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14. MODELING OF THIN-WALLED SHELLS AND PLATES. INTRO-
DUCTION TO THE THEORY OF SHELL FINITE ELEMENT 
MODELS 

14.1 Plate and shell theories 
Plane structures are called plates if the thickness of structure is significantly less than the 
other dimensions, moreover if the structure is loaded perpendicularly to its plane. The plate 
can be bounded along its sides by an optional geometrical object; the kinematic boundary 
conditions can be various (point-supported, rigidly or elastically supported along the sides, 
simply supported, etc.) [1]. The plate can be considered as the extension of a beam in two 
dimensions, because both implies the dominance of the bending load and most commonly 
the load is introduced transversely. Nevertheless, there are significant differences too, since 
e.g. the flexure of the beam can be either straight or curved, on the other hand the midplane 
of a plate is always flat. If the midplane of the plate is curved then it is no longer plate but 
a shell [2]. In the sequel we overview the most important details of the theory of plates and 
shells. 

14.2 The basic equations of  Kirchhoff plate theory 
The Kirchhoff plate theory is often called the theory of thin plates. We note that if the plate 
is relatively thick then the transverse shear deformation can be considered too. The rele-
vant plate solution is provided by the Mindlin plate theory [1]. 

14.2.1 Displacement field 
Based on Fig.14.1 we investigate the displacement of a point of the midplane of an elastic 
flat plate [2,3]. The displacement field can be captured by three components: the transverse 
displacement along z and the rotations about x and y, i.e.: 
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where α = α(x,y) is the rotation about axis x, β = β(x,y) is the rotation about axis y and w = 
w(x,y) is the transverse displacement. 

 

Fig.14.1.Displacement of a point in the midplane of a flat plate. 

http://www.tankonyvtar.hu/�


Alfejezetcím    3 

 Dr. András Szekrényes, BME   www.tankonyvtar.hu 

14.2.2 Strain components 
Assuming small strains we can calculate the strain components by using the strain-
displacement equation defined in section 11 by Eq.(11.14) [1,4]: 
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where – for the sake of simplicity - the derivatives with respect to x and y are indicated in 
the subscript. In the sequel we assume that the cross section planes remain flat and the 
outward normal of each cross section is perpendicular to the cross section plane after the 
deformation. This assumption is called Kirchhoff-Love hypothesis [1]. From the latter it 
follows that in the planes perpendicular to the midplane of the plate the shear strains are 
equal to zero: 
 0== yzxz γγ ⇒ xw,−=β  and yw,=α . (14.3) 
Utilizing the former we obtain from Eq.(14.1) that: 
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The strain components become: 
 zw xxx ⋅−= ,ε , zw yyy ⋅−= ,ε , zw xyxy ⋅−= ,2γ . (14.5) 
Consequently in the midplane points εz = 0. According to the Kirchhoff plate theory under 
the assumption of small strains the components of the displacement and strain field can be 
defined by w(x,y) .  

14.2.3 Stress field, forces and moments in the midplane 
Assuming plane stress state we express the stress components by Eqs.(11.18) and (14.5): 
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where E1 = E/(1-ν2), A, B and C are constants. Similarly to the theory of beams subjected 
to bending the stress distributions are given by linear functions along the thickness direc-
tion, as it is shown by Fig.14.2. 
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Fig.14.2. Distribution of the stresses along the thickness direction of a differential plate element. 

The stress couples in the midplane of the plate are calculated by integrating the stresses 
over the thickness [3]: 
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where Mx is the bending moment along axis x, My is the bending moment along axis y, Mxy 
and Myx are the twisting moments. Moreover: 
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which is – similarly to beams – the second order moment of inertia of the cross section. 
The stress couples in the midplane of the plate are demonstrated in Fig.14.3a. The relation-
ships between stresses and stress couples (bending and twisting moments) based on 
Eqs.(14.6) and (14.7) are: 
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For the equilibrium of a differential plate element transverse shear forces are required. 
Transverse shear forces are shown by Fig.14.3b and they can be calculated using the fol-
lowing formulae [1,3]: 
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Fig.14.3. Stress couples in the midplane of a thin differential plate element (a) and its equilibrium 
in the case of transverse shear forces and distributed load (b). 

