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15–7 Worm-Gear Analysis
Compared to other gearing systems worm-gear meshes have a much lower mechanical

efficiency. Cooling, for the benefit of the lubricant, becomes a design constraint some-

times resulting in what appears to be an oversize gear case in light of its contents. If

the heat can be dissipated by natural cooling, or simply with a fan on the wormshaft,

simplicity persists. Water coils within the gear case or lubricant outpumping to an exter-

nal cooler is the next level of complexity. For this reason, gear-case area is a design

decision.

To reduce cooling load, use multiple-thread worms. Also keep the worm pitch dia-

meter as small as possible.

Multiple-thread worms can remove the self-locking feature of many worm-gear

drives. When the worm drives the gearset, the mechanical efficiency eW is given by

eW = cos φn − f tan λ

cos φn + f cot λ
(15–54)

With the gear driving the gearset, the mechanical efficiency eG is given by

eG = cos φn − f cot λ

cos φn + f tan λ
(15–55)

To ensure that the worm gear will drive the worm,

fstat < cos φn tan λ (15–56)

where values of fstat can be found in ANSI/AGMA 6034-B92. To prevent the worm

gear from driving the worm, refer to clause 9 of 6034-B92 for a discussion of self-

locking in the static condition.

It is important to have a way to relate the tangential component of the gear force

W t
G to the tangential component of the worm force W t

W , which includes the role of

friction and the angularities of φn and λ. Refer to Eq. (13–45) solved for W t
W :

W t
W = W t

G

cos φn sin λ + f cos λ

cos φn cos λ − f sin λ
(15–57)

In the absence of friction

W t
W = W t

G tan λ

The mechanical efficiency of most gearing is very high, which allows power in and

power out to be used almost interchangeably. Worm gearsets have such poor efficien-

cies that we work with, and speak of, output power. The magnitude of the gear trans-

mitted force W t
G can be related to the output horsepower H0, the application factor Ka ,

the efficiency e, and design factor nd by

W t
G = 33 000nd H0 Ka

VGe
(15–58)

We use Eq. (15–57) to obtain the corresponding worm force W t
W . It follows that

HW = W t
W VW

33 000
= πdW nW W t

W

12(33 000)
hp (15–59)

HG = W t
G VG

33 000
= πdGnG W t

G

12(33 000)
hp (15–60)
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From Eq. (13–44),

W f = f W t
G

f sin λ − cos φn cos λ
(15–61)

The sliding velocity of the worm at the pitch cylinder Vs is

Vs = πdnW

12 cos λ
(15–62)

and the friction power Hf is given by

Hf = |W f |Vs

33 000
hp (15–63)

Table 15–9 gives the largest lead angle λmax associated with normal pressure angle φn .

Maximum Lead
�n Angle �max

14.5° 16°

20° 25°

25° 35°

30° 45°

Table 15–9

Largest Lead Angle

Associated with a

Normal Pressure Angle

φn for Worm Gearing

EXAMPLE 15–3 A single-thread steel worm rotates at 1800 rev/min, meshing with a 24-tooth worm gear

transmitting 3 hp to the output shaft. The worm pitch diameter is 3 in and the tangen-

tial diametral pitch of the gear is 4 teeth/in. The normal pressure angle is 14.5◦. The

ambient temperature is 70◦F. The application factor is 1.25 and the design factor is 1;

gear face width is 2 in, lateral case area 600 in2, and the gear is chill-cast bronze.

(a) Find the gear geometry.

(b) Find the transmitted gear forces and the mesh efficiency.

(c) Is the mesh sufficient to handle the loading?

(d) Estimate the lubricant sump temperature.

Solution (a) mG = NG/NW = 24/1 = 24, gear: D = NG/Pt = 24/4 = 6.000 in, worm: 

d = 3.000 in. The axial circular pitch px is px = π/Pt = π/4 = 0.7854 in. C =
(3 + 6)/2 = 4.5 in.

Eq. (15–39): a = px/π = 0.7854/π = 0.250 in

Eq. (15–40): b = 0.3683px = 0.3683(0.7854) = 0.289 in

Eq. (15–41): ht = 0.6866px = 0.6866(0.7854) = 0.539 in

Eq. (15–42): d0 = 3 + 2(0.250) = 3.500 in

Eq. (15–43): dr = 3 − 2(0.289) = 2.422 in

Eq. (15–44): Dt = 6 + 2(0.250) = 6.500 in

Eq. (15–45): Dr = 6 − 2(0.289) = 5.422 in

Eq. (15–46): c = 0.289 − 0.250 = 0.039 in

Eq. (15–47): (FW )max = 2
√

2(6)0.250 = 3.464 in
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The tangential speeds of the worm, VW , and gear, VG , are, respectively,

VW = π(3)1800/12 = 1414 ft/min VG = π(6)1800/24

12
= 117.8 ft/min

The lead of the worm, from Eq. (13–27), is L � px NW = 0.7854(1) = 0.7854 in. The

lead angle λ, from Eq. (13–28), is

λ = tan−1 L

πd
= tan−1 0.7854

π(3)
= 4.764◦

The normal diametral pitch for a worm gear is the same as for a helical gear, which from

Eq. (13–18) with ψ = λ is

Pn = Pt

cos λ
= 4

cos 4.764◦ = 4.014

pn = π

Pn

= π

4.014
= 0.7827 in

The sliding velocity, from Eq. (15–62), is

Vs = πdnW

12 cos λ
= π(3)1800

12 cos 4.764◦ = 1419 ft/min

(b) The coefficient of friction, from Eq. (15–38), is

f = 0.103 exp[−0.110(1419)0.450] + 0.012 = 0.0178

The efficiency e, from Eq. (13–46), is

Answer e = cos φn − f tan λ

cos φn + f cot λ
= cos 14.5◦ − 0.0178 tan 4.764◦

cos 14.5◦ + 0.0178 cot 4.764◦ = 0.818

The designer used nd = 1, Ka = 1.25 and an output horsepower of H0 = 3 hp. The

gear tangential force component W t
G , from Eq. (15–58), is

Answer W t
G = 33 000nd H0 Ka

VGe
= 33 000(1)3(1.25)

117.8(0.818)
= 1284 lbf

Answer The tangential force on the worm is given by Eq. (15–57):

W t
W = W t

G

cos φn sin λ + f cos λ

cos φn cos λ − f sin λ

= 1284
cos 14.5o sin 4.764o + 0.0178 cos 4.764o

cos 14.5o cos 4.764o − 0.0178 sin 4.764o
= 131 lbf

(c)

Eq. (15–34): Cs = 1000

Eq. (15–36): Cm = 0.0107
√

−242 + 56(24) + 5145 = 0.823

Eq. (15–37): Cv = 13.31(1419)−0.571 = 0.2114

4Note:  From ANSI/AGMA 6034-B92, the rating factors are Cs = 1000, Cm = 0.825, Cv = 0.214, and

f = 0.0185.
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Eq. (15–28): (W t)all = Cs D0.8(Fe)GCmCv

= 1000(6)0.8(2)0.823(0.211) = 1456 lbf

Since W t
G < (W t)all , the mesh will survive at least 25 000 h. The friction force W f is

given by Eq. (15–61):

W f = f W t
G

f sin λ − cos φn cos λ
= 0.0178(1284)

0.0178 sin 4.764◦ − cos 14.5◦ cos 4.764◦

= −23.7 lbf

The power dissipated in frictional work Hf is given by Eq. (15–63):

Hf = |W f |Vs

33 000
= |−23.7|1419

33 000
= 1.02 hp

The worm and gear powers, HW and HG , are given by

HW = W t
W VW

33 000
= 131(1414)

33 000
= 5.61 hp HG = W t

G VG

33 000
= 1284(117.8)

33 000
= 4.58 hp

Answer Gear power is satisfactory. Now,

Pn = Pt/ cos λ = 4/ cos 4.764◦ = 4.014

pn = π/Pn = π/4.014 = 0.7827 in

The bending stress in a gear tooth is given by Buckingham’s adaptation of the Lewis

equation, Eq. (15–53), as

(σ )G = W t
G

pn FG y
= 1284

0.7827(2)(0.1)
= 8200 psi

Answer Stress in gear satisfactory.

(d)

Eq. (15–52): Amin = 43.2C1.7 = 43.2(4.5)1.7 = 557 in2

The gear case has a lateral area of 600 in2.

Eq. (15–49): Hloss = 33 000(1 − e)Hin = 33 000(1 − 0.818)5.61

= 33 690 ft · lbf/min

Eq. (15–50): h̄CR = nW

3939
+ 0.13 = 1800

3939
+ 0.13 = 0.587 ft · lbf/(min · in2 · ◦F)

Answer Eq. (15–51): ts = ta + Hloss

h̄CR A
= 70 + 33 690

0.587(600)
= 166◦F
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15–8 Designing a Worm-Gear Mesh
A usable decision set for a worm-gear mesh includes

• Function: power, speed, mG , Ka

• Design factor: nd

• Tooth system

• Materials and processes

• Number of threads on the worm: NW

• Axial pitch of worm: px

• Pitch diameter of the worm: dW

• Face width of gear: FG

• Lateral area of case: A

Reliability information for worm gearing is not well developed at this time. The use of

Eq. (15–28) together with the factors Cs , Cm , and Cv , with an alloy steel case-hardened

worm together with customary nonferrous worm-wheel materials, will result in lives in

excess of 25 000 h. The worm-gear materials in the experience base are principally

bronzes:

• Tin- and nickel-bronzes (chilled-casting produces hardest surfaces)

• Lead-bronze (high-speed applications)

• Aluminum- and silicon-bronze (heavy load, slow-speed application)

The factor Cs for bronze in the spectrum sand-cast, chilled-cast, and centrifugally cast

increases in the same order.

Standardization of tooth systems is not as far along as it is in other types of gear-

ing. For the designer this represents freedom of action, but acquisition of tooling for

tooth-forming is more of a problem for in-house manufacturing. When using a subcon-

tractor the designer must be aware of what the supplier is capable of providing with on-

hand tooling.

Axial pitches for the worm are usually integers, and quotients of integers are

common. Typical pitches are 1
4
, 5

16
, 3

8
, 1

2
, 3

4
, 1, 5

4
, 6

4
, 7

4
, and 2, but others are possible.

Table 15–8 shows dimensions common to both worm gear and cylindrical worm for

proportions often used. Teeth frequently are stubbed when lead angles are 30◦ or larger.

Worm-gear design is constrained by available tooling, space restrictions, shaft center-

to-center distances, gear ratios needed, and the designer’s experience. ANSI/AGMA

6022-C93, Design Manual for Cylindrical Wormgearing offers the following guidance.

Normal pressure angles are chosen from 14.5◦, 17.5◦, 20◦, 22.5◦, 25◦, 27.5◦, and 30◦.

The recommended minimum number of gear teeth is given in Table 15–10. The normal

range of the number of threads on the worm is 1 through 10. Mean worm pitch diameter

is usually chosen in the range given by Eq. (15–27).

A design decision is the axial pitch of the worm. Since acceptable proportions are

couched in terms of the center-to-center distance, which is not yet known, one chooses

a trial axial pitch px . Having NW and a trial worm diameter d,

NG = mG NW Pt = π

px

D = NG

Pt















Design variables































A priori decisions
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Then

(d )lo = C0.875/3 (d )hi = C0.875/1.6

Examine (d )lo ≤ d ≤ (d )hi , and refine the selection of mean worm-pitch diameter to d1

if necessary. Recompute the center-to-center distance as C = (d1 + D)/2. There is even

an opportunity to make C a round number. Choose C and set

d2 = 2C − D

Equations (15–39) through (15–48) apply to one usual set of proportions.

φn (NG)min

14.5 40

17.5 27

20 21

22.5 17

25 14

27.5 12

30 10

Table 15–10

Minimum Number of

Gear Teeth for Normal

Pressure Angle φn

EXAMPLE 15–4 Design a 10-hp 11:1 worm-gear speed-reducer mesh for a lumber mill planer feed drive

for 3- to 10-h daily use. A 1720-rev/min squirrel-cage induction motor drives the plan-

er feed (Ka = 1.25), and the ambient temperature is 70◦F.

Solution Function: H0 = 10 hp, mG = 11, nW = 1720 rev/min.

Design factor: nd = 1.2.

Materials and processes: case-hardened alloy steel worm, sand-cast bronze gear.

Worm threads: double, NW = 2, NG = mG NW = 11(2) = 22 gear teeth acceptable for

φn = 20◦, according to Table 15–10.

Decision 1: Choose an axial pitch of worm px = 1.5 in. Then,

Pt = π/px = π/1.5 = 2.0944

D = NG/Pt = 22/2.0944 = 10.504 in

Eq. (15–39): a = 0.3183px = 0.3183(1.5) = 0.4775 in (addendum)

Eq. (15–40): b = 0.3683(1.5) = 0.5525 in (dedendum)

Eq. (15–41): ht = 0.6866(1.5) = 1.030 in

Decision 2: Choose a mean worm diameter d = 2.000 in. Then

C = (d + D)/2 = (2.000 + 10.504)/2 = 6.252 in

(d)lo = 6.2520.875/3 = 1.657 in

(d)hi = 6.2520.875/1.6 = 3.107 in

The range, given by Eq. (15–27), is 1.657 ≤ d ≤ 3.107 in, which is satisfactory. Try

d = 2.500 in. Recompute C:

C = (2.5 + 10.504)/2 = 6.502 in
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The range is now 1.715 ≤ d ≤ 3.216 in, which is still satisfactory. Decision: d = 2.500 in.

Then

Eq. (13–27): L = px NW = 1.5(2) = 3.000 in

Eq. (13–28):

λ = tan−1[L/(πd)] = tan−1[3/(π2.5)] = 20.905◦ (from Table 15–9 lead angle OK)

Eq. (15–62): Vs = πdnW

12 cos λ
= π(2.5)1720

12 cos 20.905◦ = 1205.1 ft/min

VW = πdnW

12
= π(2.5)1720

12
= 1125.7 ft/min

VG = π DnG

12
= π(10.504)1720/11

12
= 430.0 ft/min

Eq. (15–33): Cs = 1190 − 477 log 10.504 = 702.8

Eq. (15–36): Cm = 0.02
√

−112 + 40(11) − 76 + 0.46 = 0.772

Eq. (15–37): Cv = 13.31(1205.1)−0.571 = 0.232

Eq. (15–38): f = 0.103 exp[−0.11(1205.1)0.45] + 0.012 = 0.01915

Eq. (15–54): eW = cos 20◦ − 0.0191 tan 20.905◦

cos 20◦ + 0.0191 cot 20.905◦ = 0.942

(If the worm gear drives, eG = 0.939.) To ensure nominal 10-hp output, with adjust-

ments for Ka, nd , and e,

Eq. (15–57): W t
W = 1222

cos 20o sin 20.905o + 0.0191 cos 20.905o

cos 20o cos 20.905o − 0.0191 sin 20.905o
= 495.4 lbf

Eq. (15–58): W t
G = 33 000(1.2)10(1.25)

430(0.942)
= 1222 lbf

Eq. (15–59): HW = π(2.5)1720(495.4)

12(33 000)
= 16.9 hp

Eq. (15–60): HG = π(10.504)1720/11(1222)

12(33 000)
= 15.92 hp

Eq. (15–61): W f = 0.0191(1222)

0.0191 sin 20.905◦ − cos 20◦ cos 20.905◦ = −26.8 lbf

Eq. (15–63): Hf = |−26.8|1205.1

33 000
= 0.979 hp

With Cs = 702.8, Cm = 0.772, and Cv = 0.232,

(Fe)req = W t
G

Cs D0.8CmCv

= 1222

702.8(10.504)0.80.772(0.232)
= 1.479 in

5Note:  From ANSI/AGMA 6034-B92, the rating factors are Cs = 703, Cm = 0.773, Cv = 0.2345, and

f = 0.01995.
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Decision 3: The available range of (Fe)G is 1.479 ≤ (Fe)G ≤ 2d/3 or 1.479 ≤ (Fe)G ≤
1.667 in. Set (Fe)G = 1.5 in.

Eq. (15–28): W t
all = 702.8(10.504)0.81.5(0.772)0.232 = 1239 lbf

This is greater than 1222 lbf. There is a little excess capacity. The force analysis stands.

Decision 4:

Eq. (15–50): h̄CR = nW

6494
+ 0.13 = 1720

6494
+ 0.13 = 0.395 ft · lbf/(min · in2 · ◦F)

Eq. (15–49): Hloss = 33 000(1 − e)HW = 33 000(1 − 0.942)16.9 = 32 347 ft · lbf/min

The AGMA area, from Eq. (15–52), is Amin = 43.2C1.7 = 43.2(6.502)1.7 = 1041.5 in2.

A rough estimate of the lateral area for 6-in clearances:

Vertical: d + D + 6 = 2.5 + 10.5 + 6 = 19 in

Width: D + 6 = 10.5 + 6 = 16.5 in

Thickness: d + 6 = 2.5 + 6 = 8.5 in

Area: 2(19)16.5 + 2(8.5)19 + 16.5(8.5)
.= 1090 in2

Expect an area of 1100 in2. Choose: Air-cooled, no fan on worm, with an ambient tem-

perature of 70◦F.

ts = ta + Hloss

h̄CR A
= 70 + 32 350

0.395(1100)
= 70 + 74.5 = 144.5◦F

Lubricant is safe with some margin for smaller area.

Eq. (13–18): Pn = Pt

cos λ
= 2.094

cos 20.905◦ = 2.242

pn = π

Pn

= π

2.242
= 1.401 in

Gear bending stress, for reference, is

Eq. (15–53): σ = W t
G

pn Fe y
= 1222

1.401(1.5)0.125
= 4652 psi

The risk is from wear, which is addressed by the AGMA method that provides (W t
G)all.

15–9 Buckingham Wear Load
A precursor to the AGMA method was the method of Buckingham, which identified an

allowable wear load in worm gearing. Buckingham showed that the allowable gear-

tooth loading for wear can be estimated from

(

W t
G

)

all
= KwdG Fe (15–64)

where Kw = worm-gear load factor

dG = gear-pitch diameter

Fe = worm-gear effective face width
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Table 15–11 gives values for Kw for worm gearsets as a function of the material pair-

ing and the normal pressure angle.

EXAMPLE 15–5 Estimate the allowable gear wear load (W t
G)all for the gearset of Ex. 15–4 using

Buckingham’s wear equation.

Solution From Table 15–11 for a hardened steel worm and a bronze bear, Kw is given as 80 for

φn = 20◦. Equation (15–64) gives

(

W t
G

)

all
= 80(10.504)1.5 = 1260 lbf

which is larger than the 1239 lbf of the AGMA method. The method of Buckingham

does not have refinements of the AGMA method. [Is (W t
G)all linear with gear diameter?]

For material combinations not addressed by AGMA, Buckingham’s method allows

quantitative treatment.

PROBLEMS

15–1 An uncrowned straight-bevel pinion has 20 teeth, a diametral pitch of 6 teeth/in, and a transmis-

sion accuracy number of 6. Both the pinion and gear are made of through-hardened steel with a

Brinell hardness of 300. The driven gear has 60 teeth. The gearset has a life goal of 109 revolutions

of the pinion with a reliability of 0.999. The shaft angle is 90◦; the pinion speed is 900 rev/min.

The face width is 1.25 in, and the normal pressure angle is 20◦ . The pinion is mounted outboard

of its bearings, and the gear is straddle-mounted. Based on the AGMA bending strength, what is

the power rating of the gearset? Use K0 = 1, SF = 1, and SH = 1.

Material Thread Angle φn

Worm Gear 141
2

Hardened steel* Chilled bronze 90 125 150 180

Hardened steel* Bronze 60 80 100 120

Steel, 250 BHN (min.) Bronze 36 50 60 72

High-test cast iron Bronze 80 115 140 165

Gray iron† Aluminum 10 12 15 18

High-test cast iron Gray iron 90 125 150 180

High-test cast iron Cast steel 22 31 37 45

High-test cast iron High-test cast iron 135 185 225 270

Steel 250 BHN (min.) Laminated phenolic 47 64 80 95

Gray iron Laminated phenolic 70 96 120 140

*Over 500 BHN surface.
†For steel worms, multiply given values by 0.6.

Table 15–11

Wear Factor Kw for Worm

Gearing

Source: Earle Buckingham,
Design of Worm and Spiral
Gears, Industrial Press,
New York, 1981.

° 20° 25° 30°
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15–2 For the gearset and conditions of Prob. 15–1, find the power rating based on the AGMA surface

durability.

15–3 An uncrowned straight-bevel pinion has 30 teeth, a diametral pitch of 6, and a transmission accura-

cy number of 6. The driven gear has 60 teeth. Both are made of No. 30 cast iron. The shaft angle is

90◦. The face width is 1.25 in, the pinion speed is 900 rev/min, and the normal pressure angle is 20◦.

The pinion is mounted outboard of its bearings; the bearings of the gear straddle it. What is the

power rating based on AGMA bending strength? (For cast iron gearsets reliability information has

not yet been developed. We say the life is greater than 107 revolutions; set KL = 1, CL = 1,

CR = 1, K R = 1; and apply a factor of safety. Use SF = 2 and SH =
√

2.)

15–4 For the gearset and conditions of Prob. 15–3, find the power rating based on AGMA surface dura-

bility. For the solutions to Probs. 15–3 and 15–4, what is the power rating of the gearset?

15–5 An uncrowned straight-bevel pinion has 22 teeth, a module of 4 mm, and a transmission accura-

cy number of 5. The pinion and the gear are made of through-hardened steel, both having core and

case hardnesses of 180 Brinell. The pinion drives the 24-tooth bevel gear. The shaft angle is 90◦ ,

the pinion speed is 1800 rev/min, the face width is 25 mm, and the normal pressure angle is 20◦ .

Both gears have an outboard mounting. Find the power rating based on AGMA pitting resistance

if the life goal is 109 revolutions of the pinion at 0.999 reliability.

15–6 For the gearset and conditions of Prob. 15–5, find the power rating for AGMA bending

strength.

15–7 In straight-bevel gearing, there are some analogs to Eqs. (14–44) and (14–45). If we have a pin-

ion core with a hardness of (HB )11 and we try equal power ratings, the transmitted load W t can

be made equal in all four cases. It is possible to find these relations:

Core Case

Pinion ( HB )11 ( HB )12

Gear ( HB )21 ( HB )22

(a) For carburized case-hardened gear steel with core AGMA bending strength (sat )G and pinion

core strength (sat )P , show that the relationship is

(sat )G = (sat )P

JP

JG

m−0.0323
G

This allows (HB )21 to be related to (HB )11 .

(b) Show that the AGMA contact strength of the gear case (sac)G can be related to the

AGMA core bending strength of the pinion core (sat )P by

(sac)G = Cp

(CL )G CH

√

S2
H

SF

(sat )P (KL )P Kx JP KT Cs Cx c

NP I Ks

If factors of safety are applied to the transmitted load Wt , then SH =
√

SF and S2
H
/SF is unity.

The result allows (HB )22 to be related to (HB )11 .

(c) Show that the AGMA contact strength of the gear (sac)G is related to the contact strength

of the pinion (sac)P by

(sac)P = (sac)G m0.0602
G CH
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15–8 Refer to your solution to Probs. 15–1 and 15–2, which is to have a pinion core hardness of

300 Brinell. Use the relations from Prob. 15–7 to establish the hardness of the gear core and the

case hardnesses of both gears.

15–9 Repeat Probs. 15–1 and 15–2 with the hardness protocol

Core Case

Pinion 300 372

Gear 352 344

which can be established by relations in Prob. 15–7, and see if the result matches transmitted

loads W t in all four cases.

15–10 A catalog of stock bevel gears lists a power rating of 5.2 hp at 1200 rev/min pinion speed for a

straight-bevel gearset consisting of a 20-tooth pinion driving a 40-tooth gear. This gear pair has

a 20◦ normal pressure angle, a face width of 0.71 in, and a diametral pitch of 10 teeth/in and is

through-hardened to 300 BHN. Assume the gears are for general industrial use, are generated to

a transmission accuracy number of 5, and are uncrowned. Given these data, what do you think

about the stated catalog power rating?

15–11 Apply the relations of Prob. 15–7 to Ex. 15–1 and find the Brinell case hardness of the gears for

equal allowable load W t in bending and wear. Check your work by reworking Ex. 15–1 to see if

you are correct. How would you go about the heat treatment of the gears?

15–12 Your experience with Ex. 15–1 and problems based on it will enable you to write an interactive

computer program for power rating of through-hardened steel gears. Test your understanding of

bevel-gear analysis by noting the ease with which the coding develops. The hardness protocol

developed in Prob. 15–7 can be incorporated at the end of your code, first to display it, then as an

option to loop back and see the consequences of it.

15–13 Use your experience with Prob. 15–11 and Ex. 15–2 to design an interactive computer-aided

design program for straight-steel bevel gears, implementing the ANSI/AGMA 2003-B97 stan-

dard. It will be helpful to follow the decision set in Sec. 15–5, allowing the return to earlier deci-

sions for revision as the consequences of earlier decisions develop.

15–14 A single-threaded steel worm rotates at 1725 rev/min, meshing with a 56-tooth worm gear trans-

mitting 1 hp to the output shaft. The pitch diameter of the worm is 1.50. The tangential diametral

pitch of the gear is 8 teeth per inch and the normal pressure angle is 20◦. The ambient temperature

is 70◦F, the application factor is 1.25, the design factor is 1, the gear face is 0.5 in, the lateral case

area is 850 in2, and the gear is sand-cast bronze.

(a) Determine and evaluate the geometric properties of the gears.

(b) Determine the transmitted gear forces and the mesh efficiency.

(c) Is the mesh sufficient to handle the loading?

(d) Estimate the lubricant sump temperature.

As in Ex. 15–4, design a cylindrical worm-gear mesh to connect a squirrel-cage induction motor to a

liquid agitator. The motor speed is 1125 rev/min, and the velocity ratio is to be 10:1. The output power

requirement is 25 hp. The shaft axes are 90◦ to each other. An overload factor Ko (see Table 15–2)

makes allowance for external dynamic excursions of load from the nominal or average load W t . For

this service Ko = 1.25 is appropriate. Additionally, a design factor nd of 1.1 is to be included to

address other unquantifiable risks. For Probs. 15–15 to 15–17 use the AGMA method for (W t
G
)all

whereas for Probs. 15–18 to 15–22, use the Buckingham method. See Table 15–12.

15–15

to 15–22
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Problem Materials

No. Method Worm Gear

15–15 AGMA Steel, HRC 58 Sand-cast bronze

15–16 AGMA Steel, HRC 58 Chilled-cast bronze

15–17 AGMA Steel, HRC 58 Centrifugal-cast bronze

15–18 Buckingham Steel, 500 Bhn Chilled-cast bronze

15–19 Buckingham Steel, 500 Bhn Cast bronze

15–20 Buckingham Steel, 250 Bhn Cast bronze

15–21 Buckingham High-test cast iron Cast bronze

15–22 Buckingham High-test cast iron High-test cast iron

Table 15–12

Table Supporting

Problems 15–15 to

15–22
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This chapter is concerned with a group of elements usually associated with rotation that

have in common the function of storing and/or transferring rotating energy. Because

of this similarity of function, clutches, brakes, couplings, and flywheels are treated

together in this book.

A simplified dynamic representation of a friction clutch or brake is shown in

Fig. 16–1a. Two inertias, I1 and I2, traveling at the respective angular velocities ω1 and

ω2, one of which may be zero in the case of brakes, are to be brought to the same speed

by engaging the clutch or brake. Slippage occurs because the two elements are running

at different speeds and energy is dissipated during actuation, resulting in a temperature

rise. In analyzing the performance of these devices we shall be interested in:

1 The actuating force

2 The torque transmitted

3 The energy loss

4 The temperature rise

The torque transmitted is related to the actuating force, the coefficient of friction, and

the geometry of the clutch or brake. This is a problem in statics, which will have to be

studied separately for each geometric configuration. However, temperature rise is

related to energy loss and can be studied without regard to the type of brake or clutch,

because the geometry of interest is that of the heat-dissipating surfaces.

The various types of devices to be studied may be classified as follows:

1 Rim types with internal expanding shoes

2 Rim types with external contracting shoes

3 Band types

4 Disk or axial types

5 Cone types

6 Miscellaneous types

A flywheel is an inertial energy-storage device. It absorbs mechanical energy by

increasing its angular velocity and delivers energy by decreasing its velocity. Figure 16–1b

is a mathematical representation of a flywheel.An input torque Ti ,corresponding to a coor-

dinate θi , will cause the flywheel speed to increase. And a load or output torque To, with

coordinate θo,will absorb energy from the flywheel and cause it to slow down. We shall be

interested in designing flywheels so as to obtain a specified amount of speed regulation.

�1

I1

I2

�2

Clutch or brake

T
i
, 	

i

T
o
, 	

o

I, 	

(b)

(a)

Figure 16–1

(a) Dynamic representation
of a clutch or brake; 
(b) mathematical
representation of a flywheel.
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16–1 Static Analysis of Clutches and Brakes
Many types of clutches and brakes can be analyzed by following a general procedure.

The procedure entails the following tasks:

• Estimate, model, or measure the pressure distribution on the friction surfaces.

• Find a relationship between the largest pressure and the pressure at any point.

• Use the conditions of static equilibrium to find the braking force or torque and the

support reactions.

Let us apply these tasks to the doorstop depicted in Fig. 16–2a. The stop is hinged at

pin A. A normal pressure distribution p(u) is shown under the friction pad as a function

of position u, taken from the right edge of the pad. A similar distribution of shearing

frictional traction is on the surface, of intensity f p(u), in the direction of the motion of

the floor relative to the pad, where f is the coefficient of friction. The width of the pad

into the page is w2. The net force in the y direction and moment about C from the pres-

sure are respectively,

N = w2

∫ w1

0

p(u) du = pavw1w2 (a)

w2

∫ w1

0

p(u)u du = ūw2

∫ w1

0

p(u) du = pavw1w2ū (b)

We sum the forces in the x-direction to obtain

∑

Fx = Rx ∓ w2

∫ w1

0

f p(u) du = 0

where − or + is for rightward or leftward relative motion of the floor, respectively.

Assuming f constant, solving for Rx gives

Rx = ±w2

∫ w1

0

f p(u) du = ± f w1w2 pav (c)

Summing the forces in the y direction gives

∑

Fy = −F + w2

∫ w1

0

p(u) du + Ry = 0

from which

Ry = F − w2

∫ w1

0

p(u) du = F − pavw1w2 (d)

for either direction. Summing moments about the pin located at A we have

∑

MA = Fb − w2

∫ w1

0

p(u)(c + u) du ∓ a f w2

∫ w1

0

p(u) du = 0

A brake shoe is self-energizing if its moment sense helps set the brake, self-deenergizing

if the moment resists setting the brake. Continuing,

F = w2

b

[∫ w1

0

p(u)(c + u) du ± a f

∫ w1

0

p(u) du

]

(e)
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A
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u
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2.16

5.405
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2.1

(d)

16

30

16
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10

2.1

(e)

2.139

4.652

2.139

5.348

10

2.14

Plan view of pad

w1

w2

��

P(u)

Relative motion

Friction pad

y2

r1 ��

r2 ��

C

C

Figure 16–2

A common doorstop.
(a) Free body of the doorstop.
(b) Trapezoidal pressure
distribution on the foot pad
based on linear deformation
of pad. (c) Free-body diagram
for leftward movement of the
floor, uniform pressure,
Ex. 16–1. (d) Free-body
diagram for rightward
movement of the floor,
uniform pressure, Ex. 16–1.
(e) Free-body diagram for
leftward movement of the
floor, trapezoidal pressure,
Ex. 16–1.
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Can F be equal to or less than zero? Only during rightward motion of the floor when

the expression in brackets in Eq. (e) is equal to or less than zero. We set the brackets to

zero or less:

∫ w1

0

p(u)(c + u) du − a f

∫ w1

0

p(u) du ≤ 0

from which

fcr ≥ 1

a

∫ w1

0

p(u)(c + u) du

∫ w1

0

p(u) du

= 1

a

c

∫ w1

0

p(u) du +
∫ w1

0

p(u)u du

∫ w1

0

p(u) du

fcr ≥ c + ū

a
(f )

where ū is the distance of the center of pressure from the right edge of the pad. The con-

clusion that a self-acting or self-locking phenomenon is present is independent of our

knowledge of the normal pressure distribution p(u). Our ability to find the critical value

of the coefficient of friction fcr is dependent on our knowledge of p(u), from which we

derive ū.

EXAMPLE 16–1 The doorstop depicted in Fig. 16–2a has the following dimensions: a = 4 in, b = 2 in,

c = 1.6 in, w1 = 1 in, w2 = 0.75 in, where w2 is the depth of the pad into the plane of

the paper.

