Chapter 14

How Biological Diversity Evolves

PowerPoint[®] Lectures for Campbell Essential Biology, Fifth Edition, and Campbell Essential Biology with Physiology, Fourth Edition

- Eric J. Simon, Jean L. Dickey, and Jane B. Reece

Lectures by Edward J. Zalisko

© 2013 Pearson Education, Inc.

PEARSON

1

ALWAYS LEARNING

Biology and Society: The Sixth Mass Extinction

 Over the past 540 million years, the fossil record reveals five periods of extinction when 50–90% of living species suddenly died out.

Figure 14.0

Biology and Society: The Sixth Mass Extinction

- Our current rate of extinction, over the past 400 years, indicates that we may be living in, and contributing to, the sixth mass extinction period.
- Mass extinctions pave the way for the evolution of new and diverse forms, but it takes millions of years for Earth to recover.

THE ORIGIN OF SPECIES

- When Darwin visited the Galápagos Islands, he realized that he was visiting a place of origins.
 - Although the volcanic islands were geologically young, they were home to many plants and animals known nowhere else in the world.
 - Darwin thought it unlikely that all of these species could have been among the original colonists of the islands.

THE ORIGIN OF SPECIES

- In the 150 years since the publication of Darwin's book On the Origin of Species by Means of Natural Selection, new discoveries and technological advances have given scientists a wealth of new information about the evolution of life.
- The diversity of life evolved through speciation, the process in which one species splits into two or more species.

What Is a Species?

- Species is a Latin word meaning
 - "kind" or
 - "appearance."
- The biological species concept defines a species as "A group of populations whose members have the potential to interbreed with one another in nature to produce fertile offspring."

Similarity between different species

Diversity within one species

Figure 14.2a

Similarity between different species

Diversity within one species

What Is a Species?

- The biological species concept cannot be applied in all situations, including
 - fossils and
 - asexual organisms.

- Some other definitions of species are based on
 - measurable physical traits,
 - the use of ecological resources, or
 - unique adaptations to particular roles in a biological community.

• **Prezygotic barriers** prevent mating or fertilization between species.

17

Reproductive Barriers between Species

- Prezygotic barriers include
 - temporal isolation,
 - habitat isolation,
 - behavioral isolation,
 - mechanical isolation, and
 - gametic isolation.

Gametic Isolation

Temporal Isolation

Skunk species that mate at different times

Habitat Isolation

Garter snake species from different habitats

Behavioral Isolation

Mating ritual of blue-footed boobies

Mechanical Isolation

Snail species whose genital openings cannot align

Gametic Isolation

Sea urchin species whose gametes cannot fuse

- Postzygotic barriers operate if
 - interspecies mating occurs and
 - hybrid zygotes form.

Reproductive Barriers between Species

- Postzygotic barriers include
 - reduced hybrid viability,
 - reduced hybrid fertility, and
 - hybrid breakdown.

POSTZYGOTIC BARRIERS

Reduced Hybrid Fertility

Reduced Hybrid Viability

Horse Donkey Mule

Hybrid Breakdown

Reduced Hybrid Viability

Frail hybrid salamander offspring © 2013 Pearson Education, Inc.

Reduced Hybrid Fertility

Hybrid Breakdown

Sterile next-generation rice hybrid

- A key event in the potential origin of a species occurs when a population is somehow cut off from other populations of the parent species.
- Species can form by
 - -allopatric speciation, due to geographic isolation, or
 - -sympatric speciation, without geographic isolation.

Allopatric Speciation

- Geologic processes can
 - fragment a population into two or more isolated populations and
 - contribute to allopatric speciation.

Ammospermophilus harrisii

Ammospermophilus leucurus

- Speciation occurs with the evolution of reproductive barriers between
 - the isolated population and
 - its parent population.
- Even if the two populations should come back into contact at some later time, the reproductive barriers will keep them as separate species.

39
- There are two contrasting patterns for the pace of evolution:
 - the gradual pattern, in which big changes (speciations) occur by the steady accumulation of many small changes, and
 - 2. the **punctuated equilibria** pattern, in which there are
 - long periods of little apparent change (equilibria) interrupted (punctuated) by
 - relatively brief periods of rapid change.

^{© 2013} Pearson Education, Inc.

THE EVOLUTION OF BIOLOGICAL NOVELTY

• What accounts for the dramatic differences between dissimilar groups?

Adaptation of Old Structures for New Functions

50

• Birds

- are derived from a lineage of earthbound reptiles and
- evolved flight from flightless ancestors.

Adaptation of Old Structures for New Functions

- An exaptation is
 - a structure that evolves in one context but becomes adapted for another function and
 - a type of evolutionary remodeling.
- Exaptations can account for the evolution of novel structures.

