

14111: Building an Enterprise
Mobile Application
Lab Exercise

Mobile App Development with IBM Mobile Foundation

Lab 1

© Copyright IBM Corporation, 2013

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

IBM Software

Contents Page 3

Contents
LAB 1 	
 GETTING STARTED WITH IBM WORKLIGHT ... 4 	

1.1	
 START THE WORKLIGHT STUDIO ... 5	

1.2	
 CREATE THE ECAT PROJECT AND APPLICATION ... 6	

1.3	
 PREVIEW COMMON RESOURCES IN MOBILE BROWSER SIMULATOR ... 13	

1.4	
 EXPLORING WORKLIGHT ENVIRONMENTS ... 15	

1.5	
 ENHANCING THE ECAT APPLICATION WITH VISUAL CONTENT .. 21	

1.6	
 TESTING ANDROID AND IPHONE VERSIONS IN THE MOBILE BROWSER SIMULATOR .. 35	

1.7	
 RETRIEVING DATA WITH A WORKLIGHT ADAPTER .. 36	

1.8	
 PREVIEW THE COMPLETE APPLICATION FROM THE TEST SERVER CONSOLE ERROR! BOOKMARK NOT DEFINED.	

1.9	
 TEST IN ANDROID EMULATOR ... ERROR! BOOKMARK NOT DEFINED.	

1.10	
 SUMMARY ... 50	

IBM Software

Page 4 Getting Started with IBM Worklight

Lab 1 Getting Started with IBM Worklight
In this lab you will develop a basic mobile app using the IBM Worklight Studio development environment.
You will use cross platform techniques such as HTML5, CSS3, JavaScript and the Dojo Mobile
framework. The app you will develop and use throughout this PoT is called ECAT and its purpose is to
show you how you can quickly develop a mobile front end to interface and existing 3270 CICS
application running on enterprise systems. The application that you are coing to connect to is EGUI
(CICS Catalog Manager Demo application).

Below are some screenshots from the fully developed application:

In this lab you will build a fully functional version of these three views in the rich page editor.

Upon completion of this exercise you should have gained basic understanding of

o How to create a Worklight project and a Worklight application in Worklight Studio

o How to build and deploy a Worklight application to the test server in the Worklight Studio

o How to preview and test an application from the Worklight Studio

o How to create Worklight Environments for platforms such as Android, iPhone, etc.

o How to use the Rich Page Editor to add UI elements to an application

o How to create and implement a Worklight Adapter (HTTP)

o How to run an application as a Web app

You should possess basic knowledge of HTML, CSS and JavaScript. Familiarity with the Eclipse platform
is a plus, but not required.

IBM Software

Contents Page 5

1.1 Start the Worklight Studio

This lab assumes that you have obtained and started the corresponding VMWare image. In the image
you will launch Eclipse with the Worklight Studio tooling and then create a project for the ECAT app.

__1. Start Worklight Studio

__a. On the Desktop, double-click the Worklight Studio icon (shown below).

__b. On the Workspace Launcher dialog accept the default workspace path
C:\WorklightLab\workspace and click OK.

__c. If you receive an Eclipse Welcome Screen, dismiss it by closing the Welcome tab.

IBM Software

Page 6 Getting Started with IBM Worklight

1.2 Create the ECAT project and application

The application that you are building is actually EGUI (the CICS Catalog Manager sample application),
the eCAT name was something that was inherited from some other work.

__1. Create ECAT project

__a. Select File > New > Worklight Project.

c) Enter ECAT as the project name, keep the default Project Templates selection for
Hybrid Application and click Next.

IBM Software

Contents Page 7

d) The Hybrid Application panel will surface noting that you have not specified an
Application name. Enter ECAT for the Application Name and check the box to Add Dojo
Toolkit. Click Finish

The application template will be populated and the application-descriptor.xml file will
open by default. Application characteristics such as authentication and server URL are
managed in this file. We can leave it at its defaults for now, while we investigate the
parts of a Worklight project and application.

e) In the Project Explorer pane, expand the ECAT project. Review the folder structure that
has been created.

