 8 9

N10:90

BTW
Data File

BTR
Data File

Data Format

0

0 2

0

0

0F05

0F05 810A

Example 1

10

N10:10

2 3 4 5 6 7 8 9

N10:90

BTW
Data File

BTR
Data File

0

0 1024

0

0

3845

3845 6

Example 2

Link ID of the node

Specifies that block 6
in the execution list is illegal

Dec

that has an invalid link
Specifies a link
processing error

Fault Status Read
(continued)

�

 5–14 Block Transfer Services

1336 FORCE — 5.9 August 1995

The Library Description message allows you to read the library’s
version number and the number of blocks in the library.

PLC Block Transfer Instruction Data

BTW Instruction Length: 3 Words
BTR Instruction Length: 5 Words

0
Header
Word 1 Header

Word 1

PLC Decimal Value

Library Version * 100

Message Structure

Header
Word 2

Data
Word 3

Header
Word 2

Header
Word 3

Data
Word 4

0

PLC Request –– Block Transfer Write
Drive Response –– Block Transfer Read

Number of Blocks Data
Word 5in Library

3840Dec

–16384Dec
–16384Dec

3840 –– Message OK
–28928 –– Message Error

Message Operation

When you request a Library Description message, the drive responds
by placing the library version number times 100 in Word 4 and the
number of blocks the library contains in Word 5.

Example

In this example, the Library Description requests returns 100Dec

(version 1.00) for the library version number and 28Dec for the
number of blocks in the library.

10

N10:10

2 3 4 5 6 7 8 9

N10:90

BTW
Data File

BTR
Data File

Data Format

–16384

–16384 100

0

0

3840

3840 28

Program Limits
Information:
Library Description

 5–15Block Transfer Services

1336 FORCE — 5.9 August 1995

The Scheduled Task Interval (mS) message allows you to determine
the task interval used when executing your application.

PLC Block Transfer Instruction Data

BTW Instruction Length: 3 Words
BTR Instruction Length: 4 Words

0
Header
Word 1 Header

Word 1

16384

PLC Decimal Value

20

16384

Message Structure

Header
Word 2

Data
Word 3

Header
Word 2

Header
Word 3

Data
Word 4

0

PLC Request –– Block Transfer Write
Drive Response –– Block Transfer Read

3840Dec

Dec

Dec

Dec

3840 –– Message OK
–28928 –– Message Error

Message Operation

The Scheduled Task Interval (mS) message returns the task interval
used when executing your application. The task interval is given in
milliseconds. Currently, this value is always 20 milliseconds.

Example

In this example, the drive returns 20Dec for the task interval.

10

N10:10

2 3 4 5 6 7 8 9

N10:90

BTW
Data File

BTR
Data File

Data Format

16384

16384 20

0

0

3840

3840

Program Limits
Information:
Scheduled Task Interval (mS)

 5–16 Block Transfer Services

1336 FORCE — 5.9 August 1995

The Maximum Number of Events per Application message allows you
to determine the maximum number of events that you can have in
each application.

PLC Block Transfer Instruction Data

BTW Instruction Length: 3 Words
BTR Instruction Length: 4 Words

0
Header
Word 1 Header

Word 1

16384

3841

128

16384

Message Structure

Header
Word 2

Data
Word 3

Header
Word 2

Header
Word 3

Data
Word 4

0

PLC Request –– Block Transfer Write
Drive Response –– Block Transfer Read

3841Dec

Dec

Dec

Dec

Dec

Message Operation

This message returns the maximum number of events that you can
have in an application. Currently, this number is always 128.

Example

In this example, the drive returns 128 for the maximum number of
events per application.

10

N10:10

2 3 4 5 6 7 8 9

N10:90

BTW
Data File

BTR
Data File

Data Format

16384

16384 128

0

0

3841

3841

Program Limits
Information:
Maximum Number of Events
per Application

 5–17Block Transfer Services

1336 FORCE — 5.9 August 1995

The Number of Function Block Task Files in Product message allows
you to determine the number of function block task files in the
product.

PLC Block Transfer Instruction Data

BTW Instruction Length: 3 Words
BTR Instruction Length: 4 Words

0
Header
Word 1 Header

Word 1

0

PLC Decimal Value

1

0

Message Structure

Header
Word 2

Data
Word 3

Header
Word 2

Header
Word 3

Data
Word 4

0

PLC Request –– Block Transfer Write
Drive Response –– Block Transfer Read

3840Dec

3840 –– Message OK
–28928 –– Message Error

Message Operation

This message returns the number of function block task files that are
in the product. Currently, only one file is available.

Program Limits
Information:
Number of Function Block Task
Files in Product

 5–18 Block Transfer Services

1336 FORCE — 5.9 August 1995

The Maximum Number of I/O Nodes Allowed per Application message
allows you to determine the maximum number of I/O nodes that you
can have in each application.

PLC Block Transfer Instruction Data

BTW Instruction Length: 3 Words
BTR Instruction Length: 4 Words

0
Header
Word 1 Header

Word 1

–32768

PLC Decimal Value

799

–32768

Message Structure

Header
Word 2

Data
Word 3

Header
Word 2

Header
Word 3

Data
Word 4

0

PLC Request –– Block Transfer Write
Drive Response –– Block Transfer Read

3840Dec

3840 –– Message OK
–28928 –– Message Error

Message Operation

This message returns the maximum number of I/O nodes that you
can have in each application. Currently, this request always returns
799.

Example

In this example, the drive returns 799 for the maximum number of
available I/O nodes per application.

10

N10:10

2 3 4 5 6 7 8 9

N10:90

BTW
Data File

BTR
Data File

Data Format

–32768

–32768 799

0

0

3840

3840

Program Limits
Information:
Maximum Number of I/O Nodes
Allowed per Application

 5–19Block Transfer Services

1336 FORCE — 5.9 August 1995

The PLC Communication Board sends this message to activate the
function block BRAM function that is detailed in the message
request.

PLC Block Transfer Instruction Data

BTW Instruction Length: 4 Words
BTR Instruction Length: 4 Words

PLC Decimal Value
-28926

Not used

0

BRAM Command

BRAM Store
BRAM Recall
BRAM Initialize

BRAM CommandValue
 0
 1
 2
 3

Message Structure

PLC Request –– Block Transfer Write

Data Word 4

Header Word 1

Header Word 2

Header Word 3

Header
Word 1

PLC Decimal Value
3842 –– Message OK

0

–28926 –– Message Error

Header
Word 2

Header
Word 3

0
0

Drive Response –– Block Transfer Read

BRAM Command
Data

Word 4

Message Operation

A BRAM Store saves the function block program that is currently in
RAM to the function block BRAM/EEPROM.

A BRAM Recall copies the function block program that is stored in
BRAM to RAM. The drive executes the program stored in RAM.

A BRAM Initialize erases the function block program stored in
RAM and all associated function block links including links to linear
drive parameters. A BRAM Initialize function does not actually
clear out the BRAM itself; it only clears the function block
application out of the working RAM area.