(a) For a leftward relative movement of the floor, an actuating force F of 10 lbf, a coef-

ficient of friction of 0.4, use a uniform pressure distribution pav, find Rx , Ry, pav, and

the largest pressure pa.

(b) Repeat part a for rightward relative movement of the floor.

(c) Model the normal pressure to be the “crush” of the pad, much as if it were composed

of many small helical coil springs. Find Rx , Ry, pav, and pa for leftward relative

movement of the floor and other conditions as in part a.

(d ) For rightward relative movement of the floor, is the doorstop a self-acting brake?

Solution (a)

Eq. (c): Rx = f pavw1w2 = 0.4(1)(0.75)pav = 0.3pav

Eq. (d): Ry = F − pavw1w2 = 10 − pav(1)(0.75) = 10 − 0.75pav

Eq. (e): F = w2

b

[∫ 1

0

pav(c + u) du + a f

∫ 1

0

pav du

]

= w2

b

(

pavc

∫ 1

0

du + pav

∫ 1

0

u du + a f pav

∫ 1

0

du

)

= w2 pav

b
(c + 0.5 + a f ) = 0.75

2
[1.6 + 0.5 + 4(0.4)]pav

= 1.3875pav
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Solving for pav gives

pav = F

1.3875
= 10

1.3875
= 7.207 psi

We evaluate Rx and Ry as

Answer Rx = 0.3(7.207) = 2.162 lbf

Answer Ry = 10 − 0.75(7.207) = 4.595 lbf

The normal force N on the pad is F − Ry = 10 − 4.595 = 5.405 lbf, upward. The line

of action is through the center of pressure, which is at the center of the pad. The fric-

tion force is f N = 0.4(5.405) = 2.162 lbf directed to the left. A check of the moments

about A gives
∑

MA = Fb − f Na − N (w1/2 + c)

= 10(2) − 0.4(5.405)4 − 5.405(1/2 + 1.6)
.= 0

Answer The maximum pressure pa = pav = 7.207 psi.

(b)

Eq. (c): Rx = − f pavw1w2 = −0.4(1)(0.75)pav = −0.3pav

Eq. (d): Ry = F − pavw1w2 = 10 − pav(1)(0.75) = 10 − 0.75pav

Eq. (e): F = w2

b

[∫ 1

0

pav(c + u) du + a f

∫ 1

0

pav du

]

= w2

b

(

pavc

∫ 1

0

du + pav

∫ 1

0

u du + a f pav

∫ 1

0

du

)

= 0.75

2
pav[1.6 + 0.5 − 4(0.4)] = 0.1875pav

from which

pav = F

0.1875
= 10

0.1875
= 53.33 psi

which makes

Answer Rx = −0.3(53.33) = −16 lbf

Answer Ry = 10 − 0.75(53.33) = −30 lbf

The normal force N on the pad is 10 + 30 = 40 lbf upward. The friction shearing force

is f N = 0.4(40) = 16 lbf to the right. We now check the moments about A:

MA = f Na + Fb − N (c + 0.5) = 16(4) + 10(2) − 40(1.6 + 0.5) = 0

Note the change in average pressure from 7.207 psi in part a to 53.3 psi. Also note how

directions of forces have changed. The maximum pressure pa is the same as pav, which

has changed from 7.207 psi to 53.3 psi.

(c) We will model the deformation of the pad as follows. If the doorstop rotates �φ

counterclockwise, the right and left edges of the pad will deform down y1 and y2, respec-

tively (Fig. 16–2b). From similar triangles, y1/(r1 �φ) = c/r1 and y2/(r2 �φ) =
(c + w1)/r2. Thus, y1 = c �φ and y2 = (c + w1)�φ. This means that y is directly
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proportional to the horizontal distance from the pivot point A; that is, y = C1v, where

C1 is a constant (see Fig. 16–2b). Assuming the pressure is directly proportional to

deformation, then p(v) = C2v, where C2 is a constant. In terms of u, the pressure is

p(u) = C2(c + u) = C2(1.6 + u).

Eq. (e):

F = w2

b

[∫ w1

0

p(u)c du +
∫ w1

0

p(u)u du + a f

∫ w1

0

p(u) du

]

= 0.75

2

[∫ 1

0

C2(1.6 + u)1.6 du +
∫ 1

0

C2(1.6 + u) u du + a f

∫ 1

0

C2(1.6 + u )du

]

= 0.375C2[(1.6 + 0.5)1.6 + (0.8 + 0.3333) + 4(0.4)(1.6 + 0.5)] = 2.945C2

Since F = 10 lbf, then C2 = 10/2.945 = 3.396 psi/in, and p(u) = 3.396(1.6 + u). The

average pressure is given by

Answer pav = 1

w1

∫ w1

0

p(u) du = 1

1

∫ 1

0

3.396(1.6 + u) du = 3.396(1.6 + 0.5) = 7.132 psi

The maximum pressure occurs at u = 1 in, and is

Answer pa = 3.396(1.6 + 1) = 8.83 psi

Equations (c) and (d ) of Sec. 16–1 are still valid. Thus,

Answer Rx = 0.3pav = 0.3(7.131) = 2.139 lbf

Ry = 10 − 0.75pav = 10 − 0.75(7.131) = 4.652 lbf

The average pressure is pav = 7.13 psi and the maximum pressure is pa = 8.83 psi,

which is approximately 24 percent higher than the average pressure. The presumption

that the pressure was uniform in part a (because the pad was small, or because the

arithmetic would be easier?) underestimated the peak pressure. Modeling the pad as a

one-dimensional springset is better, but the pad is really a three-dimensional continuum.

A theory of elasticity approach or a finite element modeling may be overkill, given

uncertainties inherent in this problem, but it still represents better modeling.

(d) To evaluate ū we need to evaluate two integrations
∫ c

0

p(u)u du =
∫ 1

0

3.396(1.6 + u)u du = 3.396(0.8 + 0.3333) = 3.849 lbf

∫ c

0

p(u) du =
∫ 1

0

3.396(1.6 + u) du = 3.396(1.6 + 0.5) = 7.132 lbf/in

Thus ū = 3.849/7.132 = 0.5397 in. Then, from Eq. ( f ) of Sec. 16–1, the critical co-

efficient of friction is

Answer fcr ≥ c + ū

a
= 1.6 + 0.5397

4
= 0.535

The doorstop friction pad does not have a high enough coefficient of friction to make the

doorstop a self-acting brake. The configuration must change and/or the pad material

specification must be changed to sustain the function of a doorstop.
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Figure 16–3

An internal expanding
centrifugal-acting rim clutch.
(Courtesy of the Hilliard
Corporation.)

16–2 Internal Expanding Rim Clutches and Brakes
The internal-shoe rim clutch shown in Fig. 16–3 consists essentially of three elements: the

mating frictional surface, the means of transmitting the torque to and from the surfaces,

and the actuating mechanism. Depending upon the operating mechanism, such clutches

are further classified as expanding-ring, centrifugal, magnetic, hydraulic, and pneumatic.

The expanding-ring clutch is often used in textile machinery, excavators, and

machine tools where the clutch may be located within the driving pulley. Expanding-

ring clutches benefit from centrifugal effects; transmit high torque, even at low speeds;

and require both positive engagement and ample release force.

The centrifugal clutch is used mostly for automatic operation. If no spring is used,

the torque transmitted is proportional to the square of the speed. This is particularly

useful for electric-motor drives where, during starting, the driven machine comes up to

speed without shock. Springs can also be used to prevent engagement until a certain

motor speed is reached, but some shock may occur.

Magnetic clutches are particularly useful for automatic and remote-control systems.

Such clutches are also useful in drives subject to complex load cycles (see Sec. 11–7).

Hydraulic and pneumatic clutches are also useful in drives having complex load-

ing cycles and in automatic machinery, or in robots. Here the fluid flow can be con-

trolled remotely using solenoid valves. These clutches are also available as disk, cone,

and multiple-plate clutches.

In braking systems, the internal-shoe or drum brake is used mostly for automotive

applications.

To analyze an internal-shoe device, refer to Fig. 16–4, which shows a shoe pivoted

at point A, with the actuating force acting at the other end of the shoe. Since the shoe is

long, we cannot make the assumption that the distribution of normal forces is uniform.

The mechanical arrangement permits no pressure to be applied at the heel, and we will

therefore assume the pressure at this point to be zero.

It is the usual practice to omit the friction material for a short distance away from

the heel (point A). This eliminates interference, and the material would contribute little

to the performance anyway, as will be shown. In some designs the hinge pin is made

movable to provide additional heel pressure. This gives the effect of a floating shoe.
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Figure 16–4

Internal friction shoe geometry.
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(Floating shoes will not be treated in this book, although their design follows the same

general principles.)

Let us consider the pressure p acting upon an element of area of the frictional material

located at an angle θ from the hinge pin (Fig. 16–4). We designate the maximum pressure

pa located at an angle θa from the hinge pin. To find the pressure distribution on the

periphery of the internal shoe, consider point B on the shoe (Fig. 16–5). As in Ex. 16–1, if

the shoe deforms by an infinitesimal rotation �φ about the pivot point A, deformation per-

pendicular to AB is h �φ. From the isosceles triangle AO B, h = 2 r sin(θ/2), so

h �φ = 2 r �φ sin(θ/2)

The deformation perpendicular to the rim is h �φ cos(θ/2), which is

h �φ cos(θ/2) = 2 r �φ sin(θ/2) cos(θ/2) = r �φ sin θ

Thus, the deformation, and consequently the pressure, is proportional to sin θ . In terms

of the pressure at B and where the pressure is a maximum, this means

p

sin θ
= pa

sin θa

(a)

Figure 16–5

The geometry associated with
an arbitrary point on the shoe.
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Rearranging gives

p = pa

sin θa

sin θ (16–1)

This pressure distribution has interesting and useful characteristics:

• The pressure distribution is sinusoidal with respect to the angle θ .

• If the shoe is short, as shown in Fig. 16–6a, the largest pressure on the shoe is pa

occurring at the end of the shoe, θ2.

• If the shoe is long, as shown in Fig. 16–6b, the largest pressure on the shoe is pa

occurring at θa = 90◦.

Since limitations on friction materials are expressed in terms of the largest allowable

pressure on the lining, the designer wants to think in terms of pa and not about the

amplitude of the sinusoidal distribution that addresses locations off the shoe.

When θ = 0, Eq. (16–1) shows that the pressure is zero. The frictional material

located at the heel therefore contributes very little to the braking action and might as

well be omitted. A good design would concentrate as much frictional material as pos-

sible in the neighborhood of the point of maximum pressure. Such a design is shown in

Fig. 16–7. In this figure the frictional material begins at an angle θ1, measured from the

hinge pin A, and ends at an angle θ2. Any arrangement such as this will give a good

distribution of the frictional material.

Proceeding now (Fig. 16–7), the hinge-pin reactions are Rx and Ry . The actuating

force F has components Fx and Fy and operates at distance c from the hinge pin.

At any angle θ from the hinge pin there acts a differential normal force d N whose

magnitude is

d N = pbr dθ (b)

Figure 16–6

Defining the angle θa at which
the maximum pressure pa

occurs when (a) shoe exists in
zone θ1 ≤ θ2 ≤ π/2 and
(b) shoe exists in zone
θ1 ≤ π/2 ≤ θ2 .

	1 π	2
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	a

p
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(a)

Figure 16–7

Forces on the shoe.
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where b is the face width (perpendicular to the paper) of the friction material.

Substituting the value of the pressure from Eq. (16–1), the normal force is

d N = pabr sin θ dθ

sin θa

(c)

The normal force d N has horizontal and vertical components d N cos θ and d N sin θ ,

as shown in the figure. The frictional force f d N has horizontal and vertical compo-

nents whose magnitudes are f d N sin θ and f d N cos θ , respectively. By applying the

conditions of static equilibrium, we may find the actuating force F, the torque T, and

the pin reactions Rx and Ry .

We shall find the actuating force F, using the condition that the summation of the

moments about the hinge pin is zero. The frictional forces have a moment arm about

the pin of r − a cos θ . The moment M f of these frictional forces is

M f =
∫

f d N (r − a cos θ) = f pabr

sin θa

∫ θ2

θ1

sin θ(r − a cos θ) dθ (16–2)

which is obtained by substituting the value of d N from Eq. (c). It is convenient to

integrate Eq. (16–2) for each problem, and we shall therefore retain it in this form. The

moment arm of the normal force d N about the pin is a sin θ . Designating the moment

of the normal forces by MN and summing these about the hinge pin give

MN =
∫

d N (a sin θ) = pabra

sin θa

∫ θ2

θ1

sin2 θ dθ (16–3)

The actuating force F must balance these moments. Thus

F = MN − M f

c
(16–4)

We see here that a condition for zero actuating force exists. In other words, if

we make MN = M f , self-locking is obtained, and no actuating force is required. This

furnishes us with a method for obtaining the dimensions for some self-energizing

action. Thus the dimension a in Fig. 16–7 must be such that

MN > M f (16–5)

The torque T applied to the drum by the brake shoe is the sum of the frictional

forces f d N times the radius of the drum:

T =
∫

f r d N = f pabr2

sin θa

∫ θ2

θ1

sin θ dθ

= f pabr2(cos θ1 − cos θ2)

sin θa

(16–6)

The hinge-pin reactions are found by taking a summation of the horizontal and

vertical forces. Thus, for Rx , we have

Rx =
∫

d N cos θ −
∫

f d N sin θ − Fx

= pabr

sin θa

(∫ θ2

θ1

sin θ cos θ dθ − f

∫ θ2

θ1

sin2 θ dθ

)

− Fx (d )
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The vertical reaction is found in the same way:

Ry =
∫

d N sin θ +
∫

f d N cos θ − Fy

= pabr

sin θa

(∫ θ2

θ1

sin2 θ dθ + f

∫ θ2

θ1

sin θ cos θ dθ

)

− Fy (e)

The direction of the frictional forces is reversed if the rotation is reversed. Thus, for

counterclockwise rotation the actuating force is

F = MN + M f

c
(16–7)

and since both moments have the same sense, the self-energizing effect is lost. Also, for

counterclockwise rotation the signs of the frictional terms in the equations for the pin

reactions change, and Eqs. (d ) and (e) become

Rx = pabr

sin θa

(∫ θ2

θ1

sin θ cos θ dθ + f

∫ θ2

θ1

sin2 θ dθ

)

− Fx (f )

Ry = pabr

sin θa

(∫ θ2

θ1

sin2 θ dθ − f

∫ θ2

θ1

sin θ cos θ dθ

)

− Fy (g)

Equations (d), (e), ( f ), and (g) can be simplified to ease computations. Thus, let

A =
∫ θ2

θ1

sin θ cos θ dθ =
(

1

2
sin2 θ

)θ2

θ1

B =
∫ θ2

θ1

sin2 θ dθ =
(

θ

2
− 1

4
sin 2θ

)θ2

θ1

(16–8)

Then, for clockwise rotation as shown in Fig. 16–7, the hinge-pin reactions are

Rx = pabr

sin θa

(A − f B) − Fx

Ry = pabr

sin θa

(B + f A) − Fy

(16–9)

For counterclockwise rotation, Eqs. ( f ) and (g) become

Rx = pabr

sin θa

(A + f B) − Fx

Ry = pabr

sin θa

(B − f A) − Fy

(16–10)

In using these equations, the reference system always has its origin at the center of

the drum. The positive x axis is taken through the hinge pin. The positive y axis is

always in the direction of the shoe, even if this should result in a left-handed system.

The following assumptions are implied by the preceding analysis:

1 The pressure at any point on the shoe is assumed to be proportional to the distance

from the hinge pin, being zero at the heel. This should be considered from the

standpoint that pressures specified by manufacturers are averages rather than

maxima.
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Figure 16–8

Brake with internal expanding
shoes; dimensions in
millimeters. F F

100

62 62

112

50 50

150

Rotation 24°

126°

30°

2 The effect of centrifugal force has been neglected. In the case of brakes, the shoes

are not rotating, and no centrifugal force exists. In clutch design, the effect of this

force must be considered in writing the equations of static equilibrium.

3 The shoe is assumed to be rigid. Since this cannot be true, some deflection will

occur, depending upon the load, pressure, and stiffness of the shoe. The resulting

pressure distribution may be different from that which has been assumed.

4 The entire analysis has been based upon a coefficient of friction that does not vary

with pressure. Actually, the coefficient may vary with a number of conditions,

including temperature, wear, and environment.

EXAMPLE 16–2 The brake shown in Fig. 16–8 is 300 mm in diameter and is actuated by a mechanism

that exerts the same force F on each shoe. The shoes are identical and have a face width

of 32 mm. The lining is a molded asbestos having a coefficient of friction of 0.32 and

a pressure limitation of 1000 kPa. Estimate the maximum

(a) Actuating force F.

(b) Braking capacity.

(c) Hinge-pin reactions.

Solution (a) The right-hand shoe is self-energizing, and so the force F is found on the basis that

the maximum pressure will occur on this shoe. Here θ1 = 0◦, θ2 = 126◦, θa = 90◦, and

sin θa = 1. Also,

a =
√

(112)2 + (50)2 = 122.7 mm

Integrating Eq. (16–2) from 0 to θ2 yields

M f = f pabr

sin θa

[

(

−r cos θ

)θ2

0

− a

(

1

2
sin2 θ

)θ2

0

]

= f pabr

sin θa

(

r − r cos θ2 − a

2
sin2 θ2

)
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Changing all lengths to meters, we have

M f = (0.32)[1000(10)3](0.032)(0.150)

×
[

0.150 − 0.150 cos 126◦ −
(

0.1227

2

)

sin2 126◦
]

= 304 N · m

The moment of the normal forces is obtained from Eq. (16–3). Integrating from 0 to θ2

gives

MN = pabra

sin θa

(

θ

2
− 1

4
sin 2θ

)θ2

0

= pabra

sin θa

(

θ2

2
− 1

4
sin 2θ2

)

= [1000(10)3](0.032)(0.150)(0.1227)

{

π

2

126

180
− 1

4
sin[(2)(126◦)]

}

= 788 N · m

From Eq. (16–4), the actuating force is

Answer F = MN − M f

c
= 788 − 304

100 + 112
= 2.28 kN

(b) From Eq. (16–6), the torque applied by the right-hand shoe is

TR = f pabr2(cos θ1 − cos θ2)

sin θa

= 0.32[1000(10)3](0.032)(0.150)2(cos 0◦ − cos 126◦)

sin 90◦ = 366 N · m

The torque contributed by the left-hand shoe cannot be obtained until we learn its max-

imum operating pressure. Equations (16–2) and (16–3) indicate that the frictional and

normal moments are proportional to this pressure. Thus, for the left-hand shoe,

MN = 788pa

1000
M f = 304pa

1000

Then, from Eq. (16–7),

F = MN + M f

c

or

2.28 = (788/1000)pa + (304/1000)pa

100 + 112

Solving gives pa = 443 kPa. Then, from Eq. (16–6), the torque on the left-hand shoe is

TL = f pabr2(cos θ1 − cos θ2)

sin θa

Since sin θa = sin 90◦ = 1, we have

TL = 0.32[443(10)3](0.032)(0.150)2(cos 0◦ − cos 126◦) = 162 N · m
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The braking capacity is the total torque:

Answer T = TR + TL = 366 + 162 = 528 N · m

(c) In order to find the hinge-pin reactions, we note that sin θa = 1 and θ1 = 0. Then

Eq. (16–8) gives

A = 1

2
sin2 θ2 = 1

2
sin2 126◦ = 0.3273

B = θ2

2
− 1

4
sin 2θ2 = π(126)

2(180)
− 1

4
sin[(2)(126◦)] = 1.3373

Also, let

D = pabr

sin θa

= 1000(0.032)(0.150)

1
= 4.8 kN

where pa = 1000 kPa for the right-hand shoe. Then, using Eq. (16–9), we have

Rx = D(A − f B) − Fx = 4.8[0.3273 − 0.32(1.3373)] − 2.28 sin 24◦

= −1.410 kN

Ry = D(B + f A) − Fy = 4.8[1.3373 + 0.32(0.3273)] − 2.28 cos 24◦

= 4.839 kN

The resultant on this hinge pin is

Answer R =
√

(−1.410)2 + (4.839)2 = 5.04 kN

The reactions at the hinge pin of the left-hand shoe are found using Eqs. (16–10)

for a pressure of 443 kPa. They are found to be Rx = 0.678 kN and Ry = 0.538 kN.

The resultant is

Answer R =
√

(0.678)2 + (0.538)2 = 0.866 kN

The reactions for both hinge pins, together with their directions, are shown in Fig. 16–9.

Figure 16–9

x x

R

Rx

Ry
Ry

Rx

Fy Fy

Fx

F F

Fx

R

y y

24° 24°
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Figure 16–10

An external contracting clutch-
brake that is engaged by
expanding the flexible tube
with compressed air. (Courtesy
of Twin Disc Clutch Company.)

This example dramatically shows the benefit to be gained by arranging the shoes

to be self-energizing. If the left-hand shoe were turned over so as to place the hinge pin

at the top, it could apply the same torque as the right-hand shoe. This would make the

capacity of the brake (2)(366) = 732 N · m instead of the present 528 N · m, a 30 per-

cent improvement. In addition, some of the friction material at the heel could be elim-

inated without seriously affecting the capacity, because of the low pressure in this area.

This change might actually improve the overall design because the additional rim expo-

sure would improve the heat-dissipation capacity.

16–3 External Contracting Rim Clutches and Brakes
The patented clutch-brake of Fig. 16–10 has external contracting friction elements, but

the actuating mechanism is pneumatic. Here we shall study only pivoted external shoe

brakes and clutches, though the methods presented can easily be adapted to the clutch-

brake of Fig. 16–10.

Operating mechanisms can be classified as:

1 Solenoids

2 Levers, linkages, or toggle devices

3 Linkages with spring loading

4 Hydraulic and pneumatic devices

The static analysis required for these devices has already been covered in Sec. 3–1. The

methods there apply to any mechanism system, including all those used in brakes and

clutches. It is not necessary to repeat the material in Chap. 3 that applies directly to such

mechanisms. Omitting the operating mechanisms from consideration allows us to con-

centrate on brake and clutch performance without the extraneous influences introduced

by the need to analyze the statics of the control mechanisms.

The notation for external contracting shoes is shown in Fig. 16–11. The moments

of the frictional and normal forces about the hinge pin are the same as for the internal
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expanding shoes. Equations (16–2) and (16–3) apply and are repeated here for

convenience:

M f = f pabr

sin θa

∫ θ2

θ1

sin θ(r − a cos θ) dθ (16–2)

MN = pabra

sin θa

∫ θ2

θ1

sin2 θ dθ (16–3)

Both these equations give positive values for clockwise moments (Fig. 16–11) when

used for external contracting shoes. The actuating force must be large enough to bal-

ance both moments:

F = MN + M f

c
(16–11)

The horizontal and vertical reactions at the hinge pin are found in the same manner

as for internal expanding shoes. They are

Rx =
∫

d N cos θ +
∫

f d N sin θ − Fx (a)

Ry =
∫

f d N cos θ −
∫

d N sin θ + Fy (b)

By using Eq. (16–8) and Eq. (c) from Sec. 16–2, we have

Rx = pabr

sin θa

(A + f B) − Fx

Ry = pabr

sin θa

( f A − B) + Fy

(16–12)

Figure 16–11

Notation of external
contacting shoes.
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If the rotation is counterclockwise, the sign of the frictional term in each equation

is reversed. Thus Eq. (16–11) for the actuating force becomes

F = MN − M f

c
(16–13)

and self-energization exists for counterclockwise rotation. The horizontal and vertical

reactions are found, in the same manner as before, to be

Rx = pabr

sin θa

(A − f B) − Fx

Ry = pabr

sin θa

(− f A − B) + Fy

(16–14)

It should be noted that, when external contracting designs are used as clutches, the

effect of centrifugal force is to decrease the normal force. Thus, as the speed increases,

a larger value of the actuating force F is required.

A special case arises when the pivot is symmetrically located and also placed so

that the moment of the friction forces about the pivot is zero. The geometry of such

a brake will be similar to that of Fig. 16–12a. To get a pressure-distribution relation,

we note that lining wear is such as to retain the cylindrical shape, much as a milling

machine cutter feeding in the x direction would do to the shoe held in a vise. See

Fig. 16–12b. This means the abscissa component of wear is w0 for all positions θ .

If wear in the radial direction is expressed as w(θ), then

w(θ) = w0 cos θ

Using Eq. (12–26), p. 642, to express radial wear w(θ) as

w(θ) = K PV t

Figure 16–12

(a) Brake with symmetrical
pivoted shoe; (b) wear of
brake lining.
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where K is a material constant, P is pressure, V is rim velocity, and t is time. Then,

denoting P as p(θ) above and solving for p(θ) gives

p(θ) = w(θ)

K V t
= w0 cos θ

K V t

Since all elemental surface areas of the friction material see the same rubbing speed for

the same duration, w0/(K V t) is a constant and

p(θ) = (constant) cos θ = pa cos θ (c)

where pa is the maximum value of p(θ).

Proceeding to the force analysis, we observe from Fig. 16–12a that

d N = pbr dθ (d )

or

d N = pabr cos θ dθ (e)

The distance a to the pivot is chosen by finding where the moment of the frictional

forces M f is zero. First, this ensures that reaction Ry is at the correct location to

establish symmetrical wear. Second, a cosinusoidal pressure distribution is sustained,

preserving our predictive ability. Symmetry means θ1 = θ2, so

M f = 2

∫ θ2

0

( f d N )(a cos θ − r) = 0

Substituting Eq. (e) gives

2 f pabr

∫ θ2

0

(a cos2 θ − r cos θ) dθ = 0

from which

a = 4r sin θ2

2θ2 + sin 2θ2

(16–15)

The distance a depends on the pressure distribution. Mislocating the pivot makes M f

zero about a different location, so the brake lining adjusts its local contact pressure,

through wear, to compensate. The result is unsymmetrical wear, retiring the shoe lin-

ing, hence the shoe, sooner. 

With the pivot located according to Eq. (16–15), the moment about the pin is zero,

and the horizontal and vertical reactions are

Rx = 2

∫ θ2

0

d N cos θ = pabr

2
(2θ2 + sin 2θ2) (16–16)

where, because of symmetry,
∫

f d N sin θ = 0

Also,

Ry = 2

∫ θ2

0

f d N cos θ = pabr f

2
(2θ2 + sin 2θ2) (16–17)
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where

∫

d N sin θ = 0

also because of symmetry. Note, too, that Rx = −N and Ry = − f N , as might be

expected for the particular choice of the dimension a. Therefore the torque is

T = a f N (16–18)

16–4 Band-Type Clutches and Brakes
Flexible clutch and brake bands are used in power excavators and in hoisting and other

machinery. The analysis follows the notation of Fig. 16–13.

Because of friction and the rotation of the drum, the actuating force P2 is less than

the pin reaction P1. Any element of the band, of angular length dθ , will be in equilibri-

um under the action of the forces shown in the figure. Summing these forces in the

vertical direction, we have

(P + d P) sin
dθ

2
+ P sin

dθ

2
− d N = 0 (a)

d N = Pdθ (b)

since for small angles sin dθ/2 = dθ/2. Summing the forces in the horizontal direction

gives

(P + d P) cos
dθ

2
− P cos

dθ

2
− f d N = 0 (c)

d P − f d N = 0 (d )

since for small angles, cos(dθ/2)
.= 1. Substituting the value of d N from Eq. (b) in (d )

and integrating give

∫ P1

P2

d P

P
= f

∫ φ

0

dθ or ln
P1

P2

= f φ

Figure 16–13

Forces on a brake band. P + dP P
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and

P1

P2

= e f φ (16–19)

The torque may be obtained from the equation

T = (P1 − P2)
D

2
(16–20)

The normal force d N acting on an element of area of width b and length rdθ is

d N = pbr dθ (e)

where p is the pressure. Substitution of the value of d N from Eq. (b) gives

P dθ = pbr dθ

Therefore

p = P

br
= 2P

bD
(16–21)

The pressure is therefore proportional to the tension in the band. The maximum pressure

pa will occur at the toe and has the value

pa = 2P1

bD
(16–22)

16–5 Frictional-Contact Axial Clutches
An axial clutch is one in which the mating frictional members are moved in a direction

parallel to the shaft. One of the earliest of these is the cone clutch, which is simple in

construction and quite powerful. However, except for relatively simple installations,

it has been largely displaced by the disk clutch employing one or more disks as the

operating members. Advantages of the disk clutch include the freedom from centrifugal

effects, the large frictional area that can be installed in a small space, the more effective

heat-dissipation surfaces, and the favorable pressure distribution. Figure 16–14 shows a

Figure 16–14

Cross-sectional view of a
single-plate clutch; A, driver;
B, driven plate (keyed to
driven shaft); C, actuator.

C

B

A
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Figure 16–15

An oil-actuated multiple-disk
clutch-brake for operation in
an oil bath or spray. It is
especially useful for rapid
cycling. (Courtesy of Twin Disc
Clutch Company.)

Figure 16–16

Disk friction member.

D

d

r

dr

F

single-plate disk clutch; a multiple-disk clutch-brake is shown in Fig. 16–15. Let us now

determine the capacity of such a clutch or brake in terms of the material and geometry.

Figure 16–16 shows a friction disk having an outside diameter D and an inside diam-

eter d. We are interested in obtaining the axial force F necessary to produce a certain

torque T and pressure p. Two methods of solving the problem, depending upon the con-

struction of the clutch, are in general use. If the disks are rigid, then the greatest amount

of wear will at first occur in the outer areas, since the work of friction is greater in those

areas. After a certain amount of wear has taken place, the pressure distribution will change

so as to permit the wear to be uniform. This is the basis of the first method of solution.

Another method of construction employs springs to obtain a uniform pressure over

the area. It is this assumption of uniform pressure that is used in the second method of

solution.

Uniform Wear

After initial wear has taken place and the disks have worn down to a point where

uniform wear is established, the axial wear can be expressed by Eq. (12–27), p. 643, as

w = f1 f2 K PV t
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in which only P and V vary from place to place in the rubbing surfaces. By definition

uniform wear is constant from place to place; therefore,

PV = (constant) = C1

prω = C2

pr = C3 = pmaxri = pari = pa

d

2
(a)

We can take an expression from Eq. (a), which is the condition for having the same

amount of work done at radius r as is done at radius d/2. Referring to Fig. 16–16, we

have an element of area of radius r and thickness dr . The area of this element is

2πr dr , so that the normal force acting upon this element is d F = 2πpr dr . We can

find the total normal force by letting r vary from d/2 to D/2 and integrating. Thus,

with pr constant,

F =
∫ D/2

d/2

2πpr dr = πpad

∫ D/2

d/2

dr = πpad

2
(D − d) (16–23)

The torque is found by integrating the product of the frictional force and the radius:

T =
∫ D/2

d/2

2π f pr2 dr = π f pad

∫ D/2

d/2

r dr = π f pad

8
(D2 − d2) (16–24)

By substituting the value of F from Eq. (16–23) we may obtain a more convenient

expression for the torque. Thus

T = F f

4
(D + d) (16–25)

In use, Eq. (16–23) gives the actuating force for the selected maximum pressure

pa . This equation holds for any number of friction pairs or surfaces. Equation (16–25),

however, gives the torque capacity for only a single friction surface.

Uniform Pressure

When uniform pressure can be assumed over the area of the disk, the actuating force F

is simply the product of the pressure and the area. This gives

F = πpa

4
(D2 − d2) (16–26)

As before, the torque is found by integrating the product of the frictional force and the

radius:

T = 2π f p

∫ D/2

d/2

r2 dr = π f p

12
(D3 − d3) (16–27)

Since p = pa , from Eq. (16–26) we can rewrite Eq. (16–27) as

T = F f

3

D3 − d3

D2 − d2
(16–28)

It should be noted for both equations that the torque is for a single pair of mating

surfaces. This value must therefore be multiplied by the number of pairs of surfaces in

contact.
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Let us express Eq. (16–25) for torque during uniform wear as

T

f F D
= 1 + d/D

4
(b)

and Eq. (16–28) for torque during uniform pressure (new clutch) as

T

f F D
= 1

3

1 − (d/D)3

1 − (d/D)2
(c)

and plot these in Fig. 16–17. What we see is a dimensionless presentation of Eqs. (b)

and (c) which reduces the number of variables from five (T, f, F, D, and d) to three

(T/F D, f , and d/D) which are dimensionless. This is the method of Buckingham. The

dimensionless groups (called pi terms) are

π1 = T

F D
π2 = f π3 = d

D

This allows a five-dimensional space to be reduced to a three-dimensional space.

Further, because of the “multiplicative” relation between f and T in Eqs. (b) and (c),

it is possible to plot π1/π2 versus π3 in a two-dimensional space (the plane of a sheet

of paper) to view all cases over the domain of existence of Eqs. (b) and (c) and to

compare, without risk of oversight! By examining Fig. 16–17 we can conclude that a

new clutch, Eq. (b), always transmits more torque than an old clutch, Eq. (c).