IBM Software

Page 8 Getting Started with IBM Worklight

WL Server Library
Contains the Worklight API jar file
server/java
Location for server-side java code in java-base adapters

(advanced)
JRE System Library
Contains the JRE used in this project
JavaScript Resources
Contains the project’s JavaScript classes content
adapters:
Contains the project’s adapters (used for backend connectivity)
apps:
Contains the project’s applications
bin:
Location for build artifacts (wlapp files) that are deployed to a

Worklight server
components
Contains shell application components (advanced)
dojo
Contains the Dojo Toolkit JavaScript source
Server
Contains configuration files and extension locations for the

embedded Worklight test server

__f. In the Project Explorer, expand the apps folder then the apps > ECAT folder and the
apps > ECAT > common folder that were created by the new application wizard.

common: the default ‘environment’ that gets created for
an application.

css: ECAT.css – the main application CSS file,
reset.css – brings all rendering engines to one common
ground.

images: Default images for the common environment.

js: ECAT.js – the main JavaScript file for the app,
messages.js – JSON object holding all app messages,
auth.js – authentication mechanism.

ECAT.html: The main application html file. Application
can have multiple html files

legal: All legal related documents.

application-descriptor.xml: Application’s meta data
(security config, server url, etc...)

build-dojo*: Artifacts related to custom dojo profile
builds (advanced)

IBM Software

Contents Page 9

__g. Open the application-descriptor.xml file, if not already opened. Switch to the Source
tab. The following section specifies the application name, description and author’s name
to be displayed in the Worklight Console.

__h. The worklightRootURL, is to be used as the root URL in generated mobile applications.

__i. Environment specific information will be inserted automatically as new ‘environments’ are
added to the project. You can observe this change as environments are added during
later portions of the lab.

__2. Add logic to connect to, and handle a connection failure with the Worklight server

__a. Expand the common then js folder, and double-click to open the initOptions.js file.

IBM Software

Page 10 Getting Started with IBM Worklight

This file contains the parameters needed to connect to the Worklight server. These will be
invoked automatically once the Worklight framework initialization completes on the client side.
Here we will change the parameters to

a) Enable the mobile application to connect with the Worklight server

b) Instructions if unable to connect to the server.

Copy and Paste the following code into the initOptions.js file over-writing the code shown in the red
rectangle in the image below.

connectOnStartup : true,

 // # The callback function to invoke in case application fails to connect to
Worklight Server
 onConnectionFailure: function (){
 alert("Worklight server unavailable, running in disconnected
mode.");
 wlCommonInit();
 }

Copy and Paste code from above or Snippet#1.txt from the accompanying Lab Snippets folder on the
desktop for cut & paste.

Below is a screenshot of what the result will look like after your changes.

IBM Software

Contents Page 11

__b. Save the initOptions.js file

__2. Perform a build of the work that you have completed so far.

__a. Right-click the ECAT application and select Run As > Build All and Deploy.

IBM Software

Page 12 Getting Started with IBM Worklight

The Build and Deploy step will publish your application to an embedded test server within
eclipse, where we can preview and test as part of the development life-cycle.

__b. Verify that the build process and that the deployment to Worklight server was successful
by examining the log output in the Console view.

If the console is not displayed, open it with Window > Show view > Other > Console.

Use Window > Use the console icon () to switch between the various consoles if
necessary, until you find the Worklight Console.

IBM Software

Contents Page 13

1.3 Preview common resources in Mobile Browser Simulator

__1. Right-click on either the common folder (to run the common resource web app) or the
ECAT.html file within the common folder and select Run as > Preview (use the first preview
option in the menu)

__2. A new external browser window will open with the Mobile Browser Simulator rendering our
ECAT application.

For this lab, we have configured eclipse to use an external web browser (Chrome), which opens
the Mobile Browser Simulator in a browser window outside of eclipse. Using an external browser
gives freedom to choose your rendering browser, access to advanced debugging features like
Web Inspector in Chrome or Firebug with Firefox, and access to internet settings, cache and
history that are not available when running with the internal browser setting in eclipse (see
Window > Preferences > General > Web Browser for this setting).

As this application has no device characteristics yet, a simple, un-styled mobile browser view is
rendered, with no device configuration options.

IBM Software

Page 14 Getting Started with IBM Worklight

Congratulations! You are previewing your first hello world-like application developed using Worklight.

IBM Software

Contents Page 15

1.4 Exploring Worklight Environments

An environment is a mobile, desktop, or web platform capable of displaying web-based
applications, such as the Apple iPhone, Android phones, Windows 7, and BlackBerry. In this
section you will create environments to provide support for iPhone, Android and Mobile Web.