Refer to Chapter 3 for a more detailed description of BRAM
functionality.

Application Control
Commands:
BRAM Functions
Store, Recall, and Initialize

�

 5–20 Block Transfer Services

1336 FORCE — 5.9 August 1995

Examples

This example shows a successful BRAM Store operation.

10

N10:10

2 3 4 5 6 7 8 9

N10:90

BTW
Data File

BTR
Data File

Data Format

0 1

0

0

0

-28926

3842

This example shows a successful BRAM Recall operation.

10

N10:10

2 3 4 5 6 7 8 9

N10:90

BTW
Data File

BTR
Data File

Data Format

0 2

0

0

0

-28926

3842

This example shows a successful BRAM Init operation.

10

N10:10

2 3 4 5 6 7 8 9

N10:90

BTW
Data File

BTR
Data File

Data Format

0 3

0

0

0

-28926

3842

BRAM Functions
(continued)

 5–21Block Transfer Services

1336 FORCE — 5.9 August 1995

The Download and Compile message does the following:

❒ Downloads up to 32 valid events.

❒ Performs service checks.

❒ Compiles these events into a function block application.

Because the download and compile service downloads a maximum
of 32 events in one message, your application may need to be
downloaded in multiple messages, or packets. The number of events
in your application determines the number of packets. Currently, the
maximum number of packets you can have is 4 (packet 0 through
packet 3) because of the 128 event limitation.

PLC Block Transfer Instruction Data

BTW Instruction Length: 38 Words
BTR Instruction Length: 3 Words

Header
Word 1

PLC Hex Value
8F03

4000 (hex)

Packet 0 Message Structure

Header
Word 2

Header
Word 3

PLC Request –– Block Transfer Write

Header Word 1

Header Word 2

Header Word 3

PLC Hex Value
0F03 –– Message OK

4000 (hex)

8F03 –– Message Error

0
0

Packet Number Data Word 4

Data Word 5Number of Events
in Event List

Data Word 6Event List Checksum

Data Word 7Event Number 1

••

Data Word 38Event Number 32

Drive Response –– Block Transfer Read

••
••

0

Application Control
Commands:
Download and Compile

 5–22 Block Transfer Services

1336 FORCE — 5.9 August 1995

Header
Word 1

PLC Hex Value
8F03

4000 (hex)

Subsequent Packet Message Structure (Packets 1 – 3)

Header
Word 2

Header
Word 3

PLC Request –– Block Transfer Write

Header Word 1

Header Word 2

Header Word 3

PLC Hex Value
0F03 –– Message OK

4000 (hex)

8F03 –– Message Error

0
0

Packet Number Data Word 4

Data Word 5Number of Events
in Packet

Data Word 6Packet Checksum

Data Word 7Event (Packet # * 32) + 1

••

Data Word 38Event (Packet # * 32) + 32

Drive Response –– Block Transfer Read

••
••

Message Operation for Packet 0

When Word 4 is 0, it defines packet 0, which is the command packet.
Word 5 of packet 0 defines the total number of events in the entire
application. The total number of events in the application tells the
service how many packets are required to complete a download. The
number of packets required is determined by the number of events
divided by 32, rounded up to the next highest integer.

When Word 4 is 0, Word 6 contains the execution list checksum.
The execution list checksum is the summation of all the values that
represent each event. For example, if you have an execution list with
two function blocks, 0115 and 021A, the execution list checksum
would be 032F. If the sum of the execution list is more than four
digits (hexadecimal), then you should use the right–most (least
significant) digits. For example, if the sum of the events is
10ABCD, the checksum would be ABCD.

Download and Compile
(continued)

 5–23Block Transfer Services

1336 FORCE — 5.9 August 1995

Message Operation for Subsequent Packets

The packet number determines where the packet’s event data is
written in the drive’s event list. The drive uses the information
contained in Word 4 of packet 0 to re–assemble the packets in the
correct order. When Word 4 is not 0, Word 4 contains the packet
number, Word 5 contains the number of valid events within the
packet, and Word 6 contains the checksum for the events in that
packet.

The Task Status service indicates when a download is in progress
and the service is waiting for event packets. If a download is in
progress and there are no errors, the Fault Read service’s code
identifier (word 5) indicates which packets have been received. The
packets do not need to be sent in order.

After the drive receives all packets required for the application, the
drive performs a number of checks on the data. After all the service
checks have passed, the function block compiler is activated and the
service is acknowledged. However, compilation is not complete
when the last packet is acknowledged. Instead, compilation is
performed as a background task.

Compile time errors will soft fault the drive. If no compiler errors
are found, all function blocks are processed. If no errors occur after
this, the function block task is enabled for execution.

Note: If the data fails the tests, the drive will Not AcKnowledge
(NAK) the service but will not fault the drive, and a warning will be
logged in the drive’s warning queue. These service failures reset the
service to accept another download and compile attempt. The
currently active application is not interrupted.

Important: You must disable the drive to perform a Download and
Compile operation. The drive will reject the download
and compile operation if the drive is running.

The download operation should be performed as a one–shot
procedure.

For more information about downloading and compiling, refer to the
following sections:

For Information About Refer to Chapter

Events 2

Examples 2

Compiler Process 2

Compile Modes 3

Task Status 5

Fault Status 5

Download and Compile
(continued)

�

 5–24 Block Transfer Services

1336 FORCE — 5.9 August 1995

Example

In this example, a Download and Compile message was sent to the
drive. The application contains four events and is downloaded in
one packet.

10

N10:10

2 3 4 5 6 7 8 9

N10:90

BTW
Data File

BTR
Data File

Data Format

4000 0000

4000

0

0

8F03

0F03

0004 0A4A 010C 0216 0315 0413

Events
in List

Event List Event 1
Event 2

Event 3
Event 4

Packet
Number Checksum

In this next example, an application that has 60Hex (98Dec) events is
downloaded in three separate packets. To download the three
packets, you can either send three separate block transfer write
(BTW) and block transfer read (BTR) pairs to the drive, or you can
set up one BTW and BTR pair and move the data for each of the
packets into the BTW statement after the preceding packet has been
sent and received.

Note: If less than 32 events are in the packet, the rest of the event
data is padded with zeros.

Download and Compile
(continued)

�

 5–25Block Transfer Services

1336 FORCE — 5.9 August 1995

Regardless of the method that you use, the data (in hexadecimal) for
the three packets is as follows:

10

N67:0

2 3 4 5 6 7 8 9

N67:10

BTW
Data File

Packet 0 Data

4000 0

1814 1C1A

0

1015

8F03

141B

60

0

663A

2001

705

2414

815

2801

0C14

0

0

2C14

N67:20 3413 35153015 3208 0 3715 380D 3C14 401B 4415

N67:30 5915 4A132D0C 6216 0 0 0 0 0 0

10

N67:100

2 3 4 5 6 7 8 9

N67:110

BTW
Data File

Packet 1 Data

4000 1

6414 6814

0

0

8F03

6014

20

6C1A

58F1

0

501B

7014

541A

7414

5814

7814

5C14

7C08

N67:120 840D 88170 801A 8C08 0 9007 911C 9204 9304

N67:130 9619 97150 950C 9914 9A1B 9C0C A014 0 0

10

N67:200

2 3 4 5 6 7 8 9

N67:210

BTW
Data File

Packet 2 Data

4000 2

BC14 BE14

0

0

8F03

BA14

20

0

D49E

C41B

B014

C614

B20D

C808

B41C

CA07

B614

CB1C

N67:220 CE04 0CC0C CD04 D019 D115 D408 D515 D60A D714

N67:230 DC0C 0D81A DA14 0 0 0 0 0 0

Note: Zeros indicate NULL events.

