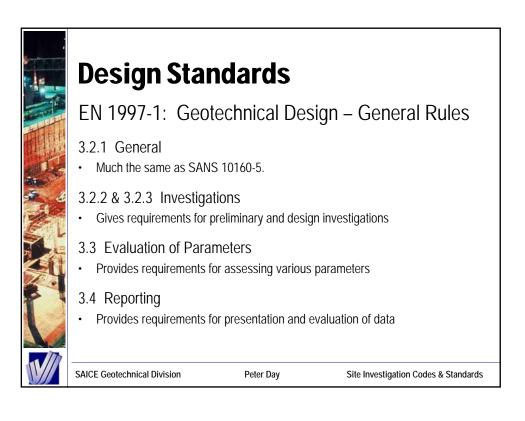
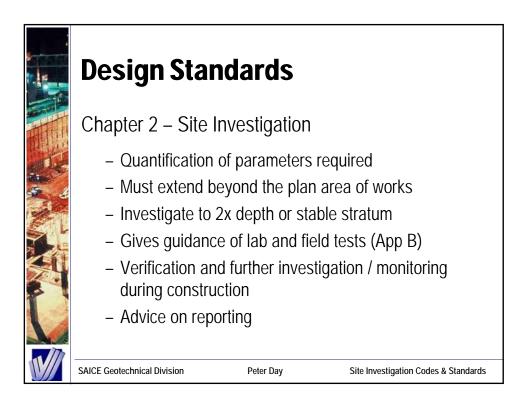

Site class designatio	Assumed differential movement % of total
R	-
H H1 H2 H3	50 50 50 50
C C1 C2	75 75 75
S S1 S2	50 50 50
P⁵	-
on	50