__1. Creating the Worklight Environments for the ECAT application

__a. In the Project Explorer select the ECAT application (in the /apps/ECAT folder). In the
right click menu select New > Worklight Environment.

__b. In the Worklight Environment dialog, select iPhone, Android phones and tablets, and
Mobile web app, (as seen below) then click Finish.

IBM Software

Page 16 Getting Started with IBM Worklight

Note: In previous versions of the VMware image, we have seen an assertion failure here. If you
see this, please re-try.

__c. Observe the Console window, notice that the messages about the environments that you
have just chosen.

IBM Software

Contents Page 17

__d. In the Project Explorer, observe that there are now additional folders created under the
ECAT application folder.

__2. Quick review of the native folder for specific environments

__a. Android native folder

The new environment’s resources will
have the following relationship with the
common resources:

• images - override the common
images in case both share the same
name

• css – extend and/or override the
common CSS files

• js - extends the common application
instance JS object  (The environment
class extends the common app class)

• HTML - override the common HTML
code in case both share the same
name

• native: contains environment specific

generated application code

The native folder under android
contains automatically
generated android application
code that is imported into the
eclipse workspace as an
Android Project during the Build
and Deploy step (later).

 It is not recommended to edit files
under the assets folder, as
each time the application is built
they are regenerated.

IBM Software

Page 18 Getting Started with IBM Worklight

__b. iPhone folders

The native folder under iphone
contains automatically generated
iphone app code

The package folder under iphone
contains a packaged (zipped)
application

It is not recommended to edit files
under native/www folder, as each time
the application is built they are
regenerated

IBM Software

Contents Page 19

__3. Build and deploy all environments

__a. Right-click the ECAT application and select Run As > Build All and Deploy.

__b. Check the Console log to make sure that the build and deploy is successful.

__c. Observe that the Native Android project has been created and imported into Eclipse
workspace.

IBM Software

Page 20 Getting Started with IBM Worklight

This is an example of IBM Worklight’s tight integration with the device SDKs. Because the
Android SDK is Eclipse-enabled, Worklight is able to immediately generate an Android
Project in the Eclipse workspace (same for BlackBerry). For other platforms, Worklight
will launch the respective non-Eclipse tooling and provide a project in that tool’s format for
completion (eg. Xcode).

We will add some more interesting content in the next section before previewing the environment-specific
variations of the application.

IBM Software

Contents Page 21

1.5 Enhancing the ECAT application with visual content

In this part of the Lab, we are going to continue developing our ECAT application with the new Rich Page
Editor, added in Worklight v5.0.

__1. Review the content you will build - three ECAT application views

__a. The Main View, Browse List View, and the Item Details View of the ECAT application that
will be built in this lab are shown below:

The Main view consists of a dojox.mobile.ScrollableView, with a Header, and a feature button
(Browse Catalog).

The Browse List view is also built on a dojox.mobile.ScrollableView, and contains a Header, a
navigation button to return to the Main view, and a scrollable listing of the items in the catalog.
When one of the items in the list are selected, you are directed to the Item Details View.

When an item is selected via the Browse List View or the Inquire Items View, you are directed
to the Item Details View. This view is also a dojox.mobile.ScrollableView, with the item details
listed. This view also has six dojox.mobile.TextBox(s) and an ‘Order Items’ Button. When the
items quantity is selected and the ‘Order Items’ button is tapped, that item and its quantity is
ordered.

__2. Prepare Eclipse for Rich Page Editor development by opening the appropriate eclipse Views.

IBM Software

Page 22 Getting Started with IBM Worklight

Ensure that you have both the Palette and Mobile Navigation tabs visible for use with the Rich
Page Editor. We will use Mobile Navigation to manipulate and navigate between the
ScrollableViews in ECAT.html, and the Palette will allow us to drag visual elements onto the
page.

(You can place the tabs in whichever way seems most efficient to you)

__3. Open the file ECAT.html into the editor if it’s not already opened.

__4. Add a ScrollableView to the ECAT.html page.

“Pages” in a mobile application are built on views. For this application we are using
dojox.mobile.ScrollableViews, which are dojo view widgets that manage a view pane. Ensure
that the ECAT.html file is the active file in the editor pane, and that the design or split editor tab is
visible.

Drag the ScrollableView widget from the Dojo Mobile Widgets section of the palette into the
design tab of the editor, in the <body> section of the ECAT.html file.