Download and Compile
(continued)

�

 5–26 Block Transfer Services

1336 FORCE — 5.9 August 1995

The Read Single Event message reads the block type number and
block ID number for the requested execution number within the
drive’s execution list.

PLC Block Transfer Instruction Data

BTW Instruction Length: 3 Words
BTR Instruction Length: 4 Words

Header
Word 1

PLC Hex Value
0F00

Message Structure

Header
Word 2

Header
Word 3

Header Word 1

Header Word 2

Header Word 3

0

Data
Word 4

0

PLC Decimal Value
0F00 –– Message OK

8XXX –– Message Error

Block ID
Number

Block Type
Number

XX40
40XX

High Byte Low Byte

Drive Response –– Block Transfer Read
PLC Request –– Block Transfer Write

where:
XX = the function block’s

execution number

XX40
40XX

High Byte Low Byte

Message Operation

PLC Request –– The low byte of Word 3 (indicated by XX in the
message structure) represents the function block’s execution number
in the execution list.

Drive Response –– The drive response contains the block ID number
in the high byte of Word 4 and the block type number in the low byte
of Word 4 as shown in the execution list.

Application Control
Commands:
Read Single Event

 5–27Block Transfer Services

1336 FORCE — 5.9 August 1995

Example

In this example, the information corresponding to the seventh
function block in the event list is requested. The drive response
indicates the seventh block in the event list is a Scale function block
(block type 20Dec, 14Hex) with a block ID number of 12Dec (0CHex).

10

N10:10

2 3 4 5 6 7 8 9

N10:90

BTW
Data File

BTR
Data File

Data Format

4007

4007 0C14

0

0

0F00

0F00

Read Single Event
(continued)

 5–28 Block Transfer Services

1336 FORCE — 5.9 August 1995

The Clear/Process Links message is used to clear or process all
function block node links in the event list.

PLC Block Transfer Instruction Data

BTW Instruction Length: 4 Words
BTR Instruction Length: 4 Words

PLC Decimal Value
-28926

Not used

–32768

FB Links Command

Clear FB links
Process FB links

CommandValue
 0
 1
 2

Message Structure

PLC Request –– Block Transfer Write

Data Word 4

Header Word 1

Header Word 2

Header Word 3

Header
Word 1

PLC Decimal Value
3842 –– Message OK

–32768

–28926 –– Message Error

Header
Word 2

Header
Word 3

0
0

Drive Response –– Block Transfer Read

FB Links Command Data
Word 4

Message Operation

When word 4 is 1, this request clears all function block links in the
drive. The Clear Links operation also clears links for linear drive
parameters that receive information from function block nodes. To
clear a single link, you need to:

1. Perform a node link.

2. Link the destination node to 0.

Note: Clearing links using the Clear Links operation clears the links
from the working RAM area. This operation does not affect data
stored in BRAM.

When word 4 is 2, the compiler processes and re–establishes all
function block links in the drive.

The Process Links operation re–processes all node links stored in
RAM tables.

Application Control
Commands:
Clear/Process Links

�

 5–29Block Transfer Services

1336 FORCE — 5.9 August 1995

Example

This example shows the data format of a Clear All Function Block
Links operation.

10

N10:0

2 3 4 5 6 7 8 9

N10:90

BTW
Data File

BTR
Data File

Data Format

-32768 1

-32768 1

0

0

-28926

3842

Clear/Process Links
(continued)

 5–30 Block Transfer Services

1336 FORCE — 5.9 August 1995

The Download Service Init message initializes the download service.

PLC Block Transfer Instruction Data

BTW Instruction Length: 3 Words
BTR Instruction Length: 4 Words

PLC Decimal Value
-28924

16384

Message Structure

PLC Request –– Block Transfer Write

Header Word 1

Header Word 2

Header Word 3

Header
Word 1

PLC Decimal Value
3844 –– Message OK

16384

–28924 –– Message Error

Header
Word 2

Header
Word 3

0
0

Drive Response –– Block Transfer Read

Status Word Data
Word 4

Message Operation

The Download Service Init message is available for you to use when
you need to initialize the download service.

Application Control
Commands:
Download Service Init

 5–31Block Transfer Services

1336 FORCE — 5.9 August 1995

The Read Block Value message reads the 16–bit parameter data value
for the specified function block. This returns all node values for one
block.

PLC Block Transfer Instruction Data

BTW Instruction Length: 3 Words
BTR Instruction Length: 36 Words

0 Header
Word 1

Header
Word 1

80ID

0F05

80ID
Parameter Number

Message Structure

Header
Word 2

Data
Word 3

Header
Word 2

Header
Word 3

0

PLC Request –– Block Transfer Write
Drive Response –– Block Transfer Read

Packet Number 0 Data
Word 4

Node 0 Value

Node 1 Value

Data
Word 5

Data
Word 6

•

Node 31 Value Data
Word 36

•
• •••

PLC Decimal Value
0F05 ––Message OK

8F05 –– Message Error

ID = block ID number

Message Operation

The Read Block Value function specified in the BTW reads the
specified function block values from the drive and places the values
(or an error code) in words 5 through 36 of the BTR data file. If an
error has occurred, word 2 of the BTR is 8F05Hex and word 4
contains the status code.

Node Adjustment:
Read Block Value

 5–32 Block Transfer Services

1336 FORCE — 5.9 August 1995

Example

In this example, a Read Block Value message was sent to the drive:

10

N10:10

2 3 4 5 6 7 8 9

N10:90

BTW
Data File

BTR
Data File

Data Format

8004

8004 7FFF

0

0

0F05

0F05 0 7FFF FFFF 584A 0 0

Read Block Value
(continued)

 5–33Block Transfer Services

1336 FORCE — 5.9 August 1995

The Write Block Value message writes the 16 bit data values to the
specified function block. All the values for the entire function block
are sent.

PLC Block Transfer Instruction Data

BTW Instruction Length: 36 Words
BTR Instruction Length: 4 Words

Message Length
0

Header
Word 1 Header

Word 1
8F05

80ID

PLC Decimal Value
0F05 –– Message OK

Status Word

80ID

8F05 –– Message Error

Message Structure

Header
Word 2

Data
Word 3

Header
Word 2

Header
Word 3

Data
Word 4

0

PLC Request –– Block Transfer Write
Drive Response –– Block Transfer Read

Packet Number Data
Word 4

Node 0 Value

Node 1 Value

Data
Word 5

Data
Word 6

•

Node 31 Value Data
Word 36

•
• •••

ID = the block ID number

0

Message Operation

The data buffer contains the packet number and up to 32 valid node
values. Therefore, you must pad the length of the buffer with zeros
to reach the 32 value length if the function block has less than 32
nodes.