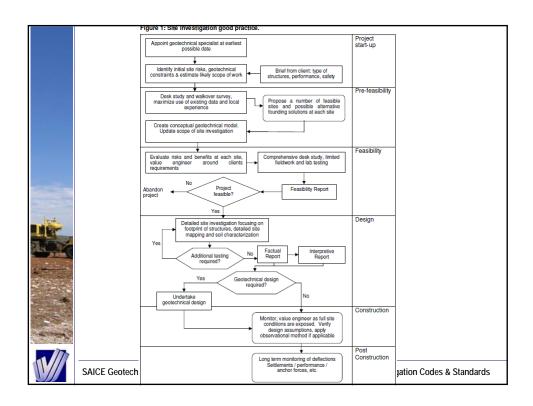


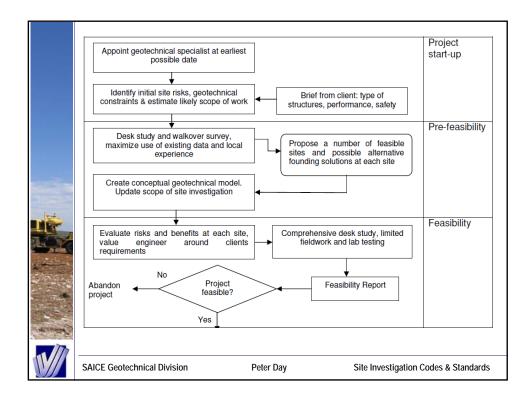


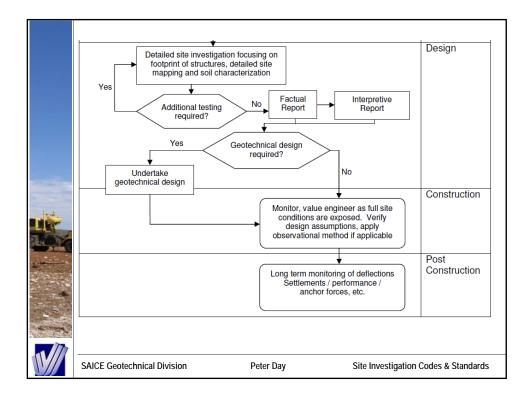

	Append	Design Standards Appendix B – Laboratory and Field Tests						
111 SS	TEST	MATERIAL	SAMPLE TYPE	REMARKS	REFERENCE			
	Triaxial Compression							
	(a) Undrained unconsolidated	Saturated, normally consolidated clays Saturated, overconsolidated/fis- sured clays	behaviour under rapid loading with fis significant effect.	Undrained shear strength (c,; é = 0). Short term stability and anchor behaviour under rapid loading with fissured clays, sample size may have significant effect.	Akroyd (1957) Bishop & Henkel (1957) Marsland (1971)			
	(b) Consolidated undrained with	Saturated, normally consolidated clays.	U	Effective strength parameters (c'; 0')	Bishop & Henkel (1957)			
	p.w.p measurements	Partially saturated clays (soaked)	U	Long term stability.	Akroyd (1957)			
T I	(c) Consolidated drained	Clayey sands, sandy clays, silts	U	Effective strength parameters (c'; σ) Long term stability.	Bishop & Henkel (1957) Akroyd (1957)			
10		Partially saturated clays (soaked)	U					
AM		1						
V//	SAICE Geotechn	ical Division		Peter Day Site Investigation Codes & S	Standards			

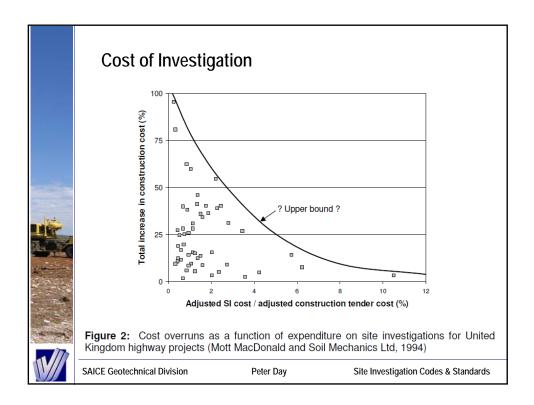
	Design Standards Appendix B – Laboratory and Field Tests						
ALL TO	TEST	APPLICABILITY	REMARKS	REFERENCE			
	Packer Tests	Generally applied to rocks and clayey soils	Test measures the acceptance of the in situ rock of water under pressure between packers inserted in the hole. Used to assess the grout acceptance of the rock or to check the effectiveness of	SAICE & NITRR (1978) Lugeon (1933) Ervin (1983)			
	Pumping Tests	Soils or rocks below W.T.	History pumping at a steady known flow and observing the drawdown in observation wells at various distances from the pumped well. Gives permeability of in situ material.	SAICE & NITRR (1978) Lugeon (1933) Ervin (1983)			
	Piezometer	All soils and rocks	Used to determine ground water pressure at various depths in the ground. In permeable ground, standpipe piezometers are used but in impermeable conditions or where rapid response is required, hydraulic, pneumatic or electric piezometers are used.	SAICE & NITRR (1978) BS 5930 (1981) Penman (1960)			
	Vane Shear Test	Saturated cohesive soils	Normally restricted to saturated clays with an undrained shear strength of less than 100 kPa. This method can give peak and residual undrained shear strengths.	SAICE & NITRR (1978) BS 5930 (1981) Ervin (1983)			
	Plate Bearing Test	Most soils and soft rocks. Generally above W.T.	Test performed in trench or auger hole by jacking circular plates against the soil/rock. May be carried out horizontally (across width of hole) or vertically (jacking against a kentledge). Size of plate depends on hole size and sittfiness of material – generally 75-300mm for horizontal tests and 200-1 000mm for vertical tests.	Ervin (1983) Wrench (1984)			
	Test Anchors (Proving test anchors)	All soils and rocks	Where the size of the project permits, test anchors may be installed during the investigation stage. The purpose of these tests is to assess the suitability and load capacity of the selected anchor type(s). See 6.7.2	BS 8081 (1989) Littlejohn (1981)			
V//	SAICE Geotechnica	Division	Peter Day Site Investigation (Codes & Standards			