Furthermore, since clutches of this type are proportioned to make the diameter ratio

d/D fall in the range 0.6 ≤ d/D ≤ 1, the largest discrepancy between Eq. (b) and

Eq. (c) will be

T

f F D
= 1 + 0.6

4
= 0.400 (old clutch, uniform wear)

T

f F D
= 1

3

1 − 0.63

1 − 0.62
= 0.4083 (new clutch, uniform pressure)

so the proportional error is (0.4083 − 0.400)/0.400 = 0.021, or about 2 percent. Given

the uncertainties in the actual coefficient of friction and the certainty that new clutches

get old, there is little reason to use anything but Eqs. (16–23), (16–24), and (16–25).

Figure 16–17

Dimensionless plot of Eqs. (b)
and (c).

0 0.5 1
0

0.5

1

Uniform pressure

Uniform wear

d
D

T
fFD
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Figure 16–18

An automotive disk brake.
(Courtesy DaimlerChrysler
Corporation.)

Wheel
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bearing Seal

16–6 Disk Brakes
As indicated in Fig. 16–16, there is no fundamental difference between a disk clutch

and a disk brake. The analysis of the preceding section applies to disk brakes too.

We have seen that rim or drum brakes can be designed for self-energization. While

this feature is important in reducing the braking effort required, it also has a disadvantage.

When drum brakes are used as vehicle brakes, only a slight change in the coefficient of

friction will cause a large change in the pedal force required for braking. A not unusual 30

percent reduction in the coefficient of friction due to a temperature change or moisture, for

example, can result in a 50 percent change in the pedal force required to obtain the same

braking torque obtainable prior to the change. The disk brake has no self-energization, and

hence is not so susceptible to changes in the coefficient of friction.

Another type of disk brake is the floating caliper brake, shown in Fig. 16–18. The

caliper supports a single floating piston actuated by hydraulic pressure. The action is

much like that of a screw clamp, with the piston replacing the function of the screw. The

floating action also compensates for wear and ensures a fairly constant pressure over

the area of the friction pads. The seal and boot of Fig. 16–18 are designed to obtain

clearance by backing off from the piston when the piston is released.

Caliper brakes (named for the nature of the actuating linkage) and disk brakes

(named for the shape of the unlined surface) press friction material against the face(s)
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of a rotating disk. Depicted in Fig. 16–19 is the geometry of an annular-pad brake con-

tact area. The governing axial wear equation is Eq. (12–27), p. 643,

w = f1 f2 K PV t

The coordinate r̄ locates the line of action of force F that intersects the y axis. Of

interest also is the effective radius re, which is the radius of an equivalent shoe of infin-

itesimal radial thickness. If p is the local contact pressure, the actuating force F and the

friction torque T are given by

F =
∫ θ2

θ1

∫ ro

ri

pr dr dθ = (θ2 − θ1)

∫ ro

ri

pr dr (16–29)

T =
∫ θ2

θ1

∫ ro

ri

f pr2 dr dθ = (θ2 − θ1) f

∫ ro

ri

pr2 dr (16–30)

The equivalent radius re can be found from f Fre = T , or 

re = T

f F
=

∫ ro

ri

pr2 dr

∫ ro

ri

pr dr

(16–31)

The locating coordinate r̄ of the activating force is found by taking moments about the

x axis:

Mx = Fr̄ =
∫ θ2

θ1

∫ ro

ri

pr(r sin θ) dr dθ = (cos θ1 − cos θ2)

∫ ro

ri

pr2 dr

r̄ = Mx

F
= (cos θ1 − cos θ2)

θ2 − θ1

re (16–32)

Uniform Wear

It is clear from Eq. (12–27) that for the axial wear to be the same everywhere, the prod-

uct PV must be a constant. From Eq. (a), Sec. 16–5, the pressure p can be expressed

in terms of the largest allowable pressure pa (which occurs at the inner radius ri ) as

Figure 16–19

Geometry of contact area of
an annular-pad segment of a
caliper brake.

y

x
ro

	1

	2ri

FF

r
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p = pari/r . Equation (16–29) becomes

F = (θ2 − θ1)pari (ro − ri ) (16–33)

Equation (16–30) becomes

T = (θ2 − θ1) f pari

∫ ro

ri

r dr = 1

2
(θ2 − θ1) f pari

(

r2
o − r2

i

)

(16–34)

Equation (16–31) becomes

re =
pari

∫ ro

ri

r dr

pari

∫ ro

ri

dr

= r2
o − r2

i

2

1

ro − ri

= ro + ri

2
(16–35)

Equation (16–32) becomes

r̄ = cos θ1 − cos θ2

θ2 − θ1

ro + ri

2
(16–36)

Uniform Pressure

In this situation, approximated by a new brake, p = pa . Equation (16–29) becomes

F = (θ2 − θ1)pa

∫ ro

ri

r dr = 1

2
(θ2 − θ1)pa

(

r2
o − r2

i

)

(16–37)

Equation (16–30) becomes

T = (θ2 − θ1) f pa

∫ ro

ri

r2 dr = 1

3
(θ2 − θ1) f pa

(

r3
o − r3

i

)

(16–38)

Equation (16–31) becomes

re =
pa

∫ ro

ri

r2 dr

pa

∫ ro

ri

r dr

= r3
o − r3

i

3

2

r2
o − r2

i

= 2

3

r3
o − r3

i

r2
o − r3

i

(16–39)

Equation (16–32) becomes

r̄ = cos θ1 − cos θ2

θ2 − θ1

2

3

r3
o − r3

i

r2
o − r2

i

= 2

3

r3
o − r3

i

r2
o − r2

i

cos θ1 − cos θ2

θ2 − θ1

(16–40)

EXAMPLE 16–3 Two annular pads, ri = 3.875 in, ro = 5.50 in, subtend an angle of 108◦, have a co-

efficient of friction of 0.37, and are actuated by a pair of hydraulic cylinders 1.5 in in

diameter. The torque requirement is 13 000 lbf · in. For uniform wear

(a) Find the largest normal pressure pa .

(b) Estimate the actuating force F.

(c) Find the equivalent radius re and force location r̄ .

(d) Estimate the required hydraulic pressure.
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Solution (a) From Eq. (16–34), with T = 13 000/2 = 6500 lbf · in for each pad,

Answer pa = 2T

(θ2 − θ1) f ri

(

r2
o − r2

i

)

= 2(6500)

(144◦ − 36◦)(π/180)0.37(3.875)(5.52 − 3.8752)
= 315.8 psi

(b) From Eq. (16–33),

Answer F = (θ2 − θ1)pari (ro − ri ) = (144◦ − 36◦)(π/180)315.8(3.875)(5.5 − 3.875)

= 3748 lbf

(c) From Eq. (16–35),

Answer re = ro + ri

2
= 5.50 + 3.875

2
= 4.688 in

From Eq. (16–36),

Answer r̄ = cos θ1 − cos θ2

θ2 − θ1

ro + ri

2
= cos 36◦ − cos 144◦

(144◦ − 36◦)(π/180)

5.50 + 3.875

2

= 4.024 in

(d ) Each cylinder supplies the actuating force, 3748 lbf.

Answer phydraulic = F

AP

= 3748

π(1.52/4)
= 2121 psi

Circular (Button or Puck) Pad Caliper Brake

Figure 16–20 displays the pad geometry. Numerical integration is necessary to ana-

lyze this brake since the boundaries are difficult to handle in closed form. Table 16–1

gives the parameters for this brake as determined by Fazekas. The effective radius is

given by 

re = δe (16–41)

The actuating force is given by

F = π R2 pav (16–42)

and the torque is given by

T = f Fre (16–43)

Figure 16–20

Geometry of circular pad of a
caliper brake.

e

R
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EXAMPLE 16–4 A button-pad disk brake uses dry sintered metal pads. The pad radius is 1
2

in, and its

center is 2 in from the axis of rotation of the 3 1
2
-in-diameter disk. Using half of the

largest allowable pressure, pmax = 350 psi, find the actuating force and the brake

torque. The coefficient of friction is 0.31.

Solution Since the pad radius R = 0.5 in and eccentricity e = 2 in,

R

e
= 0.5

2
= 0.25

From Table 16–1, by interpolation, δ = 0.963 and pmax/pav = 1.290. It follows that the

effective radius e is found from Eq. (16–41):

re = δe = 0.963(2) = 1.926 in

and the average pressure is

pav = pmax/2

1.290
= 350/2

1.290
= 135.7 psi

The actuating force F is found from Eq. (16–42) to be

Answer F = π R2 pav = π(0.5)2135.7 = 106.6 lbf (one side)

The brake torque T is

Answer T = f Fre = 0.31(106.6)1.926 = 63.65 lbf · in (one side)

16–7 Cone Clutches and Brakes
The drawing of a cone clutch in Fig. 16–21 shows that it consists of a cup keyed or splined

to one of the shafts, a cone that must slide axially on splines or keys on the mating shaft,

and a helical spring to hold the clutch in engagement. The clutch is disengaged by means

of a fork that fits into the shifting groove on the friction cone. The cone angle α and the

diameter and face width of the cone are the important geometric design parameters. If the

R

e

re

e

pmax

pav

0.0 1.000 1.000

0.1 0.983 1.093

0.2 0.969 1.212

0.3 0.957 1.367

0.4 0.947 1.578

0.5 0.938 1.875

Table 16–1

Parameters for a

Circular-Pad Caliper

Brake

Source: G. A. Fazekas, “On
Circular Spot Brakes,” Trans.
ASME, J. Engineering for
Industry, vol. 94, Series B,
No. 3, August 1972,
pp. 859–863.

� �
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Figure 16–21

Cross section of a cone clutch.

Cup
Shifting groove

Spring

Cone

�  Cone angle

Figure 16–22

Contact area of a cone clutch.

F

D

d

p dA
�

�

dr
sin �
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(a) (b)

cone angle is too small, say, less than about 8◦, then the force required to disengage the

clutch may be quite large. And the wedging effect lessens rapidly when larger cone

angles are used. Depending upon the characteristics of the friction materials, a good com-

promise can usually be found using cone angles between 10 and 15◦.

To find a relation between the operating force F and the torque transmitted, desig-

nate the dimensions of the friction cone as shown in Figure 16–22. As in the case of the

axial clutch, we can obtain one set of relations for a uniform-wear and another set for

a uniform-pressure assumption.

Uniform Wear

The pressure relation is the same as for the axial clutch:

p = pa

d

2r
(a)

Next, referring to Fig. 16–22, we see that we have an element of area d A of radius r

and width dr/sin α. Thus d A = (2πrdr)/sin α . As shown in Fig. 16–22, the operating
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force will be the integral of the axial component of the differential force p d A. Thus

F =
∫

p d A sin α =
∫ D/2

d/2

(

pa

d

2r

)(

2πr dr

sin α

)

(sin α)

= πpad

∫ D/2

d/2

dr = πpad

2
(D − d)

(16–44)

which is the same result as in Eq. (16–23).

The differential friction force is f p d A, and the torque is the integral of the prod-

uct of this force with the radius. Thus

T =
∫

r f p d A =
∫ D/2

d/2

(r f )

(

pa

d

2r

)(

2πr dr

sin α

)

= π f pad

sin α

∫ D/2

d/2

r dr = π f pad

8 sin α
(D2 − d2)

(16–45)

Note that Eq. (16–24) is a special case of Eq. (16–45), with α = 90◦. Using

Eq. (16–44), we find that the torque can also be written

T = F f

4 sin α
(D + d) (16–46)

Uniform Pressure

Using p = pa , the actuating force is found to be

F =
∫

pa d Asin α =
∫ D/2

d/2

(pa)

(

2πr dr

sin α

)

(sin α) = πpa

4
(D2 − d2) (16–47)

The torque is

T =
∫

r f pa d A =
∫ D/2

d/2

(r f pa)

(

2πr dr

sin α

)

= π f pa

12 sin α
(D3 − d3) (16–48)

Using Eq. (16–47) in Eq. (16–48) gives

T = F f

3 sin α

D3 − d3

D2 − d2
(16–49)

As in the case of the axial clutch, we can write Eq. (16–46) dimensionlessly as

T sin α

f Fd
= 1 + d/D

4
(b)

and write Eq. (16–49) as

T sin α

f Fd
= 1

3

1 − (d/D)3

1 − (d/D)2
(c)

This time there are six (T, α, f, F, D, and d ) parameters and four pi terms:

π1 = T

F D
π2 = f π3 = sin α π4 = d

D

As in Fig. 16–17, we plot T sin α/( f F D) as ordinate and d/D as abscissa. The plots

and conclusions are the same. There is little reason for using equations other than

Eqs. (16–44), (16–45), and (16–46).
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16–8 Energy Considerations
When the rotating members of a machine are caused to stop by means of a brake, the

kinetic energy of rotation must be absorbed by the brake. This energy appears in the

brake in the form of heat. In the same way, when the members of a machine that are ini-

tially at rest are brought up to speed, slipping must occur in the clutch until the driven

members have the same speed as the driver. Kinetic energy is absorbed during slippage

of either a clutch or a brake, and this energy appears as heat.

We have seen how the torque capacity of a clutch or brake depends upon the co-

efficient of friction of the material and upon a safe normal pressure. However, the char-

acter of the load may be such that, if this torque value is permitted, the clutch or brake

may be destroyed by its own generated heat. The capacity of a clutch is therefore

limited by two factors, the characteristics of the material and the ability of the clutch to

dissipate heat. In this section we shall consider the amount of heat generated by a

clutching or braking operation. If the heat is generated faster than it is dissipated, we

have a temperature-rise problem; that is the subject of the next section.

To get a clear picture of what happens during a simple clutching or braking opera-

tion, refer to Fig. 16–1a, which is a mathematical model of a two-inertia system con-

nected by a clutch. As shown, inertias I1 and I2 have initial angular velocities of ω1 and

ω2, respectively. During the clutch operation both angular velocities change and even-

tually become equal. We assume that the two shafts are rigid and that the clutch torque

is constant.

Writing the equation of motion for inertia 1 gives

I1θ̈1 = −T (a)

where θ̈1 is the angular acceleration of I1 and T is the clutch torque. A similar equation

for I2 is

I2θ̈2 = T (b)

We can determine the instantaneous angular velocities θ̇1 and θ̇2 of I1 and I2 after any

period of time t has elapsed by integrating Eqs. (a) and (b). The results are

θ̇1 = − T

I1

t + ω1 (c)

θ̇2 = T

I2

t + ω2 (d)

where θ̇1 = ω1 and θ̇2 = ω2 at t = 0. The difference in the velocities, sometimes called

the relative velocity, is

θ̇ = θ̇1 − θ̇2 = − T

I1

t + ω1 −
(

T

I2

t + ω2

)

= ω1 − ω2 − T

(

I1 + I2

I1 I2

)

t

(16–50)

The clutching operation is completed at the instant in which the two angular velocities

θ̇1 and θ̇2 become equal. Let the time required for the entire operation be t1. Then θ̇ = 0

when θ̇1 = θ̇2, and so Eq. (16–50) gives the time as

t1 = I1 I2(ω1 − ω2)

T (I1 + I2)
(16–51)
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This equation shows that the time required for the engagement operation is directly

proportional to the velocity difference and inversely proportional to the torque.

We have assumed the clutch torque to be constant. Therefore, using Eq. (16–50),

we find the rate of energy-dissipation during the clutching operation to be

u = T θ̇ = T

[

ω1 − ω2 − T

(

I1 + I2

I1 I2

)

t

]

(e)

This equation shows that the energy-dissipation rate is greatest at the start, when t = 0.

The total energy dissipated during the clutching operation or braking cycle is

obtained by integrating Eq. (e) from t = 0 to t = t1. The result is found to be

E =
∫ t1

0

u dt = T

∫ t1

0

[

ω1 − ω2 − T

(

I1 + I2

I1 I2

)

t

]

dt

= I1 I2(ω1 − ω2)
2

2(I1 + I2)

(16–52)

where Eq. (16–51) was employed. Note that the energy dissipated is proportional to the

velocity difference squared and is independent of the clutch torque.

Note that E in Eq. (16–52) is the energy lost or dissipated; this is the energy that is

absorbed by the clutch or brake. If the inertias are expressed in U.S. customary units

(lbf · in · s2), then the energy absorbed by the clutch assembly is in in · lbf. Using these

units, the heat generated in Btu is

H = E

9336
(16–53)

In SI, the inertias are expressed in kilogram-meter2 units, and the energy dissipated

is expressed in joules.

16–9 Temperature Rise
The temperature rise of the clutch or brake assembly can be approximated by the classic

expression

�T = H

CpW
(16–54)

where �T = temperature rise, °F

Cp = specific heat capacity, Btu/(lbm · ◦F); use 0.12 for steel or cast iron

W = mass of clutch or brake parts, lbm

A similar equation can be written for SI units. It is

�T = E

Cpm
(16–55)

where �T = temperature rise, °C

Cp = specific heat capacity; use 500 J/kg · ◦C for steel or cast iron

m = mass of clutch or brake parts, kg

The temperature-rise equations above can be used to explain what happens when a

clutch or brake is operated. However, there are so many variables involved that it would
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Figure 16–23

The effect of clutching or
braking operations on
temperature. T∞ is the
ambient temperature. Note
that the temperature rise �T
may be different for each
operation.
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be most unlikely that such an analysis would even approximate experimental results.

For this reason such analyses are most useful, for repetitive cycling, in pinpointing

those design parameters that have the greatest effect on performance.

If an object is at initial temperature T1 in an environment of temperature T∞, then

Newton’s cooling model is expressed as

T − T∞
T1 − T∞

= exp

(

− h̄CR A

WCp

t

)

(16–56)

where T = temperature at time t, °F

T1 = initial temperature, °F

T∞ = environmental temperature, °F

h̄CR = overall coefficient of heat transfer, Btu/(in2 · s · ◦F)

A = lateral surface area, in2

W = mass of the object, lbm

Cp = specific heat capacity of the object, Btu/(lbm · ◦F)

Figure 16–23 shows an application of Eq. (16–56). The curve ABC is the expo-

nential decline of temperature given by Eq. (16–56). At time tB a second application

of the brake occurs. The temperature quickly rises to temperature T2, and a new cool-

ing curve is started. For repetitive brake applications, subsequent temperature peaks

T3, T4, . . . , occur until the brake is able to dissipate by cooling between operations an

amount of heat equal to the energy absorbed in the application. If this is a production

situation with brake applications every t1 seconds, then a steady state develops in which

all the peaks Tmax and all the valleys Tmin are repetitive.

The heat-dissipation capacity of disk brakes has to be planned to avoid reaching the

temperatures of disk and pad that are detrimental to the parts. When a disk brake has a

rhythm such as discussed above, then the rate of heat transfer is described by another

Newtonian equation:

Hloss = h̄CR A(T − T∞) = (hr + fvhc)A(T − T∞) (16–57)
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Figure 16–24

(a) Heat-transfer coefficient in
still air. (b) Ventilation factors.
(Courtesy of Tolo-o-matic.)
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where Hloss = rate of energy loss, Btu/s

h̄CR = overall coefficient of heat transfer, Btu/(in2 · s · ◦F)

hr = radiation component of h̄CR, Btu/(in2 · s · ◦F), Fig. 16–24a

hc = convective component of h̄CR, Btu/(in2 · s · ◦F), Fig. 16–24a

fv = ventilation factor, Fig. 16–24b

T = disk temperature, ◦F

T∞ = ambient temperature, ◦F

The energy E absorbed by the brake stopping an equivalent rotary inertia I in terms

of original and final angular velocities ωo and ω f is given by Eq. (16–53) with I1 = I
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and I2 = 0,

E = 1

2

I

9336

(

ω2
o − ω2

f

)

(16–58)

in Btu. The temperature rise �T due to a single stop is

�T = E

WC
(16–59)

Tmax has to be high enough to transfer E Btu in t1 seconds. For steady state, rearrange

Eq. (16–56) as

Tmin − T∞
Tmax − T∞

= exp(−βt1)

where β = h̄CR A/(WCp). Cross-multiply, add Tmax to both sides, set Tmax − Tmin =
�T , and rearrange, obtaining

Tmax = T∞ + �T

1 − exp(−βt1)
(16–60)

EXAMPLE 16–5 A caliper brake is used 24 times per hour to arrest a machine shaft from a speed of

250 rev/min to rest. The ventilation of the brake provides a mean air speed of 25 ft/s.

The equivalent rotary inertia of the machine as seen from the brake shaft is 289

lbm · in · s. The disk is steel with a density γ = 0.282 lbm/in3, a specific heat capacity

of 0.108 Btu/(lbm · ◦F), a diameter of 6 in, a thickness of 1
4

in. The pads are dry

sintered metal. The lateral area of the brake surface is 50 in2. Find Tmax and Tmin for

the steady-state operation.

Solution t1 = 602/24 = 150 s

Assuming a temperature rise of Tmax − T∞ = 200◦F, from Fig. 16–24a,

hr = 3.0(10−6) Btu/(in2 · s · ◦F)

hc = 2.0(10−6) Btu/(in2 · s · ◦F)

Fig.16–24b: fv = 4.8

h̄CR = hr + fvhc = 3.0(10−6) + 4.8(2.0)10−6 = 12.6(10−6) Btu/(in2 · s ·◦ F)

The mass of the disk is

W = πγ D2h

4
= π(0.282)62(0.25)

4
= 1.99 lbm

Eq. (16–58): E = 1

2

I

9336

(

ω2
o − ω2

f

)

= 289

2(9336)

(

2π

60
250

)2

= 10.6 Btu

β = h̄CR A

WCp

= 12.6(10−6)50

1.99(0.108)
= 2.93(10−3) s−1
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Ratio of Area to Average Braking Power,
in2/(Btu/s)

Band and Plate Disk Caliper
Duty Cycle Typical Applications Drum Brakes Brakes Disk Brakes

Infrequent Emergency brakes 0.85 2.8 0.28

Intermittent Elevators, cranes, and winches 2.8 7.1 0.70

Heavy-duty Excavators, presses 5.6–6.9 13.6 1.41

Table 16–2

Area of Friction Material Required for a Given Average Braking Power Sources: M. J. Neale, The Tribology

Handbook, Butterworth, London, 1973; Friction Materials for Engineers, Ferodo Ltd., Chapel-en-le-frith, England, 1968.

Eq. (16–59): �T = E

WCp

= 10.6

1.99(0.108)
= 49.3◦F

Answer Eq. (16–60): Tmax = 70 + 49.3

1 − exp[−2.93(10−3)150]
= 209◦F

Answer Tmin = 209 − 49.3 = 160◦F

The predicted temperature rise here is Tmax − T∞ = 139◦F. Iterating with revised val-

ues of hr and hc from Fig. 16–24a, we can make the solution converge to Tmax = 220◦F

and Tmin = 171◦F.

Table 16–3 for dry sintered metal pads gives a continuous operating maximum

temperature of 570–660◦F. There is no danger of overheating.

16–10 Friction Materials
A brake or friction clutch should have the following lining material characteristics to a

degree that is dependent on the severity of service:

• High and reproducible coefficient of friction

• Imperviousness to environmental conditions, such as moisture

• The ability to withstand high temperatures, together with good thermal conductivity

and diffusivity, as well as high specific heat capacity

• Good resiliency

• High resistance to wear, scoring, and galling

• Compatible with the environment

• Flexibility

Table 16–2 gives area of friction surface required for several braking powers. Table 16–3

gives important characteristics of some friction materials for brakes and clutches.
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Woven Molded Rigid
Lining Lining Block

Compressive strength, kpsi 10–15 10–18 10–15

Compressive strength, MPa 70–100 70–125 70–100

Tensile strength, kpsi 2.5–3 4–5 3–4

Tensile strength, MPa 17–21 27–35 21–27

Max. temperature, °F 400–500 500 750

Max. temperature, °C 200–260 260 400

Max. speed, ft/min 7500 5000 7500

Max. speed, m/s 38 25 38

Max. pressure, psi 50–100 100 150

Max. pressure, kPa 340–690 690 1000

Frictional coefficient, mean 0.45 0.47 0.40–45

Table 16–4

Some Properties

of Brake Linings

The manufacture of friction materials is a highly specialized process, and it is

advisable to consult manufacturers’ catalogs and handbooks, as well as manufacturers

directly, in selecting friction materials for specific applications. Selection involves a

consideration of the many characteristics as well as the standard sizes available.

The woven-cotton lining is produced as a fabric belt that is impregnated with resins

and polymerized. It is used mostly in heavy machinery and is usually supplied in rolls

up to 50 ft in length. Thicknesses available range from 1
8

to 1 in, in widths up to about

12 in.

A woven-asbestos lining is made in a similar manner to the cotton lining and may

also contain metal particles. It is not quite as flexible as the cotton lining and comes in

a smaller range of sizes. Along with the cotton lining, the asbestos lining was widely

used as a brake material in heavy machinery.

Molded-asbestos linings contain asbestos fiber and friction modifiers; a thermoset

polymer is used, with heat, to form a rigid or semirigid molding. The principal use was

in drum brakes.

Molded-asbestos pads are similar to molded linings but have no flexibility; they

were used for both clutches and brakes.

Sintered-metal pads are made of a mixture of copper and/or iron particles with

friction modifiers, molded under high pressure and then heated to a high temperature

to fuse the material. These pads are used in both brakes and clutches for heavy-duty

applications.

Cermet pads are similar to the sintered-metal pads and have a substantial ceramic

content.

Table 16–4 lists properties of typical brake linings. The linings may consist of a

mixture of fibers to provide strength and ability to withstand high temperatures, various

friction particles to obtain a degree of wear resistance as well as a higher coefficient of

friction, and bonding materials.

Table 16–5 includes a wider variety of clutch friction materials, together with some

of their properties. Some of these materials may be run wet by allowing them to dip in

oil or to be sprayed by oil. This reduces the coefficient of friction somewhat but carries

away more heat and permits higher pressures to be used.
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Friction Coefficient Max. Temperature Max. Pressure

Material Wet Dry °F °C psi kPa

Cast iron on cast iron 0.05 0.15–0.20 600 320 150–250 1000–1750

Powdered metal* on cast iron 0.05–0.1 0.1–0.4 1000 540 150 1000

Powdered metal* on hard 0.05–0.1 0.1–0.3 1000 540 300 2100
steel

Wood on steel or cast iron 0.16 0.2–0.35 300 150 60–90 400–620

Leather on steel or cast iron 0.12 0.3–0.5 200 100 10–40 70–280

Cork on steel or cast iron 0.15–0.25 0.3–0.5 200 100 8–14 50–100

Felt on steel or cast iron 0.18 0.22 280 140 5–10 35–70

Woven asbestos* on steel or 0.1–0.2 0.3–0.6 350–500 175–260 50–100 350–700
cast iron

Molded asbestos* on steel 0.08–0.12 0.2–0.5 500 260 50–150 350–1000
or cast iron

Impregnated asbestos* on 0.12 0.32 500–750 260–400 150 1000
steel or cast iron

Carbon graphite on steel 0.05–0.1 0.25 700–1000 370–540 300 2100

*The friction coefficient can be maintained with ±5 percent for specific materials in this group.

Table 16–5

Friction Materials for Clutches

16–11 Miscellaneous Clutches and Couplings
The square-jaw clutch shown in Fig. 16–25a is one form of positive-contact clutch.

These clutches have the following characteristics:

1 They do not slip.

2 No heat is generated.

3 They cannot be engaged at high speeds.

4 Sometimes they cannot be engaged when both shafts are at rest.

5 Engagement at any speed is accompanied by shock.

The greatest differences among the various types of positive clutches are concerned

with the design of the jaws. To provide a longer period of time for shift action during

engagement, the jaws may be ratchet-shaped, spiral-shaped, or gear-tooth-shaped.

Sometimes a great many teeth or jaws are used, and they may be cut either circumferen-

tially, so that they engage by cylindrical mating, or on the faces of the mating elements.

Although positive clutches are not used to the extent of the frictional-contact types,

they do have important applications where synchronous operation is required, as, for

example, in power presses or rolling-mill screw-downs.

Devices such as linear drives or motor-operated screwdrivers must run to a definite

limit and then come to a stop. An overload-release type of clutch is required for these

applications. Figure 16–25b is a schematic drawing illustrating the principle of opera-

tion of such a clutch. These clutches are usually spring-loaded so as to release at a
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Figure 16–26

Shaft couplings. (a) Plain.
(b) Light-duty toothed coupling.
(c) BOST-FLEX® through-bore
design having elastomer
insert to transmit torque by
compression; insert permits 1°
misalignment. (d) Three-jaw
coupling available with
bronze, rubber, or
polyurethane insert to minimize
vibration. (Reproduced by
permission, Boston Gear
Division, Colfax Corp.)

(a)

(c) (d)

(b)

predetermined torque. The clicking sound which is heard when the overload point is

reached is considered to be a desirable signal.

Both fatigue and shock loads must be considered in obtaining the stresses and

deflections of the various portions of positive clutches. In addition, wear must generally

be considered. The application of the fundamentals discussed in Parts 1 and 2 is usually

sufficient for the complete design of these devices.

An overrunning clutch or coupling permits the driven member of a machine to

“freewheel” or “overrun” because the driver is stopped or because another source of

power increases the speed of the driven mechanism. The construction uses rollers or

balls mounted between an outer sleeve and an inner member having cam flats machined

around the periphery. Driving action is obtained by wedging the rollers between the

sleeve and the cam flats. This clutch is therefore equivalent to a pawl and ratchet with

an infinite number of teeth.

There are many varieties of overrunning clutches available, and they are built in

capacities up to hundreds of horsepower. Since no slippage is involved, the only power

loss is that due to bearing friction and windage.

The shaft couplings shown in Fig. 16–26 are representative of the selection avail-

able in catalogs.

Figure 16–25

(a) Square-jaw clutch;
(b) overload release clutch
using a detent.

Shift lever

(a) (b)
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Figure 16–27
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16–12 Flywheels
The equation of motion for the flywheel represented in Fig. 16–1b is

∑

M = Ti (θi , θ̇i ) − To(θo, θ̇o) − I θ̈ = 0

or

I θ̈ = Ti (θi , ωi ) − To(θo, ωo) (a)

where Ti is considered positive and To negative, and where θ̇ and θ̈ are the first and second

time derivatives of θ , respectively. Note that both Ti and To may depend for their values

on the angular displacements θi and θo as well as their angular velocities ωi and ωo. In

many cases the torque characteristic depends upon only one of these. Thus, the torque

delivered by an induction motor depends upon the speed of the motor. In fact, motor man-

ufacturers publish charts detailing the torque-speed characteristics of their various motors.

When the input and output torque functions are given, Eq. (a) can be solved for the

motion of the flywheel using well-known techniques for solving linear and nonlinear

differential equations. We can dispense with this here by assuming a rigid shaft, giving

θi = θ = θo and ωi = ω = ωo . Thus, Eq. (a) becomes

I θ̈ = Ti (θ, ω) − To(θ, ω) (b)

When the two torque functions are known and the starting values of the displacement θ

and velocity ω are given, Eq. (b) can be solved for θ , ω, and θ̈ as functions of time.

However, we are not really interested in the instantaneous values of these terms at all.

Primarily we want to know the overall performance of the flywheel. What should its

moment of inertia be? How do we match the power source to the load? And what are

the resulting performance characteristics of the system that we have selected?

To gain insight into the problem, a hypothetical situation is diagrammed in Fig. 16–27.

An input power source subjects a flywheel to a constant torque Ti while the shaft rotates

from θ1 to θ2. This is a positive torque and is plotted upward. Equation (b) indicates that a

positive acceleration θ̈ will be the result, and so the shaft velocity increases from ω1 to ω2.

As shown, the shaft now rotates from θ2 to θ3 with zero torque and hence, from Eq. (b),

with zero acceleration. Therefore ω3 = ω2. From θ3 to θ4 a load, or output torque, of con-

stant magnitude is applied, causing the shaft to slow down from ω3 to ω4. Note that the out-

put torque is plotted in the negative direction in accordance with Eq. (b).

The work input to the flywheel is the area of the rectangle between θ1 and θ2, or

Ui = Ti (θ2 − θ1) (c)



Budynas−Nisbett: Shigley’s 

Mechanical Engineering 

Design, Eighth Edition

III. Design of Mechanical 

Elements

16. Clutches, Brakes, 

Couplings, and Flywheels

844 © The McGraw−Hill 

Companies, 2008

Clutches, Brakes, Couplings, and Flywheels 847

Figure 16–28

Relation between torque and
crank angle for a one-cylinder,
four-stroke–cycle internal
combustion engine.
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The work output of the flywheel is the area of the rectangle from θ3 to θ4, or

Uo = To(θ4 − θ3) (d )

If Uo is greater than Ui , the load uses more energy than has been delivered to the fly-

wheel and so ω4 will be less than ω1. If Uo = Ui , ω4 will be equal to ω1 because the

gains and losses are equal; we are assuming no friction losses. And finally, ω4 will be

greater than ω1 if Ui > Uo .