IBM Software

Contents Page 23

__5. Complete the ‘Create a new Dojo Mobile Scrollable View’ panel as follows.

__a. Edit the Id field and change the default name of “view0” to “ECATmain”.

__b. Check Set as default view checkbox.

__c. Select the Include heading checkbox.

__d. Enter ECAT as the heading label.

__e. Click Finish to complete the ScrollableView. If you have the Split tab open in the editor,
you can see both the visual content and the source being added to your application

IBM Software

Page 24 Getting Started with IBM Worklight

IBM Software

Contents Page 25

__6. Remove the default ”ECAT” text that now sits below the ScrollableView <div> by deleting it from
the source pane in the Rich Page Editor pane.

__7. Next we’ll add a second dojox.mobile.ScrollableView to our application by dragging another
ScrollableView widget from the Dojo Mobile Widgets section of the Pallet into the <body> of our
ECAT.html page, after the ECATmain ScrollableView as follows:

IBM Software

Page 26 Getting Started with IBM Worklight

__8. After dragging and dropping, the ‘Create a new Dojo Mobile Scrollable View” dialog will surface.

__a. Enter BrowseList as the Id.

__b. Select the Include heading checkbox to include a heading.

__c. Enter Browse Catalog as the Heading label.

__d. Enter BACK as the Back button label to add a Back button label.

__e. Select ECATmain from the Back button target drop-down box.

__f. Click Finish to generate the ScrollableView code for our Browse List view.

IBM Software

Contents Page 27

__9. Lastly we’ll add a third dojox.mobile.ScrollableView to our application by dragging another
ScrollableView widget from the Dojo Mobile Widgets section of the Pallet into the <body> of our
ECAT.html page, after the BrowseList ScrollableView as follows:

__10. After dragging and dropping, the ‘Create a new Dojo Mobile Scrollable View” dialog will surface.

__a. Enter ItemDetails as the Id.

__b. Select the Include heading checkbox to include a heading.

__c. Enter Item Details as the Heading label.

__d. Enter BACK as the Back button label to add a Back button label.

__e. Select BrowseList from the Back button target drop-down box.

__f. Click Finish to generate the ScrollableView code for our Item Details view.

IBM Software

Page 28 Getting Started with IBM Worklight

__11. Open the Mobile Navigation tab and notice how you can alternate the contents of the design tab
in the Rich Page Editor by selecting which is the active Mobile View – the view with the open eye
icon is currently displayed in the design tab. Click the closed eyelid to make that Mobile View
become the visible view in the editor.

If you select the eyelid for the ECATmain, ECATmain is selected in the Mobile Navigation tab
and rendered in the design tab. This goes for any of the three views we created.

Congratulations, we have now designed our application’s three views. We now want to create the
content of those views.

__12. From the Mobile Navigation Tab above, we want to make sure that the ECATmain (default) view
is selected. To select this view (if not already opened), click the closed eye icon beside the
ECATmain view.

__a. On the ECATmain view, we want to add a dojox.mobile.RoundRectList, which will house
a dojox.Mobile.ListItem, (Browse List). When this list item is tapped, we are taken to the
BrowseList view.

__i. Drag and drop a dojox.mobile.RoundRectList from the Dojo Mobile Widgets
section of the Pallet into the ‘ECATmain’ ScrollableView below Heading (as
seen below).

IBM Software

Contents Page 29

You now see that a dojox.mobile.RoundRectList has been added with a dojox.mobile.ListItem already
created. We now want to customize the dojox.mobile.ListItem to correspond to the Browse List
view.

__ii. We will now make a slight change to the dojox.mobile.ListItem in the source
view. Copy and paste the following line to add an on-click property to the
dojox.mobile.ListItem element, which will take us to the next view.

IBM Software

Page 30 Getting Started with IBM Worklight

<div data-dojo-type="dojox.mobile.ListItem" data-dojo-props="label:'Browse
List',moveTo:'BrowseList'" onclick="inquireCatalog"></div>

 This change is reflected below with before and after code.

This is the code before the change:

This is the code after the change:

__iii. Make sure to save your changes to the ECAT.html.

You have now designed the ECATmain view, added a list item that is now linked to the BrowseList view.
We will now design the BrowseList view.

__15. From the Mobile Navigation Tab, we want to make sure that the BrowseList view is selected.
To select this view (if not already opened), click the closed eye icon beside the BrowseList
view.