14.2.4 The equilibrium and governing equation of thin plates 
The homogeneous equilibrium equation with respect to the stress field has already been 
introduced in section 11. [4]: 
 0=∇⋅σ ,  (14.11) 
of which first component equation is: 
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Integrating the equation with respect to z yields: 

 00 =−+
∂
∂

+
∂
∂

∫∫ xzxzCzdz
y

Azdz
x

ττ ,  (14.13) 

and: 

 xzxzCz
y

Az
x

ττ −=







∂
∂

+







∂
∂ 022

2
1

2
1 ,  (14.14) 

finally: 
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Next, we integrate Eq.(14.15) within the ranges of –t/2 and t/2: 

 dzzdzz
y

dzz
x

t

t
xzxz

t

t
xy

t

t
x ∫∫∫

−−−

−=








∂
∂

+








∂
∂ 2/

2/

0
2/

2/

2/

2/

))((2 τττσ ,  (14.16) 

where τ0
xz is an integration constant. A possible solution for τxz, which satisfies even the 

dynamic boundary conditions is [3]: 
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In fact Eq.(14.17) gives the difference between the area under a rectangle and a parabola, 
which is 1/3 of the total area. Accordingly, if it is multiplied by two, then mathematically 
we obtain the area under the parabola, that is, from Eq.(14.16) we have: 
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which is not else than the shear force along axis x given by Eq.(14.10). Taking Eqs.(14.6), 
(14.9) and (14.18) back into the equilibrium equation we obtain: 

 0=−
∂

∂
−

∂
∂

x
xyx Q

y
M

x
M

.  (14.19) 

The second component equation and the corresponding equilibrium equation in terms of 
the stress couples and transverse shear force are: 
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and:  
 yxxy MM −= .  (14.21) 
From the third component equation of Eq.(14.11) we obtain the following: 
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We integrate Eq.(14.22) within the ranges of –t/2 and t/2 with respect to z: 
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and: 
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Based on Eq.(14.10) the first two terms are the shear forces Qx and Qy, the third one is – in 
accordance with the dynamic boundary condition – the intensity of the distributed load, p, 
perpendicularly to the midplane, i.e.: 
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Summarizing the equilibrium equations we have: 
 0,, =−− xyxyxx QMM ,  (14.26) 

 0,, =−+ yxyxyy QMM , 
 0,, =++ pQQ yyxx . 

To derive the plate equation we rearrange the first two equations: 
 yxxyxxxxx MMQ ,,, −= ,  (14.27) 

 xyyxyyyyy MMQ ,,, += . 
Taking them back into the third of Eq.(14.26) we obtain the following:  
 02 ,,, =++− pMMM yyyxyxyxxx .  (14.28) 
By the help of Eq.(14.7) we have: 
 pwwwwwEI xyxyxxyyyyyyyyxxxxxx −=−+⋅++⋅+− ))1(2( ,,,,,11 ννν , 
  (14.29) 
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which, after a simple rearrangement have the form of [5]: 
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or: 
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Consequently the governing equation is a fourth order partial differential equation with the 
proper kinematic and dynamic boundary conditions. That means that the problem of plates 
subjected to bending is a boundary value problem. 

14.3 Finite element equations of thin plates 
For the finite element solution of the problem of thin plates subjected to bending we collect 
the strain and stress field components into vectors and we assume plane stress state [1,6]: 
 [ ]xyyx

T γεεε ,,= ,  (14.32)  

 [ ]xyyx
T τσσσ ,,= . 

Based on Eq.(14.5) the strain components can be written as: 
 κε zT −= ,  (14.33) 
where κ is the vector of curvatures: 
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Incorporating the material law we formulate the vector of stress components as: 
 εσ strC= .  (14.35) 