We can also write these relations in terms of kinetic energy. At θ = θ1 the flywheel

has a velocity of ω1 rad/s, and so its kinetic energy is

E1 = 1

2
Iω2

1 (e)

At θ = θ2 the velocity is ω2, and so

E2 = 1

2
Iω2

2 (f )

Thus the change in kinetic energy is

E2 − E1 = 1

2
I
(

ω2
2 − ω2

1

)

(16–61)

Many of the torque displacement functions encountered in practical engineering

situations are so complicated that they must be integrated by numerical methods. Fig-

ure 16–28, for example, is a typical plot of the engine torque for one cycle of motion of

a single-cylinder internal combustion engine. Since a part of the torque curve is nega-

tive, the flywheel must return part of the energy back to the engine. Integrating this

curve from θ = 0 to 4π and dividing the result by 4π yields the mean torque Tm avail-

able to drive a load during the cycle.

It is convenient to define a coefficient of speed fluctuation as

Cs = ω2 − ω1

ω
(16–62)
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θ θ θ θ

deg lbf • in deg lbf • in deg lbf • in deg lbf • in

0 0 195 −107 375 −85 555 −107

15 2800 210 −206 390 −125 570 −206

30 2090 225 −260 405 −89 585 −292

45 2430 240 −323 420 8 600 −355

60 2160 255 −310 435 126 615 −371

75 1840 270 −242 450 242 630 −362

90 1590 285 −126 465 310 645 −312

105 1210 300 −8 480 323 660 −272

120 1066 315 89 495 280 675 −274

135 803 330 125 510 206 690 −548

150 532 345 85 525 107 705 −760

165 184 360 0 540 0 720 0

180 0

Table 16–6

Plotting Data for

Fig. 16–29

where ω is the nominal angular velocity, given by

ω = ω2 + ω1

2
(16–63)

Equation (16–61) can be factored to give

E2 − E1 = I

2
(ω2 − ω1)(ω2 + ω1)

Since ω2 − ω1 = Csω and ω2 + ω1 = 2ω, we have

E2 − E1 = Cs Iω2 (16–64)

Equation (16–64) can be used to obtain an appropriate flywheel inertia corresponding

to the energy change E2 − E1.

EXAMPLE 16–6 Table 16–6 lists values of the torque used to plot Fig. 16–28. The nominal speed of the

engine is to be 250 rad/s.

(a) Integrate the torque-displacement function for one cycle and find the energy that can

be delivered to a load during the cycle.

(b) Determine the mean torque Tm (see Fig. 16–28).

(c) The greatest energy fluctuation is approximately between θ = 15◦ and θ = 150◦ on

the torque diagram; see Fig. 16–28 and note that To = −Tm . Using a coefficient of

speed fluctuation Cs = 0.1, find a suitable value for the flywheel inertia.

(d ) Find ω2 and ω1.

Solution (a) Using n = 48 intervals of �θ = 4π/48, numerical integration of the data of

Table 16–6 yields E = 3368 in · lbf. This is the energy that can be delivered to the load.

, T, , T, , T, , T,
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Figure 16–29

(a) Punch-press torque demand
during punching. (b) Squirrel-
cage electric motor torque-
speed characteristic.

Torque T Torque TM

0
0 	1

Rotation 	

Tr

0
0 �r �s

Angular velocity �

(b)(a)

Answer (b) Tm = 3368

4π
= 268 lbf · in

(c) The largest positive loop on the torque-displacement diagram occurs between

θ = 0◦ and θ = 180◦. We select this loop as yielding the largest speed change.

Subtracting 268 lbf · in from the values in Table 16–6 for this loop gives, respectively,

−268, 2532, 1822, 2162, 1892, 1572, 1322, 942, 798, 535, 264, −84, and −268 lbf · in.

Numerically integrating T − Tm with respect to θ yields E2 − E1 = 3531 lbf · in. We

now solve Eq. (16–64) for I. This gives

Answer I = E2 − E1

Csω2
= 3531

0.1(250)2
= 0.565 lbf · s2 in

(d ) Equations (16–62) and (16–63) can be solved simultaneously for ω2 and ω1.

Substituting appropriate values in these two equations yields

Answer ω2 = ω

2
(2 + Cs) = 250

2
(2 + 0.1) = 262.5 rad/s

Answer ω1 = 2ω − ω2 = 2(250) − 262.5 = 237.5 rad/s

These two speeds occur at θ = 180◦ and θ = 0◦, respectively.

Punch-press torque demand often takes the form of a severe impulse and the run-

ning friction of the drive train. The motor overcomes the minor task of overcoming fric-

tion while attending to the major task of restoring the flywheel’s angular speed. The

situation can be idealized as shown in Fig. 16–29. Neglecting the running friction,

Euler’s equation can be written as

T (θ1 − 0) = 1

2
I
(

ω2
1 − ω2

2

)

= E2 − E1

where the only significant inertia is that of the flywheel. Punch presses can have the

motor and flywheel on one shaft, then, through a gear reduction, drive a slider-crank

mechanism that carries the punching tool. The motor can be connected to the punch
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continuously, creating a punching rhythm, or it can be connected on command through

a clutch that allows one punch and a disconnect. The motor and flywheel must be sized

for the most demanding service, which is steady punching. The work done is given by

W =
∫ θ2

θ1

[T (θ) − T ] dθ = 1

2
I
(

ω2
max − ω2

min

)

This equation can be arranged to include the coefficient of speed fluctuation Cs as

follows:

W = 1

2
I
(

ω2
max − ω2

min

)

= I

2
(ωmax − ωmin) (ωmax + ωmin)

= I

2
(Csω̄)(2ω0) = I Csω̄ω0

When the speed fluctuation is low, ω0
.= ω̄, and

I = W

Csω̄2

An induction motor has a linear torque characteristic T = aω + b in the range of

operation. The constants a and b can be found from the nameplate speed ωr and the

synchronous speed ωs :

a = Tr − Ts

ωr − ωs

= Tr

ωr − ωs

= − Tr

ωs − ωr

b = Trωs − Tsωr

ωs − ωr

= Trωs

ωs − ωr

(16–65)

For example, a 3-hp three-phase squirrel-cage ac motor rated at 1125 rev/min has

a torque of 63 025(3)/1125 = 168.1 lbf · in. The rated angular velocity is ωr =
2πnr/60 = 2π(1125)/60 = 117.81 rad/s, and the synchronous angular velocity ωs =
2π(1200)/60 = 125.66 rad/s. Thus a = −21.41 lbf · in · s/rad, and b = 2690.9 lbf · in,

and we can express T (ω) as aω + b. During the interval from t1 to t2 the motor accel-

erates the flywheel according to I θ̈ = TM (i.e., T dω/dt = TM ). Separating the equa-

tion TM = I dω/dt we have

∫ t2

t1

dt =
∫ ω2

ωr

I dω

TM

= I

∫ ω2

ωr

dω

aω + b
= I

a
ln

aω2 + b

aωr + b
= I

a
ln

T2

Tr

or

t2 − t1 = I

a
ln

T2

Tr

(16–66)

For the deceleration interval when the motor and flywheel feel the punch torque on the

shaft as TL , (TM − TL) = I dω/dt , or

∫ t1

0

dt = I

∫ ωr

ω2

dω

TM − TL

= I

∫ ωr

ω2

dω

aω + b − TL

= I

a
ln

aωr + b − TL

aω2 + b − TL

or

t1 = I

a
ln

Tr − TL

T2 − TL

(16–67)
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Problem 16–1

30° 30°

30° 30°

120°120°

Pin Pin

R

F F

We can divide Eq. (16–66) by Eq. (16–67) to obtain

T2

Tr

=
(

TL − Tr

TL − T2

)(t2−t1)/t1

(16–68)

Equation (16–68) can be solved for T2 numerically. Having T2 the flywheel inertia is,

from Eq. (16–66),

I = a(t2 − t1)

ln(T2/Tr )
(16–69)

It is important that a be in units of lbf · in · s/rad so that I has proper units. The constant

a should not be in lbf · in per rev/min or lbf · in per rev/s.

PROBLEMS

16–1 The figure shows an internal rim-type brake having an inside rim diameter of 12 in and a dimen-

sion R = 5 in. The shoes have a face width of 1 1
2

in and are both actuated by a force of 500 lbf.

The mean coefficient of friction is 0.28.

(a) Find the maximum pressure and indicate the shoe on which it occurs.

(b) Estimate the braking torque effected by each shoe, and find the total braking torque.

(c) Estimate the resulting hinge-pin reactions. 

16–2 For the brake in Prob. 16–1, consider the pin and actuator locations to be the same. However,

instead of 120°, let the friction surface of the brake shoes be 90° and centrally located. Find the

maximum pressure and the total braking torque.

16–3 In the figure for Prob. 16–1, the inside rim diameter is 280 mm and the dimension R is 90 mm.

The shoes have a face width of 30 mm. Find the braking torque and the maximum pressure for

each shoe if the actuating force is 1000 N, the drum rotation is counterclockwise, and f = 0.30.

16–4 The figure shows a 400-mm-diameter brake drum with four internally expanding shoes. Each of

the hinge pins A and B supports a pair of shoes. The actuating mechanism is to be arranged to

produce the same force F on each shoe. The face width of the shoes is 75 mm. The material used

permits a coefficient of friction of 0.24 and a maximum pressure of 1000 kPa.

(a) Determine the actuating force. 
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Problem 16–5

Dimensions in millimeters.

F

150 R

150

200 300

Rotation

90°

45°

(b) Estimate the brake capacity.

(c) Noting that rotation may be in either direction, estimate the hinge-pin reactions.

16–5 The block-type hand brake shown in the figure has a face width of 30 mm and a mean coefficient

of friction of 0.25. For an estimated actuating force of 400 N, find the maximum pressure on the

shoe and find the braking torque.

Problem 16–4

The dimensions in millimeters are
a = 150, c = 165, R = 200,

and d = 50.

15° 15°

F F

F F

dd

dd

15° 15°

10°

10°

10°

10°

a a

c

cR

A B

16–6 Suppose the standard deviation of the coefficient of friction in Prob. 16–5 is σ̂ f = 0.025, where

the deviation from the mean is due entirely to environmental conditions. Find the brake torques

corresponding to ±3σ̂ f .

16–7 The brake shown in the figure has a coefficient of friction of 0.30, a face width of 2 in, and a lim-

iting shoe lining pressure of 150 psi. Find the limiting actuating force F and the torque capacity. 

16–8 Refer to the symmetrical pivoted external brake shoe of Fig. 16–12 and Eq. (16–15). Suppose the

pressure distribution was uniform, that is, the pressure p is independent of θ . What would the

pivot distance a′ be? If θ1 = θ2 = 60◦ , compare a with a′ .

16–9 The shoes on the brake depicted in the figure subtend a 90◦ arc on the drum of this external

pivoted-shoe brake. The actuation force P is applied to the lever. The rotation direction of the

drum is counterclockwise, and the coefficient of friction is 0.30.

(a) What should the dimension e be?

(b) Draw the free-body diagrams of the handle lever and both shoe levers, with forces expressed

in terms of the actuation force P .

(c) Does the direction of rotation of the drum affect the braking torque?
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Problem 16–11

�

P
1

P
2

Rotation

16–10 Problem 16–9 is preliminary to analyzing the brake. A molded lining is used dry in the brake of

Prob. 16–9 on a cast iron drum. The shoes are 7.5 in wide and subtend a 90◦arc. Find the actua-

tion force and the braking torque.

16–11 The maximum band interface pressure on the brake shown in the figure is 90 psi. Use a 14-in-

diameter drum, a band width of 4 in, a coefficient of friction of 0.25, and an angle-of-wrap of

270◦ . Find the band tensions and the torque capacity.

Problem 16–7

Dimensions in inches.

5

30° 30°

3 3

12

12

5

4

16
F

A B

R
ot

at
io

n

130°

20° 20°

130°

10 R

Problem 16–9

Dimensions in inches.
15.28

7.78

e

13.5

Shoe

6

3

3

8

P
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Problem 16–14 P

3 in

10 in

Problem 16–13

Dimensions in millimeters.
F

250

200

125 275

16–12 The drum for the band brake in Prob. 16–11 is 300 mm in diameter. The band selected has a mean

coefficient of friction of 0.28 and a width of 80 mm. It can safely support a tension of 7.6 kN. If

the angle of wrap is 270◦ , find the lining pressure and the torque capacity. 

16–13 The brake shown in the figure has a coefficient of friction of 0.30 and is to operate using a

maximum force F of 400 N. If the band width is 50 mm, find the band tensions and the brak-

ing torque.

16–14 The figure depicts a band brake whose drum rotates counterclockwise at 200 rev/min. The drum

diameter is 16 in and the band lining 3 in wide. The coefficient of friction is 0.20. The maximum

lining interface pressure is 70 psi. 

(a) Find the brake torque, necessary force P, and steady-state power.

(b) Complete the free-body diagram of the drum. Find the bearing radial load that a pair of

straddle-mounted bearings would have to carry.

(c) What is the lining pressure p at both ends of the contact arc? 

16–15 The figure shows a band brake designed to prevent “backward” rotation of the shaft. The angle

of wrap is 270◦ , the band width is 2 1

8
in, and the coefficient of friction is 0.20. The torque to be

resisted by the brake is 150 lbf · ft. The diameter of the pulley is 8 1

4
in.

(a) What dimension c1 will just prevent backward motion?

(b) If the rocker was designed with c1 = 1 in, what is the maximum pressure between the band

and drum at 150 lbf · ft back torque? 

(c) If the back-torque demand is 100 lbf · in, what is the largest pressure between the band and

drum?
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16–16 A plate clutch has a single pair of mating friction surfaces 300 mm OD by 225 mm ID. The mean

value of the coefficient of friction is 0.25, and the actuating force is 5 kN. 

(a) Find the maximum pressure and the torque capacity using the uniform-wear model.

(b) Find the maximum pressure and the torque capacity using the uniform-pressure model.

16–17 A hydraulically operated multidisk plate clutch has an effective disk outer diameter of 6.5 in and

an inner diameter of 4 in. The coefficient of friction is 0.24, and the limiting pressure is 120 psi.

There are six planes of sliding present.

(a) Using the uniform wear model, estimate the axial force F and the torque T.

(b) Let the inner diameter of the friction pairs d be a variable. Complete the following table:

d, in 2 3 4 5 6

T, lbf · in

(c) What does the table show?

16–18 Look again at Prob. 16–17.

(a) Show how the optimal diameter d∗ is related to the outside diameter D.

(b) What is the optimal inner diameter?

(c) What does the tabulation show about maxima?

(d ) Common proportions for such plate clutches lie in the range 0.45 ≤ d/D ≤ 0.80. Is the result

in part a useful?

16–19 A cone clutch has D = 330 mm, d = 306 mm, a cone length of 60 mm, and a coefficient of

friction of 0.26. A torque of 200 N · m is to be transmitted. For this requirement, estimate the

actuating force and pressure by both models. 

16–20 Show that for the caliper brake the T/( f F D) versus d/D plots are the same as Eqs. (b) and (c)

of Sec. 16–5.

16–21 A two-jaw clutch has the dimensions shown in the figure and is made of ductile steel. The clutch

has been designed to transmit 2 kW at 500 rev/min. Find the bearing and shear stresses in the key

and the jaws. 

Problem 16–15

P2 P1

c1

2 in
1

4

Rocker detail
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16–22 A brake has a normal braking torque of 320 N · m and heat-dissipating surfaces whose mass is

18 kg. Suppose a load is brought to rest in 8.3 s from an initial angular speed of 1800 rev/min

using the normal braking torque; estimate the temperature rise of the heat-dissipating sur-

faces.

16–23 A cast-iron flywheel has a rim whose OD is 60 in and whose ID is 56 in. The flywheel weight is

to be such that an energy fluctuation of 5000 ft · lbf will cause the angular speed to vary no more

than 240 to 260 rev/min. Estimate the coefficient of speed fluctuation. If the weight of the spokes

is neglected, what should be the width of the rim?

16–24 A single-geared blanking press has a stroke of 8 in and a rated capacity of 35 tons. A cam-driven

ram is assumed to be capable of delivering the full press load at constant force during the last

15 percent of a constant-velocity stroke. The camshaft has an average speed of 90 rev/min and is

geared to the flywheel shaft at a 6:1 ratio. The total work done is to include an allowance of

16 percent for friction. 

(a) Estimate the maximum energy fluctuation.

(b) Find the rim weight for an effective diameter of 48 in and a coefficient of speed fluctuation

of 0.10.

16–25 Using the data of Table 16–6, find the mean output torque and flywheel inertia required for a

three-cylinder in-line engine corresponding to a nominal speed of 2400 rev/min. Use Cs = 0.30.

16–26 When a motor armature inertia, a pinion inertia, and a motor torque reside on a motor shaft, and

a gear inertia, a load inertia, and a load torque exist on a second shaft, it is useful to reflect all the

torques and inertias to one shaft, say, the armature shaft. We need some rules to make such reflec-

tion easy. Consider the pinion and gear as disks of pitch radius.

• A torque on a second shaft is reflected to the motor shaft as the load torque divided by the

negative of the stepdown ratio.

• An inertia on a second shaft is reflected to the motor shaft as its inertia divided by the

stepdown ratio squared.

• The inertia of a disk gear on a second shaft in mesh with a disk pinion on the motor shaft is

reflected to the pinion shaft as the pinion inertia multiplied by the stepdown ratio squared.

(a) Verify the three rules.

(b) Using the rules, reduce the two-shaft system in the figure to a motor-shaft shish-kebob

equivalent. Correctly done, the dynamic response of the shish kebab and the real system are

identical.

(c) For a stepdown ratio of n = 10 compare the shish-kebab inertias. 

Problem 16–21

Dimensions in millimeters.

45°

1.5 (typ.)

6

3

10

50

2
4
 d

ia
.

4
5
 d

ia
.

2
6
 d

ia
.
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Problem 16–26

Dimensions in millimeters.

IM

T(�1)

1 2

IP

n

IG

IM IL

IP

T(�1) T(�2)

(a)

Shish-kebab

equivalent

(b)

Gear inertia

reflection

Load inertia

reflection

Load torque

reflection

16–27 Apply the rules of Prob. 16–26 to the three-shaft system shown in the figure to create a motor

shaft shish kebab.

(a) Show that the equivalent inertia Ie is given by

Ie = IM + IP + n2 IP + IP

n2
+ m2 IP

n2
+ IL

m2n2

(b) If the overall gear reduction R is a constant nm, show that the equivalent inertia becomes

Ie = IM + IP + n2 IP + IP

n2
+ R2 IP

n4
+ IL

R2

(c) If the problem is to minimize the gear-train inertia, find the ratios n and m for the values of

IP = 1, IM = 10, IL = 100, and R = 10.

16–28 For the conditions of Prob. 16–27, make a plot of the equivalent inertia Ie as ordinate and the

stepdown ratio n as abscissa in the range 1 ≤ n ≤ 10. How does the minimum inertia compare to

the single-step inertia?

16–29 A punch-press geared 10:1 is to make six punches per minute under circumstances where the tor-

que on the crankshaft is 1300 lbf · ft for 1

2
s. The motor’s nameplate reads 3 bhp at 1125 rev/min

for continuous duty. Design a satisfactory flywheel for use on the motor shaft to the extent of

specifying material and rim inside and outside diameters as well as its width. As you prepare your

Problem 16–27

IP

IPIM

TM

IG1

IG2

IL

n

m

R = nm
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specifications, note ωmax , ωmin , the coefficient of speed fluctuation Cs , energy transfer, and peak

power that the flywheel transmits to the punch-press. Note power and shock conditions imposed

on the gear train because the flywheel is on the motor shaft.

16–30 The punch-press of Prob. 16–29 needs a flywheel for service on the crankshaft of the punch-

press. Design a satisfactory flywheel to the extent of specifying material, rim inside and outside

diameters, and width. Note ωmax , ωmin ,Cs , energy transfer, and peak power the flywheel trans-

mits to the punch. What is the peak power seen in the gear train? What power and shock condi-

tions must the gear-train transmit?

16–31 Compare the designs resulting from the tasks assigned in Probs. 16–29 and 16–30. What have

you learned? What recommendations do you have?

858 Mechanical Engineering Design
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Belt Type Figure Joint Size Range Center Distance

Flat Yes No upper limit

Round Yes d = 1
8

to 3
4

in No upper limit

V None Limited

Timing None p = 2 mm and up Limited

Table 17–1

Characteristics of Some

Common Belt Types.

Figures are Cross

Sections except for the

Timing Belt, which is a

Side View

t

d

b

p

Belts, ropes, chains, and other similar elastic or flexible machine elements are used in

conveying systems and in the transmission of power over comparatively long distances.

It often happens that these elements can be used as a replacement for gears, shafts, bear-

ings, and other relatively rigid power-transmission devices. In many cases their use sim-

plifies the design of a machine and substantially reduces the cost.

In addition, since these elements are elastic and usually quite long, they play an

important part in absorbing shock loads and in damping out and isolating the effects of

vibration. This is an important advantage as far as machine life is concerned.

Most flexible elements do not have an infinite life. When they are used, it is important

to establish an inspection schedule to guard against wear, aging, and loss of elasticity.

The elements should be replaced at the first sign of deterioration.

17–1 Belts
The four principal types of belts are shown, with some of their characteristics, in

Table 17–1. Crowned pulleys are used for flat belts, and grooved pulleys, or sheaves, for

round and V belts. Timing belts require toothed wheels, or sprockets. In all cases, the

pulley axes must be separated by a certain minimum distance, depending upon the belt

type and size, to operate properly. Other characteristics of belts are:

• They may be used for long center distances.

• Except for timing belts, there is some slip and creep, and so the angular-velocity ratio

between the driving and driven shafts is neither constant nor exactly equal to the ratio

of the pulley diameters.

• In some cases an idler or tension pulley can be used to avoid adjustments in center

distance that are ordinarily necessitated by age or the installation of new belts.

Figure 17–1 illustrates the geometry of open and closed flat-belt drives. For a flat

belt with this drive the belt tension is such that the sag or droop is visible in Fig. 17–2a,

when the belt is running. Although the top is preferred for the loose side of the belt, for

other belt types either the top or the bottom may be used, because their installed tension

is usually greater.

Two types of reversing drives are shown in Fig. 17–2 Notice that both sides of the

belt contact the pulleys in Figs. 17–2b and 17–2c, and so these drives cannot be used

with V belts or timing belts.

ct = 0.03 to 0.20 in
0.75 to 5 mm

cb = 0.31 to 0.91 in
8 to 19 mm
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D – d
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2C

D – d

2C

D – d

2C

D + d

2C

D + d

2C

D – d
sin–1

	d = � – 2 sin–1

	D = � + 2 sin–1

L = 1

2

sin–1

sin–1

4C
2  – (D – d)

2

D

D

C

C

d

4C2 – (D + d)2

4C2 – (D – d )2 + (D	D + d	d)

	 = � + 2 sin–1

L = 1

2
4C2 – (D + d)2 + (D + d)	

(a)

(b)

Figure 17–1

Flat-belt geometry. (a) Open
belt. (b) Crossed belt.

Figure 17–2

Nonreversing and reversing
belt drives. (a) Nonreversing
open belt. (b) Reversing
crossed belt. Crossed belts
must be separated to prevent
rubbing if high-friction
materials are used.
(c) Reversing open-belt drive.

Driver

(a)

(b)

(c)
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Figure 17–5

Variable-speed belt drives.

Fork

(a)

(b)

Figure 17–4

This drive eliminates the need
for a clutch. Flat belt can be
shifted left or right by use of
a fork.

Loose pulley
Driven

Shift fork

Driver

Midpoint

Figure 17–3

Quarter-twist belt drive;
an idler guide pulley must be
used if motion is to be in both
directions.

Figure 17–3 shows a flat-belt drive with out-of-plane pulleys. The shafts need not

be at right angles as in this case. Note the top view of the drive in Fig. 17–3. The pul-

leys must be positioned so that the belt leaves each pulley in the midplane of the other

pulley face. Other arrangements may require guide pulleys to achieve this condition.

Another advantage of flat belts is shown in Fig. 17–4, where clutching action is

obtained by shifting the belt from a loose to a tight or driven pulley.

Figure 17–5 shows two variable-speed drives. The drive in Fig. 17–5a is common-

ly used only for flat belts. The drive of Fig. 17–5b can also be used for V belts and round

belts by using grooved sheaves.

Flat belts are made of urethane and also of rubber-impregnated fabric reinforced

with steel wire or nylon cords to take the tension load. One or both surfaces may have

a friction surface coating. Flat belts are quiet, they are efficient at high speeds, and they

can transmit large amounts of power over long center distances. Usually, flat belting is

purchased by the roll and cut and the ends are joined by using special kits furnished by

the manufacturer. Two or more flat belts running side by side, instead of a single wide

belt, are often used to form a conveying system.

A V belt is made of fabric and cord, usually cotton, rayon, or nylon, and impreg-

nated with rubber. In contrast with flat belts, V belts are used with similar sheaves and

at shorter center distances. V belts are slightly less efficient than flat belts, but a num-

ber of them can be used on a single sheave, thus making a multiple drive. V belts are

made only in certain lengths and have no joints.

Timing belts are made of rubberized fabric and steel wire and have teeth that fit

into grooves cut on the periphery of the sprockets. The timing belt does not stretch or

slip and consequently transmits power at a constant angular-velocity ratio. The fact that

the belt is toothed provides several advantages over ordinary belting. One of these is

that no initial tension is necessary, so that fixed-center drives may be used. Another is
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the elimination of the restriction on speeds; the teeth make it possible to run at nearly

any speed, slow or fast. Disadvantages are the first cost of the belt, the necessity of

grooving the sprockets, and the attendant dynamic fluctuations caused at the belt-tooth

meshing frequency.

17–2 Flat- and Round-Belt Drives
Modern flat-belt drives consist of a strong elastic core surrounded by an elastomer;

these drives have distinct advantages over gear drives or V-belt drives. A flat-belt drive

has an efficiency of about 98 percent, which is about the same as for a gear drive. On the

other hand, the efficiency of a V-belt drive ranges from about 70 to 96 percent.1 Flat-belt

drives produce very little noise and absorb more torsional vibration from the system than

either V-belt or gear drives.

When an open-belt drive (Fig. 17–1a) is used, the contact angles are found to be

θd = π − 2 sin−1 D − d

2C

θD = π + 2 sin−1 D − d

2C

(17–1)

where D = diameter of large pulley

d = diameter of small pulley

C = center distance

θ = angle of contact

The length of the belt is found by summing the two arc lengths with twice the distance

between the beginning and end of contact. The result is

L = [4C2 − (D − d)2]1/2 + 1

2
(DθD + dθd) (17–2)

A similar set of equations can be derived for the crossed belt of Fig. 17–2b. For this

belt, the angle of wrap is the same for both pulleys and is

θ = π + 2 sin−1 D + d

2C
(17–3)

The belt length for crossed belts is found to be

L = [4C2 − (D + d)2]1/2 + 1

2
(D + d)θ (17–4)

Firbank2 explains flat-belt-drive theory in the following way. A change in belt ten-

sion due to friction forces between the belt and pulley will cause the belt to elongate or

contract and move relative to the surface of the pulley. This motion is caused by elastic

creep and is associated with sliding friction as opposed to static friction. The action at

the driving pulley, through that portion of the angle of contact that is actually transmit-

ting power, is such that the belt moves more slowly than the surface speed of the pulley

because of the elastic creep. The angle of contact is made up of the effective arc,

1A. W. Wallin, “Efficiency of Synchronous Belts and V-Belts,” Proc. Nat. Conf. Power Transmission, vol. 5,

Illinois Institute of Technology, Chicago, Nov. 7–9, 1978, pp. 265–271.

2T. C. Firbank, Mechanics of the Flat Belt Drive, ASME paper no. 72-PTG-21.
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dS

r

F

fdN
dN

F + dF

	

d	

Figure 17–6

Free body of an infinitesimal
element of a flat belt in contact
with a pulley.

through which power is transmitted, and the idle arc. For the driving pulley the belt first

contacts the pulley with a tight-side tension F1 and a velocity V1, which is the same as

the surface velocity of the pulley. The belt then passes through the idle arc with no

change in F1 or V1. Then creep or sliding contact begins, and the belt tension changes

in accordance with the friction forces. At the end of the effective arc the belt leaves the

pulley with a loose-side tension F2 and a reduced speed V2.

Firbank has used this theory to express the mechanics of flat-belt drives in mathe-

matical form and has verified the results by experiment. His observations include the find-

ing that substantially more power is transmitted by static friction than sliding friction. He

also found that the coefficient of friction for a belt having a nylon core and leather surface

was typically 0.7, but that it could be raised to 0.9 by employing special surface finishes.

Our model will assume that the friction force on the belt is proportional to the nor-

mal pressure along the arc of contact. We seek first a relationship between the tight side

tension and slack side tension, similar to that of band brakes but incorporating the con-

sequences of movement, that is, centrifugal tension in the belt. In Fig. 17–6 we see a

free body of a small segment of the belt. The differential force dS is due to centrifugal

force, d N is the normal force between the belt and pulley, and f d N is the shearing

traction due to friction at the point of slip. The belt width is b and the thickness is t. The

belt mass per unit length is m. The centrifugal force dS can be expressed as

dS = (mr dθ)rω2 = mr2ω2 dθ = mV 2 dθ = Fc dθ (a)

where V is the belt speed. Summing forces radially gives

∑

Fr = −(F + d F)
dθ

2
− F

dθ

2
+ d N + dS = 0

Ignoring the higher-order term, we have

d N = F dθ − dS (b)

Summing forces tangentially gives

∑

Ft = − f d N − F + (F + d F) = 0

from which, incorporating Eqs. (a) and (b), we obtain

d F = f d N = f F dθ − f dS = f F dθ − f mr2ω2 dθ

or

d F

dθ
− f F = − f mr2ω2 (c)

The solution to this nonhomogeneous first-order linear differential equation is

F = A exp( f θ) + mr2ω2 (d )

where A is an arbitrary constant. Assuming θ starts at the loose side, the boundary con-

dition that F at θ = 0 equals F2 gives A = F2 − mr2ω2 . The solution is

F = (F2 − mr2ω2) exp( f θ) + mr2ω2 (17–5)

At the end of the angle of wrap φ, the tight side,

F |θ=φ = F1 = (F2 − mr2ω2) exp( f φ) + mr2ω2 (17–6)



Budynas−Nisbett: Shigley’s 

Mechanical Engineering 

Design, Eighth Edition

III. Design of Mechanical 

Elements

17. Flexible Mechanical 

Elements

862 © The McGraw−Hill 

Companies, 2008

Flexible Mechanical Elements 865

Now we can write

F1 − mr2ω2

F2 − mr2ω2
= F1 − Fc

F2 − Fc

= exp( f φ) (17–7)

where, from Eq. (a), Fc = mr2ω2 . It is also useful that Eq. (17–7) can be written as

F1 − F2 = (F1 − Fc)
exp( f φ) − 1

exp( f φ)
(17–8)

Now Fc is found as follows: with n being the rotational speed, in rev/min, of the pulley

of diameter d, the belt speed is 

V = π dn/12 ft/min

The weight w of a foot of belt is given in terms of the weight density γ in lbf/in3 as

w = 12γ bt lbf/ft where b and t are in inches. Fc is written as

Fc = w

g

(

V

60

)2

= w

32.17

(

V

60

)2

(e)

Figure 17–7 shows a free body of a pulley and part of the belt. The tight side

tension F1 and the loose side tension F2 have the following additive components:

F1 = Fi + Fc + �F ′ = Fi + Fc + T/D (f )

F2 = Fi + Fc − �F ′ = Fi + Fc − T/D (g)

where Fi = initial tension

Fc = hoop tension due to centrifugal force

�F ′ = tension due to the transmitted torque T

D = diameter of the pulley

The difference between F1 and F2 is related to the pulley torque. Subtracting Eq. (g)

from Eq. ( f ) gives

F1 − F2 = 2T

D
= T

D/2
(h)

Adding Eqs. ( f ) and (g) gives

F1 + F2 = 2Fi + 2Fc

D

T

F1 = Fi + Fc + ∆F'

= Fi + Fc +
T

D

F2 = Fi + Fc – ∆F'

= Fi + Fc –
T

D

Figure 17–7

Forces and torques on a
pulley.
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from which

Fi = F1 + F2

2
− Fc (i )

Dividing Eq. (i) by Eq. (h), manipulating, and using Eq. (17–7) gives

Fi

T/D
= (F1 + F2)/2 − Fc

(F1 − F2)/2
= F1 + F2 − 2Fc

F1 − F2

= (F1 − Fc) + (F2 − Fc)

(F1 − Fc) − (F2 − Fc)

= (F1 − Fc)/(F2 − Fc) + 1

(F1 − Fc)/(F2 − Fc) − 1
= exp( f φ) + 1

exp( f φ) − 1

from which

Fi = T

D

exp( f φ) + 1

exp( f φ) − 1
(17–9)

Equation (17–9) give us a fundamental insight into flat belting. If Fi equals zero, then

T equals zero: no initial tension, no torque transmitted. The torque is in proportion to the

initial tension. This means that if there is to be a satisfactory flat-belt drive, the initial

tension must be (1) provided, (2) sustained, (3) in the proper amount, and (4) maintained

by routine inspection.