__a. On the BrowseList view, we want to add a dojox.mobile.EdgeToEdgeList, which will
house all of the items in the catalog that we want to list. When one of these list items are
tapped, we are taken to the corresponding item’s ItemDetails view.

__i. Drag and drop a dojox.mobile.EdgeToEdgeList from the Dojo Mobile Widgets
section of the Pallet into the ‘BrowseList’ ScrollableView below Heading (as
seen below).

IBM Software

Contents Page 31

__ii. We will now make a slight change to the dojox.mobile.EdgeToEdgeList in the
source view. Delete the dojox.mobile.ListItem completely, from </div> to
<div> as shown in the red rectangle below.

__iii. Also copy and paste the following line to add an ID property to the
dojox.mobile.EdgeToEdgeList element.

<div data-dojo-type="dojox.mobile.EdgeToEdgeList" id="catalogList">

 Both of these changes are reflected below.

The first image is the before:

This image is the after:

__iv. Make sure to save your changes to the ECAT.html.

 This change allows the dojox.mobile.EdgeToEdgeList to be populated with a number of list items
dynamically, which we will get to in later steps.

You have now designed the BrowseList view, added a dojox.mobile.EdgeToEdgeList which will be linked
to the ItemDetails view. We will now design the ItemDetails view.

__16. From the Mobile Navigation Tab, we want to make sure that the ItemDetails view is selected.
To select this view (if not already opened), click the closed eye icon beside the ItemsDetails
view.

The ItemDetails view will consist of six textboxes and a button (Order Item). The six textboxes
have some description text, and are where the data for each catalog item will go once it is
retrieved from the VSAM dataset on our back-end enterprise system.

Due to time constraints, the design of this view has already been completed, and will require a
copy and paste of the code below, or a copy and paste of the code from the Snippet#2.txt file
found in the Lab Snippets folder located on the desktop.

You will want to make sure that the code snippet (Snippet#2.txt) is copied in its entirety, and
pasted directly after the heading for the ItemDetails view as shown below (the red rectangle
surrounds the heading):

IBM Software

Page 32 Getting Started with IBM Worklight

Set your cursor directly after the </h1> tag and hit the Enter key. This will start a new line in the
editor. Line your curser up with the preceding <h1 tag as shown below.

IBM Software

Contents Page 33

Once you have a blank line, paste (right-click > paste) the following code at the beginning of the
line.

 <label for="desc" style="font-weight: bold"> Description:</label>
<input data-dojo-type="dojox.mobile.TextBox" id="desc" class="itemText">

 <label for="dept" style="font-weight: bold"> Department:</label>
<input data-dojo-type="dojox.mobile.TextBox" class="itemText2"
id="dept">

 <label for="cost" style="font-weight: bold"> Cost:</label> <input
data-dojo-type="dojox.mobile.TextBox" class="itemText3" id="cost">
</br>
 <label for="stock" style="font-weight: bold"> Stock Qty:</label>
<input data-dojo-type="dojox.mobile.TextBox" class="itemText4"
id="stock">

 <label for="order" style="font-weight: bold"> On Order: </label>
<input data-dojo-type="dojox.mobile.TextBox" class="itemText5"
id="order">

 <label for="itemRef" style="font-weight: bold"> Item Ref
#:</label> <input data-dojo-type="dojox.mobile.TextBox" class="itemText6"
id="itemRef">

 <button data-dojo-type="dojox.mobile.Button" id="OrderItemButton"
style="font-weight: bold" onclick="placeOrder(itemRef.value)">Order
Item</button>

Copy and Paste code from above or Snippet#2.txt from the accompanying Lab Snippets folder
on the desktop for cut & paste. Make sure to save the Ecat.html file before proceeding.
Below is the final look with the new code in the red rectangle.

IBM Software

Page 34 Getting Started with IBM Worklight

__17. Add CSS to ECAT.css to provide a “branded” look the ECAT application, overriding defaults and
giving a more consistent experience across different devices.

__a. In the Project Explorer view, find and open (double-click)
/ECAT/apps/ECAT/common/css/ECAT.css in the editor, delete the entire contents
and copy and paste the following CSS text. You can also copy and paste code from
ECATcss.txt from the accompanying Lab Snippets folder on the desktop for cut & paste.
Be sure to save the changes to the ECAT.css.