The strain components can be obtained by a two-variable function w(x,y), the finite ele-
ment interpolation of the w(x,y) function depends on the element type and the chosen de-
grees of freedom, but it can always be formulated in the form below: 
 λTAyxw =),( ,  (14.36) 
where A is the vector of unknown coefficients, λ is the vector of basis polynomials. The 
vector of nodal displacements is: 
 AMu e = ,  (14.37) 
which, for example in the case of a triangle element with three nodes becomes: 
 [ ]333222111 βαβαβα wwwuT

e = .  (14.38) 
In Eq.(14.37) matrix M can be calculated based on the approximate w(x,y) function and 
Eq.(14.1). The αi and βi parameters are the rotations about the axes x and y in the corre-
sponding nodes, where i = 1, 2, 3. From Eq.(14.37) we have: 

 euMA 1−= .  (14.39)  
Generally speaking, the vector of strain components can be determined using the strain-
displacement matrix: 

 euB=ε ,  (14.40) 
where Eq.(14.40) can be reformulated utilizing Eqs.(14.5), (14.37) and (14.39) as follows: 
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 euMRAR 1−==ε ,  (14.41) 
where matrix R establishes the relationship between the vector of strain components and 
the vector of unknown coefficients, its dimension is element dependent. Consequently we 
have: 
 1−= MRB .  (14.42) 
Following the definition by Eq.(12.9) we formulate the element stiffness matrix as: 
 dVBCBK

eV

TstrT
e ∫= .  (14.43) 

The dimension of the element stiffness matrix depends on the number of nodes and the 
number of nodal degrees of freedom. Similarly to the plane membrane element, the vector 
of forces is composed as the sum of several terms. The most common is the distributed 
(surface) load and concentrated force. By formulating the work of external forces we de-
rive the force vector related to the distributed load: 
 ep

T
e

A
e FudAyxwpW

pe

=⋅= ∫ ),( ,  (14.44) 

where p is the intensity of the distributed load perpendicularly to the midplane of the plate, 
w(x,y) is the approximate function of the deflection surface according to Eq.(14.36). The 
vector Fep can be determined based on the vector of nodal displacements. In the case of 
concentrated loads, considering e.g. a triangular shape plate element with three nodes, at 
each node there can be a force perpendicularly to the plate surface and even concentrated 
moments acting about the x and y axes, respectively: 
 [ ]333222111 yxzyxzyxz

T
ec MMFMMFMMFF = .  

  (14.45) 
Thus, the vector of forces becomes: 
 ecepe FFF += .  (14.46) 
Eventually, the finite element equilibrium equation for a single element and for the whole 
structure is: 
 eee FuK = , FUK = .  (14.47) 
Similarly to the plane membrane elements there is large number of plate bending elements. 
These elements will be reviewed in section 15. 

14.4 Basic equations of the technical theory of thin shells  
In that case when the midplane of a thin-walled structure is not flat but curved, then we 
talk about shells. The analytical investigation of shells requires considerably complicated 
mathematical computations. Therefore in the sequel only the most important equations will 
be presented. 

14.4.1 Geometrical equations 
Due to the fact that the midsurface of shells is curved, we need to introduce curvilinear 
coordinate systems, as it is shown by Fig.14.4.  
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Fig.14.4. Coordinate lines and unit basis vectors of the midsurface of a shell. 

The two-parameter representation of the midsurface of shells can be formulated in the form 
of a vector equation [1,4]: 

 ),( 21 qqRR = ,  (14.48) 
where: 
 ),( 21 qqXX = , ),( 21 qqYY = , ),( 21 qqZZ = ,  (14.49) 
are the global coordinates, R is the position vector of a point in the, q1 and q2 are the gen-
eral or curvilinear coordinates of the surface (see Fig.14.4). If the parameters take on the 
values q1 = constant and q2 = constant, we obtain the q1 and q2 coordinate lines. The tan-
gent unit vectors ei and the arc lengths dSi of the coordinate lines are: 
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where: 
 ii RH ,= , i = 1, 2, (14.51) 
are the so-called Lamé parameters [1] or metric coefficients [4]. In the followings we as-
sume that the local coordinate axes are mutually perpendicular at each point, and the curvi-
linear system is orthogonal, i.e. e1⋅e2 = 0. The outward unit normal vector of the midsurface 
becomes: 
 21 een ×= . (14.52) 
The triad of unit orthogonal vectors [e1, e2, n] determines an orthogonal curvilinear coordi-
nate system at an actual point P. The curvature and the torsion of coordinate lines are given 
by the Frenet formulae [1,7]: 
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where R1 and R2 are the radii of curvature. If R12 = 0, then the q1 and q2 lines are the lines 
of principal curvatures on the midsurface, moreover the directions of the unit basis vectors 
e1 and e2 are the principal directions. The curvature of the midsurface is a tensor quantity. 
If the directions of vectors e1’ and e2’ are not the principal directions, then the angle, which 
determines the principal directions can be obtained by: 
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The values of the principal curvatures are [1,7]: 
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In the followings we investigate the special case, when the directions of unit basis vectors 
coincide with the principal directions. The derivatives of the unit basis vectors of the coor-
dinate system on the midsurface are [1,4]: 
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  (14.56) 
Point P* is located on a surface parallel to the midsurface and the distance of point P* from 
point P is given by coordinate z measured along the normal vector n. Based on Fig.14.4 the 
position vector of point P* is: 
 nzRR +=* . (14.57) 
The unit vectors are independent of coordinate z, viz.: 
 ii ee =* . (14.58) 
The derivative of the position vector of point P* can be written as: 
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Consider the followings: 
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i
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zdSdS += , i = 1, 2. (14.60) 