From Eq. ( f ), incorporating Eq. (17–9) gives

F1 = Fi + Fc + T

D
= Fc + Fi + Fi

exp( f φ) − 1

exp( f φ) + 1

= Fc + Fi [exp( f φ) + 1] + Fi [exp( f φ) − 1]

exp( f φ) + 1

F1 = Fc + Fi

2 exp( f φ)

exp( f φ) + 1
(17–10)

From Eq. (g), incorporating Eq. (17–9) gives

F2 = Fi + Fc − T

D
= Fc + Fi − Fi

exp( f φ) − 1

exp( f φ) + 1

= Fc + Fi [exp( f φ) + 1] − Fi [exp( f φ) − 1]

exp( f φ) + 1

F2 = Fc + Fi

2

exp( f φ) + 1
(17–11)
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Fi (Fi)a

Fc

F2

F1

(F1)a

2
T

D

F2 = Fc +
2Fi

exp( f�) + 1

F1 = Fc +
2Fi exp( f�)

exp( f�) + 1

Initial tension Fi

B
el

t 
te

n
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o
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F
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Figure 17–8

Plot of initial tension Fi against
belt tension F1 or F2, showing
the intercept Fc, the equations
of the curves, and where
2T/D is to be found.

Equation (17–7) is called the belting equation, but Eqs. (17–9), (17–10), and (17–11)

reveal how belting works. We plot Eqs. (17–10) and (17–11) as shown in Fig. 17–8

against Fi as abscissa. The initial tension needs to be sufficient so that the difference

between the F1 and F2 curve is 2T/D. With no torque transmitted, the least possible

belt tension is F1 = F2 = Fc .

The transmitted horsepower is given by

H = (F1 − F2)V

33 000
(j)

Manufacturers provide specifications for their belts that include allowable tension Fa

(or stress σall), the tension being expressed in units of force per unit width. Belt life is

usually several years. The severity of flexing at the pulley and its effect on life is reflect-

ed in a pulley correction factor Cp . Speed in excess of 600 ft/min and its effect on life

is reflected in a velocity correction factor Cv . For polyamide and urethane belts use

Cv = 1. For leather belts see Fig. 17–9. A service factor Ks is used for excursions of

load from nominal, applied to the nominal power as Hd = HnomKsnd , where nd is the

Figure 17–9

Velocity correction factor Cv

for leather belts for various
thicknesses. (Data source:
Machinery's Handbook, 20th
ed., Industrial Press, New
York, 1976, p. 1047.)
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design factor for exigencies. These effects are incorporated as follows:

(F1)a = bFaCpCv (17–12)

where (F1)a = allowable largest tension, lbf

b = belt width, in

Fa = manufacturer’s allowed tension, lbf/in

Cp = pulley correction factor (Table 17–4)

Cv = velocity correction factor

The steps in analyzing a flat-belt drive can include

1 Find exp( f φ) from belt-drive geometry and friction

2 From belt geometry and speed find Fc

3 From T = 63 025HnomKsnd/n find necessary torque

4 From torque T find the necessary (F1)a − F2 = 2T/D

5 Find F2 from (F1)a − [(F1)a − F2]

6 From Eq. (i) find the necessary initial tension Fi

7 Check the friction development, f ′ < f . Use Eq. (17–7) solved for f ′:

f ′ = 1

φ
ln

(F1)a − Fc

F2 − Fc

8 Find the factor of safety from n f s = Ha/(HnomKs)

It is unfortunate that many of the available data on belting are from sources in which

they are presented in a very simplistic manner. These sources use a variety of charts,

nomographs, and tables to enable someone who knows nothing about belting to apply

them. Little, if any, computation is needed for such a person to obtain valid results. Since

a basic understanding of the process, in many cases, is lacking, there is no way this

person can vary the steps in the process to obtain a better design.

Incorporating the available belt-drive data into a form that provides a good under-

standing of belt mechanics involves certain adjustments in the data. Because of this, the

results from the analysis presented here will not correspond exactly with those of the

sources from which they were obtained.

A moderate variety of belt materials, with some of their properties, are listed in

Table 17–2. These are sufficient for solving a large variety of design and analysis prob-

lems. The design equation to be used is Eq. ( j).

The values given in Table 17–2 for the allowable belt tension are based on a belt

speed of 600 ft/min. For higher speeds, use Fig. 17–9 to obtain Cv values for leather

belts. For polyamide and urethane belts, use Cv = 1.0.

The service factors Ks for V-belt drives, given in Table 17–15 in Sec. 17–3, are also

recommended here for flat- and round-belt drives.

Minimum pulley sizes for the various belts are listed in Tables 17–2 and 17–3. The

pulley correction factor accounts for the amount of bending or flexing of the belt and

how this affects the life of the belt. For this reason it is dependent on the size and mate-

rial of the belt used. See Table 17–4. Use Cp = 1.0 for urethane belts.

Flat-belt pulleys should be crowned to keep belts from running off the pulleys. If

only one pulley is crowned, it should be the larger one. Both pulleys must be crowned

whenever the pulley axes are not in a horizontal position. Use Table 17–5 for the crown

height.
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Minimum Allowable Tension
Pulley per Unit Width Specific

Size, Diameter, at 600 ft/min, Weight, Coefficient
Material Specification in in lbf/in lbf/in3 of Friction

Leather 1 ply t � 
11
64 3 30 0.035–0.045 0.4

t � 
13
64 31

2 33 0.035–0.045 0.4

2 ply t � 
18
64 41

2 41 0.035–0.045 0.4

t � 
20
64 6a 50 0.035–0.045 0.4

t � 
23
64 9a 60 0.035–0.045 0.4

Polyamideb F–0c t � 0.03 0.60 10 0.035 0.5

F–1c t � 0.05 1.0 35 0.035 0.5

F–2c t � 0.07 2.4 60 0.051 0.5

A–2c t � 0.11 2.4 60 0.037 0.8

A–3c t � 0.13 4.3 100 0.042 0.8

A–4c t � 0.20 9.5 175 0.039 0.8

A–5c t � 0.25 13.5 275 0.039 0.8

Urethaned w = 0.50 t � 0.062 See 5.2e 0.038–0.045 0.7

w = 0.75 t � 0.078 Table 9.8e 0.038–0.045 0.7

w = 1.25 t � 0.090 17–3 18.9e 0.038–0.045 0.7

Round d � 
1
4

See 8.3e 0.038–0.045 0.7

d � 
3
8

Table 18.6e 0.038–0.045 0.7

d � 
1
2

17–3 33.0e 0.038–0.045 0.7

d � 
3
4

74.3e 0.038–0.045 0.7

aAdd 2 in to pulley size for belts 8 in wide or more.
bSource: Habasit Engineering Manual, Habasit Belting, Inc., Chamblee (Atlanta), Ga.
cFriction cover of acrylonitrile-butadiene rubber on both sides.
dSource: Eagle Belting Co., Des Plaines, Ill.
eAt 6% elongation; 12% is maximum allowable value.

Table 17–2

Properties of Some Flat- and Round-Belt Materials. (Diameter = d, thickness = t, width = w)

Ratio of Pulley Speed to Belt Length,

Belt Belt rev/(ft • min)

Style Size, in Up to 250 250 to 499 500 to 1000

Flat 0.50 × 0.062 0.38 0.44 0.50

0.75 × 0.078 0.50 0.63 0.75

1.25 × 0.090 0.50 0.63 0.75

Round 1
4

1.50 1.75 2.00
3
8

2.25 2.62 3.00
1
2

3.00 3.50 4.00
3
4

5.00 6.00 7.00

Table 17–3

Minimum Pulley Sizes for

Flat and Round Urethane

Belts. (Listed are the

Pulley Diameters in

Inches)

Source: Eagle Belting Co.,
Des Plaines, Ill.

869
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Small-Pulley Diameter, in

Material 1.6 to 4 4.5 to 8 9 to 12.5 14, 16 18 to 31.5 Over 31.5

Leather 0.5 0.6 0.7 0.8 0.9 1.0

Polyamide, F–0 0.95 1.0 1.0 1.0 1.0 1.0

F–1 0.70 0.92 0.95 1.0 1.0 1.0

F–2 0.73 0.86 0.96 1.0 1.0 1.0

A–2 0.73 0.86 0.96 1.0 1.0 1.0

A–3 — 0.70 0.87 0.94 0.96 1.0

A–4 — — 0.71 0.80 0.85 0.92

A–5 — — — 0.72 0.77 0.91

*Average values of CP for the given ranges were approximated from curves in the Habasit Engineering Manual, Habasit Belting, Inc., Chamblee (Atlanta), Ga.

Table 17–4

Pulley Correction Factor CP for Flat Belts*

ISO Crown ISO
Pulley Height, Pulley Crown Height, in

Diameter, in in Diameter, in w � 10 in w � 10 in

1.6, 2, 2.5 0.012 12.5, 14 0.03 0.03

2.8, 3.15 0.012 12.5, 14 0.04 0.04

3.55, 4, 4.5 0.012 22.4, 25, 28 0.05 0.05

5, 5.6 0.016 31.5, 35.5 0.05 0.06

6.3, 7.1 0.020 40 0.05 0.06

8, 9 0.024 45, 50, 56 0.06 0.08

10, 11.2 0.030 63, 71, 80 0.07 0.10

*Crown should be rounded, not angled; maximum roughness is Ra � AA 63 µin.

Table 17–5

Crown Height and ISO

Pulley Diameters for Flat

Belts*

EXAMPLE 17–1 A polyamide A-3 flat belt 6 in wide is used to transmit 15 hp under light shock condi-

tions where Ks = 1.25, and a factor of safety equal to or greater than 1.1 is appropriate.

The pulley rotational axes are parallel and in the horizontal plane. The shafts are 8 ft

apart. The 6-in driving pulley rotates at 1750 rev/min in such a way that the loose side

is on top. The driven pulley is 18 in in diameter. See Fig. 17–10. The factor of safety is

for unquantifiable exigencies.

(a) Estimate the centrifugal tension Fc and the torque T.

(b) Estimate the allowable F1, F2, Fi and allowable power Ha .

(c) Estimate the factor of safety. Is it satisfactory?

Figure 17–10

The flat-belt drive of Ex. 17–1.
6 in

96 in

1750 rpm

18 in

Belt 6 in � 0.130 in

� = 0.042
lbf
in3

15 hp

d = 6 in, D = 18 in
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Solution (a) Eq. (17–1): φ = θd = π − 2 sin−1

[

18 − 6

2(8)12

]

= 3.0165 rad

exp( f φ) = exp[0.8(3.0165)] = 11.17

V = π(6)1750/12 = 2749 ft/min

Table 17–2: w = 12γ bt = 12(0.042)6(0.130) = 0.393 lbf/ft

Answer Eq. (e): Fc = w

g

(

V

60

)2

= 0.393

32.17

(

2749

60

)2

= 25.6 lbf

T = 63 025HnomKsnd

n
= 63 025(15)1.25(1.1)

1750

Answer = 742.8 lbf · in

(b) The necessary (F1)a − F2 to transmit the torque T, from Eq. (h), is

(F1)a − F2 = 2T

d
= 2(742.8)

6
= 247.6 lbf

From Table 17–2 Fa = 100 lbf. For polyamide belts Cv = 1, and from Table 17–4

Cp = 0.70. From Eq. (17–12) the allowable largest belt tension (F1)a is

Answer (F1)a = bFaCpCv = 6(100)0.70(1) = 420 lbf

then

Answer F2 = (F1)a − [(F1)a − F2] = 420 − 247.6 = 172.4 lbf

and from Eq. (i)

Fi = (F1)a + F2

2
− Fc = 420 + 172.4

2
− 25.6 = 270.6 lbf

Answer The combination (F1)a , F2, and Fi will transmit the design power of 15(1.25)(1.1) = 20.6

hp and protect the belt. We check the friction development by solving Eq. (17–7) for f ′:

f ′ = 1

φ
ln

(F1)a − Fc

F2 − Fc

= 1

3.0165
ln

420 − 25.6

172.4 − 25.6
= 0.328

From Table 17–2, f = 0.8. Since f ′ < f , that is, 0.328 < 0.80, there is no danger of

slipping.

(c)

Answer n f s = H

HnomKs

= 20.6

15(1.25)
= 1.1 (as expected)

Answer The belt is satisfactory and the maximum allowable belt tension exists. If the initial

tension is maintained, the capacity is the design power of 20.6 hp.
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Initial tension is the key to the functioning of the flat belt as intended. There are

ways of controlling initial tension. One way is to place the motor and drive pulley on a

pivoted mounting plate so that the weight of the motor, pulley, and mounting plate and

a share of the belt weight induces the correct initial tension and maintains it. A second

way is use of a spring-loaded idler pulley, adjusted to the same task. Both of these

methods accommodate to temporary or permanent belt stretch. See Fig. 17–11.

Because flat belts were used for long center-to-center distances, the weight of the

belt itself can provide the initial tension. The static belt deflects to an approximate cate-

nary curve, and the dip from a straight belt can be measured against a stretched music

wire. This provides a way of measuring and adjusting the dip. From catenary theory the

dip is related to the initial tension by

d = 12L2w

8Fi

= 3L2w

2Fi

(17–13)

where d = dip, in

L = center-to-center distance, ft

w = weight per foot of the belt, lbf/ft

Fi = initial tension, lbf

In Ex. 17–1 the dip corresponding to a 270.6-lb initial tension is

d = 3(82)0.393

2(270.6)
= 0.14 in

W

Slack side

Tight side

F2

F1

W

Fi Fi

L

d

(a)

(b)

(c)

Figure 17–11

Belt-tensioning schemes.
(a) Weighted idler pulley.
(b) Pivoted motor mount.
(c) Catenary-induced tension.
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A decision set for a flat belt can be

• Function: power, speed, durability, reduction, service factor, C

• Design factor: nd

• Initial tension maintenance

• Belt material

• Drive geometry, d, D

• Belt thickness: t

• Belt width: b

Depending on the problem, some or all of the last four could be design variables. Belt

cross-sectional area is really the design decision, but available belt thicknesses and

widths are discrete choices. Available dimensions are found in suppliers’ catalogs.

EXAMPLE 17–2 Design a flat-belt drive to connect horizontal shafts on 16-ft centers. The velocity ratio

is to be 2.25:1. The angular speed of the small driving pulley is 860 rev/min, and the

nominal power transmission is to be 60 hp under very light shock.

Solution • Function: Hnom = 60 hp, 860 rev/min, 2.25:1 ratio, Ks = 1.15, C = 16 ft

• Design factor: nd = 1.05

• Initial tension maintenance: catenary

• Belt material: polyamide

• Drive geometry, d, D

• Belt thickness: t

• Belt width: b

The last four could be design variables. Let’s make a few more a priori decisions.

Decision d = 16 in, D = 2.25d = 2.25(16) = 36 in.

Decision Use polyamide A-3 belt; therefore t = 0.13 in and Cv = 1.

Now there is one design decision remaining to be made, the belt width b.

Table 17–2: γ = 0.042 lbf/in3 f = 0.8 Fa = 100 lbf/in at 600 rev/min

Table 17–4: Cp = 0.94

Eq. (17–12): F1a = b(100)0.94(1) = 94.0b lbf (1)

Hd = HnomKsnd = 60(1.15)1.05 = 72.5 hp

T = 63 025Hd

n
= 63 025(72.5)

860
= 5310 lbf · in

Estimate exp( f φ) for full friction development:

Eq. (17–1): φ = θd = π − 2 sin−1 36 − 16

2(16)12
= 3.037 rad

exp( f φ) = exp[0.80(3.037)] = 11.35
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Estimate centrifugal tension Fc in terms of belt width b:

w = 12γ bt = 12(0.042)b(0.13) = 0.0655b lbf/ft

V = πdn/12 = π(16)860/12 = 3602 ft/min

Eq. (e): Fc = w

g

(

V

60

)2

= 0.0655b

32.17

(

3602

60

)2

= 7.34b lbf (2)

For design conditions, that is, at Hd power level, using Eq. (h) gives

(F1)a − F2 = 2T/d = 2(5310)/16 = 664 lbf (3)

F2 = (F1)a − [(F1)a − F2] = 94.0b − 664 lbf (4)

Using Eq. (i) gives

Fi = (F1)a + F2

2
− Fc = 94.0b + 94.0b − 664

2
− 7.34b = 86.7b − 332 lbf (5)

Place friction development at its highest level, using Eq. (17–7):

f φ = ln
(F1)a − Fc

F2 − Fc

= ln
94.0b − 7.34b

94.0b − 664 − 7.34b
= ln

86.7b

86.7b − 664

Solving the preceding equation for belt width b at which friction is fully developed gives

b = 664

86.7

exp( f φ)

exp( f φ) − 1
= 664

86.7

11.38

11.38 − 1
= 8.40 in

A belt width greater than 8.40 in will develop friction less than f = 0.80. The manu-

facturer’s data indicate that the next available larger width is 10-in.

Decision Use 10-in-wide belt.

It follows that for a 10-in-wide belt

Eq. (2): Fc = 7.34(10) = 73.4 lbf

Eq. (1): (F1)a = 94(10) = 940 lbf

Eq. (4): F2 = 94(10) − 664 = 276 lbf

Eq. (5): Fi = 86.7(10) − 332 = 535 lbf

The transmitted power, from Eq. (3), is

Ht = [(F1)a − F2]V

33 000
= 664(3602)

33 000
= 72.5 hp

and the level of friction development f ′, from Eq. (17–7) is

f ′ = 1

φ
ln

(F1)a − Fc

F2 − Fc

= 1

3.037
ln

940 − 73.4

276 − 73.4
= 0.479

which is less than f = 0.8, and thus is satisfactory. Had a 9-in belt width been avail-

able, the analysis would show (F1)a = 846 lbf, F2 = 182 lbf, Fi = 448 lbf, and

f ′ = 0.63. With a figure of merit available reflecting cost, thicker belts (A-4 or A-5) could be

examined to ascertain which of the satisfactory alternatives is best. From Eq. (17–13) the catenary

dip is

d = 3L2w

2Fi

= 3(152)0.0655(10)

2(535)
= 0.413 in
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Figure 17–12

Flat-belt tensions. T

F1

F2

+ + +

B
A

F

C
D

E

(a)

(b)

A B C D E F A

F2

F1

Fi

Fc

∆F

∆F

Fc

Figure 17–12 illustrates the variation of flexible flat-belt tensions at some cardinal

points during a belt pass.

Flat Metal Belts

Thin flat metal belts with their attendant strength and geometric stability could not be

fabricated until laser welding and thin rolling technology made possible belts as thin as

0.002 in and as narrow as 0.026 in. The introduction of perforations allows no-slip

applications. Thin metal belts exhibit

• High strength-to-weight ratio

• Dimensional stability

• Accurate timing

• Usefulness to temperatures up to 700°F

• Good electrical and thermal conduction properties

In addition, stainless steel alloys offer “inert,” nonabsorbent belts suitable to hos-

tile (corrosive) environments, and can be made sterile for food and pharmaceutical

applications.

Thin metal belts can be classified as friction drives, timing or positioning drives,

or tape drives. Among friction drives are plain, metal-coated, and perforated belts.

Crowned pulleys are used to compensate for tracking errors.

Figure 17–13 shows a thin flat metal belt with the tight tension F1 and the slack

side tension F2 revealed. The relationship between F1 and F2 and the driving torque T

is the same as in Eq. (h). Equations (17–9), (17–10), and (17–11) also apply. The largest

allowable tension, as in Eq. (17–12), is posed in terms of stress in metal belts. A bend-

ing stress is created by making the belt conform to the pulley, and its tensile magnitude

σb is given by

σb = Et

(1 − ν2)D
= E

(1 − ν2)(D/t)
(17–14)
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Belt
Passes

625 ≥106

400 0.500 · 106

333 0.165 · 106

200 0.085 · 106

*Data courtesy of Belt
Technologies, Agawam, Mass.

Table 17–6

Belt Life for Stainless

Steel Friction Drives*

Figure 17–13

Metal-belt tensions and
torques.

TM

TLD1

TM

F1

F2

D1

D2

(a) (b)

where E = Young’s modulus

t = belt thickness

ν = Poisson’s ratio

D = pulley diameter

The tensile stresses (σ )1 and (σ )2 imposed by the belt tensions F1 and F2 are

(σ )1 = F1/(bt) and (σ )2 = F2/(bt)

The largest tensile stress is (σb)1 + F1/(bt) and the smallest is (σb)2 + F2/(bt). During

a belt pass both levels of stress appear.

Although the belts are of simple geometry, the method of Marin is not used because

the condition of the butt weldment (to form the loop) is not accurately known, and the

testing of coupons is difficult. The belts are run to failure on two equal-sized pulleys.

Information concerning fatigue life, as shown in Table 17–6, is obtainable. Tables 17–7

and 17–8 give additional information.

Table 17–6 shows metal belt life expectancies for a stainless steel belt. From

Eq. (17–14) with E = 28 Mpsi and ν = 0.29, the bending stresses corresponding to the

four entries of the table are 48 914, 76 428, 91 805, and 152 855 psi. Using a natural

log transformation on stress and passes shows that the regression line (r = −0.96) is

σ = 14 169 982N−0.407 = 14.17(106)N−0.407
p (17–15)

where Np is the number of belt passes.

D

t
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Belt Thickness, Minimum Pulley
in Diameter, in

0.002 1.2

0.003 1.8

0.005 3.0

0.008 5.0

0.010 6.0

0.015 10

0.020 12.5

0.040 25.0

*Data courtesy of Belt Technologies, Agawam, Mass.

Table 17–7

Minimum Pulley

Diameter*

Yield Young’s
Strength, Modulus, Poisson’s

Alloy kpsi Mpsi Ratio

301 or 302 175 28 0.285
stainless steel

BeCu 170 17 0.220

1075 or 1095 230 30 0.287
carbon steel

Titanium 150 15 —

Inconel 160 30 0.284

*Data courtesy of Belt Technologies, Agawam, Mass.

Table 17–8

Typical Material

Properties, Metal Belts*

The selection of a metal flat belt can consist of the following steps:

1 Find exp( f φ) from geometry and friction

2 Find endurance strength

Sf = 14.17(106)N−0.407
p 301, 302 stainless

Sf = Sy/3 others

3 Allowable tension

F1a =
[

Sf − Et

(1 − ν2)D

]

tb = ab

4 �F = 2T/D

5 F2 = F1a − �F = ab − �F

6 Fi = F1a + F2

2
= ab + ab − �F

2
= ab − �F

2

7 bmin = �F

a

exp( f φ)

exp( f φ) − 1

8 Choose b > bmin, F1 = ab, F2 = ab − �F , Fi = ab − �F/2, T = �F D/2
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9 Check frictional development f ′:

f ′ = 1

φ
ln

F1

F2

f ′ < f

EXAMPLE 17–3 A friction-drive stainless steel metal belt runs over two 4-in metal pulleys ( f = 0.35).

The belt thickness is to be 0.003 in. For a life exceeding 106 belt passes with smooth

torque (Ks = 1), (a) select the belt if the torque is to be 30 lbf · in, and (b) find the

initial tension Fi .

Solution (a) From step 1, φ = θd = π , therefore exp(0.35π) = 3.00. From step 2,

(Sf )106 = 14.17(106)(106)−0.407 = 51 210 psi

From steps 3, 4, 5, and 6,

F1a =
[

51 210 − 28(106)0.003

(1 − 0.2852)4

]

0.003b = 85.1b lbf (1)

�F = 2T/D = 2(30)/4 = 15 lbf

F2 = F1a − �F = 85.1b − 15 lbf (2)

Fi = F1a + F2

2
= 85.1b + 15

2
lbf (3)

From step 7,

bmin = �F

a

exp( f φ)

exp( f φ) − 1
= 15

85.1

3.00

3.00 − 1
= 0.264 in

Decision Select an available 0.75-in-wide belt 0.003 in thick.

Eq. (1): F1 = 85.1(0.75) = 63.8 lbf

Eq. (2): F2 = 85.1(0.75) − 15 = 48.8 lbf

Eq. (3): Fi = (63.8 + 48.8)/2 = 56.3 lbf

f ′ = 1

φ
ln

F1

F2

= 1

π
ln

63.8

48.8
= 0.0853

Note f ′ < f , that is, 0.0853 < 0.35.

17–3 V Belts
The cross-sectional dimensions of V belts have been standardized by manufacturers,

with each section designated by a letter of the alphabet for sizes in inch dimensions.

Metric sizes are designated in numbers. Though these have not been included here, the

procedure for analyzing and designing them is the same as presented here. Dimensions,

minimum sheave diameters, and the horsepower range for each of the lettered sections

are listed in Table 17–9.
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Belt Width a, Thickness b, Minimum Sheave hp Range,
Section in in Diameter, in One or More Belts

A 1
2

11
32

3.0 1
4 –10

B 21
32

7
16

5.4 1–25

C 7
8

17
32

9.0 15–100

D 1 1
4

3
4

13.0 50–250

E 1 1
2

1 21.6 100 and up

Table 17–9

Standard V-Belt Sections

a

b

40°

Section Circumference, in

A 26, 31, 33, 35, 38, 42, 46, 48, 51, 53, 55, 57, 60, 62, 64, 66, 68, 71,
75, 78, 80, 85, 90, 96, 105, 112, 120, 128

B 35, 38, 42, 46, 48, 51, 53, 55, 57, 60, 62, 64, 65, 66, 68, 71, 75, 78,
79, 81, 83, 85, 90, 93, 97, 100, 103, 105, 112, 120, 128, 131, 136,
144, 158, 173, 180, 195, 210, 240, 270, 300

C 51, 60, 68, 75, 81, 85, 90, 96, 105, 112, 120, 128, 136, 144, 158,
162,173, 180, 195, 210, 240, 270, 300, 330, 360, 390, 420

D 120, 128, 144, 158, 162, 173, 180, 195, 210, 240, 270, 300, 330,
360,390, 420, 480, 540, 600, 660

E 180, 195, 210, 240, 270, 300, 330, 360, 390, 420, 480, 540, 600, 660

Table 17–10

Inside Circumferences of

Standard V Belts

Belt section A B C D E

Quantity to be added 1.3 1.8 2.9 3.3 4.5

Table 17–11

Length Conversion Dimensions (Add the Listed Quantity to the Inside Circumference

to Obtain the Pitch Length in Inches)

To specify a V belt, give the belt-section letter, followed by the inside circumfer-

ence in inches (standard circumferences are listed in Table 17–10). For example, B75

is a B-section belt having an inside circumference of 75 in.

Calculations involving the belt length are usually based on the pitch length. For any

given belt section, the pitch length is obtained by adding a quantity to the inside cir-

cumference (Tables 17–10 and 17–11). For example, a B75 belt has a pitch length of

76.8 in. Similarly, calculations of the velocity ratios are made using the pitch diameters

of the sheaves, and for this reason the stated diameters are usually understood to be the

pitch diameters even though they are not always so specified.

The groove angle of a sheave is made somewhat smaller than the belt-section

angle. This causes the belt to wedge itself into the groove, thus increasing friction. The

exact value of this angle depends on the belt section, the sheave diameter, and the angle

of contact. If it is made too much smaller than the belt, the force required to pull the belt

out of the groove as the belt leaves the pulley will be excessive. Optimum values are

given in the commercial literature.



Budynas−Nisbett: Shigley’s 

Mechanical Engineering 

Design, Eighth Edition

III. Design of Mechanical 

Elements

17. Flexible Mechanical 

Elements

877© The McGraw−Hill 

Companies, 2008

880 Mechanical Engineering Design

The minimum sheave diameters have been listed in Table 17–9. For best results, a

V belt should be run quite fast: 4000 ft/min is a good speed. Trouble may be encoun-

tered if the belt runs much faster than 5000 ft/min or much slower than 1000 ft/min.

The pitch length L p and the center-to-center distance C are

L p = 2C + π(D + d)/2 + (D − d)2/(4C) (17–16a)

C = 0.25







[

L p − π

2
(D + d)

]

+

√

[

L p − π

2
(D + d)

]2

− 2(D − d)2







(17–16b)

where D = pitch diameter of the large sheave and d = pitch diameter of the small sheave.

In the case of flat belts, there is virtually no limit to the center-to-center distance.

Long center-to-center distances are not recommended for V belts because the excessive

vibration of the slack side will shorten the belt life materially. In general, the center-

to-center distance should be no greater than 3 times the sum of the sheave diameters

and no less than the diameter of the larger sheave. Link-type V belts have less

vibration, because of better balance, and hence may be used with longer center-to-

center distances.

The basis for power ratings of V belts depends somewhat on the manufacturer; it

is not often mentioned quantitatively in vendors’ literature but is available from ven-

dors. The basis may be a number of hours, 24 000, for example, or a life of 108 or 109

belt passes. Since the number of belts must be an integer, an undersized belt set that is

augmented by one belt can be substantially oversized. Table 17–12 gives power ratings

of standard V belts.

The rating, whether in terms of hours or belt passes, is for a belt running on equal-

diameter sheaves (180◦ of wrap), of moderate length, and transmitting a steady load.

Deviations from these laboratory test conditions are acknowledged by multiplicative

adjustments. If the tabulated power of a belt for a C-section belt is 9.46 hp for a 12-in-

diameter sheave at a peripheral speed of 3000 ft/min (Table 17–12), then, when the belt

is used under other conditions, the tabulated value Htab is adjusted as follows:

Ha = K1 K2 Htab (17–17)

where Ha = allowable power, per belt, Table 17–12

K1 = angle-of-wrap correction factor, Table 17–13

K2 = belt length correction factor, Table 17–14

The allowable power can be near to Htab, depending upon circumstances.

In a V belt the effective coefficient of friction f ′ is f/ sin(φ/2), which amounts to

an augmentation by a factor of about 3 due to the grooves. The effective coefficient of

friction f ′ is sometimes tabulated against sheave groove angles of 30◦, 34◦, and 38◦,

the tabulated values being 0.50, 0.45, and 0.40, respectively, revealing a belt material-

on-metal coefficient of friction of 0.13 for each case. The Gates Rubber Company

declares its effective coefficient of friction to be 0.5123 for grooves. Thus

F1 − Fc

F2 − Fc

= exp(0.5123φ) (17–18)

The design power is given by

Hd = HnomKsnd (17–19)

where Hnom is the nominal power, Ks is the service factor given in Table 17–15, and nd is

the design factor. The number of belts, Nb, is usually the next higher integer to Hd/Ha .
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Belt Sheave Pitch Belt Speed, ft/min

Section Diameter, in 1000 2000 3000 4000 5000

A 2.6 0.47 0.62 0.53 0.15
3.0 0.66 1.01 1.12 0.93 0.38
3.4 0.81 1.31 1.57 1.53 1.12
3.8 0.93 1.55 1.92 2.00 1.71
4.2 1.03 1.74 2.20 2.38 2.19
4.6 1.11 1.89 2.44 2.69 2.58
5.0 and up 1.17 2.03 2.64 2.96 2.89

B 4.2 1.07 1.58 1.68 1.26 0.22
4.6 1.27 1.99 2.29 2.08 1.24
5.0 1.44 2.33 2.80 2.76 2.10
5.4 1.59 2.62 3.24 3.34 2.82
5.8 1.72 2.87 3.61 3.85 3.45
6.2 1.82 3.09 3.94 4.28 4.00
6.6 1.92 3.29 4.23 4.67 4.48
7.0 and up 2.01 3.46 4.49 5.01 4.90

C 6.0 1.84 2.66 2.72 1.87
7.0 2.48 3.94 4.64 4.44 3.12
8.0 2.96 4.90 6.09 6.36 5.52
9.0 3.34 5.65 7.21 7.86 7.39

10.0 3.64 6.25 8.11 9.06 8.89
11.0 3.88 6.74 8.84 10.0 10.1
12.0 and up 4.09 7.15 9.46 10.9 11.1

D 10.0 4.14 6.13 6.55 5.09 1.35
11.0 5.00 7.83 9.11 8.50 5.62
12.0 5.71 9.26 11.2 11.4 9.18
13.0 6.31 10.5 13.0 13.8 12.2
14.0 6.82 11.5 14.6 15.8 14.8
15.0 7.27 12.4 15.9 17.6 17.0
16.0 7.66 13.2 17.1 19.2 19.0
17.0 and up 8.01 13.9 18.1 20.6 20.7

E 16.0 8.68 14.0 17.5 18.1 15.3
18.0 9.92 16.7 21.2 23.0 21.5
20.0 10.9 18.7 24.2 26.9 26.4
22.0 11.7 20.3 26.6 30.2 30.5
24.0 12.4 21.6 28.6 32.9 33.8
26.0 13.0 22.8 30.3 35.1 36.7
28.0 and up 13.4 23.7 31.8 37.1 39.1

Table 17–12

Horsepower Ratings of

Standard V Belts

That is,

Nb ≥ Hd

Ha

Nb = 1, 2, 3, . . . (17–20)

Designers work on a per-belt basis.