Currently, the packet number must be zero.

If any of the values are out of range for any given node, the service
will fail.

Values beyond the valid number of inputs for the given block ID are
ignored.

Node Adjustment:
Write Block Value

 5–34 Block Transfer Services

1336 FORCE — 5.9 August 1995

Example

In this example, a Write Block Value message was sent to the drive:

10

N10:10

2 3 4 5 6 7 8 9

N10:90

BTW
Data File

BTR
Data File

Data Format

8004 7FFF

8004

0

0

8F05

0F05

0 7FFF FFFF 584A 0 0

Write Block Value
(continued)

 5–35Block Transfer Services

1336 FORCE — 5.9 August 1995

The Read Block Link message reads the link information for an entire
block.

PLC Block Transfer Instruction Data

BTW Instruction Length: 3 Words
BTR Instruction Length: 36 Words

0 Header
Word 1

Header
Word 1

80ID

0F06

80ID
Parameter Number

Message Structure

Header
Word 2

Header
Word 3

Header
Word 2

Header
Word 3

0

PLC Request –– Block Transfer Write
Drive Response –– Block Transfer Read

Packet Number Data
Word 4

Node 0 Source

Node 0 File Number

Data
Word 5

Data
Word 6

•

Node 15 Source Data
Word 35

•
• •••

Node 1 Source

Node 1 File Number

Data
Word 7

Data
Word 8

Node 15 File Number Data
Word 36

PLC Decimal Value
0F06 –– Message OK

8F06 –– Message Error

Hex

ID = block ID number

0

Message Operation

The Read Block Link message reads the source nodes that are linked
to the specified block. The returned message packet contains 33 data
buffer words, and is always padded with zeros to length.

Currently, the packet number must be zero.

Currently, you can disregard the file number.

Node Adjustment:
Read Block Link

 5–36 Block Transfer Services

1336 FORCE — 5.9 August 1995

The Write Block Link message writes the link information for an
entire block.

PLC Block Transfer Instruction Data

BTW Instruction Length: 36 Words
BTR Instruction Length: 4 Words

0 Header
Word 1 Header

Word 1

8F06

80ID

PLC Decimal Value
0F06 –– Message OK

Parameter Number

8F06 –– Message Error

Message Structure

Header
Word 2

Data
Word 3

Header
Word 2

Header
Word 3

0

PLC Request –– Block Transfer Write
Drive Response –– Block Transfer Read

Packet Number 0 Data
Word 4

Node 0 Source

Node 0 File Number

Data
Word 5

Data
Word 6

•

Node 15 Source Data
Word 35

•
• •••

Node 1 Source

Node 1 File Number

Data
Word 7

Data
Word 8

Node 15 File Number Data
Word 36

ID = block ID number

Hex

Hex

80ID

Status Word Header
Word 4

Message Operation

The Write Block Link message writes the output parameter to the
input parameter. The data words contain the packet number and up
to 15 source nodes. The buffer must always be padded with zeros if
32 nodes are not being written.

If the service encounters any invalid output references, the drive
stops processing the service and returns an error.

Node Adjustment:
Write Block Link

 5–37Block Transfer Services

1336 FORCE — 5.9 August 1995

Output values that are beyond the number of valid linkable input
nodes are ignored. Therefore, if a block type has only one linkable
input and five links are written, only one is established.

Currently, the packet number must be zero.

Currently, you can disregard the file number. The file numbers are
for future use. For now, you should set the file number to 0 for a
linear parameter output and 1 for a function block node.

Write Block Link
(continued)

 5–38 Block Transfer Services

1336 FORCE — 5.9 August 1995

The Read Full Node Information message provides all known
attributes for any node in the current application. This information
includes the node’s current value, descriptor, multiply and divide
value, base value, offset value, text string, file group and element
reference, minimum value, maximum value, and default value.

PLC Block Transfer Instruction Data

BTW Instruction Length: 3 Words
BTR Instruction Length: 22 Words

0 Header
Word 1

Header
Word 1

Node ID

0F00

Node Number

Message Structure

Header
Word 2

Data
Word 3

Header
Word 2

Data
Word 3

PLC Request –– Block Transfer Write
Drive Response –– Block Transfer Read

Data
Word 4

Descriptor

1

Data
Word 5

Data
Word 6

1 Data
Word 8

0

0F00 –– Message OK
8F00 –– Message Error

Current Value

1 Data
Word 7

0

Node Text

Data
Word 9

Data
Word 10Character 2 Character 1

Node Text Data
Word 11Character 4 Character 3

Node Text Data
Word 12Character 6 Character 5

Node Text Data
Word 13Character 8 Character 7

Node Text Data
Word 14Character 10 Character 9

8NID

where:
N = the node number

ID = the block ID number
Note: If N is 16, the node
number becomes 90ID.

8NID

Node Adjustment:
Read Full Node Information

 5–39Block Transfer Services

1336 FORCE — 5.9 August 1995

Block Transfer Read (Continued)

Minimum Value
Data

Word 18

Maximum Value

Default Value

Data
Word 19

Data
Word 20

Data
Word 21

Data
Word 22

Parameter Text Data
Word 15Character 12 Character 11

Parameter Text Data
Word 16Character 14 Character 13

Parameter Text Data
Word 17Character 16 Character 15

Message Operation

Read Full Node Information provides all known attributes for any
node in the current application.

Read Full Node
Information
(continued)

 5–40 Block Transfer Services

1336 FORCE — 5.9 August 1995

Example

In this example, a Read Full Node Information message was sent to
the drive. Word 4 shows the present value in drive units. Word 5
through word 8 provide scaling information, used to convert drive
units to engineering units. Word 9 through word 12 provide the
parameter name.

This example shows the response message N10:90 through N10:111
in both binary and ASCII. The parameter name characters return in
reverse order for each word. N10:99 has the ASCII value of aR. To
read this, invert the word to read Ra. The next word, et, inverted
gives you te. These words along with the following two words form
the words Rate Lim.

10

N10:10

2 3 4 5 6 7 8 9

N10:90

BTW
Data File

BTR
Data File

Data Format

8504

8504 CCCE

0000

0000

0F00

0F00 002B 0001 0001 0001 0000 6152

6D69 23206574 4620 2034 754F 2074 8001 7FFF 0000

2020 2020

10

N10:10

2 3 4 5 6 7 8 9

N10:90

BTW
Data File

BTR
Data File

 \04

 \04 \CC\CE

\00\00

\00\00

\0F\00

\0F\00 \00 + \00\01 \00\01 \00\01 \00\00 a R

m i # e t L 4 u 0 T \01 \7F\FF 0000ς

à

à

N10:100

N10:110

N10:100

N10:110

Read Full Node
Information
(continued)

 5–41Block Transfer Services

1336 FORCE — 5.9 August 1995

The Read Node Value message reads the value of the specified
function block node.