Adaptation of Old Structures for New Functions

- Bird wings are modified forelimbs that were previously adapted for non-flight functions, such as
 - thermal regulation,
 - courtship displays, and/or
 - camouflage.
- The first flights may have been only glides or extended hops as the animal pursued prey or fled from a predator.

^{© 2013} Pearson Education, Inc.

EARTH HISTORY AND MACROEVOLUTIO

 Macroevolution is closely tied to the history of Earth.

Geologic Time and the Fossil Record

- The fossil record is
 - the sequence in which fossils appear in rock strata and
 - an archive of macroevolution.

A sedimentary fossil formed by minerals replacing the organic matter of a tree

Trace fossils: footprints, burrows, or other remnants of an ancient organism's behavior

© 2013 Pearson Education, Inc.

A researcher excavating a fossilized dinosaur skeleton from sandstone

A 45-million-year-old insect embedded in amber

Tusks of a 23,000-year-old mammoth discovered in Siberian ice

56

 Geologists have established a geologic time scale that divides Earth's history into a consistent sequence of geologic periods.

Copyright © 2001 by Benjamin Cummings an imprint of Addison Wesley

Animation: Macroevolution

Right click slide / select "Play"

Table 14.1

Table 14.1	The Geologic Time Scale					
Geologic Time	Period	Ag Epoch of	ge (millions years ago)	Some Important Events in the History of Life	ļ	Relative Fime Spa
Cenozoic era	Quaternary	Recent		Historical time		Cenozoi
		Pleistocene	0.01	Ice ages; humans appear	1	Mesozoi
	Tertiary	Pliocene	5	Origin of genus Homo	Balac	
		Miocene	22	Continued speciation of mammals and angiosperms	Paleo	Paleozoi
		Oligocene	23	Origins of many primate groups, including apes		
		Eocene	54	Angiosperm dominance increases; origins of most living mammalian orders		
		Paleocene	50	Major speciation of mammals, birds, and pollinating insects	Ш	
Mesozoic era	Cretaceous		145	Flowering plants (angiosperms) appear; many groups of organisms, including most dinosaur lineages, become extinct at end of period (Cretaceous extinctions)		
	Jurassic		145	Gymnosperms continue as dominant plants; dinosaurs become dominant		
	Triassic		200	Cone-bearing plants (gymnosperms) dominate landscape; speciation of dinosaurs, early mammals, and birds		
Paleozoic era	Permian		200	Extinction of many marine and terrestrial organisms (Permian extinctions); speciation of reptiles; origins of mammal-like reptiles and most living orders of insects		
	Carboniferous		299	Extensive forests of vascular plants; first seed plants; origin of reptiles; amphibians become dominant		Pre- cambriar
	Devonian		309	Diversification of bony fishes; first amphibians and insects		
	Silurian		410	Early vascular plants dominate land		
	Ordovician		488	Marine algae are abundant; colonization of land by diverse fungi, plants, and animals		
	Cambrian		540	Origin of most living animal phyla (Cambrian explosion)		
			600	Diverse algae and soft-bodied invertebrate animals appear 🔍 🐗 🥁		
			635	Oldest animal fossils		
Dreeswheite		2,	,100	Oldest eukaryotic fossils		
Precambria	n	2,	,700	Oxygen begins accumulating in atmosphere		
		3,	,500	Oldest fossils known (prokarvotes)		
		4.	.600	Approximate time of origin of Earth		
		•,	,	Approximate time of origin of Lutin		

	542 600	Diverse algae and soft-bodied invertebrate animals appear
	635	Oldest animal fossils
Precambrian	2,100	Oldest eukaryotic fossils
	2,700	Oxygen begins accumulating in atmosphere
	3,500	Oldest fossils known (prokaryotes)
	4,600	Approximate time of origin of Earth

		251	
	Permian	201	Extinction of many marine and terrestrial organisms (Permian extinctions); speciation of reptiles; origins of mammal-like reptiles and most living orders of insects
	Carboniferous	255	Extensive forests of vascular plants; first seed plants; origin of reptiles; amphibians become dominant
Paleozoic era	Devonian	359	Diversification of bony fishes; first amphibians and insects
	Silurian	410	Early vascular plants dominate land
	Ordovician	444 499	Marine algae are abundant; colonization of land by diverse fungi, plants, and animals
	Cambrian	542	Origin of most living animal phyla (Cambrian explosion)

	Quaternary	Recent	Historical time	ĥ
		Pleistocene	Ice ages; humans appear	A _
		1.8 Pliocene	Origin of genus <i>Homo</i>	
Cenozoic		Miocene	Continued speciation of mammals and angiosperms	
era	Tertiary	23 Oligocene	Origins of many primate groups, including apes	B
		Eocene	Angiosperm dominance increases; origins of most living mammalian orders	X
		Paleocene	Major speciation of mammals, birds, and pollinating insects	- SA
		65		

- Fossils are reliable chronological records only if we can determine their ages, using
 - the *relative age* of fossils, revealing the order in which groups of species evolved, and/or
 - the *absolute age* of fossils, requiring other methods such as radiometric dating.