/* Reset CSS */
a, abbr, address, article, aside, audio, b, blockquote, body, canvas, caption,
cite, code, dd, del, details, dfn, dialog, div, dl, dt, em, fieldset,
figcaption, figure, footer, form, h1, h2, h3, h4, h5, h6, header, hgroup,
html, i, iframe, img, ins, kbd, label, legend, li, mark, menu, nav, object,
ol, p, pre, q, samp, section, small, span, strong, sub, summary, sup, table,
tbody, td, tfoot, th, thead, time, tr, ul, var, video {
 margin: 0;
 padding: 0;
}
/* Worklight container div */
#content {
 height: 460px;
 margin: 0 auto;
 width: 320px;
}
.itemText {
 margin-top: 5px;
 margin-left: 19px;
}
.itemText2 {
 margin-top: 20px;
 margin-left: 18px;
}
.itemText3 {
 margin-top: 25px;
 margin-left: 72px;
}
.itemText4 {
 margin-top: 30px;
 margin-left: 31px;
}
.itemText5 {
 margin-top: 35px;
 margin-left: 34px;
}
.itemText6 {
 margin-top: 40px;
 margin-left: 31px;
}
.spacer {
 margin-top: 100px;
}
.mblView {
 background: -webkit-gradient(linear, left top, left bottom,
from(#096093), to(#ffffff)) !important;
}

IBM Software

Contents Page 35

.mblHeading{
 background:-webkit-gradient(linear, left top, left bottom,
from(#379AC4), to(#096193)) !important;
}
/* workaround for white on white in simpleDialogs */
#WLdialog {
color:black;
}

By adding in the CSS Styles provided, we are able to make the application running on all devices look
the same. The ECAT/common/css folder contains a stylesheet (ECAT.css) that overrides the
CSS for individual platforms (Android, iOS, ect.) so changes we made here will reflect in all
device types.

IBM Software

Page 36 Getting Started with IBM Worklight

1.6 Retrieving Data with a Worklight Adapter

In this portion of the lab, you will build two Worklight HTTP adapters and integrate them into the ECAT
application.

A Worklight adapter is hosted on the Worklight server, and interacts with remote data sources, retrieving
data or performing actions. The Worklight client runtime provides a simple, common JavaScript interface
to invoke the adapter and exchange data from a mobile application.

In this lab you will be connecting the mobile front-end application that you have built with back-end
services and data from the original version of this application, running in CICS Transaction Server on
z/OS. This 3270 CICS application has been web-service enabled so that we can use modern application
interfaces, such as Web and Mobile, to re-use the business logic and access data from our legacy
application. These web-services can be communicated with by sending SOAP messages through HTTP
‘post’ requests. In this next section, you will build the Worklight Adapters that contain the messaging
structure for sending and receiving information to/from the System z.

__1. Create a new Worklight Adapter.

__a. In the Project Explorer view, right-click on ECAT project > New > Worklight Adapter.

__b. In the New Worklight Adapter dialog, select the Adapter type HTTP Adapter and enter
BrowseListAdapter as the name.

IBM Software

Contents Page 37

__c. Click Finish.

 The BrowseListAdapter Adapter will be created with the following contents:

__2. Edit the BrowseListAdapter.xml file

The BrowseListAdapter.xml file should be open in the editor, with tabs for Design and Source.
The default adapter is created as a sample to retrieve RSS feed data from cnn.com and offers
methods for both raw and field-filtered data. We will over-write the default values and methods to
connect to our CICS application running on a backend z Series server.

BrowseListAdapter.xml – Adapter
configuration containing connection info,
security info and registered methods for
the adapter

BrowseListAdapter-impl.js – JavaScript
implementation file for the adapter
methods

filtered.xsl – XSL stylesheet for use in
filtering/processing returned data

IBM Software

Page 38 Getting Started with IBM Worklight

__a. Select the Design tab of the BrowseListAdapter.xml editor (on the bottom left), expand
the Connectivity node and select the Connection Policy to edit the HTTP connection
details.

__b. Change the Domain to zserveros.demos.ibm.com

__c. Change the Port to 8082

__d. Set the Cookie policy to blank

__e. Select Procedure “getStoriesFiltered” > click the Remove button

__f. Select Procedure “getStories” and change the name to inquireCatalog

__g. Save the file.

IBM Software

Contents Page 39

This step replaces the two procedure entries for getStories and getStoriesFiltered with a new
procedure called inquireCatalog (shown in the Source view below).