PLC Block Transfer Instruction Data

BTW Instruction Length: 3 Words
BTR Instruction Length: 4 Words

Header
Word 1

PLC Hex Value
0F01

Message Structure

Header
Word 2

Header
Word 3

PLC Request –– Block Transfer Write

Header Word 1

Header Word 2

Header Word 3

0

Data
Word 4

0

PLC Hex Value
0F01 –– Message OK
8F01 –– Message Error

Node
Value

IDN
8NID

High Byte Low Byte

Drive Response –– Block Transfer Read

where:
N = the node number

ID = the block ID number

IDN
8NID

High Byte Low Byte

If N=16, 8NID becomes 90ID.

Message Operation

Word 3 specifies the function block node.

❒ ID indicates the block ID number is specified in the low byte.

❒ N indicates the node number is specified in the high byte (bits 8
through 14).

Example

In this example, a Read Node Value message was sent to the drive to
read the value of node 1 of the Scale function block (block ID 11Dec,
0BHex). The drive response indicates the value of node 1 is 4.

10

N10:10

2 3 4 5 6 7 8 9

N10:90

BTW
Data File

BTR
Data File

Data Format

810B

810B 4

0

0

0F01

0F01

Note: The output of a Bin2Dec block is node 16Dec, and would be
specified as 900B if it were assigned a block ID number of 11Dec.

Node Adjustment:
Read Node Value

�

 5–42 Block Transfer Services

1336 FORCE — 5.9 August 1995

The Write Node Value operation writes a value to a specified function
block node.

PLC Block Transfer Instruction Data

BTW Instruction Length: 4 Words
BTR Instruction Length: 4 Words

Header
Word 1

PLC Hex Value
8F01

8NID

Message Structure

Header
Word 2

Header
Word 3

PLC Request –– Block Transfer Write

Header Word 1

Header Word 2

Header Word 3

0
0

PLC Hex Value
0F01 –– Message OK
8F01 –– Message Error

IDN
8NID

High Byte Low Byte

Node Value Data Word 4

Drive Response –– Block Transfer Read

where:
N = the node number

ID = the block ID number

Hex

Header
Word 4

Status Word

Message Operation

Word 3 specifies the function block node.

❒ ID, specified in the low byte, indicates the block ID number.

❒ N, specified in the high byte, indicates the node number.

The value in word 4 is written to this node. If this node is linked to
another function block node or drive parameter, the parameter output
value overwrites the node value. If the most significant bit of word 2
is set, word 4 contains an error message.

Example

In this example, a value of 4 is written to node 1 of the function
block with a block ID number of 11Dec (0BHex).

10

N10:0

2 3 4 5 6 7 8 9

N10:90

BTW
Data File

BTR
Data File

Data Format

810B 4

810B

0

0

8F01

0F01

Node Adjustment:
Write Node Value

 5–43Block Transfer Services

1336 FORCE — 5.9 August 1995

The Read Node Link operation reads the drive parameter or the node
numbers of the source that is linked to the specified function block
node.

PLC Block Transfer Instruction Data

BTW Instruction Length: 3 Words
BTR Instruction Length: 4 Words

Header
Word 1

PLC Hex Value
0F04

Message Structure

Header
Word 2

Header
Word 3

PLC Request –– Block Transfer Write

Header Word 1

Header Word 2

Header Word 3

0
0

PLC Hex Value
0F04 –– Message OK

8F04 –– Message Error

IDN
8NID

High Byte Low Byte

Linked Source
Data

Word 4

Drive Response –– Block Transfer Read

where:
N = the node number

ID = the block ID number

IDN
8NID

High Byte Low Byte

If N=16, 8NID becomes 90ID.

Message Operation

The Read Node Link operation reads the output parameter that is
linked to the function block node specified in word 3.

❒ N, specified in the high byte, indicates the node number.

❒ ID, specified in the low byte, indicates the block ID number.

The data returned from the drive identifies the source parameter. If
the node is linked to a drive parameter, word 4 contains the
parameter number. If the node is linked to another function block
node, word 4 contains the node number and block ID number.

Chapter 2 contains additional information that is helpful for
understanding node reference numbers.

Node Adjustment:
Read Node Link

 5–44 Block Transfer Services

1336 FORCE — 5.9 August 1995

Example

In both examples, the PLC has requested to read node number 3Dec

(3Hex), block ID number 4Dec (4Hex).

In Example 1, the drive response indicates that the node is linked to
parameter 146Dec (92Hex), the Motor Overload Limit parameter.

10

N10:10

2 3 4 5 6 7 8 9

N10:90

BTW
Data File

BTR
Data File

Data Format

8304

8304 92

0

0

0F04

0F04Example 1

This example can be visually shown as follows:

p.146

node 0
ID = 4node 1

node 2

node 3
(8304)

DestinationSource

In Example 2, the drive response indicates that the node is linked to
another function block node: node number 2Dec (2Hex), block ID
number 9Dec (9Hex).

10

N10:10

2 3 4 5 6 7 8 9

BTW
Data File

Data Format

83040 0F04

N10:90BTR
Data File

8304 82090 0F04Example 2

The second example can be visually shown as follows:

node 0 ID = 9

node 1

node 2
(8209)

node 0
ID = 4node 1

node 2

node 3
(8304)

Source

Destination

Read Node Link
(continued)

 5–45Block Transfer Services

1336 FORCE — 5.9 August 1995

The Write Node Link operation creates a single node link between a
specified drive linear parameter number or function block node and
the destination node.

PLC Block Transfer Instruction Data

BTW Instruction Length: 4 Words
BTR Instruction Length: 3 Words

Header
Word 1

PLC Hex Value
8F04

Message Structure

Header
Word 2

Header
Word 3

PLC Request –– Block Transfer Write

Header Word 1

Header Word 2

Header Word 3

0
0

PLC Hex Value
0F04 –– Message OK

8F04 –– Message Error

IDN
8NID

High Byte Low Byte

Source Data Word 4

Drive Response –– Block Transfer Read

where:
N = the node number

ID = the block ID number

IDN
8NID

High Byte Low Byte

If N=16, 8NID becomes 90ID.

Header
Word 4

Status Word

Message Operation

Word 3 specifies the function block node that is the input or
destination.

❒ N, specified in the high byte, indicates the node number.

❒ ID, specified in the low byte, indicates the block ID number.

The value in word 4 is the linked destination parameter or node
number.

Note: You must make sure that the drive is disabled when you
perform a Write Node Link operation. If the drive is running, it will
not accept the link and it will reject the message.

To clear an individual link, link the destination to 0.

The source can be either a linear parameter or a function block node.

Node Adjustment:
Write Node Link

�

 5–46 Block Transfer Services

1336 FORCE — 5.9 August 1995

Example

In both examples, the PLC has requested to write to node number
3Dec (3Hex), block ID number 4Dec (4Hex).