which are the Lamé parameters and arc lengths with respect to point P*.  

14.4.2 Stress resultants and couples, equilibrium equations 
Fig.14.5 shows the stresses on the boundary planes of a differential shell element, while 
Fig.14.6 presents the stress resultants and couples (internal forces and moments) on the 
midsurface of the differential shell element with dimensions of dS1xdS2.  
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Fig.14.5. Stress components on the boundary planes of a differential shell element. 

 

Fig.14.6. Internal forces and moments in the midsurface of a differential shell element. 

We must consider the relationship between the arc lengths dSi and dSi
* given by Eq.(14.60) 

when we establish the relationship between the stresses acting on the differential shell ele-
ment with thickness t and the internal forces, moments on the midsurface of the shell ele-
ment. The stress resultants and stress couples acting on the curve with outward normal e1 
are: 
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where N11 is the in-plane normal force, N12 and N21 are the in-plane shear forces, Q1 is the 
transverse shear force, M11 is the bending moment, M12 and M21 are the twisting moments, 
respectively. It must be taken into consideration that although the reciprocity law of shear 
stresses implies τ12 = τ21, in the equations above N12 ≠ N21 and M12 ≠ M21, which can be 
explained by the fact that the radii of curvatures are in general not equal to each other, i.e.: 
R1 ≠ R2. The development of equilibrium equations establishing the equilibrium between 
external loads and internal forces and moments in the shell structure is also very compli-
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cated. Therefore we present only the resulting equations. The equilibrium equations in the 
case of stress resultants are [1,7]: 
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where p1 and p2 are the tangentially distributed loads along directions 1 and 2, p3 is the 
distributed load perpendicularly to the shell midsurface. The equilibrium equations in the 
case of stress couples and moment of stress resultants are: 
 0)()( 2212,1111,2212,2211,122 =−−++ QHHHMHMMHMH ,   
  (14.63) 
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where in the subscript the comma and the number refer to the differentiation with respect 
to the corresponding coordinate. 

14.4.3 Displacement field, strain components 
Based on Fig.14.7 the vector of displacements and rotations in a point P on the shell 
midsurface can be written as: 
 nweveuu ++= 21 , nee 32211 ββββ +−= . (14.65) 

 

 

Fig.14.7. Displacement of a point on the midsurface of a thin shell. 

In accordance with the kinematic hypothesis of the shell theory the components of vector u 
in a point P* out of the midsurface are [1,7]: 
 zuu 1

* β+= , zvv 2
* β+= , ww =* , (14.66) 

i.e. the line of material points, which is perpendicular to the shell midsurface remains per-
pendicular during the deformation. The equations describing the in-plane strains and 
changes in curvature are [1,7]: 
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where ε1 and ε2 are the in-plane strains in the directions of q1 and q2 coordinate lines, γ12 is 
the shear strain related to the change of angle between unit vectors e1 and e2 during the 
deformation, κ11 and κ22 are the changes in curvatures in the directions of q1 and q2 param-
eters, κ12 is the twisting curvature. The shear strains related to the unit normal and unit 
vectors e1, e2 are [1,7]: 

 11,
11

13
1 βγ ++−= w

HR
u , 22,

22
23

1 βγ ++−= w
HR

v . (14.68) 

We assume that during the deformation of shell an actual line of material points remain 
perpendicular to the curved shape of shell midsurface, accordingly the shear strains given 
by (14.68) are equal to zero. The kinematic hypothesis of shell theory together with the one 
mentioned before is called the Kirchhoff–Love hypothesis. Under theses assumptions we 
have: 