Radiometric dating

- is the most common method for dating fossils,
- is based on the decay of radioactive isotopes, and
- helped establish the geologic time scale.

How carbon-14 dating is used to determine the vintage of a fossilized clam shell

Carbon-14 is taken up by the clam in trace quantities, along with much larger quantities of carbon-12.

After the clam dies, carbon-14 amounts decline due to radioactive decay.

Measuring the ratio of carbon-14 to carbon-12 reveals how many halflife reductions have occurred since the clam's death.

66

Radioactive decay of carbon-14

© 2013 Pearson Education, Inc.

67

How carbon-14 dating is used to determine the vintage of a fossilized clam shell

Carbon-14 is taken up by the clam in trace quantities, along with much larger quantities of carbon-12.

How carbon-14 dating is used to determine the vintage of a fossilized clam shell

Carbon-14 in shell

Carbon-14 is taken up by the clam in trace quantities, along with much larger quantities of carbon-12.

After the clam dies, carbon-14 amounts decline due to radioactive decay.

How carbon-14 dating is used to determine the vintage of a fossilized clam shell

Carbon-14 in shell

Carbon-14 is taken up by the clam in trace quantities, along with much larger quantities of carbon-12.

After the clam dies, carbon-14 amounts decline due to radioactive decay.

Measuring the ratio of carbon-14 to carbon-12 reveals how many halflife reductions have occurred since the clam's death.

- The continents are not locked in place.
 - Continents drift about Earth's surface on plates of crust floating on a flexible layer of hot, underlying material called the mantle.

- Japan sits atop four different plates.
 - A tsunami, caused by an earthquake off the coast of Japan, resulted in the disaster of March 2011.
 - Frequent earthquakes occur as the plates move and bump against each other.

Figure 14.16

Plate Tectonics and Macroevolution

- About 250 million years ago,
 - plate movements formed the supercontinent Pangaea,
 - the total amount of shoreline was reduced,
 - ocean basins increased in depth,
 - sea levels dropped,
 - the dry continental interior increased in size, and
 - many extinctions occurred.

77

- About 180 million years ago,
 - Pangaea began to break up,
 - large continents drifted increasingly apart,
 - climates changed, and
 - the organisms of the different biogeographic realms diverged.

- Plate tectonics helps to explain
 - why Mesozoic reptiles in Ghana (West Africa) and Brazil look so similar and
 - how marsupials were free to evolve in isolation in Australia.

Mass Extinctions and Explosive Diversifications of Life

- The fossil record reveals that five mass extinctions have occurred over the last 540 million years.
- The Permian mass extinction
 - occurred at about the time the merging continents formed Pangaea (250 million years ago) and
 - claimed about 96% of marine species.

Mass Extinctions and Explosive Diversifications of Life

- The Cretaceous extinction
 - occurred at the end of the Cretaceous period, about 65 million years ago,
 - included the extinction of all the dinosaurs except birds, and
 - permitted the rise of mammals.

- Homologous structures
 - reflect variations of a common ancestral plan and
 - are one of the best sources of information used to
 - develop phylogenetic trees and
 - classify organisms according to their evolutionary history.
- **Convergent evolution** involves superficially similar structures from different evolutionary branches that result from natural selection shaping analogous adaptations.
- Similarity due to convergence is called **analogy**, not homology.
- To develop phylogenetic trees and classify organisms according to their evolutionary history, we use only homologous similarities.

118

Evolution Connection: Rise of the Mammals

- Mass extinctions
 - have repeatedly occurred throughout Earth's history and
 - were followed by a period of evolutionary change.

Evolution Connection: Rise of the Mammals

- Fossil evidence indicates that
 - mammals first appeared about 180 million years ago but
 - the number of mammalian species
 - remained steady and low in number until about
 65 million years ago and
 - greatly increased after most of the dinosaurs became extinct.

Evolution Connection: Rise of the Mammals

• Throughout the process of evolution by natural selection, this pattern of death and renewal is repeated throughout the history of life on Earth.

© 2013 Pearson Education, Inc.

© 2013 Pearson Education, Inc.

American black bear © 2013 Pearson Education, Inc.

© 2013 Pearson Education, Inc.