In Example 1, the PLC request indicates that the linked source is
parameter 146Dec (92Hex), the Motor Overload Limit parameter.

In Example 2, the PLC request indicates that the linked source is a
function block node: node number 2Dec (2Hex), block ID number 9Dec

(9Hex).

10 2 3 4 5 6 7 8 9

N10:10BTW
Data File

Data Format

8304 920 8F04Example 1

N10:10BTW
Data File

8304 82090 8F04
Example 2

N10:90BTR
Data File

83040 0F04

The second example can be visually represented as the following:

node 0 ID = 9

node 1

node 2
(8209)

node 0
ID = 4node 1

node 2

node 3

ID = x

(8304)

Write Node Link
(continued)

Chapter 6
 6–1

1336 FORCE — 5.9 August 1995

Handling Exceptions — Faults and
Warnings

This chapter provides the following information:

❒ Handling function block faults and warnings

❒ Accessing the system fault and warning queues

❒ Handling download service errors

❒ Handling compiler faults

❒ Using the Task Status service

❒ Using the Fault Status service

❒ Fault codes

If there is a problem with your function block application, either a
fault or a warning will occur.

Function Block Faults

All function block faults are soft faults. Soft faults indicate that an
error has been detected that could damage drive components or the
motor. Soft faults may also indicate potential undesirable operation.

You cannot enable the drive if you have a soft fault condition.

You need to correct the problem that caused the fault before you can
clear the function block system fault with a clear faults command. If
you use a clear faults command before you correct the function block
problem, the function block fault will remain in the queue but the
other faults in the system queue will be cleared.

When the drive encounters a function block fault, the following
occurs:

❒ The drive disables the 20 millisecond task interval.

❒ The function block task status returns a faulted status value of
0xFFHex when read.

❒ Word 4 of the function block fault read service is non–zero.

❒ An entry is logged in the system fault queue. You can view the
system fault queue from DriveManager.

Chapter Objectives

Handling Function Block
Faults and Warnings

 6–2 Handling Exceptions — Faults and Warnings

1336 FORCE — 5.9 August 1995

Most function block system faults are designated for compile time
errors. The download service performs a number of tests before
starting the compile process for the purpose of avoiding compile
faults.

The most common function block system fault is likely to be an
invalid function block link error. This fault can occur during power
up, reset, a linear parameter BRAM recall, or a download and
compile operation. Handling of this particular error is covered later
in this chapter.

Function Block Warnings

Function block warnings annunciate conditions that could cause a
soft fault and stop the drive. Warnings are less severe faults. When
a warning occurs, a warning code is entered in the warning queue
and status parameters reflect the condition. A drive stop does not
occur, and drive operation is not affected. You can clear a warning
by issuing a clear warning command.

General Information about Faults and Warnings

The three mechanisms for identifying specific function block system
faults and warnings are:

❒ the function block fault read service (covered in chapter 5)

❒ the system fault queue

❒ the system warning queue

When a fault or warning occurs, an entry is logged into the
respective queue. Each entry contains a code and some descriptive
text. The fault and warning queues keep a history of 32 fault or
warning events until you clear the fault/warning queue.

To handle the faults and warnings, you need to access the system
fault and warning queues that are associated with each drive. Each
entry in the queue shows the type of fault and the time and date when
the fault occurred.

 6–3Handling Exceptions — Faults and Warnings

1336 FORCE — 5.9 August 1995

Once a fault or warning occurs, the information about the fault is
maintained in BRAM until you clear the fault queue using a Clear
Fault Queue command. To clear the function block fault once you
have corrected the problem within the function block application,
perform one of the following tasks:

❒ Issue a Clear Fault command.

❒ Issue a drive reset command.

❒ Cycle drive power.

The fault queue contains information for up to 32 faults. The
following information is also maintained for each fault:

❒ a fault queue entry number to indicate the position of the fault in
the fault queue

❒ a trip point (TP) to indicate which entry in the fault queue caused
the drive to trip (all faults displayed before the TP fault occurred
after the TP was logged)

❒ a five character decimal fault code, which is covered later in this
chapter

❒ the time and date that the fault occurred

❒ descriptive fault text

❒ all clear fault commands and the time when they were executed

You need to use the Fault Queue Entry Read service to access the
information in the fault queue. Refer to the PLC Communications
User Manual for more information about the Fault Entry Read
service.

Because the download operation is more complicated than most of
the block transfer services, it is more common to see faults/warnings
at this time. The download operation may require that multiple
messages be sent before initiating a compile operation. When an
application requires more than one message packet, the service
ensures that a compile operation does not begin until the last
required packet is received and acknowledged.

Accessing the System
Fault and Warning Queues

Handling Download
Service Errors

 6–4 Handling Exceptions — Faults and Warnings

1336 FORCE — 5.9 August 1995

After receiving the last packet, the drive performs a series of checks
to verify the new execution list:

❒ The drive goes over the execution list and verifies the checksum.
If the checksum fails, the service fails.

❒ The drive checks that any new events with block numbers that
match block numbers found within the current application have
the same block type. If the block number verification fails, the
service fails.

❒ The service verifies that the block type numbers are within the
valid range.

❒ The service verifies that events with a zero for a block ID have a
zero value for a block type number and that events with a zero for
a block type number have a zero for a block ID.

When the download service fails, the following steps are taken:

1. Download failures will NAK (Not AcKnowledge) the service, but
will not fault the drive nor interrupt the currently running
function block application.

2. Download failures will reset the service to allow it to accept
another download and compile attempt.

3. Values from the currently valid function block application
overwrite the execution list.

4. One of the following warnings will be logged:

Warning Description

FB DNLD Bad Evnt An attempt was made to download a bad execution list.

FB BAD Pkt Num The service received a bad packet number.

FB DNLD Blk# Wrn An invalid block number was received.

FB DNLD Cksm Wrn The execution list did not pass the checksum test.

When a new execution list has been downloaded and all the service
checks have been passed:

❒ The currently active application is taken off line.

❒ The compiler is initiated as a background process.

❒ The function block task status indicates that a compile is in
process.

Compile time errors will soft fault the drive.

Even though it is unlikely that you will receive a fault once the event
list has passed the service checks, several faults are possible.

Handling Compile Faults

 6–5Handling Exceptions — Faults and Warnings

1336 FORCE — 5.9 August 1995

Important: With the exception of function block link processing
faults, you should perform a function block BRAM Init
operation after any function block faults occur. You
then need to perform a Recall or download the program
again.

Link Processing Fault

If a link processing fault occurs, the execution list has been compiled
and all the blocks are valid. Link processing faults are actually
generated after the compilation is complete. If no other faults
occurred, you can:

1. Adjust the invalid links.

2. Clear the fault queue.

The function block application is then enabled for execution without
being re–compiled.

Important: You cannot clear function block faults with a clear fault
operation without first addressing the problem. The
function block system will not make an assumption
about what to do with an illegal link. You must either
clear the link to this node or reconnect the node to a
valid node. You can then use the clear faults mechanism
to clear the faults and allow the drive to run.