The flat-belt tensions shown in Fig. 17–12 ignored the tension induced by bending

the belt about the pulleys. This is more pronounced with V belts, as shown in Fig. 17–14.

The centrifugal tension Fc is given by

Fc = Kc

(

V

1000

)2

(17–21)

where Kc is from Table 17–16.
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K1

0.00 180 1.00 0.75

0.10 174.3 0.99 0.76

0.20 166.5 0.97 0.78

0.30 162.7 0.96 0.79

0.40 156.9 0.94 0.80

0.50 151.0 0.93 0.81

0.60 145.1 0.91 0.83

0.70 139.0 0.89 0.84

0.80 132.8 0.87 0.85

0.90 126.5 0.85 0.85

1.00 120.0 0.82 0.82

1.10 113.3 0.80 0.80

1.20 106.3 0.77 0.77

1.30 98.9 0.73 0.73

1.40 91.1 0.70 0.70

1.50 82.8 0.65 0.65

*A curvefit for the VV column in terms of θ is
K1 = 0.143 543 + 0.007 46 8 θ − 0.000 015 052 θ 2

in the range 90° ≤ θ ≤ 180°.

882 Mechanical Engineering Design

Table 17–13

Angle of Contact

Correction Factor K1 for

VV* and V-Flat Drives

Nominal Belt Length, in

Length Factor A Belts B Belts C Belts D Belts E Belts

0.85 Up to 35 Up to 46 Up to 75 Up to 128

0.90 38–46 48–60 81–96 144–162 Up to 195

0.95 48–55 62–75 105–120 173–210 210–240

1.00 60–75 78–97 128–158 240 270–300

1.05 78–90 105–120 162–195 270–330 330–390

1.10 96–112 128–144 210–240 360–420 420–480

1.15 120 and up 158–180 270–300 480 540–600

1.20 195 and up 330 and up 540 and up 660

*Multiply the rated horsepower per belt by this factor to obtain the corrected horsepower.

Table 17–14

Belt-Length Correction

Factor K2*

Source of Power

Normal Torque High or Nonuniform
Driven Machinery Characteristic Torque

Uniform 1.0 to 1.2 1.1 to 1.3

Light shock 1.1 to 1.3 1.2 to 1.4

Medium shock 1.2 to 1.4 1.4 to 1.6

Heavy shock 1.3 to 1.5 1.5 to 1.8

Table 17–15

Suggested Service

Factors KS for V-Belt

Drives

�, deg VV V Flat
D�d

C
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Figure 17–14

V-belt tensions. T

F1

F2

+ + +

B
A

F

C
D

E

(a)

(b)

A B C D E F A

F1

∆FT1 T2

Fi

Fc

(Fb)1
(Fb)2

Fc

∆F

F2

The power that is transmitted per belt is based on �F = F1 − F2 , where

�F = 63 025Hd/Nb

n(d/2)
(17–22)

then from Eq. (17–8) the largest tension F1 is given by

F1 = Fc + �F exp( f φ)

exp( f φ) − 1
(17–23)

From the definition of �F , the least tension F2 is

F2 = F1 − �F (17–24)

From Eq. ( j) in Sec. 17–2

Fi = F1 + F2

2
− Fc (17–25)

Belt Section Kb Kc

A 220 0.561

B 576 0.965

C 1 600 1.716

D 5 680 3.498

E 10 850 5.041

3V 230 0.425

5V 1098 1.217

8V 4830 3.288

*Data courtesy of Gates Rubber Co., Denver, Colo.

Table 17–16

Some V-Belt Parameters*
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108 to 109 109 to 1010
Minimum

Belt Force Peaks Force Peaks Sheave
Section K b K b Diameter, in

A 674 11.089 3.0

B 1193 10.926 5.0

C 2038 11.173 8.5

D 4208 11.105 13.0

E 6061 11.100 21.6

3V 728 12.464 1062 10.153 2.65

5V 1654 12.593 2394 10.283 7.1

8V 3638 12.629 5253 10.319 12.5 

Table 17–17 

Durability Parameters for

Some V-Belt Sections

Source: M. E. Spotts, Design
of Machine Elements, 6th ed.
Prentice Hall, Englewood
Cliffs, N.J., 1985.

The factor of safety is

n f s = Ha Nb

HnomKs

(17–26)

Durability (life) correlations are complicated by the fact that the bending induces

flexural stresses in the belt; the corresponding belt tension that induces the same maxi-

mum tensile stress is Fb1 at the driving sheave and Fb2 at the driven pulley. These equiv-

alent tensions are added to F1 as

T1 = F1 + (Fb)1 = F1 + Kb

d

T2 = F1 + (Fb)2 = F1 + Kb

D

where Kb is given in Table 17–16. The equation for the tension versus pass trade-off

used by the Gates Rubber Company is of the form

T b NP = K b

where NP is the number of passes and b is approximately 11. See Table 17–17. The

Miner rule is used to sum damage incurred by the two tension peaks:

1

NP

=
(

K

T1

)−b

+
(

K

T2

)−b

or

NP =
[(

K

T1

)−b

+
(

K

T2

)−b ]−1

(17–27)

The lifetime t in hours is given by

t = NP L p

720V
(17–28)



Budynas−Nisbett: Shigley’s 

Mechanical Engineering 

Design, Eighth Edition

III. Design of Mechanical 

Elements

17. Flexible Mechanical 

Elements

882 © The McGraw−Hill 

Companies, 2008

Flexible Mechanical Elements 885

The constants K and b have their ranges of validity. If NP > 109, report that NP = 109

and t > NP L p/(720V ) without placing confidence in numerical values beyond the

validity interval. See the statement about NP and t near the conclusion of Ex. 17–4.

The analysis of a V-belt drive can consist of the following steps:

• Find V, L p , C, φ, and exp(0.5123φ)

• Find Hd , Ha , and Nb from Hd/Ha and round up

• Find Fc, �F , F1, F2, and Fi , and n f s

• Find belt life in number of passes, or hours, if possible

EXAMPLE 17–4 A 10-hp split-phase motor running at 1750 rev/min is used to drive a rotary pump,

which operates 24 hours per day. An engineer has specified a 7.4-in small sheave, an

11-in large sheave, and three B112 belts. The service factor of 1.2 was augmented by

0.1 because of the continuous-duty requirement. Analyze the drive and estimate the belt

life in passes and hours.

Solution The peripheral speed V of the belt is

V = π dn/12 = π(7.4)1750/12 = 3390 ft/min

Table 17–11: L p = L + Lc = 112 + 1.8 = 113.8 in

Eq. (17–16b): C = 0.25

{

[

113.8 − π

2
(11 + 7.4)

]

+

√

[

113.8 − π

2
(11 + 7.4)

]2

− 2(11 − 7.4)2

}

= 42.4 in

Eq. (17–1): φ = θd = π − 2 sin−1(11 − 7.4)/[2(42.4)] = 3.057 rad

exp[0.5123(3.057)] = 4.788

Interpolating in Table 17–12 for V = 3390 ft/min gives Htab = 4.693 hp. The wrap

angle in degrees is 3.057(180)/π = 175◦ . From Table 17–13, K1 = 0.99. From Table

17–14, K2 = 1.05. Thus, from Eq. (17–17),

Ha = K1 K2 Htab = 0.99(1.05)4.693 = 4.878 hp

Eq. (17–19): Hd = HnomKsnd = 10(1.2 + 0.1)(1) = 13 hp

Eq. (17–20): Nb ≥ Hd/Ha = 13/4.878 = 2.67 → 3

From Table 17–16, Kc = 0.965. Thus, from Eq. (17–21),

Fc = 0.965(3390/1000)2 = 11.1 lbf

Eq.(17–22): �F = 63 025(13)/3

1750(7.4/2)
= 42.2 lbf

Eq. (17–23): F1 = 11.1 + 42.2(4.788)

4.788 − 1
= 64.4 lbf
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Outside diameter

Root diameter

Belt pitch

Pitch circle

of pulley

Belt pitch lineFigure 17–15

Timing-belt drive showing
portions of the pulley and belt.
Note that the pitch diameter of
the pulley is greater than the
diametral distance across the
top lands of the teeth.

Eq. (17–24): F2 = F1 − �F = 64.4 − 42.2 = 22.2 lbf

Eq. (17–25): Fi = 64.4 + 22.2

2
− 11.1 = 32.2 lbf

Eq. (17–26): n f s = Ha Nb

HnomKs

= 4.878(3)

10(1.3)
= 1.13

Life: From Table 17–16, Kb = 576.

Fb1 = Kb

d
= 576

7.4
= 77.8 lbf

Fb2 = 576

11
= 52.4 lbf

T1 = F1 + Fb1 = 64.4 + 77.8 = 142.2 lbf

T2 = F1 + Fb2 = 64.4 + 52.4 = 116.8 lbf

From Table 17–17, K = 1193 and b = 10.926.

Eq. (17–27): NP =
[

(

1193

142.2

)−10.926

+
(

1193

116.8

)−10.926
]−1

= 11(109) passes

Answer Since NP is out of the validity range of Eq. (17–27), life is reported as greater than 109

passes. Then

Answer Eq. (17–28): t >
109(113.8)

720(3390)
= 46 600 h

17–4 Timing Belts
A timing belt is made of a rubberized fabric coated with a nylon fabric, and has steel wire

within to take the tension load. It has teeth that fit into grooves cut on the periphery of

the pulleys (Fig. 17–15). A timing belt does not stretch appreciably or slip and conse-

quently transmits power at a constant angular-velocity ratio. No initial tension is needed.
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Such belts can operate over a very wide range of speeds, have efficiencies in the range

of 97 to 99 percent, require no lubrication, and are quieter than chain drives. There is

no chordal-speed variation, as in chain drives (see Sec. 17–5), and so they are an attrac-

tive solution for precision-drive requirements.

The steel wire, the tension member of a timing belt, is located at the belt pitch

line (Fig. 17–15). Thus the pitch length is the same regardless of the thickness of the

backing.

The five standard inch-series pitches available are listed in Table 17–18 with their

letter designations. Standard pitch lengths are available in sizes from 6 to 180 in.

Pulleys come in sizes from 0.60 in pitch diameter up to 35.8 in and with groove num-

bers from 10 to 120.

The design and selection process for timing belts is so similar to that for V belts that

the process will not be presented here. As in the case of other belt drives, the manufac-

turers will provide an ample supply of information and details on sizes and strengths.

17–5 Roller Chain
Basic features of chain drives include a constant ratio, since no slippage or creep is

involved; long life; and the ability to drive a number of shafts from a single source of

power.

Roller chains have been standardized as to sizes by the ANSI. Figure 17–16 shows

the nomenclature. The pitch is the linear distance between the centers of the rollers. The

width is the space between the inner link plates. These chains are manufactured in sin-

gle, double, triple, and quadruple strands. The dimensions of standard sizes are listed in

Table 17–19.

Service Designation Pitch p, in

Extra light XL 1
5

Light L 3
8

Heavy H 1
2

Extra heavy XH 7
8

Double extra heavy XXH 11
4

Table 17–18

Standard Pitches

of Timing Belts

Roller diameter

Width

Pitch p

Strand

spacing

Figure 17–16

Portion of a double-strand
roller chain.
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Minimum Average Multiple-
ANSI Tensile Weight, Roller Strand
Chain Pitch, Width, Strength, lbf/ft Diameter, Spacing,

Number in (mm) in (mm) lbf (N) (N/m) in (mm) in (mm)

25 0.250 0.125 780 0.09 0.130 0.252
(6.35) (3.18) (3 470) (1.31) (3.30) (6.40)

35 0.375 0.188 1 760 0.21 0.200 0.399
(9.52) (4.76) (7 830) (3.06) (5.08) (10.13)

41 0.500 0.25 1 500 0.25 0.306 —
(12.70) (6.35) (6 670) (3.65) (7.77) —

40 0.500 0.312 3 130 0.42 0.312 0.566
(12.70) (7.94) (13 920) (6.13) (7.92) (14.38)

50 0.625 0.375 4 880 0.69 0.400 0.713
(15.88) (9.52) (21 700) (10.1) (10.16) (18.11)

60 0.750 0.500 7 030 1.00 0.469 0.897
(19.05) (12.7) (31 300) (14.6) (11.91) (22.78)

80 1.000 0.625 12 500 1.71 0.625 1.153
(25.40) (15.88) (55 600) (25.0) (15.87) (29.29)

100 1.250 0.750 19 500 2.58 0.750 1.409
(31.75) (19.05) (86 700) (37.7) (19.05) (35.76)

120 1.500 1.000 28 000 3.87 0.875 1.789
(38.10) (25.40) (124 500) (56.5) (22.22) (45.44)

140 1.750 1.000 38 000 4.95 1.000 1.924
(44.45) (25.40) (169 000) (72.2) (25.40) (48.87)

160 2.000 1.250 50 000 6.61 1.125 2.305
(50.80) (31.75) (222 000) (96.5) (28.57) (58.55)

180 2.250 1.406 63 000 9.06 1.406 2.592
(57.15) (35.71) (280 000) (132.2) (35.71) (65.84)

200 2.500 1.500 78 000 10.96 1.562 2.817
(63.50) (38.10) (347 000) (159.9) (39.67) (71.55)

240 3.00 1.875 112 000 16.4 1.875 3.458
(76.70) (47.63) (498 000) (239) (47.62) (87.83)

Table 17–19

Dimensions of American

Standard Roller

Chains—Single Strand 

Source: Compiled from ANSI
B29.1-1975.

Figure 17–17 shows a sprocket driving a chain and rotating in a counterclockwise

direction. Denoting the chain pitch by p, the pitch angle by γ , and the pitch diameter of

the sprocket by D, from the trigonometry of the figure we see

sin
γ

2
= p/2

D/2
or D = p

sin(γ /2)
(a)

Since γ = 360◦/N , where N is the number of sprocket teeth, Eq. (a) can be written

D = p

sin(180◦/N )
(17–29)

The angle γ/2, through which the link swings as it enters contact, is called the

angle of articulation. It can be seen that the magnitude of this angle is a function of

the number of teeth. Rotation of the link through this angle causes impact between the
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p
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Figure 17–17

Engagement of a chain and
sprocket.

rollers and the sprocket teeth and also wear in the chain joint. Since the life of a prop-

erly selected drive is a function of the wear and the surface fatigue strength of the

rollers, it is important to reduce the angle of articulation as much as possible.

The number of sprocket teeth also affects the velocity ratio during the rotation

through the pitch angle γ . At the position shown in Fig. 17–17, the chain AB is tangent

to the pitch circle of the sprocket. However, when the sprocket has turned an angle of

γ/2, the chain line AB moves closer to the center of rotation of the sprocket. This

means that the chain line AB is moving up and down, and that the lever arm varies with

rotation through the pitch angle, all resulting in an uneven chain exit velocity. You can

think of the sprocket as a polygon in which the exit velocity of the chain depends upon

whether the exit is from a corner, or from a flat of the polygon. Of course, the same

effect occurs when the chain first enters into engagement with the sprocket.

The chain velocity V is defined as the number of feet coming off the sprocket per

unit time. Thus the chain velocity in feet per minute is

V = N pn

12
(17–30)

where N = number of sprocket teeth

p = chain pitch, in

n = sprocket speed, rev/min

The maximum exit velocity of the chain is

vmax = π Dn

12
= πnp

12 sin(γ /2)
(b)

where Eq. (a) has been substituted for the pitch diameter D. The minimum exit veloci-

ty occurs at a diameter d, smaller than D. Using the geometry of Fig. 17–17, we find

d = D cos
γ

2
(c)

Thus the minimum exit velocity is

vmin = πdn

12
= πnp

12

cos(γ /2)

sin(γ /2)
(d )

Now substituting γ/2 = 180◦/N and employing Eqs. (17–30), (b), and (d ), we find  the
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speed variation to be

�V

V
= vmax − vmin

V
= π

N

[

1

sin(180◦/N )
− 1

tan(180◦/N )

]

(17–31)

This is called the chordal speed variation and is plotted in Fig. 17–18. When chain

drives are used to synchronize precision components or processes, due consideration

must be given to these variations. For example, if a chain drive synchronized the cut-

ting of photographic film with the forward drive of the film, the lengths of the cut sheets

of film might vary too much because of this chordal speed variation. Such variations

can also cause vibrations within the system.

Although a large number of teeth is considered desirable for the driving sprocket,

in the usual case it is advantageous to obtain as small a sprocket as possible, and this

requires one with a small number of teeth. For smooth operation at moderate and high

speeds it is considered good practice to use a driving sprocket with at least 17 teeth; 19

or 21 will, of course, give a better life expectancy with less chain noise. Where space

limitations are severe or for very slow speeds, smaller tooth numbers may be used by

sacrificing the life expectancy of the chain.

Driven sprockets are not made in standard sizes over 120 teeth, because the pitch

elongation will eventually cause the chain to “ride” high long before the chain is worn

out. The most successful drives have velocity ratios up to 6:1, but higher ratios may be

used at the sacrifice of chain life.

Roller chains seldom fail because they lack tensile strength; they more often fail

because they have been subjected to a great many hours of service. Actual failure may

be due either to wear of the rollers on the pins or to fatigue of the surfaces of the rollers.

Roller-chain manufacturers have compiled tables that give the horsepower capacity cor-

responding to a life expectancy of 15 kh for various sprocket speeds. These capacities

are tabulated in Table 17–20 for 17–tooth sprockets. Table 17–21 displays available

tooth counts on sprockets of one supplier. Table 17–22 lists the tooth correction factors

for other than 17 teeth. Table 17–23 shows the multiple-strand factors K2.

The capacities of chains are based on the following:

• 15 000 h at full load

• Single strand

• ANSI proportions

• Service factor of unity

• 100 pitches in length

• Recommended lubrication

• Elongation maximum of 3 percent

Figure 17–18
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Sprocket
Speed, ANSI Chain Number

rev/min 25 35 40 41 50 60

50 0.05 0.16 0.37 0.20 0.72 1.24

100 0.09 0.29 0.69 0.38 1.34 2.31

150 0.13* 0.41* 0.99* 0.55* 1.92* 3.32

200 0.16* 0.54* 1.29 0.71 2.50 4.30

300 0.23 0.78 1.85 1.02 3.61 6.20

400 0.30* 1.01* 2.40 1.32 4.67 8.03

500 0.37 1.24 2.93 1.61 5.71 9.81

600 0.44* 1.46* 3.45* 1.90* 6.72* 11.6

700 0.50 1.68 3.97 2.18 7.73 13.3

800 0.56* 1.89* 4.48* 2.46* 8.71* 15.0

900 0.62 2.10 4.98 2.74 9.69 16.7

1000 0.68* 2.31* 5.48 3.01 10.7 18.3

1200 0.81 2.73 6.45 3.29 12.6 21.6

1400 0.93* 3.13* 7.41 2.61 14.4 18.1

1600 1.05* 3.53* 8.36 2.14 12.8 14.8

1800 1.16 3.93 8.96 1.79 10.7 12.4

2000 1.27* 4.32* 7.72* 1.52* 9.23* 10.6

2500 1.56 5.28 5.51* 1.10* 6.58* 7.57

3000 1.84 5.64 4.17 0.83 4.98 5.76

Type A Type B Type C

*Estimated from ANSI tables by linear interpolation.

Note: Type A—manual or drip lubrication; type B—bath or disk lubrication; type C—oil-stream lubrication.

Table 17–20

Rated Horsepower

Capacity of Single-

Strand Single-Pitch Roller

Chain for a

17-Tooth Sprocket 

Source: Compiled from ANSI
B29.1-1975 information
only section, and from
B29.9-1958.

• Horizontal shafts

• Two 17-tooth sprockets

The fatigue strength of link plates governs capacity at lower speeds. The American

Chain Association (ACA) publication Chains for Power Transmission and Materials

Handling (1982) gives, for single-strand chain, the nominal power H1, link-plate

limited, as

H1 = 0.004N 1.08
1 n0.9

1 p(3−0.07p) hp (17–32)

and the nominal power H2, roller-limited, as

H2 = 1000Kr N 1.5
1 p0.8

n1.5
1

hp (17–33)

where N1 = number of teeth in the smaller sprocket

n1 = sprocket speed, rev/min

p = pitch of the chain, in

Kr = 29 for chain numbers 25, 35; 3.4 for chain 41; and 17 for chains 40–240

(Continued)
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Sprocket
Speed, ANSI Chain Number

rev/min 80 100 120 140 160 180 200 240

50 Type A 2.88 5.52 9.33 14.4 20.9 28.9 38.4 61.8

100 5.38 10.3 17.4 26.9 39.1 54.0 71.6 115

150 7.75 14.8 25.1 38.8 56.3 77.7 103 166

200 10.0 19.2 32.5 50.3 72.9 101 134 215

300 14.5 27.7 46.8 72.4 105 145 193 310

400 18.7 35.9 60.6 93.8 136 188 249 359

500 22.9 43.9 74.1 115 166 204 222 0

600 27.0 51.7 87.3 127 141 155 169

700 31.0 59.4 89.0 101 112 123 0

800 35.0 63.0 72.8 82.4 91.7 101

900 39.9 52.8 61.0 69.1 76.8 84.4

1000 37.7 45.0 52.1 59.0 65.6 72.1

1200 28.7 34.3 39.6 44.9 49.9 0

1400 22.7 27.2 31.5 35.6 0

1600 18.6 22.3 25.8 0

1800 15.6 18.7 21.6

2000 13.3 15.9 0

2500 9.56 0.40

3000 7.25 0

Type C Type C


Note: Type A—manual or drip lubrication; type B—bath or disk lubrication; type C—oil-stream lubrication; type C�—type C, but this
is a galling region; submit design to manufacturer for evaluation.

Table 17–20

Rated Horsepower

Capacity of Single-

Strand Single-Pitch Roller

Chain for a

17-Tooth Sprocket

(Continued )

Ty
p
e 

B

No. Available Sprocket Tooth Counts

25 8-30, 32, 34, 35, 36, 40, 42, 45, 48, 54, 60, 64, 65, 70, 72, 76, 80, 84, 90, 95, 96, 102, 112, 120

35 4-45, 48, 52, 54, 60, 64, 65, 68, 70, 72, 76, 80, 84, 90, 95, 96, 102, 112, 120

41 6-60, 64, 65, 68, 70, 72, 76, 80, 84, 90, 95, 96, 102, 112, 120

40 8-60, 64, 65, 68, 70, 72, 76, 80, 84, 90, 95, 96, 102, 112, 120

50 8-60, 64, 65, 68, 70, 72, 76, 80, 84, 90, 95, 96, 102, 112, 120

60 8-60, 62, 63, 64, 65, 66, 67, 68, 70, 72, 76, 80, 84, 90, 95, 96, 102, 112, 120

80 8-60, 64, 65, 68, 70, 72, 76, 78, 80, 84, 90, 95, 96, 102, 112, 120

100 8-60, 64, 65, 67, 68, 70, 72, 74, 76, 80, 84, 90, 95, 96, 102, 112, 120

120 9-45, 46, 48, 50, 52, 54, 55, 57, 60, 64, 65, 67, 68, 70, 72, 76, 80, 84, 90, 96, 102, 112, 120

140 9-28, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 42, 43, 45, 48, 54, 60, 64, 65, 68, 70, 72, 76, 80, 84, 96

160 8-30, 32–36, 38, 40, 45, 46, 50, 52, 53, 54, 56, 57, 60, 62, 63, 64, 65, 66, 68, 70, 72, 73, 80, 84, 96

180 13-25, 28, 35, 39, 40, 45, 54, 60

200 9-30, 32, 33, 35, 36, 39, 40, 42, 44, 45, 48, 50, 51, 54, 56, 58, 59, 60, 63, 64, 65, 68, 70, 72

240 9-30, 32, 35, 36, 40, 44, 45, 48, 52, 54, 60

*Morse Chain Company, Ithaca, NY, Type B hub sprockets.

Table 17–21

Single-Strand Sprocket Tooth Counts Available from One Supplier*

892
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Number of K1 K1

Teeth on Pre-extreme Post-extreme
Driving Sprocket Horsepower Horsepower

11 0.62 0.52

12 0.69 0.59

13 0.75 0.67

14 0.81 0.75

15 0.87 0.83

16 0.94 0.91

17 1.00 1.00

18 1.06 1.09

19 1.13 1.18

20 1.19 1.28

N (N1/17)1.08 (N1/17)1.5

Table 17–22

Tooth Correction

Factors, K1

The constant 0.004 becomes 0.0022 for no. 41 lightweight chain. The nominal horse-

power in Table 17–20 is Hnom = min(H1, H2). For example, for N1 = 17, n1 = 1000

rev/min, no. 40 chain with p = 0.5 in, from Eq. (17–32),

H1 = 0.004(17)1.0810000.90.5[3−0.07(0.5)] = 5.48 hp

From Eq. (17–33),

H2 = 1000(17)171.5(0.50.8)

10001.5
= 21.64 hp

The tabulated value in Table 17–20 is Htab = min(5.48, 21.64) = 5.48 hp.

It is preferable to have an odd number of teeth on the driving sprocket (17, 19, . . .)

and an even number of pitches in the chain to avoid a special link. The approximate

length of the chain L in pitches is

L

p

.= 2C

p
+ N1 + N2

2
+ (N2 − N1)

2

4π2C/p
(17–34)

The center-to-center distance C is given by

C = p

4



−A +

√

A2 − 8

(

N2 − N1

2π

)2



 (17–35)

Number of Strands K2

1 1.0

2 1.7

3 2.5

4 3.3

5 3.9

6 4.6

8 6.0

Table 17–23

Multiple-Strand

Factors K2
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where

A = N1 + N2

2
− L

p
(17–36)

The allowable power Ha is given by

Ha = K1 K2 Htab (17–37)

where K1 = correction factor for tooth number other than 17 (Table 17–22)

K2 = strand correction (Table 17–23)

The horsepower that must be transmitted Hd is given by

Hd = HnomKsnd (17–38)

Equation (17–32) is the basis of the pre-extreme power entries (vertical entries) of

Table 17–20, and the chain power is limited by link-plate fatigue. Equation (17–33) is

the basis for the post-extreme power entries of these tables, and the chain power per-

formance is limited by impact fatigue. The entries are for chains of 100 pitch length and

17-tooth sprocket. For a deviation from this

H2 = 1000

[

Kr

(

N1

n1

)1.5

p0.8

(

L p

100

)0.4 (
15 000

h

)0.4
]

(17–39)

where L p is the chain length in pitches and h is the chain life in hours. Viewed from a devi-

ation viewpoint, Eq. (17–39) can be written as a trade-off equation in the following form:

H 2.5
2 h

N 3.75
1 L p

= constant (17–40)

If tooth-correction factor K1 is used, then omit the term N 3.75
1 . Note that (N 1.5

1 )2.5 =
N 3.75

1 .

In Eq. (17–40) one would expect the h/L p term because doubling the hours can

require doubling the chain length, other conditions constant, for the same number of

cycles. Our experience with contact stresses leads us to expect a load (tension) life rela-

tion of the form Fa L = constant. In the more complex circumstance of roller-bushing

impact, the Diamond Chain Company has identified a = 2.5.

The maximum speed (rev/min) for a chain drive is limited by galling between the

pin and the bushing. Tests suggest

n1 ≤ 1000

[

82.5

7.95p(1.0278)N1(1.323)F/1000

]1/(1.59 log p+1.873)

rev/min

where F is the chain tension in pounds.

EXAMPLE 17–5 Select drive components for a 2:1 reduction, 90-hp input at 300 rev/min, moderate

shock, an abnormally long 18-hour day, poor lubrication, cold temperatures, dirty

surroundings, short drive C/p = 25.

Solution Function: Hnom = 90 hp, n1 = 300 rev/min, C/p = 25, Ks = 1.3

Design factor: nd = 1.5
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Sprocket teeth: N1 = 17 teeth, N2 = 34 teeth, K1 = 1, K2 = 1, 1.7, 2.5, 3.3

Chain number of strands:

Htab = nd Ks Hnom

K1 K2

= 1.5(1.3)90

(1)K2

= 176

K2

Form a table:

Number of 176/K2 Chain Number Lubrication
Strands (Table 17–23) (Table 17–19) Type

1 176/1 = 176 200 C′

2 176/1.7 = 104 160 C

3 176/2.5 = 70.4 140 B

4 176/3.3 = 53.3 140 B

Decision 3 strands of number 140 chain (Htab is 72.4 hp).

Number of pitches in the chain:

L

p
= 2C

p
+ N1 + N2

2
+ (N2 − N1)

2

4π2C/p

= 2(25) + 17 + 34

2
+ (34 − 17)2

4π2(25)
= 75.79 pitches

Decision Use 76 pitches. Then L/p = 76.

Identify the center-to-center distance: From Eqs. (17–35) and (17–36),

A = N1 + N2

2
− L

p
= 17 + 34

2
− 76 = −50.5

C = p

4



−A +

√

A2 − 8

(

N2 − N1

2π

)2





= p

4



50.5 +

√

50.52 − 8

(

34 − 17

2π

)2



 = 25.104p

For a 140 chain, p = 1.75 in. Thus,

C = 25.104p = 25.104(1.75) = 43.93 in

Lubrication: Type B

Comment: This is operating on the pre-extreme portion of the power, so durability esti-

mates other than 15 000 h are not available. Given the poor operating conditions, life

will be much shorter.

Lubrication of roller chains is essential in order to obtain a long and trouble-free

life. Either a drip feed or a shallow bath in the lubricant is satisfactory. A medium or

light mineral oil, without additives, should be used. Except for unusual conditions,

heavy oils and greases are not recommended, because they are too viscous to enter the

small clearances in the chain parts.
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Figure 17–19

Types of wire rope; both lays
are available in either right or
left hand. (a) Regular lay

(b) Lang lay

(c) Section of

      6 × 7 rope

17–6 Wire Rope
Wire rope is made with two types of winding, as shown in Fig. 17–19. The regular lay,

which is the accepted standard, has the wire twisted in one direction to form the strands,

and the strands twisted in the opposite direction to form the rope. In the completed rope

the visible wires are approximately parallel to the axis of the rope. Regular-lay ropes do

not kink or untwist and are easy to handle.

Lang-lay ropes have the wires in the strand and the strands in the rope twisted in

the same direction, and hence the outer wires run diagonally across the axis of the rope.

Lang-lay ropes are more resistant to abrasive wear and failure due to fatigue than are

regular-lay ropes, but they are more likely to kink and untwist.

Standard ropes are made with a hemp core, which supports and lubricates the

strands. When the rope is subjected to heat, either a steel center or a wire-strand center

must be used.

Wire rope is designated as, for example, a 1 1
8
-in 6 × 7 haulage rope. The first figure

is the diameter of the rope (Fig. 17–19c). The second and third figures are the number

of strands and the number of wires in each strand, respectively. Table 17–24 lists some

of the various ropes that are available, together with their characteristics and properties.

The area of the metal in standard hoisting and haulage rope is Am = 0.38d2 .

When a wire rope passes around a sheave, there is a certain amount of readjustment

of the elements. Each of the wires and strands must slide on several others, and pre-

sumably some individual bending takes place. It is probable that in this complex action

there exists some stress concentration. The stress in one of the wires of a rope passing

around a sheave may be calculated as follows. From solid mechanics, we have

M = E I

ρ
and M = σ I

c
(a)

where the quantities have their usual meaning. Eliminating M and solving for the stress

gives

σ = Ec

ρ
(b)

For the radius of curvature ρ, we can substitute the sheave radius D/2. Also, c = dw/2,

where dw is the wire diameter. These substitutions give

σ = Er

dw

D
(c)

where Er is the modulus of elasticity of the rope, not the wire.  To understand this equa-

tion, observe that the individual wire makes a corkscrew figure in space and if you pull

on it to determine E it will stretch or give more than its native E would suggest. Therefore
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Minimum Modulus
Weight Sheave Standard Size of of

per Foot, Diameter, Sizes Outer Elasticity,* Strength,†

Rope lbf in d, in Material Wires Mpsi kpsi

6 × 7 haulage 1.50d 2 42d 1
4
−11

2
Monitor steel d/9 14 100
Plow steel d/9 14 88
Mild plow steel d/9 14 76

6 × 19 standard 1.60d 2 26d–34d 1
4
−23

4
Monitor steel d/13–d/16 12 106

hoisting Plow steel d/13–d/16 12 93
Mild plow steel d/13–d/16 12 80

6 × 37 special 1.55d 2 18d 1
4
−31

2
Monitor steel d/22 11 100

flexible Plow steel d/22 11 88

8 × 19 extra 1.45d 2 21d–26d 1
4
−11

2
Monitor steel d/15–d/19 10 92

flexible Plow steel d/15–d/19 10 80

7 × 7 aircraft 1.70d 2 — 1
16

−3
8

Corrosion-resistant — — 124
steel
Carbon steel — — 124

7 × 9 aircraft 1.75d 2 — 1
8
−13

8
Corrosion-resistant — — 135
steel
Carbon steel — — 143

19-wire aircraft 2.15d 2 — 1
32

− 5
16

Corrosion-resistant — — 165
steel
Carbon steel — — 165

*The modulus of elasticity is only approximate; it is affected by the loads on the rope and, in general, increases with the life of the rope.
†The strength is based on the nominal area of the rope. The figures given are only approximate and are based on 1- in rope sizes and 1

4 - in aircraft-cable sizes.