	Design Standards Appendix B – Laboratory and Field Tests						
THE	TABLE B.3 LAE	ORATORY TEST	S ON RO	DCKS			
and the second second	TEST	MATERIAL	SAMPLE TYPE	REMARKS	REFERENCE		
	Moisture Content Bulk Density Porosity	All rocks	C/L	Gives some indication of strength, modulus of elasticity and degree of weathering	Int. Soc. Rock Mech. (1979)		
4	Thin Section	Intact rock	C/L	Microscopic examination of minerals present. Gives indication of behaviour weathering and drillability.	Williams et al (1954)		
	X-ray Diffraction	Any rock or soil	L	Gives quantitive information on minerals present. Gives indication of behaviour weathering and drillability. Particularly useful for swelling rocks.			
	Slake Durability Test	Mainly argillaceous rocks	L	Slake durability index indicates rate of breakdown under varying moisture content conditions.	Franklin & Chandra (1972) Hoek (1977)		
	Swelling Test	Mainly argillaceous rocks	C/L	Indicate moisture sensitivity of rock and possible pressures on rigid support work.	Duncan et al (1968)		
	Point Load Test	Isotropic rocks	C/L	Quick and cheap indicator of rock strength. Useful aid to core logging.	Hoek (1977) Broch & Franklin (1972)		
1	Uniaxial Compression Test	Most rocks which can be cored	с	Strength of intact rock. Upper limit for jointed rock mass strength. Widely used for predicting bearing capacity and skin friction. Gives elastic properties of "intact" rock core. This will overestimate modulus of jointed rock.	Hoek (1977) Hawkes & Mellor (1970) Clark (1966)		





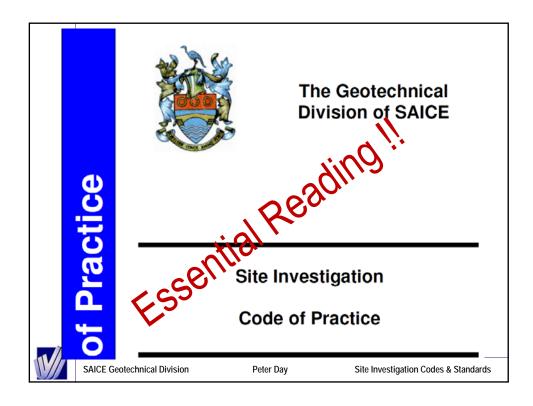


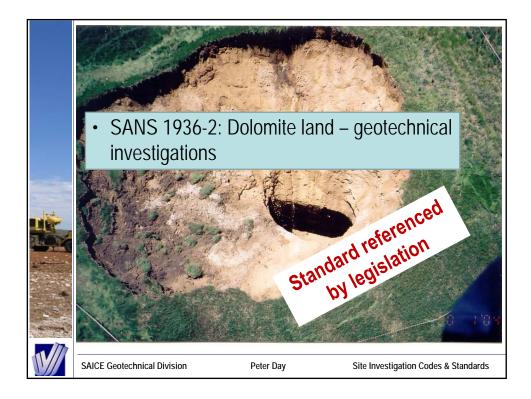


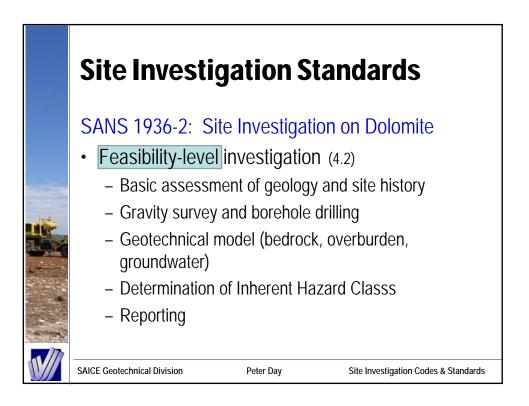
Category	Development	Phase	Data points	Special Considerations
	Building	Feasibility	1 per structure	
	(Brick or Concrete)	Design	3 per structure	Settlement sensitivity of finishes
	Factory	Feasibility	2 per ha	
	(Steel Frame)	Design	4 per ha or	Crane & floor requirements
		-	4 per structure	
	Quarry or	Feasibility	1 per 5ha	
	Borrow Pit	Design	2 per 1ha	
Compact	Tower or	Feasibility	1 per structure	
Compact	Mast	Design	1 per 25m ²	
	Reservoir	Feasibility	1 per structure	
		Design	1 per 100m ²	
	Bridge	Feasibility	1 per abutment	
		Design	2 per abutment	
			1 per pier	
	Substation	Feasibility	2 per ha	
		Design	4 per ha	
	Pipeline	Feasibility	1 per km	
		Design	4 per km	
	Road/Rail/Conveyor	Feasibility	2 per km	
		Design	5 per km	
Linear	Canal	Feasibility	1 per km	
Lincol		Design	4 per km	
	Power Transmission	Feasibility	1 per km	
		Design	4 per km	
	Tunnels	Feasibility	2 per km	
		Design	5 per km	
	Housing Complex	Feasibility	1 per ha or 1 per structure	GFSH & NHBRC requirements SANS10400 SAICE Code of Practice Van Rooy & Stiff (2001)
		Design	2 per structure	
	Harbour	Feasibility	1 per 5ha	
		Design	4 per ha or	
	Airport	Feasibility	5 per structure 1 per 10ha	
	Composit	Design	1 per ha or	
Large		Design	5 per structure	
Lugo	L		o per suddure	