I/O Node Limit Fault

If you receive an I/O node limit fault, you have created more than
799 function block nodes due to the number and type of blocks you
entered into your execution list. You need to:

1. Perform a function block BRAM Init.

2. Remove extra event blocks to reduce the number of nodes.

Memory Limit Fault

If you receive a memory limit fault, the system is out of dynamic
RAM. You need to:

1. Perform a function block Init.

2. Remove extra function blocks.

 6–6 Handling Exceptions — Faults and Warnings

1336 FORCE — 5.9 August 1995

BRAM Checksum Fault

If you receive a BRAM Checksum fault, the data in the BRAM has
been corrupted. You need to:

1. Perform a function block BRAM Init.

2. Perform a function block BRAM Store.

3. Download the execution list.

 6–7Handling Exceptions — Faults and Warnings

1336 FORCE — 5.9 August 1995

To check to see if a fault occurred, you can use the Read Task Status
service. The Task Status is returned in word 4 of the drive’s
response. The Task Status returns a code value to indicate the status
of the current function block program. The following are the valid
code values.

Value Task Status Description

0 Run Mode The application is executing within the 20
millisecond task interval. No faults have occurred
within the function block portion of functionality.

1 Download in Progress The previously compiled application is still enabled
and executing within the function block task interval.
One or more downloaded packets have been
received for a new function block program and the
function block system is waiting for more data. The
currently active application is not interrupted until all
packets have been received and the data has been
verified for the new function block program before
compilation.

2 Compilation in
Progress

All packets have been downloaded and the data
verified. The service has initiated a compile.
Compilation can take seconds when a large
application is used.

3 Link Processing The application is disabled and links between
function blocks and drive parameters are being
established

4 Recall in Progress A Recall is in progress.

0x00FF Fault Mode A function block application has a faulted status.
Function block compile time errors create a soft fault
condition within the drive. The 1336T system
architecture contains a system fault queue that
describes the nature of the fault. SCANport provides
two fault reporting values should the Task Status
word indicate a faulted mode.

The previous application is disabled and will not run
until you correct the fault. You cannot clear function
block compiler faults with the clear faults command
until you correct the function block fault.

Using the Task Status Service

 6–8 Handling Exceptions — Faults and Warnings

1336 FORCE — 5.9 August 1995

The function block fault status service actually does more than
identify function block system faults. It also provides information
on other parts of the function block system when not faulted. This
helps when you are troubleshooting the system when first setting up,
particularly when you are downloading with a PLC.

During a download operation while the function block Task Status
operation has a value of 1, word 5 of the Fault Status indicates which
packets have been received successfully.

x x x x x x 10x x 0 1

15 14 13 8 1 012 11 10 9 23

x x x x

47 6 5

Package Download Status

Bit #

Word 5

In this case, word 4 of the Fault Status is zero because the system has
not encountered a fault.

Download Errors

If an attempted download fails the service checks, a warning is
created and word 4 of the Fault Status is zero. Word 5 of the Fault
Status service indicates the problem with the last download:

❒ If bit 8 is set (0x01xxHex), an event value error/warning occurred.

❒ If bit 9 is set (0x02xxHex), a checksum error/warning occurred.

❒ If bit 10 is set (0x04xxHex), a block ID number error/warning
occurred.

The rest of the download service is reset as if nothing occurred to
allow another download attempt.

Invalid Link Fault Condition

If the drive encounters an invalid link during a linear parameter
Recall, a reset, or power up sequence:

❒ Word 4 of the Fault Status will have a value of 200Hex or 512Dec.

❒ The drive will soft fault invalid function block links in the system
fault queue.

❒ The function block Task Status will be 0xFFHex.

❒ You cannot clear the system fault with the Clear Fault command
until you adjust the invalid link.

Using the Fault Status
Service

 6–9Handling Exceptions — Faults and Warnings

1336 FORCE — 5.9 August 1995

Word 5 of the function block fault status returns the destination
parameter or node holding the invalid link.

For example, if you issue a Fault Status Read request and the drive
response indicates that word 4 is 200Hex and word 5 is 183Hex

(387Dec), an invalid link occurred at parameter 387Dec. You need to
adjust the link to parameter 387 before you can clear the fault queue.

To adjust the link, you can:

❒ Clear the link with a Clear All FB Links command.

❒ Clear the link by writing a source value of 0.

❒ Reconnect the parameter to a valid parameter or node.

Once you adjust the link, you need to issue a Process All FB Links
command to re–check the the function block links.

Clear Faults Command

The system Clear Faults command initiates the Process All FB Links
service. If no other illegal links are found, the system fault is cleared
and drive enable is allowed.

 6–10 Handling Exceptions — Faults and Warnings

1336 FORCE — 5.9 August 1995

The following table provides a description of the possible faults and
warnings and the action that you need to take to clear the problem.

Fault Text Code Description Action

FB Internal Err 24027 An internal function block error occurred. Restart your system.

Invalid FB Link 24028 Your application contains an invalid
function block link.

1. Determine which node has the incorrect link
reference.

2. Clear the link or link the node to a valid source.
3. Clear the fault queue.

FB I/O Limit Err 24029 The system is out of dynamic RAM. 1. Perform a function block BRAM Init.
2. Remove extra event blocks to reduce the number

of nodes.

FB Mem Aloc Err 24030 A function block memory allocation error
occurred.

Perform a function block BRAM Init.

FB BRAM Chsm
Err

24034 The data in the BRAM has been
corrupted and the checksums do not
match.

1. Perform a function block BRAM Init.
2. Perform a function block BRAM Store.
3. Download a new execution list.

Init FB BRAM Flt 24037 The data in the BRAM has been
corrupted.

Clear the fault queue.

FB Near Mem Lim 24044 The system is almost out of dynamic
RAM.

You can either ignore this warning until the
system runs out of dynamic RAM and you
receive a FB I/O LImit Err, or perform a function
block BRAM Init and remove extra event
blocks.

FB DNLD Bad
Evnt

24045 An attempt was made to download an
execution list that contains a bad event.

Verify that all events have a valid ID number
and that no numbers are duplicated.

FB Bad Pkt Num 24046 The service received a bad packet
number. This occurs when the drive
receives a packet that is outside of the
range specified by packet 0.

Restart the download process.

FB Dnld Blk# Wrn 24049 An invalid block number was received. 1. Check the data from the previous download
process.

2. Restart the download process.

FB Dnld Cksm
Wrn

24050 The execution list did not pass the
checksum test.

• Verify the execution list data.
• Verify that the checksum was calculated correctly

(if using a PLC).

FB Near Exec Lim 24052 The application is close to the 20
millisecond task interval.

Check the execution time of the 20 millisecond
function block task.

Fault Codes

Notes

Notes

Notes

Notes

You can help! Our manuals must meet the needs of you, the user. This is your opportunity to make sure they do just that.
By filling out this form you can help us provide the most useful, thorough, and accurate manuals available. Please take a
few minutes to tell us what you think - then mail this form or FAX it.
FAX: your local Allen-Bradley Sales Office or 414/512-8579

PUBLICATION NAME __

PUBLICATION NUMBER, DATE AND PART NUMBER (IF PRESENT) ___

✔ CHECK THE FUNCTION THAT MOST CLEARLY DESCRIBES YOUR JOB.