__3. Add the implementation for the inquireCatalog procedure to the BrowseListAdapter-impl.js file.

By default, adapters are implemented in JavaScript. In this step, open the BrowseListAdapter-
impl.js file, remove the code for the default procedures provided by the template and paste the
code for our inquireCatalog procedure.

__a. Expand ECAT project > expand adapters folder > expand BrowseListAdapter folder >
double-click to open the BrowseListAdapter-impl.js file into the editor.

__b. Remove the code and comments for the 3 functions getStories, getStoriesFiltered, and
getPath. Delete the entire contents of the BrowseListAdapter-impl.js file.

IBM Software

Page 40 Getting Started with IBM Worklight

__c. Paste the following JavaScript into BrowseListAdapter-impl.js:

function inquireCatalog(obj) {

 var request = "<soapenv:Envelope
xmlns:soapenv='http://schemas.xmlsoap.org/soap/envelope/'
xmlns:exam='http://www.ECAT.BrowseListAdapter.com'>" +
 "<soapenv:Header/>" +
 "<soapenv:Body>" +
 "<exam:inquireCatalogRequest>" +

"<exam:startItemRef>"+obj.itemRef+"</exam:startItemRef>" +

"<exam:itemCount>"+obj.itemCount+"</exam:itemCount>" +
 "</exam:inquireCatalogRequest>" +
 "</soapenv:Body>" +
 "</soapenv:Envelope>";

 var input = {
 method : 'post',
 returnedContentType : 'xml',
 path : 'exampleApp/inquireCatalogWrapper',
 body: {
 content: request.toString(),
 contentType: 'text/xml; charset=utf-8'
 }
 };

 return WL.Server.invokeHttp(input);
}

Copy and Paste code from above or Snippet#3.txt from the accompanying Lab Snippets folder
on the desktop for cut & paste. Below is the final look.

IBM Software

Contents Page 41

As a summary, our adapter configuration file (BrowseListAdapter.xml) contains the protocol
(http), host (zserveros.demos.ibm.com) and port (8082) information which defines the target
System z server address and port that the original 3270 CICS application has been web-service
enabled for communication on. Our procedure defines the remainder of the service URL
(/exampleApp/inquireCatalogWrapper), the HTTP method (post) and the content type to
expect (xml). There are two parameters we are passing into the adapter, as required by the
back-end service that we are invoking. These parameters include ‘itemRef’ which tells what item
number we are starting to retrieve data from in the catalog, and ‘itemCount’ which tells how
many items in the catalog that we want data for.

__4. Deploy the BrowseListAdapter.

__a. Save all files.

__b. Select the BrowseListAdapter folder in the Project Explorer, right-click and select Run
As > Deploy Worklight Adapter.

__c. Watch the console for the message that the adapter has been successfully deployed.

IBM Software

Page 42 Getting Started with IBM Worklight

__5. Create the second Worklight Adapter.

__a. In the Project Explorer view, right-click on ECAT project > New > Worklight Adapter.

__b. In the New Worklight Adapter dialog, select the Adapter type HTTP Adapter and enter
PlaceOrderAdapter as the name.

__c. Click Finish.

IBM Software

Contents Page 43

__6. Edit the PlaceOrderAdapter.xml file

The PlaceOrderAdapter.xml file should be open in the editor, with tabs for Design and Source.
We will over-write the default values and methods to connect to our CICS application running on
a backend z Series server.

__a. Select the Design tab of the PlaceOrderAdapter.xml editor (on the bottom left), expand
the Connectivity node and select the Connection Policy to edit the HTTP connection
details.

__b. Change the Domain to zserveros.demos.ibm.com

__c. Change the Port to 8082

__d. Set the Cookie policy to blank

__h. Select Procedure “getStoriesFiltered” > click the Remove button

__i. Select Procedure “getStories” and change the name to placeOrder

__j. Save the file.

IBM Software

Page 44 Getting Started with IBM Worklight

This step replaces the two procedure entries for getStories and getStoriesFiltered with a new
procedure called placeOrder (shown in the Source view below).

__7. Add the implementation for the placeOrder procedure to the PlaceOrderAdapter-impl.js file.

By default, adapters are implemented in JavaScript. In this step, open the PlaceOrderAdapter-
impl.js file, remove the code for the default procedures provided by the template and paste the
code for our placeOrder procedure.