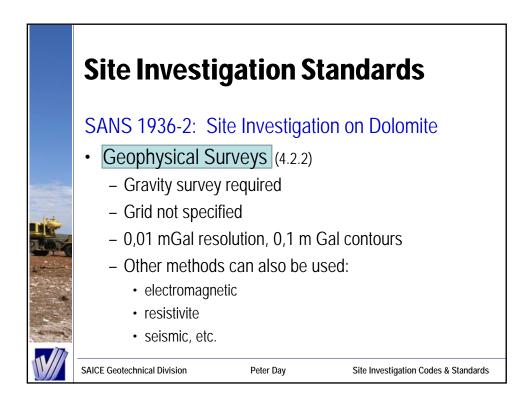
	Typical parameters from a geotechnical investigation will include the following:
	Classification: Soil
	 Grading properties (75mm to 2µm)
	Atterberg limits
	 Maximum compacted density and optimum moisture content
	California bearing ratio
	Corrosivity
	Erodibility
	Classification: Rock
	Unconfined compressive strength
	Joint characteristics
	Rock mass classification
	Characterisation - State
I.O.	Specific gravity
and the second	In-situ density & moisture content (void ratio)
A CONTRACT	Permeability
	Collapsibility, heave and swell potential
Tank.	Characterisation - Strength and Compressibility
-	Shear strength
1	Compressibility
	Consolidation and creep properties
	SAICE Geotechnical Division Peter Day Site Investigation Codes & Standards

	Cost of Investiga	tion	
	Table 2: Site investigation	costs as a percentage o	of project costs
	Type of Work	% of capital cost of works	% of earthworks and foundation costs
	Earth dams	0,9 - 3,3	1,1 - 5,2
	Embankments	0,1 - 0,2	0,2
	Docks	0,2 - 0,5	0,4 - 1,7
	Bridges	0,1 - 0,5	0,3 - 1,3
	Buildings	0,1 - 0,2	0,50-2,0
ALL AND	Roads	0,2 - 1,6	1,6 - 5,7
a series	Railways	0,6 - 2,0	3,5
S SCI 1	Overall mean	0,7	1,5
V//	SAICE Geotechnical Division	Peter Day	Site Investigation Codes & Standards