❏ SUGGEST/RESPONSIBLE FOR THE PURCHASE OF EQUIPMENT ❏ MAINTAIN/OPERATE PROGRAMMABLE MACHINERY

❏ DESIGN/IMPLEMENT ELECTRICAL SYSTEMS ❏ TRAIN/EDUCATE MACHINE USERS

❏ SUPERVISE FLOOR OPERATIONS

✔ WHAT LEVEL OF EXPERIENCE DO YOU HAVE WITH EACH OF THE FOLLOWING PRODUCTS?

NONE LITTLE MODERATE EXTENSIVE

PROGRAMMABLE CONTROL ❏ ❏ ❏ ❏

AC/DC DRIVES ❏ ❏ ❏ ❏

PERSONAL COMPUTERS ❏ ❏ ❏ ❏

NC/CNC CONTROLS ❏ ❏ ❏ ❏

DATA COMMUNICATIONS/LAN ❏ ❏ ❏ ❏

✔ RATE THE OVERALL QUALITY OF THIS MANUAL BY CIRCLING YOUR RESPONSE BELOW. (1) = POOR (5) = EXCELLENT

HELPFULNESS OF INDEX/TABLE OF CONTENTS 1 2 3 4 5

CLARITY 1 2 3 4 5

EASE OF USE 1 2 3 4 5

ACCURACY AND COMPLETENESS 1 2 3 4 5

QUALITY COMPARED TO OTHER COMPANIES’ MANUALS 1 2 3 4 5

QUALITY COMPARED TO OTHER ALLEN-BRADLEY MANUALS 1 2 3 4 5

✔ WHAT DID YOU LIKE MOST ABOUT THIS MANUAL?

✔ WHAT DID YOU LIKE LEAST ABOUT THIS MANUAL?

✔ PLEASE LIST ANY ERRORS YOU FOUND IN THIS MANUAL (REFERENCE PAGE, TABLE, OR FIGURE NUMBERS).

✔ DO YOU HAVE ANY ADDITIONAL COMMENTS?

✔ COMPLETE THE FOLLOWING.

NAME __ COMPANY__

TITLE ___ DEPARTMENT___

STREET ___ CITY _______________________ STATE ______ ZIP ___________________

TELEPHONE ___ DATE __

We Want Our Manuals to be the Best!
C

U
T

AL
O

N
G

 D
O

TT
ED

 L
IN

E
✁

FOLD HERE

FOLD HERE

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 413 MEQUON, WI

ALLEN-BRADLEY
Attn: Marketing Communications
P.O. Box 760
Mequon, WI 53092-9907

POSTAGE WILL BE PAID BY ADDRESSEE

PLC is a registered trademark of Allen–Bradley Company, Inc.

SCANport is a trademark of Allen-Bradley Company, Inc.

1336 FORCE and 1336 PLUS are trademarks of Allen–Bradley Company, Inc.

Publication XXXX-XX.X – September 1995

Allen-Bradley, a Rockwell Automation Business, has been helping its customers improve
productivity and quality for more than 90 years. We design, manufacture and support a broad
range of automation products worldwide. They include logic processors, power and motion
control devices, operator interfaces, sensors and a variety of software. Rockwell is one of the
world’s leading technology companies.

Worldwide representation.

Argentina • Australia • Austria • Bahrain • Belgium • Brazil • Bulgaria • Canada • Chile • China, PRC • Colombia • Costa Rica • Croatia • Cyprus • Czech Republic •
Denmark • Ecuador • Egypt • El Salvador • Finland • France • Germany • Greece • Guatemala • Honduras • Hong Kong • Hungary • Iceland • India • Indonesia •
Ireland • Israel • Italy • Jamaica • Japan • Jordan • Korea • Kuwait • Lebanon • Malaysia • Mexico • Netherlands • New Zealand • Norway • Pakistan • Peru •
Philippines • Poland • Portugal • Puerto Rico • Qatar • Romania • Russia–CIS • Saudi Arabia • Singapore • Slovakia • Slovenia • South Africa, Republic • Spain •
Sweden • Switzerland • Taiwan • Thailand • Turkey • United Arab Emirates • United Kingdom • United States • Uruguay • Venezuela • Yugoslavia

Allen-Bradley Headquarters, 1201 South Second Street, Milwaukee, WI 53204 USA, Tel: (1) 414 382-2000 Fax: (1) 414 382-4444

Publication 1336FORCE-5.9 – August 1995 P/N 74002-102-01 (A)
Copyright 1995 Allen-Bradley Company, Inc. Printed in USA

	Front Cover
	Important User Information
	Table of Contents
	Preface
	Getting Started
	System Component Detail
	System Interactions
	Function Block Library
	Block Transfer Services
	Handling Exceptions, Faults and Warnings

	Preface
	Chapter 1
	Chapter Objectives
	Sawtooth Application Operation
	Getting Started Using DriveBlockEditor
	Getting Started Using a PLC

	Chapter 2
	Chapter Objectives
	Execution List Overview
	Downloading and Compiling the Execution List
	Understanding Function Block I/ O Nodes

	Chapter 3
	Chapter Objectives
	The Function Block BRAM Functions
	The Function Block Init Command
	The Function Block Store Command
	The Function Block Recall Command
	Linear Parameter BRAM Functions and Links
	Power Up Sequence
	Compiler Modes and Terminal Operation Differences
	Compiler Modes
	DriveToolsö DriveBlockEditor Download and Compile Operation
	Graphic Programming Terminal
	PLC Block Transfer
	Understanding Multiple Execution List Copies
	Task Status Service
	Link Processing Faults
	Performance Issues Involving Links
	Link Processing Sequence

	Chapter 4
	Chapter Objectives
	Function Block Overview
	Double Word Function Block Caution
	Function Block Index

	Chapter 5
	Chapter Objectives
	Block Transfer Descriptions
	Block Transfer Status Word
	Application Status Services:
	Event List Checksum
	Application Status Services:
	Read Task Status
	Application Status Services:
	Fault Status Read
	Program Limits Information:
	Application Control Commands:
	BRAM Functions
	Application Control Commands:
	Download and Compile
	Application Control Commands:
	Read Single Event
	Application Control Commands:
	Clear/Process Links
	Application Control Commands:
	Node Adjustment:
	Read Block Value
	Node Adjustment:
	Write Block Value
	Node Adjustment:
	Write Block Link
	Node Adjustment:
	Read Full Node Information
	Node Adjustment:
	Read Node Link
	Node Adjustment:
	Write Node Link

	Chapter 6
	Chapter Objectives
	Handling Function Block Faults and Warnings
	Accessing the System Fault and Warning Queues
	Handling Download Service Errors
	Handling Compile Faults
	Using the Task Status Service
	Using the Fault Status Service
	Fault Codes

	Back Cover