Table 17–24

Wire-Rope Data Source: Compiled from American Steel and Wire Company Handbook.

E is still the modulus of elasticity of the wire, but in its peculiar configuration as part of

the rope, its modulus is smaller. For this reason we say that Er in Eq. (c) is the modulus

of elasticity of the rope, not the wire, recognizing that one can quibble over the name

used.

Equation (c) gives the tensile stress σ in the outer wires. The sheave diameter is

represented by D. This equation reveals the importance of using a large-diameter

sheave. The suggested minimum sheave diameters in Table 17–24 are based on a D/dw

ratio of 400. If possible, the sheaves should be designed for a larger ratio. For elevators

and mine hoists, D/dw is usually taken from 800 to 1000. If the ratio is less than 200,

heavy loads will often cause a permanent set in the rope.

A wire rope tension giving the same tensile stress as the sheave bending is called

the equivalent bending load Fb, given by

Fb = σ Am = Er dw Am

D
(17–41)

A wire rope may fail because the static load exceeds the ultimate strength of the

rope. Failure of this nature is generally not the fault of the designer, but rather that of the

operator in permitting the rope to be subjected to loads for which it was not designed.
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Figure 17–20

Percent strength loss due to
different D/d ratios; derived
from standard test data for
6 × 19 and 6 × 17 class
ropes. (Materials provided by
the Wire Rope Technical
Board (WRTB), Wire Rope
Users Manual Third Edition,
Second printing. Reprinted by
permission.)
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The first consideration in selecting a wire rope is to determine the static load. This

load is composed of the following items:

• The known or dead weight

• Additional loads caused by sudden stops or starts

• Shock loads

• Sheave-bearing friction

When these loads are summed, the total can be compared with the ultimate strength of

the rope to find a factor of safety. However, the ultimate strength used in this determi-

nation must be reduced by the strength loss that occurs when the rope passes over a

curved surface such as a stationary sheave or a pin; see Fig. 17–20.

For an average operation, use a factor of safety of 5. Factors of safety up to 8 or 9

are used if there is danger to human life and for very critical situations. Table 17–25

Table 17–25

Minimum Factors of

Safety for Wire Rope*

Source: Compiled from a
variety of sources, including
ANSI A17.1-1978.

Track cables 3.2

Guys 3.5

Mine shafts, ft:
Up to 500 8.0
1000–2000 7.0
2000–3000 6.0
Over 3000 5.0

Hoisting 5.0

Haulage 6.0

Cranes and derricks 6.0

Electric hoists 7.0

Hand elevators 5.0

Private elevators 7.5

Hand dumbwaiter 4.5

Grain elevators 7.5

*Use of these factors does not preclude a fatigue failure.

Passenger elevators, ft/min:
50 7.60

300 9.20
800 11.25

1200 11.80
1500 11.90

Freight elevators, ft/min:
50 6.65

300 8.20
800 10.00

1200 10.50
1500 10.55

Powered dumbwaiters, ft/min:
50 4.8

300 6.6
500 8.0
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Sheave Material

Cast Cast Chilled Manganese
Rope Wooda Ironb Steelc Cast Ironsd Steele

Regular lay:
6 × 7 150 300 550 650 1470
6 × 19 250 480 900 1100 2400
6 × 37 300 585 1075 1325 3000
8 × 19 350 680 1260 1550 3500

Lang lay:
6 × 7 165 350 600 715 1650
6 × 19 275 550 1000 1210 2750
6 × 37 330 660 1180 1450 3300

aOn end grain of beech, hickory, or gum.
bFor HB (min.) = 125.
c30–40 carbon; HB (min.) = 160.
dUse only with uniform surface hardness.
eFor high speeds with balanced sheaves having ground surfaces.

Table 17–26

Maximum Allowable

Bearing Pressures of

Ropes on Sheaves

(in psi)

Source: Wire Rope Users
Manual, AISI, 1979.

lists minimum factors of safety for a variety of design situations. Here, the factor of

safety is defined as

n = Fu

Ft

where Fu is the ultimate wire load and Ft is the largest working tension.

Once you have made a tentative selection of a rope based upon static strength, the

next consideration is to ensure that the wear life of the rope and the sheave or sheaves

meets certain requirements. When a loaded rope is bent over a sheave, the rope stretches

like a spring, rubs against the sheave, and causes wear of both the rope and the sheave.

The amount of wear that occurs depends upon the pressure of the rope in the sheave

groove. This pressure is called the bearing pressure; a good estimate of its magnitude

is given by

p = 2F

d D
(17–42)

where F = tensile force on rope

d = rope diameter

D = sheave diameter

The allowable pressures given in Table 17–26 are to be used only as a rough guide; they

may not prevent a fatigue failure or severe wear. They are presented here because they

represent past practice and furnish a starting point in design.

A fatigue diagram not unlike an S-N diagram can be obtained for wire rope. Such

a diagram is shown in Fig. 17–21. Here the ordinate is the pressure-strength ratio p/Su ,

and Su is the ultimate tensile strength of the wire. The abscissa is the number of bends

that occur in the total life of the rope. The curve implies that a wire rope has a fatigue

limit; but this is not true at all. A wire rope that is used over sheaves will eventually fail
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Figure 17–21

Experimentally determined
relation between the fatigue
life of wire rope and the
sheave pressure.
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in fatigue or in wear. However, the graph does show that the rope will have a long life

if the ratio p/Su is less than 0.001. Substitution of this ratio in Eq. (17–42) gives

Su = 2000F

d D
(17–43)

where Su is the ultimate strength of the wire, not the rope, and the units of Su are related

to the units of F. This interesting equation contains the wire strength, the load, the rope

diameter, and the sheave diameter—all four variables in a single equation! Dividing both

sides of Eq. (17–42) by the ultimate strength of the wires Su and solving for F gives

Ff = (p/Su)Sud D

2
(17–44)

where Ff is interpreted as the allowable fatigue tension as the wire is flexed a number

of times corresponding to p/Su selected from Fig. 17–21 for a particular rope and life

expectancy. The factor of safety can be defined in fatigue as

n f = Ff − Fb

Ft

(17–45)

where Ff is the rope tension strength under flexing and Ft is the tension at the place where

the rope is flexing. Unfortunately, the designer often has vendor information that tabulates

ultimate rope tension and gives no ultimate-strength Su information concerning the wires

from which the rope is made. Some guidance in strength of individual wires is

Improved plow steel (monitor) 240 < Su < 280 kpsi

Plow steel 210 < Su < 240 kpsi

Mild plow steel 180 < Su < 210 kpsi

In wire-rope usage, the factor of safety has been defined in static loading as n =
Fu/Ft or n = (Fu − Fb)/Ft , where Fb is the rope tension that would induce the same

outer-wire stress as that given by Eq. (c). The factor of safety in fatigue loading can be

defined as in Eq. (17–45), or by using a static analysis and compensating with a large fac-

tor of safety applicable to static loading, as in Table 17–25. When using factors of safety

expressed in codes, standards, corporate design manuals, or wire-rope manufacturers’
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recommendations or from the literature, be sure to ascertain upon which basis the fac-

tor of safety is to be evaluated, and proceed accordingly.

If the rope is made of plow steel, the wires are probably hard-drawn AISI 1070 or

1080 carbon steel. Referring to Table 10–3, we see that this lies somewhere between

hard-drawn spring wire and music wire. But the constants m and A needed to solve

Eq. (10–14), p. 505, for Su are lacking.

Practicing engineers who desire to solve Eq. (17–43) should determine the wire

strength Su for the rope under consideration by unraveling enough wire to test for the

Brinell hardness. Then Su can be found using Eq. (2–17), p. 37. Fatigue failure in wire rope

is not sudden, as in solid bodies, but progressive, and shows as the breaking of an outside

wire. This means that the beginning of fatigue can be detected by periodic routine

inspection.

Figure 17–22 is another graph showing the gain in life to be obtained by using large

D/d ratios. In view of the fact that the life of wire rope used over sheaves is only finite,

it is extremely important that the designer specify and insist that periodic inspection,

lubrication, and maintenance procedures be carried out during the life of the rope.

Table 17–27 gives useful properties of some wire ropes.

For a mine-hoist problem we can develop working equations from the preceding

presentation. The wire rope tension Ft due to load and acceleration/deceleration is

Ft =
(

W

m
+ wl

)(

1 + a

g

)

(17–46)

Figure 17–22

Service-life curve based on
bending and tensile stresses
only. This curve shows that
the life corresponding to
D/d = 48 is twice that of
D/d = 33. (Materials
provided by the Wire Rope
Technical Board (WRTB), Wire
Rope Users Manual Third
Edition, Second printing.
Reprinted by permission.)
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Weight Minimum Better Rope
Weight per Foot Sheave Sheave Diameter Area of Young’s

Wire per Foot Including Core Diameter Diameter of Wires Metal Modulus
Rope w, lbf/ft w, lbf/ft D, in D, in dw, in Am, in2 Er, psi

6 × 7 1.50d 2 42d 72d 0.111d 0.38d 2 13 × 106

6 × 19 1.60d 2 1.76d 2 30d 45d 0.067d 0.40d 2 12 × 106

6 × 37 1.55d 2 1.71d 2 18d 27d 0.048d 0.40d 2 12 × 106

Table 17–27

Some Useful Properties of 6 × 7, 6 × 19, and 6 × 37 Wire Ropes
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where W = weight at the end of the rope (cage and load), lbf

m = number of wire ropes supporting the load

w = weight/foot of the wire rope, lbf/ft

l = suspended length of rope, ft

a = maximum acceleration/deceleration experienced, ft/s2

g = acceleration of gravity, ft/s2

The fatigue tensile strength in pounds for a specified life Ff is

Ff = (p/Su)Su Dd

2
(17–47)

where (p/Su) = specified life, from Fig. 17–21

Su = ultimate tensile strength of the wires, psi

D = sheave or winch drum diameter, in

d = nominal wire rope size, in

The equivalent bending load Fb is

Fb = Er dw Am

D
(17–48)

where Er = Young’s modulus for the wire rope, Table 17–24 or 17–27, psi

dw = diameter of the wires, in

Am = metal cross-sectional area, Table 17–24 or 17–28, in2

D = sheave or winch drum diameter, in

The static factor of safety ns is

ns = Fu − Fb

Ft

(17–49)

Be careful when comparing recommended static factors of safety to Eq. (17–49), as ns

is sometimes defined as Fu/Ft . The fatigue factor of safety nf is

n f = Ff − Fb

Ft

(17–50)

EXAMPLE 17–6 Given a 6 × 19 monitor steel (Su = 240 kpsi) wire rope.

(a) Develop the expressions for rope tension Ft , fatigue tension Ff , equivalent bending

tensions Fb, and fatigue factor of safety nf for a 531.5-ft, 1-ton cage-and-load mine hoist

with a starting acceleration of 2 ft/s2 as depicted in Fig. 17–23. The sheave diameter is

72 in.

(b) Using the expressions developed in part (a), examine the variation in factor of safety

n f for various wire rope diameters d and number of supporting ropes m.

Solution (a) Rope tension Ft from Eq. (17–46) is given by

Answer Ft =
(

W

m
+ wl

)(

1 + a

g

)

=
[

2000

m
+ 1.60d2(531.5)

](

1 + 2

32.2

)

= 2124

m
+ 903d2 lbf
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Figure 17–23

Geometry of the mine hoist of
Ex. 17–6.

Ft

72 in

531.5 ft W = 531.5(1.6)d2 lbf

a = 2 ft/s2

W = 2000 lbf

From Fig. 17–21, use p/Su = 0.0014. Fatigue tension Ff from Eq. (17–47) is given by

Answer Ff = (p/Su)Su Dd

2
= 0.0014(240 000)72d

2
= 12 096d lbf

Equivalent bending tension Fb from Eq. (17–48) and Table 17–27 is given by

Answer Fb = Er dw Am

D
= 12(106)0.067d(0.40d2)

72
= 4467d3 lbf

Factor of safety nf in fatigue from Eq. (17–50) is given by

Answer n f = Ff − Fb

Ft

= 12 096d − 4467d3

2124/m + 903d2

(b) Form a table as follows:

nf

d m � 1 m � 2 m � 3 m � 4

0.25 1.355 2.641 3.865 5.029

0.375 1.910 3.617 5.150 6.536

0.500 2.336 4.263 5.879 7.254

0.625 2.612 4.573 6.099 7.331

0.750 2.731 4.578 5.911 6.918

0.875 2.696 4.330 5.425 6.210

1.000 2.520 3.882 4.736 5.320
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Wire rope sizes are discrete, as is the number of supporting ropes. Note that for each m

the factor of safety exhibits a maximum. Predictably the largest factor of safety increases

with m. If the required factor of safety were to be 6, only three or four ropes could meet

the requirement. The sizes are different: 5
8
-in ropes with three ropes or 3

8
-in ropes with

four ropes. The costs include not only the wires, but the grooved winch drums.

17–7 Flexible Shafts
One of the greatest limitations of the solid shaft is that it cannot transmit motion or power

around corners. It is therefore necessary to resort to belts, chains, or gears, together with

bearings and the supporting framework associated with them. The flexible shaft may

often be an economical solution to the problem of transmitting motion around corners. In

addition to the elimination of costly parts, its use may reduce noise considerably.

There are two main types of flexible shafts: the power-drive shaft for the transmis-

sion of power in a single direction, and the remote-control or manual-control shaft for the

transmission of motion in either direction.

The construction of a flexible shaft is shown in Fig. 17–24. The cable is made by

winding several layers of wire around a central core. For the power-drive shaft, rotation

should be in a direction such that the outer layer is wound up. Remote-control cables

Figure 17–24

Flexible shaft: (a) construction
details; (b) a variety of
configurations. (Courtesy of S.
S. White Technologies, Inc.) Mandrel

(a)

(b)

First Layer

(4 Wires)

Last Layer

(7 Wires)
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have a different lay of the wires forming the cable, with more wires in each layer, so

that the torsional deflection is approximately the same for either direction of rotation.

Flexible shafts are rated by specifying the torque corresponding to various radii of

curvature of the casing. A 15-in radius of curvature, for example, will give from 2 to 5

times more torque capacity than a 7-in radius. When flexible shafts are used in a drive

in which gears are also used, the gears should be placed so that the flexible shaft runs

at as high a speed as possible. This permits the transmission of the maximum amount

of horsepower.

PROBLEMS

17–1 A 6-in-wide polyamide F-1 flat belt is used to connect a 2-in-diameter pulley to drive a larger

pulley with an angular velocity ratio of 0.5. The center-to-center distance is 9 ft. The angular

speed of the small pulley is 1750 rev/min as it delivers 2 hp. The service is such that a service

factor Ks of 1.25 is appropriate.

(a) Find Fc , Fi , F1a , and F2 .

(b) Find Ha , n f s , and belt length.

(c) Find the dip.

17–2 Perspective and insight can be gained by doubling all geometric dimensions and observing the

effect on problem parameters. Take the drive of Prob. 17–1, double the dimensions, and compare.

17–3 A flat-belt drive is to consist of two 4-ft-diameter cast-iron pulleys spaced 16 ft apart. Select a

belt type to transmit 60 hp at a pulley speed of 380 rev/min. Use a service factor of 1.1 and a

design factor of 1.0.

17–4 In solving problems and examining examples, you probably have noticed some recurring forms:

w = 12γ bt = (12γ t)b = a1b,

(F1)a = Fa bCpCv = (Fa CpCv)b = a0b

Fc = wV 2

g
= a1b

32.174

(

V

60

)2

= a2b

(F1)a − F2 = 2T/d = 33 000Hd /V = 33 000Hnom Ks nd /V

F2 = (F1)a − [(F1)a − F2] = a0b − 2T/d

f φ = ln
(F1)a − Fc

F2 − Fc

= ln
(a0 − a2)b

(a0 − a2)b − 2T/d

Show that

b = 1

a0 − a2

33 000Hd

V

exp( f φ)

exp( f φ) − 1

17–5 Return to Ex. 17–1 and complete the following.

(a) Find the torque capacity that would put the drive as built at the point of slip, as well as the

initial tension Fi .

(b) Find the belt width b that exhibits n f s = nd = 1.1.

(c) For part b find the corresponding F1a , Fc , Fi , F2 , power, and n f s .

(d ) What have you learned?

17–6 Take the drive of Prob. 17–5 and double the belt width. Compare Fc , Fi , F1a , F2 , Ha , n f s , and dip.
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Speed, Power, Lineshaft Diameter,
Machine rev/min hp Pulley in

Machine tool 400 12.5 B 16

Grinder 300 4.5 C 14

Dust extractor 500 8.0 D 18

70°

60°

10 ft

F
ro

m
B

F
rom

C

Motor pulley:

Dia. = 12 in

Speed = 900 rev�min

From D
A

8 ft

A
B C D

Problem 17–9

(Courtesy of Dr. Ahmed F. Abdel
Azim, Zagazig University,

Cairo.)

17–7 Belted pulleys place loads on shafts, inducing bending and loading bearings. Examine Fig. 17–7

and develop an expression for the load the belt places on the pulley, and then apply it to Ex. 17–2.

17–8 Example 17–2 resulted in selection of a 10-in-wide A-3 polyamide flat belt. Show that the value

of F1 restoring f to 0.80 is

F1 = (�F + Fc) exp f φ − Fc

exp f φ − 1

and compare the initial tensions.

17–9 The line shaft illustrated in the figure is used to transmit power from an electric motor by means of

flat-belt drives to various machines. Pulley A is driven by a vertical belt from the motor pulley. A belt

from pulley B drives a machine tool at an angle of 70◦ from the vertical and at a center-to-center

distance of 9 ft. Another belt from pulley C drives a grinder at a center-to-center distance of 11 ft.

Pulley C has a double width to permit belt shifting as shown in Fig. 17–4. The belt from pulley D

drives a dust-extractor fan whose axis is located horizontally 8 ft from the axis of the lineshaft.

Additional data are

The power requirements, listed above, account for the overall efficiencies of the equipment. The

two line-shaft bearings are mounted on hangers suspended from two overhead wide-flange

beams. Select the belt types and sizes for each of the four drives. Make provision for replacing

belts from time to time because of wear or permanent stretch.

17–10 Two shafts 20 ft apart, with axes in the same horizontal plane, are to be connected with a flat belt

in which the driving pulley, powered by a six-pole squirrel-cage induction motor with a 100 brake

hp rating at 1140 rev/min, drives the second shaft at half its angular speed. The driven shaft drives

light-shock machinery loads. Select a flat belt.
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17–11 The mechanical efficiency of a flat-belt drive is approximately 98 percent. Because of its high

value, the efficiency is often neglected. If a designer should choose to include it, where would he

or she insert it in the flat-belt protocol?

17–12 In metal belts, the centrifugal tension Fc is ignored as negligible. Convince yourself that this is a

reasonable problem simplification.

17–13 A designer has to select a metal-belt drive to transmit a power of Hnom under circumstances

where a service factor of Ks and a design factor of nd are appropriate. The design goal becomes

Hd = Hnom Ks nd . Use Eq. (17–8) to show that the minimum belt width is given by

bmin = 1

a

(

33 000Hd

V

)

exp f θ

exp f θ − 1

where a is the constant from F1a = ab.

17–14 Design a friction metal flat-belt drive to connect a 1-hp, four-pole squirrel-cage motor turning at

1750 rev/min to a shaft 15 in away, running at half speed. The circumstances are such that a

service factor of 1.2 and a design factor of 1.05 are appropriate. The life goal is 106 belt passes,

f = 0.35, and the environmental considerations require a stainless steel belt.

17–15 A beryllium-copper metal flat belt with S f = 56.67 kpsi is to transmit 5 hp at 1125 rev/min with

a life goal of 106 belt passes between two shafts 20 in apart whose centerlines are in a horizontal

plane. The coefficient of friction between belt and pulley is 0.32. The conditions are such that a

service factor of 1.25 and a design factor of 1.1 are appropriate. The driven shaft rotates at one-

third the motor-pulley speed. Specify your belt, pulley sizes, and initial tension at installation.

17–16 For the conditions of Prob. 17–15 use a 1095 plain carbon-steel heat-treated belt. Conditions at

the driving pulley hub require a pulley outside diameter of 3 in or more. Specify your belt, pulley

sizes, and initial tension at installation.

17–17 A single V belt is to be selected to deliver engine power to the wheel-drive transmission of a riding

tractor. A 5-hp single-cylinder engine is used. At most, 60 percent of this power is transmitted to the

belt. The driving sheave has a diameter of 6.2 in, the driven, 12.0 in. The belt selected should be as

close to a 92-in pitch length as possible. The engine speed is governor-controlled to a maximum of

3100 rev/min. Select a satisfactory belt and assess the factor of safety and the belt life in passes.

17–18 Two B85 V belts are used in a drive composed of a 5.4-in driving sheave, rotating at 1200 rev/min,

and a 16-in driven sheave. Find the power capacity of the drive based on a service factor of 1.25,

and find the center-to-center distance.

17–19 A 60-hp four-cylinder internal combustion engine is used to drive a brick-making machine under

a schedule of two shifts per day. The drive consists of two 26-in sheaves spaced about 12 ft apart,

with a sheave speed of 400 rev/min. Select a V-belt arrangement. Find the factor of safety, and

estimate the life in passes and hours.

17–20 A reciprocating air compressor has a 5-ft-diameter flywheel 14 in wide, and it operates at 

170 rev/min. An eight-pole squirrel-cage induction motor has nameplate data 50 bhp at 875

rev/min.

(a) Design a V-belt drive.

(b) Can cutting the V-belt grooves in the flywheel be avoided by using a V-flat drive?

17–21 The geometric implications of a V-flat drive are interesting.

(a) If the earth’s equator was an inextensible string, snug to the spherical earth, and you spliced

6 ft of string into the equatorial cord and arranged it to be concentric to the equator, how far

off the ground is the string?
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(b) Using the solution to part a, formulate the modifications to the expressions for mG , θd and θD ,

L p , and C.

(c) As a result of this exercise, how would you revise your solution to part b of Prob. 17–20?

17–22 A 2-hp electric motor running at 1720 rev/min is to drive a blower at a speed of 240 rev/min.

Select a V-belt drive for this application and specify standard V belts, sheave sizes, and the

resulting center-to-center distance. The motor size limits the center distance to at least 22 in.

17–23 The standard roller-chain number indicates the chain pitch in inches, construction proportions,

series, and number of strands as follows:

10 0H-2

two strands

heavy series

standard proportions

pitch is 10/8 in

This convention makes the pitch directly readable from the chain number. In Ex. 17–5 ascertain

the pitch from the selected chain number and confirm from Table 17–19.

17–24 Equate Eqs. (17–32) and (17–33) to find the rotating speed n1 at which the power equates and

marks the division between the premaximum and the postmaximum power domains.

(a) Show that

n1 =
[

0.25(106)Kr N 0.42
1

p(2.2−0.07 p)

]1/2.4

(b) Find the speed n1 for a no. 60 chain, p = 0.75 in, N1 = 17, Kr = 17, and confirm from

Table 17–20.

(c) At which speeds is Eq. (17–40) applicable?

17–25 A double-strand no. 60 roller chain is used to transmit power between a 13-tooth driving sprocket

rotating at 300 rev/min and a 52-tooth driven sprocket.

(a) What is the allowable horsepower of this drive?

(b) Estimate the center-to-center distance if the chain length is 82 pitches.

(c) Estimate the torque and bending force on the driving shaft by the chain if the actual horse-

power transmitted is 30 percent less than the corrected (allowable) power.

17–26 A four-strand no. 40 roller chain transmits power from a 21-tooth driving sprocket to an 84-tooth

driven sprocket. The angular speed of the driving sprocket is 2000 rev/min.

(a) Estimate the chain length if the center-to-center distance has to be about 20 in.

(b) Estimate the tabulated horsepower entry H ′
tab for a 20 000-h life goal.

(c) Estimate the rated (allowable) horsepower that would appear in Table 17–20 for a 20 000-h

life.

(d) Estimate the tension in the chain at the allowable power.

17–27 A 700 rev/min 25-hp squirrel-cage induction motor is to drive a two-cylinder reciprocating pump,

out-of-doors under a shed. A service factor Ks of 1.5 and a design factor of 1.1 are appropriate.

The pump speed is 140 rev/min. Select a suitable chain and sprocket sizes.

17–28 A centrifugal pump is driven by a 50-hp synchronous motor at a speed of 1800 rev/min. The

pump is to operate at 900 rev/min. Despite the speed, the load is smooth (Ks = 1.2). For a design

factor of 1.1 specify a chain and sprockets that will realize a 50 000-h life goal. Let the sprockets

be 19T and 38T.
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17–29 A mine hoist uses a 2-in 6 × 19 monitor-steel wire rope. The rope is used to haul loads of 4 tons

from the shaft 480 ft deep. The drum has a diameter of 6 ft, the sheaves are of good-quality cast

steel, and the smallest is 3 ft in diameter.

(a) Using a maximum hoisting speed of 1200 ft/min and a maximum acceleration of 2 ft/s2,

estimate the stresses in the rope.

(b) Estimate the various factors of safety.

17–30 A temporary construction elevator is to be designed to carry workers and materials to a height of

90 ft. The maximum estimated load to be hoisted is 5000 lbf at a velocity not to exceed 2 ft/s. For

minimum sheave diameters and acceleration of 4 ft/s2, specify the number of ropes required if the

1-in plow-steel 6 × 19 hoisting strand is used.

17–31 A 2000-ft mine hoist operates with a 72-in drum using 6 × 19 monitor-steel wire rope. The cage

and load weigh 8000 lbf, and the cage is subjected to an acceleration of 2 ft/s2 when starting.

(a) For a single-strand hoist how does the factor of safety n = Ff /Ft vary with the choice of rope

diameter?

(b) For four supporting strands of wire rope attached to the cage, how does the factor of safety

vary with the choice of rope diameter?

17–32 Generalize the results of Prob. 17–31 by representing the factor of safety n as

n = ad

(b/m) + cd2

where m is the number of ropes supporting the cage, and a, b, and c are constants. Show that the

optimal diameter is d∗ = [b/(mc)]1/2 and the corresponding maximum attainable factor of safety

is n∗ = a[m/(bc)]1/2/2.

17–33 From your results in Prob. 17–32, show that to meet a fatigue factor of safety n1 the optimal

solution is

m = 4bcn1

a2
ropes

having a diameter of

d = a

2cn1

Solve Prob. 17–31 if a factor of safety of 2 is required. Show what to do in order to accommo-

date to the necessary discreteness in the rope diameter d and the number of ropes m.

17–34 For Prob. 17–29 estimate the elongation of the rope if a 9000-lbf loaded mine cart is placed on

the cage. The results of Prob. 4–6 may be useful.

Computer Programs

In approaching the ensuing computer problems, the following suggestions may be helpful:

• Decide whether an analysis program or a design program would be more useful. In problems

as simple as these, you will find the programs similar. For maximum instructional benefit, try

the design problem.

• Creating a design program without a figure of merit precludes ranking alternative designs but

does not hinder the attainment of satisfactory designs. Your instructor can provide the class

design library with commercial catalogs, which not only have price information but define

available sizes.



Budynas−Nisbett: Shigley’s 

Mechanical Engineering 

Design, Eighth Edition

III. Design of Mechanical 

Elements

17. Flexible Mechanical 

Elements

907© The McGraw−Hill 

Companies, 2008

910 Mechanical Engineering Design

• Quantitative understanding and logic of interrelations are required for programming.

Difficulty in programming is a signal to you and your instructor to increase your understand-

ing. The following programs can be accomplished in 100 to 500 lines of code.

• Make programs interactive and user-friendly.

• Let the computer do what it can do best; the user should do what a human can do best.

• Assume the user has a copy of the text and can respond to prompts for information.

• If interpolating in a table is in order, solicit table entries in the neighborhood, and let the

computer crunch the numbers.

• In decision steps, allow the user to make the necessary decision, even if it is undesirable. This

allows learning of consequences and the use of the program for analysis.

• Display a lot of information in the summary. Show the decision set used up-front for user

perspective.

• When a summary is complete, adequacy assessment can be accomplished with ease, so

consider adding this feature.

17–35 Your experience with Probs. 17–1 through 17–11 has placed you in a position to write an inter-

active computer program to design/select flat-belt drive components. A possible decision set is

A Priori Decisions

• Function: Hnom , rev/min, velocity ratio, approximate C

• Design factor: nd

• Initial tension maintenance: catenary

• Belt material: t, dmin , allowable tension, density, f

• Drive geometry: d, D

• Belt thickness: t (in material decision)

Design Decisions

• Belt width: b

17–36 Problems 17–12 through 17–16 have given you some experience with flat metal friction belts,

indicating that a computer program could be helpful in the design/selection process. A possible

decision set is

A Priori Decisions

• Function: Hnom , rev/min, velocity ratio approximate C

• Design factor: nd

• Belt material: Sy , E, ν, dmin

• Drive geometry: d, D

• Belt thickness: t

Design Decisions

• Belt width: b

• Length of belt (often standard loop periphery)
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17–37 Problems 17–17 through 17–22 have given you enough experience with V belts to convince you

that a computer program would be helpful in the design/selection of V-belt drive components.

Write such a program.

17–38 Experience with Probs. 17–23 through 17–28 can suggest an interactive computer program to

help in the design/selection process of roller-chain elements. A possible decision set is

A Priori Decisions

• Function: power, speed, space, Ks , life goal

• Design factor: nd

• Sprocket tooth counts: N1 , N2 , K1 , K2

Design Decisions

• Chain number

• Strand count

• Lubrication system

• Chain length in pitches

(center-to-center distance for reference)
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Transmission of power from a source, such as an engine or motor, through a machine to an

output actuation is one of the most common machine tasks. An efficient means of trans-

mitting power is through rotary motion of a shaft that is supported by bearings. Gears, belt

pulleys, or chain sprockets may be incorporated to provide for torque and speed changes

between shafts. Most shafts are cylindrical (solid or hollow), and include stepped diame-

ters with shoulders to accommodate the positioning and support of bearings, gears, etc.

The design of a system to transmit power requires attention to the design and selec-

tion of individual components (gears, bearings, shaft, etc.). However, as is often the case

in design, these components are not independent. For example, in order to design the

shaft for stress and deflection, it is necessary to know the applied forces. If the forces are

transmitted through gears, it is necessary to know the gear specifications in order to

determine the forces that will be transmitted to the shaft. But stock gears come with cer-

tain bore sizes, requiring knowledge of the necessary shaft diameter. It is no surprise that

the design process is interdependent and iterative, but where should a designer start?

The nature of machine design textbooks is to focus on each component separately. This

chapter will focus on an overview of a power transmission system design, demonstrating

how to incorporate the details of each component into an overall design process. A typical

two-stage gear reduction such as shown in Fig. 18–1 will be assumed for this discussion.

The design sequence is similar for variations of this particular transmission system.

The following outline will help clarify a logical design sequence. Discussion of

how each part of the outline affects the overall design process will be given in sequence

in this chapter. Details on the specifics for designing and selecting major components

are covered in separate chapters, particularly Chap. 7 on shaft design, Chap. 11 on bear-

ing selection, and Chaps. 13 and 14 on gear specification. A complete case study is pre-

sented as a specific vehicle to demonstrate the process.

3

2

5

4

Y

2

5

3 4

Figure 18–1

A compound reverted 
gear train.

CASE STUDY PART 1 
PROBLEM SPECIFICATION
Section 1–16, p. 23, presents the background for this case study involving a speed
reducer. A two-stage, compound reverted gear train such as shown in Fig. 18–1
will be designed. In this chapter, the design of the intermediate shaft and its
components is presented, taking into account the other shafts as necessary.
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18–1 Design Sequence for Power Transmission
There is not a precise sequence of steps for any design process. By nature, design is an

iterative process in which it is necessary to make some tentative choices, and to build a

skeleton of a design, and to determine which parts of the design are critical. However,

much time can be saved by understanding the dependencies between the parts of the

problem, allowing the designer to know what parts will be affected by any given

change. In this section, only an outline is presented, with a short explanation of each

step. Further details will be discussed in the following sections.