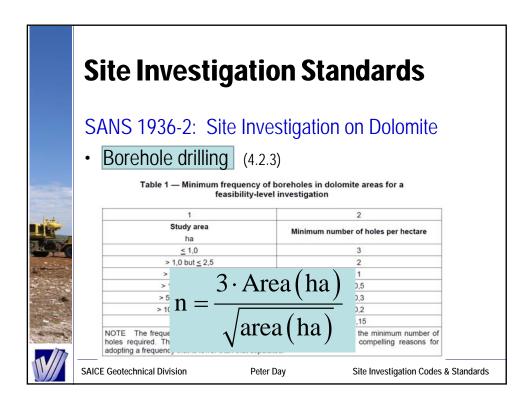


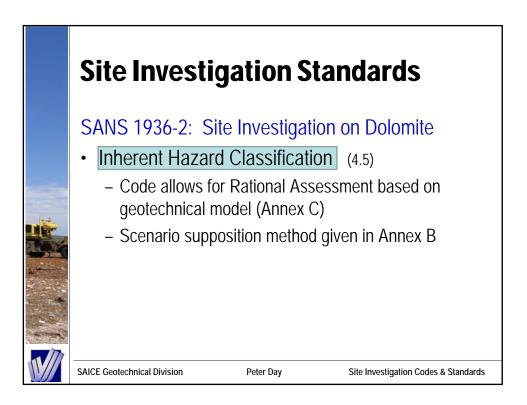


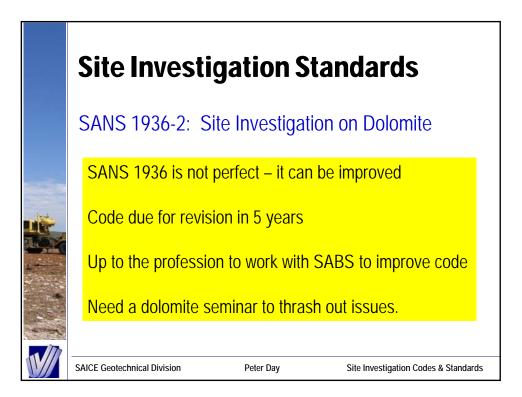


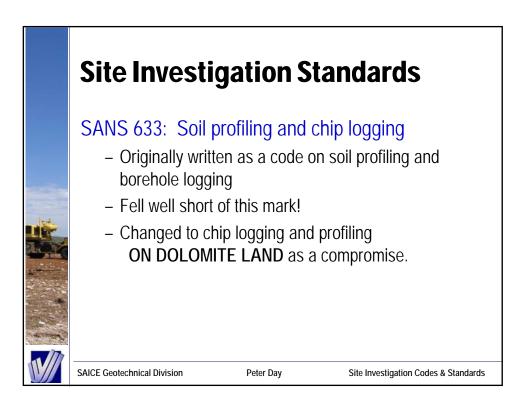


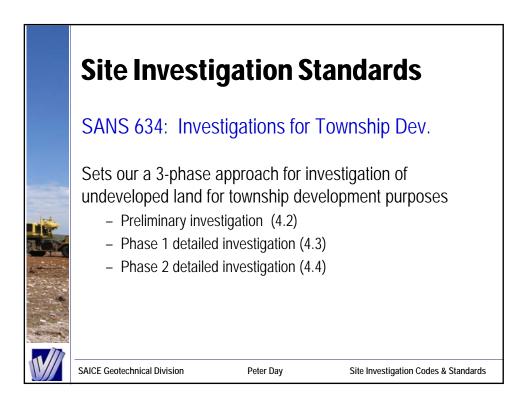










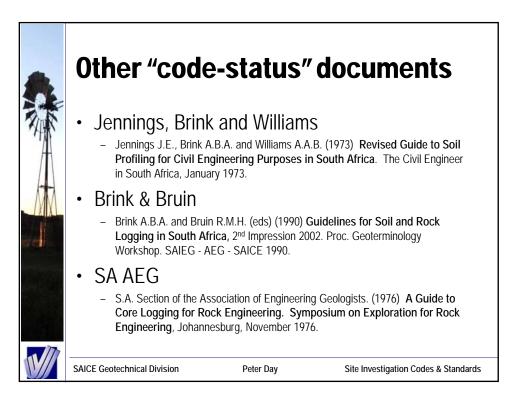

SANS 1	1936-2:	Site Inves	stigation	on Dolo	omite
1	2	3	4	5	6
	5	Statistical occurrenc	es of sinkholes and		
Inherent hazard class	Small sinkhole	Medium sinkhole	Large sinkhole	Very large sinkhole	Subsidence
	< 2 m	2 m to 5 m	5 m to 15 m	> 15 m	
1	Low	Low	Low	Low	Low
2	Medium	Low	Low	Low	Medium
3	Medium	Medium	Low	Low	Medium
4	Medium	Medium	Medium	Low	Medium
5	High	Low	Low	Low	High
6	High	High	Low	Low	High
7	High	High	High	Low	High
8	High	High	High	High	High
– low: 0 <u>-</u> – medium: > ($\leq 0,1$ (return point of $1,0$ (return point	of the event/hectare o eriod is greater than 20 eriod is between 200 a eriod is less than 20 ye	00 years) and 20 years)	IS IN THE IONOWIN	g ranges.