 1,
11

1
1 w

HR
u
−=β , 2,

21
2

1 w
HR

v
−=β . (14.69) 

In other words the additional transverse shear deformation is neglected (similarly to Kirch-
hoff’s theory of thin plates). The rotation about axis z can be formulated by the following 
expression [1,7]: 

 ])()[(
2

1
2,11,2

21
3 uHvH

HH
−=β .  (14.70) 

Nevertheless, in most of the cases the rotation about z is negligible; therefore it is not con-
sidered in the equations. 

14.4.4 Approximations within the technical theory of thin shells 
The shell is considered to be thin if the thickness is relatively small compared to the small-
er radius of curvature, viz. [1]: 

 1
2

<<
R
z .  (14.71) 

Consequently, the Lamé parameters and the arc lengths on the midsurface and out of the 
midsurface are approximately equal, which leads to: 
 ii HH ≅*  and: ii dSdS ≅* , i = 1, 2.  (14.72) 
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Accordingly, Eq.(14.61) can be simplified significantly: 
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1212 MzdzM

t

t

== ∫
−

τ . 

It is seen that in this case the transverse shear forces and torsional moments are equal to 
each other, which violates the equilibrium equations given by Eq. (14.64). This approxima-
tion is permitted within the technical theory of thin shells.  

14.5 Major steps in the finite element modeling of shells 
In the course of the finite element discretization of shells – similarly to the plane and plate 
problems – we proceed the interpolation of the geometry and the displacement field [1,7]. 
The vector of displacement and rotation components in a point located on the shell 
midsurface is: 
 [ ]wvuuT = ,  (14.74) 
 [ ]321 ββββ =T . 
The components of these vectors are not independent of each other. From Eq.(14.67) we 
calculate the in-plane strains and the changes in curvature: 
 [ ]122211 2γεεε =T ,  (14.75) 
 [ ]122211 2κκκκ =T . 
We collect the in-plane forces and moments into a vector: 
 [ ]122211 NNNN T = ,  (14.76) 
 [ ]122211 MMMM T = . 
Transverse shear forces Q1, Q2 are not considered in the calculation of the deformation. 
Finally the vectors of the surface loads and concentrated forces and moments are: 
 [ ]311 ppppT = ,  (14.77) 

 [ ]QNNT
N

−= 21ρ , 

 [ ]021 MMT
M
=ρ ,  

where p contains the distributed loads in the directions of coordinate lines q1 and q2 and 
also the distributed load perpendicularly to the shell midsurface, ρN and ρM contain the 
concentrated forces and moments acting in the nodes. Using the vectors given by 
Eqs.(14.75)-(14.77) the total potential energy is formulated as: 

dSudqdqHHpudqdqHHMN
S

M
T

N
T

A

T

A

TT
e ∫∫∫ +−−+=Π )()(

2
1

21212121 ρβρκε . 

   (14.78) 
We assume that the material of the thin shell is linear elastic, homogeneous and isotropic. 
Then, the vector of in-plane forces and vector of moments can be calculated as follows: 

 εstrCtN = , κstrCtM
12

3

= , (14.79) 

where the constitutive matrix assuming plane stress state is: 
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Accordingly, Eq.(14.78) becomes: 
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 (14.81) 

Utilizing the definition of the element stiffness matrix and the vector of nodal forces we 
can derive the expression below: 

 e
T
eee

T
ee FuuKu −=Π

2
1 , (14.82) 

from which the finite element equilibrium equation for a single element (the first of 
Eq.(14.47)) can be derived. As a next step we summarize the potential energy of each ele-
ment: 

 FUUKU TT
e −=Π=Π ∑ 2

1 , (14.83) 

and finally applying the minimum principle of the total potential energy we obtain the 
structural equilibrium equation: 
 FUK = . (14.84) 
For the finite element modeling of shells there is very large number of element types. Not 
only the flat shell elements, which give more accurate result under high mesh resolution, 
but also the curved (e.g. cylindrical shell element) and doubly-curved shell element types 
are available, which approximate better both the geometry and the displacement field using 
the same element number. The different plate and shell elements are discussed in sections 
15-17. 
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