__a. Expand ECAT project > expand adapters folder > expand PlaceOrderAdapter folder >
double-click to open the PlaceOrderAdapter-impl.js file into the editor.

IBM Software

Contents Page 45

__e. Remove the code and comments for the 3 functions getStories, getStoriesFiltered, and
getPath. Delete the entire contents of the PlaceOrderAdapter-impl.js file. The
finished code view is below.

IBM Software

Page 46 Getting Started with IBM Worklight

__f. Copy and Paste the following JavaScript into PlaceOrderAdapter-impl.js:

function placeOrder(obj) {

 var request = "<soapenv:Envelope
xmlns:soapenv='http://schemas.xmlsoap.org/soap/envelope/'
xmlns:exam='http://www.exampleApp.placeOrderRequest.com'>" +
 "<soapenv:Header/>" +
 "<soapenv:Body>" +
 "<exam:placeOrderRequest>" +
 "<exam:orderRequest>" +
 "<exam:userId>"+obj.userId+"</exam:userId>"
+

"<exam:chargeDepartment>"+obj.dept+"</exam:chargeDepartment>" +

"<exam:itemReference>"+obj.itemRef+"</exam:itemReference>" +

"<exam:quantityRequired>"+obj.quantity+"</exam:quantityRequired>" +
 "</exam:orderRequest>" +
 "</exam:placeOrderRequest>" +
 "</soapenv:Body>" +
 "</soapenv:Envelope>";

 var input = {
 method : 'post',
 returnedContentType : 'xml',
 path : ‘exampleApp/placeOrderWrapper',
 body: {
 content: request.toString(),
 contentType: 'text/xml; charset=utf-8'
 }
 };

 return WL.Server.invokeHttp(input);
}

Copy and Paste code from above or Snippet#4.txt from the accompanying Lab Snippets folder
on the desktop for cut & paste. Be sure to Save your changes to PlaceOrderAdapter-impl.js.

In summary, our Adapter configuration file (PlaceOrderAdapter.xml) contains the protocol (http), host
(zserveros.demos.ibm.com) and port (8082) information which defines the target System z server
address and port that the original 3270 CICS application has been web-service enabled for
communication on. Our procedure defines the remainder of the service URL
(/exampleApp/placeOrderWrapper), the HTTP method (post) and the content type to expect (xml).
There are four parameters we are passing into the adapter, as required by the back-end service that we
are invoking. These parameters include ‘itemRef’ which tells what item number we are placing an order
for, ‘quantity’ which tells how many of the item we want from the catalog, ‘userId’ which is the I.D. of the
user placing the order, and ‘dept’ which is the code for the department that will be charged for the order.

IBM Software

Contents Page 47

__8. Deploy the PlaceOrderAdapter.

__d. Save all files.

__e. Select the PlaceOrderAdapter folder in the Project Explorer, right-click and select Run
As > Deploy Worklight Adapter.

__f. Watch the console for the message that the adapter has been successfully deployed.

Congratulations you have successfully used the Worklight Studio to build a Worklight application
with multiple mobile device environments, navigation between views, and are set to retrieve data
from a back-end service with a Worklight adapter.

IBM Software

Page 48 Getting Started with IBM Worklight

1.7 Test in Mobile Browser Simulator

The final step is to test the ECAT application using the Mobile Browser Simulator. A new external
browser window will open with the simulator rendering our ECAT application.

_1. Right click on either the common folder (to run the common resource web app) or the ECAT.html file
within the common folder and select Run as > Preview (as shown below)

_2. A new external browser window will open with the Mobile Browser Simulator in which the ECAT
Android application should be displayed. (This may take a few seconds to a few minutes while the
application is built and deployed completely).

IBM Software

Contents Page 49

_3. Navigate the views and test the Adapter:

IBM Software

Page 50 Getting Started with IBM Worklight

1.8 Summary

In this lab you have learned how to use Worklight Studio to create a cross platform mobile application
using HTML5, CSS, JavaScript, the Dojo Mobile framework. You have learned how to target specific
devices such as iPhone and Android phones and seen some very basic customizations that can be
applied for making the application look consistent across platforms. You have also seen how to use the
Mobile Browser Simulator within both the Worklight Studio and the Worklight Console to test the
application in preview mode.

You should now be familiar now with the Worklight Studio environment and the common development
tasks associated with building a mobile application extending the capabilities of existing enterprise
applications running on System z.

Congratulations!