	Site Investigation Standards
	SANS 634: Investigations for Township Dev.
	Preliminary Investigation: (4.2)
	– Desk study
	 geology and geohydrology
12.4	• mining
UR.	topography
	 terrain units (photo interpretation)
*	existing reports
	seismicity
	 Identification of restraints
*	- Reporting
V//	SAICE Geotechnical Division Peter Day Site Investigation Codes & Standards

		•	on Star	
AIN			ONS FOR TOW	
1	2	3	4	5
-	Constraint		Descriptor	-
Letter	Description	1 (most favourable)	2 (intermediate)	3 (least favourable)
A	Collapsible soil	Any collapsible horizon or consecutive horizons totalling a depth of less than 750 mm in thickness ^a	Any collapsible horizon or consecutive horizons with a depth of more than 750 mm in thickness	A "least favourable" situation for this constraint does not occur
В	Seepage	Permanent or perched water table more than 1,5 m below ground surface	Permanent or perched water table less than 1,5 m below ground surface	Swamps and marshes
С	Active soil	Low soil-heave potential anticipated ^a	Moderate soil-heave potential anticipated	High soil-heave potentia anticipated
D	Highly compressible soil	Low soil compressibility anticipated ^a	Moderate soil compressibility anticipated	High soil compressibility anticipated
E	Erodability of soil	Low	Intermediate	High
F	Difficulty of excavation to 1,5 m depth	Scattered or occasional boulders less than 10 % of the total volume ^a	Rock or hardpan pedocretes between 10 % and 40 % of the total volume	Rock or hardpan pedocretes more than 40 % of the total volume
G	Undermined ground	Undermining at a depth greater than 200 m below surface (except where total extraction mining has not occurred)	Old undermined areas to a depth of 200 m below surface where stope closure has ceased	Mining within less than 200 m of surface or where total extraction mining has taken place



	SANS 63	84: Investig	ation Standa gations for Townshi	o Dev.
		1	2	
		Study area ha	Minimum number of holes per h	ectare
		<u><</u> 1,0	4	
Ser.		> 1,0 <u><</u> 2,0	3	
		> 2,0 <u><</u> 4,0	2	
-01658		> 4,0 <u><</u> 6,0	1,5	
		> 6,0 <u><</u> 10,0	1	
		> 10,0 <u><</u> 100,0	0,5	
TAN		> 100 <u><</u> 500	0,35	
		> 500	0,3	
1				
	SAICE Geotechnica	Division	Peter Day Site Inves	stigation Codes & Standards


Site inv	estiga	ntion Sta	naaras	
		и с т		
SANS 634	: Investig	ations for Tov	whship Dev.	
Table 4 — Mi	nimum test sam	ples for different size	s of study areas	
		pies for unterent size		
1	2	3	4	
Study area	Minimum number of test samples			
ha	Foundation indicator	Consolidometer/ swell ^a	Chemistry (see 4.3.2.2)	
< 5	3	2	2	
> 5 <u><</u> 10	4	3	2	
> 11 <u><</u> 20	6	4	3	
> 21 <u><</u> 50	10	5	5	
> 51 <u><</u> 100	15	6	10	
> 101 <u><</u> 200	20	10	10	
> 201 to 500	50	20	10	
a	y feasible			

		ligation Standarda
site i	nves	tigation Standards
		U
SANS 6	534: Inv	estigations for Township Dev
		0
	Table 5 — Clas	sification of material for machine excavation
1	2	3
Excavation	Classification	Description
Restricted	Soft	Material which can be efficiently removed by a back-acting excavator of flywheel power > 0,10 kW for each millimetre of tine bucket width.
	Intermediate	Material which can be removed by a back-acting excavator o flywheel power > 0,10 kW for each millimetre of tined bucket width or with the use of pneumatic tools, before removal by a machine capable of removing soft material.
	Hard rock	Material that cannot be removed without blasting or wedging and splitting.
		Material which can be efficiently removed or loaded, without prior ripping, by any of the following:
	Soft	 a) a bulldozer or a track-type front-end loader with an approximate mass of 22 tonnes and 145 kW flywheel power.
		b) a tractor-scraper unit with an approximate mass of 28 tonnes and 245 kW flywheel power, pushed during loading by a bulldozer equivalent to that described in (a) above.
Non-restricted	Intermediate	Material that can be efficiently ripped by a bulldozer with ar approximate mass of 35 tonnes and 220 kW flywheel power.
	Hard rock	Material that cannot be efficiently rinned by a buildozer with an