• Power and torque requirements. Power considerations should be addressed first, as

this will determine the overall sizing needs for the entire system. Any necessary

speed or torque ratio from input to output must be determined before addressing

gear/pulley sizing.

• Gear specification. Necessary gear ratios and torque transmission issues can now be

addressed with selection of appropriate gears. Note that a full force analysis of the shafts

is not yet needed, as only the transmitted loads are required to specify the gears.

• Shaft layout. The general layout of the shaft, including axial location of gears and

bearings must now be specified. Decisions on how to transmit the torque from the

gears to the shaft need to be made (keys, splines, etc.), as well as how to hold gears

and bearings in place (retaining rings, press fits, nuts, etc.). However, it is not neces-

sary at this point to size these elements, since their standard sizes allow estimation of

stress concentration factors.

• Force analysis. Once the gear/pulley diameters are known, and the axial locations of

the gears and bearings are known, the free-body, shear force, and bending moment

diagrams for the shafts can be produced. Forces at the bearings can be determined.

• Shaft material selection. Since fatigue design depends so heavily on the material

choice, it is usually easier to make a reasonable material selection first, then check

for satisfactory results.

• Shaft design for stress (fatigue and static). At this point, a stress design of the shaft

should look very similar to a typical design problem from the shaft chapter (Chap. 7).

Shear force and bending moment diagrams are known, critical locations can be pre-

dicted, approximate stress concentrations can be used, and estimates for shaft diame-

ters can be determined.

A subset of the pertinent design specifications that will be needed for this part
of the design are given here.

Power to be delivered: 20 hp
Input speed: 1750 rpm
Output speed: 82–88 rev/min
Usually low shock levels, occasional moderate shock
Input and output shafts extend 4 in outside gearbox
Maximum gearbox size: 22 in � 14 in � 14 in
Output shaft and input shaft in-line
Gear and bearing life � 12 000 hours; infinite shaft life
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• Shaft design for deflection. Since deflection analysis is dependent on the entire

shaft geometry, it is saved until this point. With all shaft geometry now estimated,

the critical deflections at the bearing and gear locations can be checked by analysis.

• Bearing selection. Specific bearings from a catalog may now be chosen to match the

estimated shaft diameters. The diameters can be adjusted slightly as necessary to

match the catalog specifications.

• Key and retaining ring selection. With shaft diameters settling in to stable values,

appropriate keys and retaining rings can be specified in standard sizes. This should

make little change in the overall design if reasonable stress concentration factors

were assumed in previous steps.

• Final analysis. Once everything has been specified, iterated, and adjusted as neces-

sary for any specific part of the task, a complete analysis from start to finish will pro-

vide a final check and specific safety factors for the actual system.

18–2 Power and Torque Requirements
Power transmission systems will typically be specified by a power capacity, for example,

a 40-horsepower gearbox. This rating specifies the combination of torque and speed that

the unit can endure. Remember that, in the ideal case, power in equals power out, so that

we can refer to the power being the same throughout the system. In reality, there are small

losses due to factors like friction in the bearings and gears. In many transmission systems,

the losses in the rolling bearings will be negligible. Gears have a reasonably high

efficiency, with about 1 to 2 percent power loss in a pair of meshed gears. Thus, in the

double-reduction gearbox in Fig. 18–1, with two pairs of meshed gears the output power

is likely to be about 2 to 4 percent less than the input power. Since this is a small loss, it

is common to speak of simply the power of the system, rather than input power and output

power. Flat belts and timing belts have efficiencies typically in the mid to upper 90 percent

range. V belts and worm gears have efficiencies that may dip much lower, requiring a

distinction between the necessary input power to obtain a desired output power.

Torque, on the other hand, is typically not constant throughout a transmission

system. Remember that power equals the product of torque and speed. Since power in �

power out, we know that for a gear train

H = Tiωi = Toωo (18–1)

With a constant power, a gear ratio to decrease the angular velocity will simulta-

neously increase torque. The gear ratio, or train value, for the gear train is

e = ωo/ωi = Ti/To (18–2)

A typical power transmission design problem will specify the desired power capac-

ity, along with either the input and output angular velocities, or the input and output

torques. There will usually be a tolerance specified for the output values. After the spe-

cific gears are specified, the actual output values can be determined.

18–3 Gear Specification
With the gear train value known, the next step is to determine appropriate gears. As a

rough guideline, a train value of up to 10 to 1 can be obtained with one pair of gears.

Greater ratios can be obtained by compounding additional pairs of gears (See 

Sec. 13–13, p. 678). The compound reverted gear train in Fig. 18–1 can obtain a train

value of up to 100 to 1.
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Since numbers of teeth on gears must be integers, it is best to design with teeth num-

bers rather than diameters. See Ex. 13–3, 13–4, and 13–5, pp. 680–682, for details on

designing appropriate numbers of teeth to satisfy the gear train value and any necessary

geometry condition, such as in-line condition of input and output shaft. Care should be

taken at this point to find the best combination of teeth numbers to minimize the overall

package size. If the train value only needs to be approximate, use this flexibility to try dif-

ferent options of teeth numbers to minimize the package size. A difference of one tooth

on the smallest gear can result in a significant increase in size of the overall package.

If designing for large production quantities, gears can be purchased in large enough

quantities that it is not necessary to worry about preferred sizes. For small lot production,

consideration should be given to the tradeoffs between smaller gearbox size and extra cost

for odd gear sizes that are difficult to purchase off the shelf. If stock gears are to be used,

their availability in prescribed numbers of teeth with anticipated diametral pitch should be

checked at this time. If necessary, iterate the design for numbers of teeth that are available.

CASE STUDY PART 2 
SPEED, TORQUE, AND GEAR RATIOS

Continue the case study by determining appropriate tooth counts to reduce the
input speed of ωi = 1750 rev/min to an output speed within the range

82 rev/min � ωo � 88 rev/min

Once final tooth counts are specified, determine values of
(a) Speeds for the intermediate and output shafts
(b) Torques for the input, intermediate and output shafts, to transmit 20 hp.

Solution
Use the notation for gear numbers from Fig. 18–1. Choose mean value for initial
design, ω5 = 85 rev/min.

e = ω5

ω2

= 85

1750
= 1

20.59
Eq. (18–2)

For a compound reverted geartrain,

e = 1

20.59
= N2

N3

N4

N5

Eq. (13–30), p. 679

For smallest package size, let both stages be the same reduction. Also, by making
the two stages identical, the in-line condition on the input and output shaft will
automatically be satisfied.

N2

N3

= N4

N5

=
√

1

20.59
= 1

4.54

For this ratio, the minimum number of teeth from Eq. (13–11), p. 666, is 16.

N2 = N4 = 16 teeth

N3 = 4.54(N2) = 72.64
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Try rounding down and check if ω5 is within limits.

ω5 =
(

16

72

)(

16

72

)

(1750) = 86.42 rev/min Acceptable

Proceed with

N2 = N4 = 16 teeth

N3 = N5 = 72 teeth

e =
(

16

72

)(

16

72

)

= 1

20.25

ω5 = 86.42 rev/min

ω3 = ω4 =
(

16

72

)

(1750) = 388.9 rev/ min

To determine the torques, return to the power relationship,

H = T2ω2 = T5ω5 Eq. (18–1)

T2 = H/ω2 =
(

20 hp

1750 rev/min

)(

550
ft-lbf/s

hp

)(

1 rev

2π rad

)

(

60
s

min

)

T2 = 60.0 lbf · ft

T3 = T2

ω2

ω3

= 60.0
1750

388.9
= 270 lbf · ft

T5 = T2

ω2

ω5

= 60.0
1750

86.42
= 1215 lbf · ft

If a maximum size for the gearbox has been specified in the problem specification,

a minimum diametral pitch (maximum tooth size) can be estimated at this point by writ-

ing an expression for gearbox size in terms of gear diameters, and converting to num-

bers of teeth through the diametral pitch. For example, from Fig. 18–1, the overall

height of the gearbox is

Y = d3 + d2/2 + d5/2 + 2/P + clearances + wall thicknesses

where the 2/P term accounts for the addendum height of the teeth on gears 2 and 5 that

extend beyond the pitch diameters. Substituting di = Ni/P gives

Y = N3/P + N2/(2P) + N5/(2P) + 2/P + clearances + wall thicknesses

Solving this for P, we find

P = (N3 + N2/2 + N5/2 + 2)/(Y − clearances − wall thicknesses) (18–3)
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This is the minimum value that can be used for diametral pitch, and therefore the max-

imum tooth size, to stay within the overall gearbox constraint. It should be rounded up

to the next standard diametral pitch, which reduces the maximum tooth size.

The AGMA approach, as described in Chap. 14, for both bending and contact stress

should be applied next to determine suitable gear parameters. The primary design

parameters to be specified by the designer include material, diametral pitch, and face

width. A recommended procedure is to start with an estimated diametral pitch. This

allows determination of gear diameters (d = N/P), pitch-line velocities [Eq. (13–34), 

p. 687], and transmitted loads [Eq. (13–35) or (13–36), p. 687]. Typical spur gears are

available with face widths from 3 to 5 times the circular pitch p. Using an average of 4,

a first estimate can be made for face width F = 4p = 4π/P . Alternatively, the designer

can simply perform a quick search of on-line gear catalogs to find available face widths

for the diametral pitch and number of teeth.

Next, the AGMA equations in Chap. 14 can be used to determine appropriate mate-

rial choices to provide desired safety factors. It is generally most efficient to attempt to

analyze the most critical gear first, as it will determine the limiting values of diametral

pitch and material strength. Usually, the critical gear will be the smaller gear, on the

high-torque (low-speed) end of the gearbox.

If the required material strengths are too high, such that they are either too expensive

or not available, iteration with a smaller diametral pitch (larger tooth) will help. Of course,

this will increase the overall gearbox size. Often the excessive stress will be in one of the

small gears. Rather than increase the tooth size for all gears, it is sometimes better to

reconsider the design of tooth counts, shifting more of the gear ratio to the pair of gears

with less stress, and less ratio to the pair of gears with the excessive stress. This will allow

the offending gear to have more teeth and therefore larger diameter, decreasing its stress.

If contact stress turns out to be more limiting than bending stress, consider gear

materials that have been heat treated or case hardened to increase the surface strength.

Adjustments can be made to the diametral pitch if necessary to achieve a good balance

of size, material, and cost. If the stresses are all much lower than the material strengths,

a larger diametral pitch is in order, which will reduce the size of the gears and the 

gearbox.

Everything up to this point should be iterated until acceptable results are obtained,

as this portion of the design process can usually be accomplished independently from

the next stages of the process. The designer should be satisfied with the gear selection

before proceeding to the shaft. Selection of specific gears from catalogs at this point

will be helpful in later stages, particularly in knowing overall width, bore size, recom-

mended shoulder support, and maximum fillet radius.

CASE STUDY PART 3 
GEAR SPECIFICATION

Continue the case study by specifying appropriate gears, including pitch diameter,
diametral pitch, face width, and material. Achieve safety factors of at least 1.2
for wear and bending.

Solution
Estimate the minimum diametral pitch for overall gearbox height � 22 in.
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From Eq. (18–3) and Fig. 18–1,

Pmin =

(

N3 + N2

2
+ N5

2
+ 2

)

(Y − clearances − wall thickness)

Allow 1.5 in for clearances and wall thicknesses:

Pmin =

(

72 + 16

2
+ 72

2
+ 2

)

(22 − 1.5)
= 5.76 teeth/in

Start with P = 6 teeth/in

d2 = d4 = N2/P = 16/6 = 2.67 in

d3 = d5 = 72/6 = 12.0 in

Shaft speeds were previously determined to be

ω2 = 1750 rev/min ω3 = ω4 = 388.9 rev/min ω5 = 86.4 rev/min

Get pitch-line velocities and transmitted loads for later use.

V23 = πd2ω2

12
= π(2.67)(1750)

12
= 1223 ft/ min Eq. (13–34), p. 687

V45 = πd5ω5

12
= 271.5 ft/ min

W t
23 = 33000

H

V23

= 33000

(

20

1223

)

= 540.0 lbf Eq. (13–35), p. 687

W t
45 = 33000

H

V45

= 2431 lbf

Start with gear 4, since it is the smallest gear, transmitting the largest load.
It will likely be critical. Start with wear by contact stress, since it is often the
limiting factor.

Gear 4 Wear

I = cos 20◦sin20◦

2(1)

(

4.5

4.5 + 1

)

= 0.1315 Eq. (14–23), p. 735

For Kv, assume Qv = 7. B = 0.731, A = 65.1 Eq. (14–29), p. 736

Kv =
(

65.1 +
√

271.5

65.1

)0.731

= 1.18 Eq. (14–27), p. 736

Face width F is typically from 3 to 5 times circular pitch. Try

F = 4
(π

P

)

= 4
(π

6

)

= 2.09 in .

Since gear specifications are readily available on the Internet, we might as well
check for commonly available face widths. On www.globalspec.com, entering P = 6

teeth/in and d = 2.67 in, stock spur gears from several sources have face widths
of 1.5 in or 2.0 in. These are also available for the meshing gear 5 with d = 12 in.

Choose F = 2.0 in.

For Km , Cp f = 0.0624 Eq. (14–32), p. 740
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Cmc = 1 uncrowned teeth Eq. (14–31), p. 740

Cpm = 1 straddle-mounted Eq. (14–33), p. 740

Cma = 0.15 commercial enclosed unit Eq. (14–34), p. 740

Ce = 1 Eq. (14–35), p. 740

Km = 1.21 Eq. (14–30), p. 739

Cp = 2300 Table 14–8, p. 737

Ko = Ks = C f = 1

σc = 2300

√

2431(1.18)(1.21)

2.67(2)(0.1315)
= 161 700 psi Eq. (14–16), p. 726

Get factors for σc.all. For life factor Z N , get number of cycles for specified life
of 12 000 h.

L4 = (12 000 h)

(

60
min

h

)

(

389
rev

min

)

= 2.8 × 108 rev

Z N = 0.9 Fig. 14–15, p. 743

K R = KT = CH = 1

For a design factor of 1.2,

σc.all = Sc Z N /SH = σc Eq. (14–18), p. 730

Sc = SH σc

Z N

= 1.2(161 700)

0.9
= 215 600 psi

From Table 14–6, p. 731, this strength is achievable with Grade 2 carburized 
and hardened with Sc = 225 000 psi. To find the achieved factor of safety,
nc = σc,all/σc with SH = 1. The factor of safety for wear of gear 4 is

nc = σc,all

σc

= Sc Z N

σc

= 225 000(0.9)

161 700
= 1.25

Gear 4 Bending

J = 0.27 Fig. 14–6, p. 733

K B = 1

Everything else is the same as before.

σ = Wt Kv

Pd

F

Km

J
= (2431)(1.18)

(

6

2

)(

1.21

0.27

)

Eq. (14–15), p. 726

σ = 38 570 psi

YN = 0.9 Fig. 14–14, p. 743
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Using Grade 2 carburized and hardened, same as chosen for wear, find St =
65 000 psi (Table 14–3, p. 728).

σall = St YN = 58 500 psi

The factor of safety for bending of gear 4 is

n = σall

σ
= 58 500

38 570
= 1.52

Gear 5 Bending and Wear
Everything is the same as for gear 4, except J, YN , and Z N .

J = 0.41 Fig. 14–6, p. 733

L5 = (12 000h)(60 min/h)(86.4 rev/min) = 6.2 × 107rev

YN = 0.97 Fig. 14–14, p. 743

Z N = 1.0 Fig. 14–15, p. 743

σc = 2300

√

2431(1.18)(1.21)

12(2)(0.1315)
= 76 280 psi

σ = (2431)(1.18)

(

6

2

)(

1.21

0.41

)

= 25 400 psi

Choose a Grade 1 steel, through-hardened to 250 HB . From Fig. 14–2, p. 727 ,
St = 32 000 psi and from Fig. 14–5, p. 730, Sc = 110 000 psi.

nc = σc.all

σc

= 110 000

76 280
= 1.44

n = σall

σ
= 32 000(.97)

25 400
= 1.22

Gear 2 Wear
Gears 2 and 3 are evaluated similarly. Only selected results are shown.

Kν = 1.37

Try F = 1.5 in, since the loading is less on gears 2 and 3.

Km = 1.19

All other factors are the same as those for gear 4.

σc = 2300

√

(539.7)(1.37)(1.19)

2.67(1.5)(0.1315)
= 94 000 psi

L2 = (12 000 h)(60 min/h)(1750 rev/min) = 1.26 × 109 rev Z N = 0.8

Try grade 1 flame-hardened, Sc = 170 000 psi

nc = σc.all

σc

= 170 000(0.8)

94 000
= 1.40

Gear 2 Bending

J = 0.27 YN = 0.88

σ = 539.7(1.37)
(6)(1.19)

(1.5)(0.27)
= 13 040 psi
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n = σall

σ
= 45 000(0.88)

13 040
= 3.04

Gear 3 Wear and Bending

J = 0.41 YN = 0.9 Z N = 0.9

σc = 2300

√

(539.7)(1.37)(1.19)

12(1.5)(0.1315)
= 44 340 psi

σ = 539.7(1.37)
(6)(1.19)

1.5(0.41)
= 8584 psi

Try Grade 1 steel, through-hardened to 200 HB . From Fig. 14–2, p. 727, 
St = 28 000 psi and from Fig. 14–5, p. 730, Sc = 90 000 psi.

nc = 90 000(0.9)

44 340
= 1.83

n = σall

σ
= 28 000(0.9)

8584
= 2.94

In summary, the resulting gear specifications are:

All gears, P = 6 teeth/in

Gear 2, Grade 1 flame-hardened, Sc = 170 000 psi and St = 45 000 psi

d2 = 2.67 in, face width = 1.5 in

Gear 3, Grade 1 through-hardened to 200 HB, Sc = 90 000 psi and St = 28 000 psi

d3 = 12.0 in, face width = 1.5 in

Gear 4, Grade 2 carburized and hardened, Sc = 225 000 psi and St = 65 000 psi

d4 = 2.67 in, face width = 2.0 in

Gear 5, Grade 1 through-hardened to 250 HB, Sc = 110 000 psi and St = 31 000 psi

d5 = 12.0 in, face width = 2.0 in

18–4 Shaft Layout
The general layout of the shafts, including axial location of gears and bearings, must now

be specified in order to perform a free-body force analysis and to obtain shear force and

bending moment diagrams. If there is no existing design to use as a starter, then the deter-

mination of the shaft layout may have many solutions. Section 7–3, p. 349, discusses the

issues involved in shaft layout. In this section the focus will be on how the decisions relate

to the overall process.

A free-body force analysis can be performed without knowing shaft diameters, but

can not be performed without knowing axial distances between gears and bearings. It is

extremely important to keep axial distances small. Even small forces can create large

bending moments if the moment arms are large. Also, recall that beam deflection equa-

tions typically include length terms raised to the third power.

It is worth examining the entirety of the gearbox at this time, to determine what

factors drive the length of the shaft and the placement of the components. A rough

sketch, such as shown in Fig. 18–2, is sufficient for this purpose.
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CASE STUDY PART 4
SHAFT LAYOUT
Continue the case study by preparing a sketch of the gearbox sufficient to
determine the axial dimensions. In particular, estimate the overall length, and the
distance between the gears of the intermediate shaft, in order to fit with the
mounting requirements of the other shafts.

Solution
Fig. 18–2 shows the rough sketch. It includes all three shafts, with consideration
of how the bearings are to mount in the case. The gear widths are known at this
point. Bearing widths are guessed, allowing a little more space for larger bearings
on the intermediate shaft where bending moments will be greater. Small changes
in bearing widths will have minimal effect on the force analysis, since the location
of the ground reaction force will change very little. The 4-in distance between
the two gears on the countershaft is dictated by the requirements of the input
and output shafts, including the space for the case to mount the bearings. Small
allotments are given for the retaining rings, and for space behind the bearings.
Adding it all up gives the intermediate shaft length as 11.5 in.

Figure 18–2

Sketch for shaft layout. Dimensions are in inches.
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Wider face widths on gears require more shaft length. Originally, gears with hubs

were considered for this design to allow the use of set screws instead of high-stress-

concentration retaining rings. However, the extra hub lengths added several inches to

the shaft lengths and the gearbox housing.

Several points are worth noting in the layout in Fig. 18–2. The gears and bearings

are positioned against shoulders, with retaining rings to hold them in position. While it

is desirable to place gears near the bearings, a little extra space is provided between

them to accommodate any housing that extends behind the bearing, and to allow for a

bearing puller to have space to access the back of the bearing. The extra change in

diameter between the bearings and the gears allows the shoulder height for the bearing

and the bore size for the gear to be different. This diameter can have loose tolerances

and large fillet radius.

Each bearing is restrained axially on its shaft, but only one bearing on each shaft

is axially fixed in the housing, allowing for slight axial thermal expansion of the

shafts.

18–5 Force Analysis
Once the gear diameters are known, and the axial locations of the components are

set, the free-body diagrams and shear force and bending moment diagrams for the

shafts can be produced. With the known transmitted loads, determine the radial and

axial loads transmitted through the gears (see Secs. 13–14 through 13–17, pp. 685–694).

From summation of forces and moments on each shaft, ground reaction forces at the

bearings can be determined. For shafts with gears and pulleys, the forces and moments

will usually have components in two planes along the shaft. For rotating shafts, usu-

ally only the resultant magnitude is needed, so force components at bearings are

summed as vectors. Shear force and bending moment diagrams are usually obtained

in two planes, then summed as vectors at any point of interest. A torque diagram

should also be generated to clearly visualize the transfer of torque from an input

component, through the shaft, and to an output component.

See the beginning of Ex. 7–2, p. 361, for the force analysis portion of the case study

for the intermediate shaft. The bending moment is largest at gear 4. This is predictable,

since gear 4 is smaller, and must transmit the same torque that entered the shaft through

the much larger gear 3.

While the force analysis is not difficult to perform manually, if beam software is to

be used for the deflection analysis, it will necessarily calculate reaction forces, along

with shear force and bending moment diagrams in the process of calculating deflec-

tions. The designer can enter guessed values for diameters into the software at this

point, just to get the force information, and later enter actual diameters to the same

model to determine deflections.

18–6 Shaft Material Selection
A trial material for the shaft can be selected at any point before the stress design of the

shaft, and can be modified as necessary during the stress design process. Section 7–2,

p. 348, provides details for decisions regarding material selection. For the case study,

an inexpensive steel, 1020 CD, is initially selected. After the stress analysis, a slightly

higher strength 1050 CD is chosen to reduce the critical stresses without further

increasing the shaft diameters.
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18–7 Shaft Design for Stress
The critical shaft diameters are to be determined by stress analysis at critical locations.

Section 7–4, p. 354, provides a detailed examination of the issues involved in shaft

design for stress.

CASE STUDY PART 5 
DESIGN FOR STRESS

Proceed with the next phase of the case study design, in which appropriate diam-
eters for each section of the shaft are estimated, based on providing sufficient
fatigue and static stress capacity for infinite life of the shaft, with minimum
safety factor of 1.5.

Solution
The solution to this phase of the design is presented in Ex. 7–2, p. 361.

Since the bending moment is highest at gear 4, potentially critical stress points are

at its shoulder, keyway, and retaining ring groove. It turns out that the keyway is the

critical location. It seems that shoulders often get the most attention. This example

demonstrates the danger of neglecting other stress concentration sources, such as

keyways.

The material choice was changed in the course of this phase, choosing to pay for a

higher strength to limit the shaft diameter to 2 in. If the shaft were to get much bigger,

the small gear would not be able to provide an adequate bore size. If it becomes neces-

sary to increase the shaft diameter any more, the gearing specification will need to be

redesigned.

18–8 Shaft Design for Deflection
Section 7–5, p. 367, provides a detailed discussion of deflection considerations for shafts.

Typically, a deflection problem in a shaft will not cause catastrophic failure of the shaft,

but will lead to excess noise and vibration, and premature failure of the gears or bearings.

CASE STUDY PART 6 
DEFLECTION CHECK

Proceed with the next phase of the case study by checking that deflections and
slopes at the gears and bearings on the intermediate shaft are within acceptable
ranges.

Solution
The solution to this phase of the design is presented in Ex. 7–3, p. 368.
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It turns out that in this problem all the deflections are within recommended limits

for bearings and gears. This is not always the case, and it would be a poor choice to neg-

lect the deflection analysis. In a first iteration of this case study, with longer shafts due

to using gears with hubs, the deflections were more critical than the stresses.

18–9 Bearing Selection
Bearing selection is straightforward now that the bearing reaction forces and the

approximate bore diameters are known. See Chap. 11 for general details on bearing

selection. Rolling-contact bearings are available with a wide range of load capacities

and dimensions, so it is usually not a problem to find a suitable bearing that is close to

the estimated bore diameter and width.

CASE STUDY PART 7 
BEARING SELECTION
Continue the case study by selecting appropriate bearings for the intermediate
shaft, with a reliability of 99 percent. The problem specifies a design life of 
12 000 h. The intermediate shaft speed is 389 rev/min. The estimated bore size 
is 1 in, and the estimated bearing width is 1 in.

Solution
From the free-body diagram (see Ex. 7–2, p. 361),

RAz = 115.0 lbf RAy = 356.7 lbf RA = 375 lbf

RBz = 1776.0 lbf RBy = 725.3 lbf RB = 1918 lbf

At the shaft speed of 389 rev/min, the design life of 12 000 h correlates to a
bearing life of L D = (12 000 h)(60 min/h)(389 rev/min) = 2.8 × 108 rev.

Start with bearing B since it has the higher loads and will likely raise any 
lurking problems. From Eq. (11–7), p. 558, assuming a ball bearing with a = 3

and L = 2.8 × 106 rev,

FRB = 1918

[

2.8 × 108/106

0.02 + 4.439(1 − 0.99)1/1.483

]1/3

= 20 820 lbf

A check on the Internet for available bearings (www.globalspec.com is one good
starting place) shows that this load is relatively high for a ball bearing with bore
size in the neighborhood of 1 in. Try a cylindrical roller bearing. Recalculating FRB

with the exponent a = 3/10 for roller bearings, we obtain

FRB = 16 400 lbf

Cylindrical roller bearings are available from several sources in this range. A spe-
cific one is chosen from SKF, a common supplier of bearings, with the following
specifications:

Cylindrical roller bearing at right end of shaft

C = 18 658 lbf, ID = 1.181 1 in, OD = 2.834 6 in, W = 1.063 in

Shoulder diameter � 1.45 in to 1.53 in, and maximum fillet radius � 0.043 in
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For bearing A, again assuming a ball bearing,

FR A = 375

[

2.8 × 108/106

0.02 + 4.439(1 − 0.99)1/1.483

]1/3

= 407 lbf

A specific ball bearing is chosen from the SKF Internet catalog.

Deep-groove ball bearing at left end of shaft

C = 5058 lbf, ID = 1.000 in, OD = 2.500 in, W = 0.75 in

Shoulder diameter � 1.3 in to 1.4 in, and maximum fillet radius � 0.08 in

928 Mechanical Engineering Design

CASE STUDY PART 8
KEY DESIGN  
Continue the case study by specifying appropriate keys for the two gears on the
intermediate shaft to provide a factor of safety of 2. The gears are to be
custom bored and keyed to the required specifications. Previously obtained
information includes the following:

Transmitted torque: T = 3240 lbf-in

Bore diameters: d3 = d4 = 1.625 in

Gear hub lengths: l3 = 1.5 in, l4 = 2.0 in

At this point, the actual bearing dimensions can be checked against the initial

assumptions. For bearing B the bore diameter of 1.1811 in is slightly larger than the

original 1.0 in. There is no reason for this to be a problem as long as there is room for

the shoulder diameter. The original estimate for shoulder support diameters was 1.4 in.

As long as this diameter is less than 1.625 in, the next step of the shaft, there should not

be any problem. In the case study, the recommended shoulder support diameters are

within the acceptable range. The original estimates for stress concentration at the bear-

ing shoulder assumed a fillet radius such that r/d = 0.02. The actual bearings selected

have ratios of 0.036 and 0.080. This allows the fillet radii to be increased from the orig-

inal design, decreasing the stress concentration factors.

The bearing widths are close to the original estimates. Slight adjustments should be

made to the shaft dimensions to match the bearings. No redesign should be necessary.

18–10 Key and Retaining Ring Selection
The sizing and selection of keys is discussed in Sec. 7–7, p. 376, with an example in 

Ex. 7–6, p. 382. The cross-sectional size of the key will be dictated to correlate with the

shaft size (see Tables 7–6 and 7–8, pp. 379, 381), and must certainly match an integral

keyway in the gear bore. The design decision includes the length of the key, and if nec-

essary an upgrade in material choice.

The key could fail by shearing across the key, or by crushing due to bearing stress. For

a square key, it turns out that checking only the crushing failure is adequate, since the shear-

ing failure will be less critical according to the distortion energy failure theory, and equal

according to the maximum shear stress failure theory. Check Ex. 7–6 to investigate why.
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Retaining ring selection is simply a matter of checking catalog specifications. The

retaining rings are listed for nominal shaft diameter, and are available with different

axial load capacities. Once selected, the designer should make note of the depth of the

groove, the width of the groove, and the fillet radius in the bottom of the groove. The

catalog specification for the retaining ring also includes an edge margin, which is the min-

imum distance to the next smaller diameter change. This is to ensure support for the axial

load carried by the ring. It is important to check stress concentration factors with actual

dimensions, as these factors can be rather large. In the case study, a specific retaining

ring was already chosen during the stress analysis (see Ex. 7–2, p. 361) at the potential-

ly critical location of gear 4. The other locations for retaining rings were not at points

of high stress, so it is not necessary to worry about the stress concentration due to the

retaining rings in these locations. Specific retaining rings should be selected at this time

to complete the dimensional specifications of the shaft.

For the case study, retaining rings specifications are entered into globalspec, and

specific rings are selected from Truarc Co., with the following specifications:

Solution
From Table 7–6, p. 379, for a shaft diameter of 1.625 in, choose a square key
with side dimension t = 3

8
in. Choose 1020 CD material, with Sy = 57 kpsi. The

force on the key at the surface of the shaft is

F = T

r
= 3240

1.625/2
= 3988 lbf

Checking for failure by crushing, we find the area of one-half the face of the key
is used.

n = Sy

σ
= Sy

F/(tl/2)

Solving for l gives

l = 2Fn

t Sy

= 2(3988)(2)

(0.375)(57000)
= 0.75 in

Since both gears have the same bore diameter and transmit the same 
torque, the same key specification can be used for both.

Both Gears Left Bearing Right Bearing

Nominal Shaft diameter 1.625 in 1.000 in 1.181 in
Groove diameter 1.529 ± 0.005 in 0.940 ± 0.004 in 1.118 ± 0.004 in

Groove width in in in

Nominal groove depth 0.048 in 0.030 in 0.035 in
Max groove fillet radius 0.010 in 0.010 in 0.010 in
Minimum edge margin 0.144 in 0.105 in 0.105 in

Allowable axial thrust 11 850 lbf 6 000 lbf 7 000 lbf

These are within the estimates used for the initial shaft layout, and should not require

any redesign. The final shaft should be updated with these dimensions.

0.068
�0.004
�0.000

0.046
�0.004
�0.000

0.046
�0.004
�0.000
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18–12 Final Analysis
At this point in the design, everything seems to check out. Final details include deter-

mining dimensions and tolerances for appropriate fits with the gears and bearings. See

Section 7–8, p. 383, for details on obtaining specific fits. Any small changes from the

nominal diameters already specified will have negligible effect on the stress and deflec-

tion analysis. However, for manufacturing and assembly purposes, the designer should

not overlook the tolerance specification. Improper fits can lead to failure of the design.

The final drawing for the intermediate shaft is shown in Fig. 18–3.

For documentation purposes, and for a check on the design work, the design

process should conclude with a complete analysis of the final design. Remember that

analysis is much more straightforward than design, so the investment of time for the

final analysis will be relatively small.

PROBLEMS

18–1 For the case study problem, design the input shaft, including complete specification of the gear,

bearings, key, retaining rings, and shaft.

18–2 For the case study problem, design the output shaft, including complete specification of the gear,

bearings, key, retaining rings, and shaft.

18–3 For the case study problem, use helical gears and design the intermediate shaft. Compare your

results with the spur gear design presented in this chapter.

18–4 Perform a final analysis for the resulting design of the intermediate shaft of the case study prob-

lem presented in this chapter. Produce a final drawing with dimensions and tolerances for the

shaft. Does the final design satisfy all the requirements? Identify the critical aspects of the design

with the lowest factor of safety.

18–5 For the case study problem, change the power requirement to 40 horsepower. Design the inter-

mediate shaft, including complete specification of the gears, bearings, keys, retaining rings, and

shaft.


